
Math 361 Winter 2001/2002
Assignment 6 - Solutions

1. (a) The equilibria are found graphically as the intersections of the graph
of the function rN[1 ¡ (N=K)µ] with the N-axis. The equilibrium at which the
function changes sign form positive to negative as N is increased is stable, the
other one is unstable.

(b) At equilibrium N ¤ the population size is constant, hence we have to

solve
dN

dt
(N¤) = rN¤[1¡(N¤=K)µ] = 0. Clearly, the two solutions are N¤ = K

and N¤ = 0. To evaluate the stability of these equilibria, let
dN

dt
= rN[1 ¡

(N=K)µ ] = F (N), and determine whether
dF

dN
(N ¤) is positive or negative.

Stability analysis of the equilibrium N¤ = K:
dF

dN
(N) = r ¡ r

µ
N

K

¶µ

¡ rµ

µ
N

K

¶µ

dF

dN
(N¤) = r ¡ r ¡ rµ = ¡rµ

Since both r and µ are positive
dF

dN
(N ¤) is negative, and since

dF

dN
(N¤) is

negative the equilibrium, N¤ = K; is stable.
Stability analysis of the equilibrium N¤ = 0:
dF

dN
(N¤) = r

Since r is positive, the equilibrium, N¤ = 0, is unstable.

2. (a) A plot of
dN

dt
versus N for N > 0 shows that

dN

dt
< 0 for 0 < N < a,

dN

dt
> 0 for a < N < K and

dN

dt
< 0 for N > K . There are three intersection

points of the graph of dN=dt with the N -axis, hence there are three equilibrium
points. The intermediate equilibrium is unstable because the graph changes
from negative to positive as N is increased from below to above this equilibrium,
while the opposite is true for the other two equilibria.

(b) At equilibrium,
dN

dt
= 0 = rN¤(N¤ ¡ a)(1 ¡N¤=K).

The equation is already factored for us leaving rN¤ = 0 =) N¤ = 0,
N¤ ¡ a = 0 =) N¤ = a or (1 ¡ N¤=K) = 0 =) N¤ = K . Thus we have three
equilibria points N¤ = f0; a;Kg.

To determine stability set
dN

dt
= rN(N ¡ a)(1 ¡ N=K) = F (N), take the

derivative of F (N) with respect to N, and evaluate the derivative at the equi-
librium points:

dF (N)

dN
= r(N ¡ a)(1 ¡ N=K) + rN(1 ¡ N=K) ¡ rN(N ¡ a)

K
At the equilibrium N¤ = 0:
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dF

dN
(0) = r(¡a). Thus

dF (0)

dN
is always negative which means the equilib-

rium, N¤ = 0, is stable.
At the equilibrium N¤ = a:
dF

dN
(a) = r(a¡a)(1¡a=K)+ra(1¡a=K)¡ rN(a ¡ a)

K

dF (a)

dN
= ra(1¡a=K).

Because a < K we have
dF

dN
(a), which means that N¤ = a is unstable.

At the equilibrium N¤ = K :
dF (K)

dN
= r(K ¡ a)(1 ¡ K=K) + rK(1¡ K=K) ¡ rK(K ¡ a)

K
= ¡r(K ¡ a). Again since a < K this expression is negative for reasonable

values of r; K; and a. Therefore this equilibrium is stable.
(c) The Allee e¤ect implies that in contrast to the simple logistic equation

the equilibrium N¤ = 0 is locally stable, so that small populations go extinct,
e.g. due to problems in …nding suitable mates. To persist, i.e. to converge
to the carrying capacity N¤ = K , initial population sizes must be above the
threshold given by the intermediate equilibrium N ¤ = a.

3. (a) At equilibrium
dN

dt
= 0 = rN ¤(1 ¡ N¤=K) ¡ HN¤, hence rN¤(1 ¡

N¤=K) = HN¤, which has the solutions N¤ = 0 and N¤ = K(1 ¡ H

r
)

For the latter equilibrium to be positive we must have 0 < H < r. For the
stability analysis we calculate the derivative of F (N) = rN (1 ¡ N=K) ¡ HN:

dF

dN
= r(1 ¡ N=K) ¡ rN=K ¡H:

Thus dF
dN (0) = r ¡ H, and dF

dN

µ
K(1 ¡ H

r
)

¶
= H ¡ r. Thus, if H > r there

is only one feasible equilibrium, which is stable, and if H < r there are two

equilibria, with 0 being unstable and K(1 ¡ H

r
) being stable.

(b) If H > r then dN=dt < 0 for all N > 0, and hence the population is
always decreasing. In other words, if harvesting given by H is too large the
harvested population will go extinct.

4. (a) the per capita harvesting rate is given by H=(0:1 + N) (the total
harvesting is H=(0:1 + N)). Thus, the per capita harvesting rate goes to zero
as the size of the harvested population becomes large.

Equilibria occur when dN
dt = 0.

So

N¤ (1 ¡N¤) ¡ HN¤

0:1 +N ¤ = 0

N¤
µ

1 ¡ N¤ ¡ H

0:1 +N¤

¶
= 0

Clearly, there is one equilibrium at N¤ = 0.
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Also
µ

1 ¡ N¤ ¡ H

0:1 +N ¤

¶
= 0

implies that N¤ is a solution of the quadratic equation

N2 ¡ 0:9N +(H ¡ 0:1) = 0

This leads to two further equilibria at N¤ =
0:9§

p
0:81¡4(H¡0:1)

2 . The be-
havior of the system thus depends on the parameter H.

If H < 0:1, then one of the equilibria above will be > 0 and the other < 0
(which is biologically not feasible). Stability analysis shows that the positive
equilibrium will be stable, while the equilibrium N¤ = 0 is unstable in that case.

If H > 0:3025, then none of the values N¤ given in the formula above is a
real number, so that N ¤ = 0 is the only equilibrium, and it is stable (in fact, in
this case dN=dt < 0 for all N > 0).

If 0:1 < H < 0:3025, then both values of N¤ given above are positive, so that
there are three equilibrium points. Here the intermediate equilibrium is unsta-

ble, and the other two equilibrium (i.e. N ¤ = 0 and N¤ =
0:9+

p
0:81¡4(H¡0:1)

2 )
are stable.

In sum, the parameter H acts as a bifurcation parameter, changing system
behavior from one stable equilibrium and one unstable equilibrium to two stable
ones and one unstable one as H increases above 0.1, and changing the behavior
again to a single stable equilibrium as H increases above the second bifurcation
point at 0.3025.

(c) In the model from the previous question per capita harvesting rate was
equal to H independent of the size N of the harvested population. Clearly, the
present model with decreasing per capita harvesting rate as a function of the size
of the harvested population is more realistic (e.g. when harvester population
size is constant or changes only slowly).

5. A model for E. coli growth is

N(t + 1) = 2N(t)

which has the solution

N(t) = 2tN0

if (t + 1) ¡ t is equivalent to 20 mins.

mass of earth = 5:9763x1024kg

mass of E.coli = 10¡12g = 10¡15kg
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number of E. coli equal to the mass of the earth:

=
5:9763x1024

10¡15 = 5:9763x1039

Assuming that we start out with 1 E. coli, to calculate the length of time
we must solve

5:9763x1039 = 2t

t =
ln5:9763x1039

ln 2
= 132:1

So it takes 133 time steps for the bacteria to surpass the weight of the earth.
This is equivalent to 44:33 hours. The statement is a little exaggerated.

6. The solution to this di¤erential equation is

N(t) = N0 ¢ exp[¡Kt]:

We are interested in the time t0 at which N(t0) = N0=2, so we have to solve

N0=2 = N0 ¢ exp[¡Kt0]:

Note that N0 cancels form this equation, so that the solution does not depend
on N0. The solution is given by

t0 =
ln[1=2]

¡K
=

ln[2]

K
:

7.

dN

dt
= K(t)N

Using separation of variables and with the initial condition N(0) = N0 we
get:

Z N(t)

N0

dN

N
=

Z t

0
K(t)dt

lnN(t) ¡ lnN0 = ln
N(t)

N0
=

Z t

0
K(s)ds

N(t) = N0 ¢ exp

µZ t

0
K(s)ds

¶
:

4



8. This problem deals with the logistic equation, which was explained in
class. (For the last part of (d) note that if N0 is very small, then N(t) is
approximately equal to N0 exp[rt].)

9. (a) Original model:

dN

dt
= �(C ¡®N)N

Let

N = N¤N̂

t = t¤¿

with two parameters N̂ ; ¿ that have to be determined, and two new variables
N¤; t¤. Substituting this into the original equation gives:

N̂

¿

dN¤

dt¤
= �

³
C0 ¡ ®N¤N̂

´
N¤N̂

dN¤

dt¤
= �¿

³
C0 ¡®N¤N̂

´
N ¤

For ¿ = 1
�, N̂ = 1

® we get

dN¤

dt¤
= (C0 ¡ N¤)N¤;

Dropping the stars for convenience, the dimensionless equation becomes

dN

dt
= (C0 ¡ N)N

(b) Steady states

dN

dt
= 0 = (C0 ¡ N)N

=) N = 0;C0

(c) To determine the stability, linearize the model:

f(N) = (C0 ¡ N)N

f 0(N ) = C0 ¡ 2N
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Thus f 0(0) = C0 and f 0(C0) = ¡C0. Since C0 > 0, we see that N = 0 is
unstable, while N = C0 is stable.

(d) For the dimensionless model N ¤ = 0;C0. Recall from (a) that N = N¤N̂
and N̂ = 1

®. Therefore, in the original model the equilibria are N = 0; C0

® .
The exact solution is given by

N(t) =
N0B

N0 +(B ¡ N0) e¡rt
:

The equilibrium points corresponding to this exact solution are 0 and C0

® (i.e.
if N(0) = 0 or C0

® , then N(t) = N0 for all t.) Moreover, all trajectories of the
exact solution converge to the stable equilibrium C0

® (except if N(0) = 0). Thus
the dimensionless model agrees with the exact solution.

10. (a) c1 = 3, c2 = ¡2
(b)

y0 = 10y

y(0) = 0:001

The general solution of this equation is given by

y(t) = c ¢ e10t

Now

y(0) = c1 = 0:001

So the solution is given by y(t) = 0:001e10t.
(c)

y00 ¡ 3y0 ¡ 4y = 0

y(0) = 0

y0(0) = 1

The characteristic equation is given by r2 ¡ 3r ¡ 4 = 0 which has solutions
r = 1; 4. Thus (see p. 132-133 in the textbook) the general solution is given by

y(t) = c1e
¡t + c2e

4t

Using the initial conditions we have to solve the simultaneous equations

c1 + c2 = 0

4c2 ¡ c1 = 1

which yield c1 = ¡1
5 , c2 = 1

5, hence the solution is

y(t) =
1

5

¡
e4t ¡ e¡t

¢
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(d)

y00 ¡ 9y = 0

y(0) = 5

y0(0) = 0

The characteristic equation is given by r2 ¡ 9 = 0 which has solutions r =
¡3; 3. Thus the general solution is given by

y(t) = c1e
¡3t + c2e

3t

Using the initial conditions we have to solve the simultaneous equations

c1 + c2 = 5

3c2 ¡ 3c1 = 0

which yield c1 = ¡5
2 , c2 = 5

2, hence the solution is

y(t) =
5

2

¡
e3t ¡ e¡3t¢

(e)

y00 ¡ 5y0 = 0

y(0) = 1

y0(0) = 2

The characteristic equation is given by r2 ¡ 5r = 0 which has solutions
r = 0; 5. Thus the general solution is given by

y(t) = c1e
5t + c2

Using the initial conditions we have to solve the simultaneous equations

c1 + c2 = 1

5c1 = 2

which yields c1 = 2
5, c2 = 3

5 , hence the solution is

y(t) =
1

5

¡
2e5t +3

¢
:
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