
Math 361 Winter 2001/2002
Assignment 7 - Solutions

1. (a) At equilibrium,
dp

dt
= 0 = mp¤(1 ¡ p¤) ¡ ep¤.

¡m(p¤)2 + mp¤ ¡ ep¤ = 0
p¤(¡mp¤ + m ¡ e) = 0
p¤ = 0

p¤ = 1 ¡ e

m
(b) The parameter e must be less than the parameter m for p¤ to take on

a positive value. This makes sense because if the extinction rate (e) is greater
than the colonization rate (m) then there will be insu¢cient migration to balance
extinction.

Let
dp

dt
= mp(1 ¡ p) ¡ ep = F (p)

dF

dp
(p) = m(1 ¡ p) ¡ mp ¡ e

= m ¡ e ¡ 2mp
(c) Stability of the equilibrium p¤ = 0:
dF

dp
(0) = m¡ e: Which is positive (i.e., unstable) for m > e and is negative

(stable) for m < e. These dynamics make sense because if the migration rate is
greater than the extinction rate then new subpopulations will be colonized at a
greater rate than that at which local extinction occurs, therefore the metapop-
ulation will persist. On the contrary, if the extinction rate is greater than the
migration rate, the migration rate is insu¢cient to counteract extinction and
the metapopulation will go extinct.

Stability for the equilibrium p¤ = 1 ¡ e

m
:

dF

dp
(1 ¡ e

m
) = m(1 ¡ (1 ¡ e

m
)) ¡m(1 ¡ e

m
) ¡ e

= e ¡ (m ¡ e) ¡ e = e ¡ m. Thus, the equilibrium In contrast with the

equilibrium p¤ = 1¡ e

m
is stable if it exists (i.e., if it positive, such that e < m).

This makes sense because for a nonzero equilibrium to persist the migration
rate must be at least as great as the extinction rate.

(d) In the logistic model there was a globally stable population size, namely
K. Likewise in the metapopulation model, there is a globally stable metapop-
ulation size, namely 1 ¡ e

m
. The metapopulation model is related to the

harvesting model in problem in assignment 6, in that the term ep is similar to
the harvesting term HN.

2. (a) The set of equations describing a 2-species model of competition for
space is

dp1

dt
= m1p1(1 ¡ p1) ¡ ep1

dp2

dt
= m2p2(1 ¡ p1 ¡ p2) ¡ m1p1p2 ¡ ep2.
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The equilibrium fraction of habitat occupied by the dominant competitor

,p¤
1, is found by solving

dp1

dt
= 0:

p¤
1(m1(1 ¡ p¤

1) ¡ e) = 0
p¤
1 = 0

p¤
1 =

m1 ¡ e

m1

The nonzero solution is p¤
1 = 1 ¡ e

m1
: For the equilibrium value of p1 to

be positive we need m1 > e, i.e. the colonization rate must be bigger then the
local extinction rate (which makes sense!)

(b) To determine the equilibrium fraction of habitat the subdominant com-
petitor occupies when the dominant competitor is at its nonzero equilibrium
proportion, substitute the equilibrium proportion for the dominant competi-

tor in place of p1 in the equation
dp2

dt
= m2p2(1 ¡ p1 ¡ p2) ¡ m1p1p2 ¡ ep2

which describes the change in fraction of habitat occupied by the subdominant

competitor and set
dp2

dt
= 0.

dp2

dt
= m2p¤

2(1 ¡ m1 ¡ e

m1
¡ p¤

2) ¡ m1
m1 ¡ e

m1
p¤
2 ¡ ep¤

2 = 0

p¤
2(m2(1 ¡ m1 ¡ e

m1
¡ p¤

2) ¡m1
m1 ¡ e

m1
¡ e) = 0

p¤
2 = 0

So one solution is p¤
2 = 0, but this is rather uninteresting. Let’s see if there

is a nonzero equilibrium by …nding the other root of the equation, p¤
2(m2(1 ¡

m1 ¡ e

m1
¡ p¤

2) ¡ m1
m1 ¡ e

m1
¡ e) = 0 :

m2(1 ¡ m1 ¡ e

m1
¡ p¤

2) ¡ m1 = 0

¡m2p¤
2 = m1 ¡m2 + m2

m1 ¡ e

m1

p¤
2 = 1 ¡ m1

m2
¡ m1 ¡ e

m1

p¤
2 =

e

m1
¡ m1

m2

Provided
e

m1
>

m1

m2
, the other equilibrium, p¤

2 =
e

m1
¡ m1

m2
is a positive

nonzero equilibrium for the subdominant competitor. Since e is less than m1

for the superior competitor to have a nonzero equilibrium, this means that for
the subdominant competitor to persist, m2 > m1; which makes sense because
the subdominant competitor must make up for its competitive disadvantage by
having a higher colonization rate.

(c) By looking at the equilibrium equations for species 1 and 2 it is clear
that given a starting point such that both species are coexisting, if you increase
e species 1 will go extinct. The equilibrium proportion for species 1 is 1 ¡ e

m1
,

whereas the equilibrium for species 2 is
e

m1
¡m1

m2
, it is clear from these equations
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that given m1 and m2 are …xed as you increase e species 1 will decline to 0 and
species 2 will increase.

(d) The equilibrium of species 2 increases (see 5c). This makes sense be-
cause species 2 can only colonize uninhabited subpopulations, and for species
2 to coexist at all - its migration rate must be greater than that of species 1.
Therefore, as the extinction rate of both species 1 and 2 increases, more habitat
will be available for species 2 to colonize.

(e) Evaluating the Jacobian matrix J at the equilibrium (p¤
1; p

¤
2) = (1 ¡

e=m1; e=m1 ¡ m1=m2) yields

J =

µ
e ¡ m1 0

¡(m1 +m2)(e=m1 ¡ m1=m2) m1 ¡ em2=m1

¶
:

The two diagonal entries e ¡ m1 and m1 ¡ em2=m1 are negative, in the …rst
case because p¤

1 is assumed to be positive, and in the second case because p¤
2

is assumed to be positive. Therefore, tr(J) < 0 and det(J) > 0, hence the
equilibrium is a stable node.

3. With added terms ¡mNi because the competition equations are:
dN1

dt
= r1N1(1 ¡ N1 +®12N2

K1
) ¡ mN1 (eq. 6a)

dN2

dt
= r2N2(1 ¡ N2 +®21N1

K2
) ¡ mN2 (eq. 6b)

A graphical analysis of the dynamics of two species involves drawing iso-
clines. The simplest way to draw isoclines is to determine at what points on
the N1 and N2 axes the lines cross. These points will also provide informa-
tion regarding parameter values that allow coexistence. The point at which an
isocline crosses the N1 axes is when N2 = 0; likewise, the point at which an
isocline crosses the N2 axes is when N1 = 0.

A 0-isocline is a solution to
dN

dt
= 0: For the …rst equation above, the 0-

isocline is de…ned by the relation r1N1(1 ¡ N1 +®12N2

K1
) ¡mN1 = 0. We seek

the points where the line described by this relation crosses the N1 and N2 axes.
To …nd the point at which it crosses the N2 axis, set N1 = 0 and solve for N2:

1 ¡ ®12N2

K1
¡ m

r1
= 0 by dividing through by r1N1 and then substituting

N1 = 0 we get N2 =
K1(1 ¡ m

r1
)

®12
.

To determine at which point the relation r1N1(1¡ N1 + ®12N2

K1
)¡mN1 = 0

crosses the N1 axis, set N2 = 0 and solve for N1:

1¡ N1

K1
¡ m

r1
= 0 by dividing through by r1N1 and then substituting N2 = 0

we get N1 = K1(1 ¡ m

r1
).

For the second equation above, the points at which the 0-isocline crosses the
N1 and N2 axes are found in a similar way as before.

3



Solution for the point at which the relation r2N2(1 ¡ N2 + ®21N1

K2
) ¡mN2

= 0 crosses the N1 axis:

1 ¡ ®21N1

K2
¡ m

r2
= 0 by dividing through by r2N2 and then substituting

N2 = 0 we get N2 =
K2(1 ¡ m

r2
)

®21

Solution for the point at which the relation r2N2(1 ¡ N2 + ®21N1

K2
) ¡mN2

= 0 crosses the N2 axis:

1¡ N2

K2
¡ m

r2
= 0 by dividing through by r2N2 and then substituting N1 = 0

we get N2 = K2(1 ¡ m

r2
):

Now, note that when we include removal, K1 is replaced by K1(1 ¡ m

r1
)

and K2 is replaced by K2(1 ¡ m

r2
) in comparison with the points at which the

0-isoclines cross the N1 and N2 axes in the standard Lotka-Volterra models.
Provided m = 0 (i.e. no removal), cases where coexistence is impossible occur

e.g. when K1 >
K2

®21
and

K1

®12
> K2. Assuming that parameter values are

such that these inequalities are satis…ed, we are looking for values of m such

that K1(1¡ m

r1
) >

K2(1 ¡ m

r2
)

®21
and

K1(1 ¡ m

r1
)

®12
> K2(1¡ m

r2
), because in that

case coexistence is possible with removal. (Note that coexistence is stable in
that case according to the standard analysis of the Lotka-Volterra system.).
The simple but important point is to note that as m is increased from 0, the
intersection points of the 0-isoclines with the N1-axis switch arrangements, while
the intersection points of the 0-isoclines with the N2-axis keep their order. This
results in the 0-isoclines now having an intersection point in the …rst quadrant,
leading to coexistence at a stable equilibrium.

5. (a)

K(C) =
KmaxC

Kn +C

If C = Kn then

K(Kn) =
KmaxKn

2Kn
=

Kmax

2

(b) If K(C) = KmC then the model becomes

dN

dt
= KmCN ¡ FN

V
dC

dt
= ¡®KmCN ¡ FC

V
+

FC0

V
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Steady states:

N

µ
KmC ¡ F

V

¶
= 0

®KmCN ¡ FC

V
+

FC0

V
= 0

Form the …rst equation we see that either N = 0 or C = F
KmV . From the

second equation, we see that N = 0 implies

F

V
(C0 ¡ C) = 0

=) C = C0

On the other hand, C = F
KmV implies

N =
1

®

µ
C0 ¡ F

KmV

¶
;

which is obtained by rearranging the second equation.
Thus, the new steady state with positive population density N is (N1;C1) =³

1
®

³
C0 ¡ F

KmV

´
; F

KmV

´

(c) Jacobian at (N1;C1):

J(N;C) =

µ
KmC ¡ F

V KmN
¡®KmC ¡®KmN ¡ F

V

¶

So

J(N1; C1) =

Ã
0 Km

®

³
C0 ¡ F

KmV

´

¡®F
V ¡KmC0

!

So

¯ = ¡KmC0 < 0

° = ¡®K2
mC1N1 < 0

Since both ¯ and ° are less than zero, this steady state is not stable (see
textbook, p. 142).

6. (a) First equation: The change in the amount of organisms is dependent
on a per capita growth rate that depends on the nutrient via Michaelis-Menten
kinetics (s. textbook p. 125) and a per capita death rate ¹. Second equation:
The rate of change of the amount of nutrients present is dependent on a

di¤usion term, D(C0 ¡ C), where D is dependent on the properties of the
membrane. That is, nutrient ‡ow into the growth chamber at a rate that is
proportional to the di¤erence in the nutrient concentration between the reservoir
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and the growth chamber, with the constant of proportionality depending on the
membrane between the two compartments. In addition, there is loss of nutrients
due to consumption, i.e. at a rate that is proportional to the production rate
of new cells, with ® representing this proportionality.

(b) N - number of organisms

t - time

C, C0 - concentration (mass/volume)

¹ - death rate (1/time)

Kn - concentration (mass/volume)

Kmax - 1/time

D - 1/time

® - concentration/number of organisms

(c) (cf. textbook, section 4.5) Let

N = N¤N̂

C = C¤Ĉ

t = t¤¿

Substituting this into the model gives the equations:

dN¤

dt¤
= ¿N¤

Ã
KmaxC¤

Kn

Ĉ
+C¤

!
¡ ¿¹N¤

dC¤

dt¤
=

¿DC0

Ĉ
¡ ¿DC¤ ¡ ¿®N̂Kmax

Ĉ

Ã
C¤

Kn

Ĉ
+ C¤

!
N¤

If we let Ĉ = Kn, ¿ = 1
¹ and N̂ = Kn¹

®Kmax
, then we get the following

dimensionless equations (dropping
the star for convenience):

dN

dt
= ®1

µ
C

1 + C

¶
N ¡ N

dC

dt
= ®2 ¡ ®3C ¡

µ
C

1 + C

¶
N
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where ®1 = Kmax

¹ , ®2 = DC0

¹Kn
and ®3 = D

¹ . (Of course there are other
possible choices for the dimensionless variables!)

(d) Working with the …rst equation, we see that at an equilibrium (N ¤; C¤)
we must have

N¤
µ

®1

µ
C¤

1 +C¤ ¡ 1

¶
¡ 1

¶
= 0:

Hence either N¤ = 0, in which case we see from the second equation that
C¤ = ®2=®3, or C¤ = 1=(®1 ¡1), in which case we see from the second equation

that N¤ = ®1(®2¡®3C
¤) = ®1®2¡ ®1®3

®1¡1 . Thus, the steady states are at
³
0; ®2

®3

´

and
³
®1®2 ¡ ®1®3

®1¡1;
1

®1¡1

´
. Note that we need ®1 > 1 and ®2¡ ®3

®1¡1 > 0 and for

a non-trivial steady state to exist at which both variables have positive values.
(e) Carrying out stability analysis yields the following entries in the Jacobian:

a11 = ®1

µ
C

1 + C

¶
¡ 1

a12 =
®1N

(1 +C)2

a21 =
¡C

1 + C

a22 = ¡ N

(1 + C)
2 ¡®3

Evaluating these at the non-trivial steady state (N¤;C¤) =
³
®1®2 ¡ ®1®3

®1¡1 ; 1
®1¡1

´

gives:

a11 = 0

a12 = ®1A

a21 =
¡1

®1

a22 = ¡ (A + ®3)

where A = N¤

(1+C¤)2 . The trace of this Jacobian is ¯ = ¡(A + ®3), the
determinant is ° = A > 0. So this steady state is

always stable as long as it exists (see textbook, p. 142). As mentioned,
conditions for existence of a non-trivial steady state are ®1 > 1, which implies
that Kmax > ¹ according to the de…nition of ®1, and

®2 >
®3

®1 ¡ 1

Substituting in the original variables this says that

7



C0

¹Kn
>

1

Kmax ¡ ¹
:

7. (a) linear, second order, non-homogenous, constant coe¢cients
(b) non-linear, second order, homogenous, constant coe¢cients
(c) non-linear, third order, homogenous, constant coe¢cients
(d) non-linear, …rst order, homogenous, constant coe¢cients
(e) linear, second order, non-homogenous, non-constant coe¢cients
(f) non-linear, …rst order, homogeneous, constant coe¢cients.
(g) linear, …rst order, non-homogeneous, non-constant coe¢cients
(h) linear, …fth order, non-homogeneous, non-constant coe¢cients
(i) linear, …rst order, non-homogenous, non-constant coe¢cients

8. (a)

dx

dt
= x2 ¡ y2

dy

dt
= x(1 ¡ y)

Steady states:

x2 = y2

x(1 ¡ y) = 0

x = 0 =) y = 0
y = 1 =) x = §1. Steady states: (0; 0); (¡1;1); (1;1).

Jacobian:

J(x;y) =

µ
2x ¡2y

1 ¡ y ¡x

¶

So

J(0;0) =

µ
0 0
1 0

¶

J(¡1;1) =

µ
¡2 ¡2
0 1

¶

J(1;1) =

µ
2 ¡2
0 ¡1

¶
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(b)

dx

dt
= y ¡ xy

dy

dt
= xy

Steady states:

y(1 ¡ x) = 0

xy = 0

y = 0 =) x = c, where c is any real number. x = 1 =) y = 0. Thus, the
steady states are of the form (c; 0), where c is any real number.

Jacobian:

J(x; y) =

µ
¡y 1 ¡x
y x

¶

So

J(c; 0) =

µ
0 1 ¡ c
0 0

¶

(c)

dx

dt
= x ¡ x2 ¡ xy

dy

dt
= y(1 ¡ y)

Steady states:

x(1 ¡ x ¡ y) = 0

y(1 ¡ y) = 0

y = 0 =) x = 0; 1, y = 1 =) x = 0. Steady states: (0;0); (0;1); (1; 0).
Jacobian:

J(x;y) =

µ
1 ¡ 2x ¡ y ¡x

0 1 ¡ 2y

¶

So

J(0;0) =

µ
1 0
0 1

¶

J(0;1) =

µ
0 0
0 ¡1

¶
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J(1;0) =

µ
¡1 ¡1
0 1

¶

(d)

dx

dt
= x(1 ¡ y)

dy

dt
= y(x ¡ 1)

Steady states:

x(1 ¡ y) = 0

y(x ¡ 1) = 0

x = 0 =) y = 0, y = 1 =) x = 1. Steady states: (0;0); (1; 1).
Jacobian:

J(x; y) =

µ
1 ¡ y ¡x

y x ¡ 1

¶

So

J(0;0) =

µ
1 0
0 ¡1

¶

J(1;1) =

µ
0 ¡1
1 0

¶

9. Given solutions x1(t) and x2(t) and the identity it can be seen that

u(t) =
x1(t) +x2(t)

2
= eat cos(bt)

w(t) =
x1(t) ¡x2(t)

2i
= eat sin(bt)

Since the di¤erential equation is linear (see p. 132 in the textbook), and
since u(t) and w(t) are linear combinations of x1(t) and x2(t), u(t) and w(t) are
also solutions of the original equation. Moreover, any solution can be obtained
as a linear combination of x1(t) and x2(t), and therefore any real-valued solution
can be obtained as a linear combination of u(t) and w(t). In other words, the
general real values solution is of the form

x(t) = c1e
at cos(bt) + c2e

at sin(bt):
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10. (a)

A =

µ ¡1 0
0 1

¶

Eigenvalues: ¸ = §1
To …nd the eigenvectors, we solve

A ¢ vi =

µ
a11 a12

a21 a22

¶
¢
µ

vi1

vi2

¶
= ¸i ¢

µ
vi1

vi2

¶

for i = 1;2. This amounts to solving the matrix equation
µ

a11 ¡¸i a12

a21 a22 ¡ ¸i

¶
¢
µ

vi1

vi2

¶
=

µ
0
0

¶

for the components vi1 and vi2 of the eigenvectors. Thus, for the eigenvector v1

with eigenvalue +1 we have to solve
µ

0
0

¶
=

µ ¡2 0
0 0

¶µ
v21

v22

¶

which has e.g. the solution v11 = 0; v12 = 1 (all other solutions are multiples
of this one).

So the …rst eigenvector is

v1 =

µ
0
1

¶

For the eigenvector v2 with eigenvalue ¡1 we have to solve:

µ
0
0

¶
=

µ
0 0
0 2

¶µ
v11

v12

¶
;

which has e.g. the solutions v21 = 1; v22 = 0 (again, all other solutions are
multiples of this one).

So

v2 =

µ
1
0

¶

Therefore, the general solution of the dynamical system

dx
dt
dy
dt

= A ¢
µ

x(t)
y(t)

¶

is
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µ
x(t)
y(t)

¶
= c1

µ
0
1

¶
et + c2

µ
1
0

¶
e¡t

(b)

A =

µ
3 1
1 3

¶

Eigenvalues:

(3 ¡ ¸)2 ¡ 1 = 0

¸2 ¡ 6¸ +8 = 0

¸1 = 2

¸2 = 4

Eigenvectors:
v1:

µ
0
0

¶
=

µ
1 1
1 1

¶µ
v11

v12

¶

Solution:

v1 =

µ
1

¡1

¶

v2:

µ
0
0

¶
=

µ
¡1 1
1 ¡1

¶µ
v21

v22

¶

Solution:

v2 =

µ
1
1

¶

Thus the general solution is

µ
x(t)
y(t)

¶
= c1

µ
1

¡1

¶
e2t + c2

µ
1
1

¶
e4t

(c)

A =

µ ¡2 7
2 3

¶
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Eigenvalues: ¸1 = ¡4, ¸2 = 5.
Eigenvectors:
v1:

µ
0
0

¶
=

µ
2 7
2 7

¶µ
v11

v12

¶

Solution:

v1 =

µ
1

¡2
7

¶

v2:

µ
0
0

¶
=

µ ¡7 7
2 ¡2

¶µ
v21

v22

¶

Solution

v2 =

µ
1
1

¶

Thus the general solution is

µ
x(t)
y(t)

¶
= c1

µ
1

¡2
7

¶
e¡4t + c2

µ
1
1

¶
e5t

(d)

A =

µ
¡1 4
¡2 5

¶

Eigenvalues: ¸1 = 1, ¸2 = 3.
Eigenvectors:
v1:

µ
0
0

¶
=

µ
¡2 4
¡2 4

¶µ
v11

v12

¶

Solution:

v1 =

µ
2
1

¶

v2:

µ
0
0

¶
=

µ ¡4 4
¡2 2

¶µ
v21

v22

¶
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Solution:

v2 =

µ
1
1

¶

Thus the general solution is

µ
x(t)
y(t)

¶
= c1

µ
2
1

¶
et + c2

µ
1
1

¶
e3t

(e)

A =

µ
2 ¡3
1 ¡2

¶

Eigenvalues: ¸1 = 1, ¸2 = ¡1
Eigenvectors:
v1:

µ
0
0

¶
=

µ
1 ¡3
1 ¡3

¶µ
v11

v12

¶

Solution:

v1 =

µ
3
1

¶

v2:

µ
0
0

¶
=

µ
3 ¡3
1 ¡1

¶µ
v21

v22

¶

Solution:

v2 =

µ
1
1

¶

Thus the general solution is

µ
x(t)
y(t)

¶
= c1

µ
1
1

¶
e¡t + c2

µ
3
1

¶
et

(f)

A =

µ ¡4 1
3 0

¶
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Eigenvalues: ¸1 = ¡2 +
p

7, ¸1 = ¡2 ¡
p

7
Eigenvectors:
v1:

µ
0
0

¶
=

µ
¡2 ¡

p
7 1

3 2 ¡
p

7

¶µ
v11

v12

¶

Solution:

v1 =

µ
1

2 +
p

7

¶

v1:

µ
0
0

¶
=

µ
¡2 +

p
7 0

0 2 +
p

7

¶µ
v21

v22

¶

Solution:

v2 =

µ
1

2 ¡
p

7

¶

Thus the general solution is

µ
x(t)
y(t)

¶
= c1

µ
1

2 +
p

7

¶
e(¡2+

p
7)t + c2

µ
1

2 ¡
p

7

¶
e¡(2+

p
7)t

11. (a) We have

dx1

dt
= D ¡ux1 ¡ k12x1 + k21x2

Using a similar approach as to x1, we can write the following
equations:

dx2

dt
= k12x1 ¡ (k21 + s + k23)x2 + k32x3

dx3

dt
= k23x2 ¡ k32x3

(b) Steady states: Set each equation equal to zero. Use the third and …rst
equations to note that at steady state

x¤
1 =

D + k21x
¤
2

u + k12

x¤
3 =

k23x
¤
2

k32
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Substituting these into equation 2 yields

x¤
2 =

k12D

(u + k12)(k21 + s ¡ k12k21)
:

Substituting this expression back into the expression for x¤
1 and x¤

3 gives all
equilibrium values as functions of the parameters in the system.

(c) Calculate the Jacobian at the equilibrium determined in (b) and check
whether all eigenvalues have negative real parts.
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