
Chapter 3: Applications of Derivatives 3.3: Exponential Growth and Decay

Radioactive Decay

The number of atoms in a sample that decay in a given time interval is proportional to
the number of atoms in the sample.

Differential Equation

Let Q = Q(t) be the amount of a radioactive substance at time t. Then for some
positive constant k:

dQ

dt
= −kQ

Solution

Let Q(t) = Ce−kt , where k and C are constants. Then:

dQ

dt
= C · e−kt · (−k) = −kCe−kt = −kQ
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Radioactive Decay

Quantity of a Radioactive Isotope

Q(t) = Ce−kt

Q(t): quantity at time t

What is the sign of Q(t)?

A. positive or zero

B. negative or zero

C. could be either

D. I don’t know

What is the sign of C?

A. positive or zero

B. negative or zero

C. could be either

D. I don’t know



Chapter 3: Applications of Derivatives 3.3: Exponential Growth and Decay

Radioactive Decay

Quantity of a Radioactive Isotope

Q(t) = Ce−kt

Q(t): quantity at time t

What is the sign of Q(t)?

A. positive or zero

B. negative or zero

C. could be either

D. I don’t know

What is the sign of C?

A. positive or zero

B. negative or zero

C. could be either

D. I don’t know



Chapter 3: Applications of Derivatives 3.3: Exponential Growth and Decay

Radioactive Decay

Quantity of a Radioactive Isotope

Q(t) = Ce−kt

Q(t): quantity at time t

What is the sign of Q(t)?

A. positive or zero

B. negative or zero

C. could be either

D. I don’t know

What is the sign of C?

A. positive or zero

B. negative or zero

C. could be either

D. I don’t know



Chapter 3: Applications of Derivatives 3.3: Exponential Growth and Decay

Radioactive Decay

Quantity of a Radioactive Isotope

Q(t) = Ce−kt

Q(t): quantity at time t

What is the sign of Q(t)?

A. positive or zero

B. negative or zero

C. could be either

D. I don’t know

What is the sign of C?

A. positive or zero

B. negative or zero

C. could be either

D. I don’t know



Chapter 3: Applications of Derivatives 3.3: Exponential Growth and Decay

Radioactive Decay

Quantity of a Radioactive Isotope

Q(t) = Ce−kt

Q(t): quantity at time t

What is the sign of Q(t)?

A. positive or zero

B. negative or zero

C. could be either

D. I don’t know

What is the sign of C?

A. positive or zero

B. negative or zero

C. could be either

D. I don’t know



Chapter 3: Applications of Derivatives 3.3: Exponential Growth and Decay

Seaborgium-266

Carbon Decay

The amount of 266Sg (Seaborgium-266) in a sample at time t (measured in seconds) is
given by

Q(t) = Ce−kt

According to Wikipedia, the half life of 266Sg is 30 seconds. That is, every 30 seconds,
the size of the sample halves.

What are C and k?

(1) Q(0) is the amount of 266Sg at time 0: usually, the initial sample size.
C is the quantity at time 0

(2) The half-life of 266Sg is 30 seconds. So, if we’re measuring t in seconds,
Q(30) = 1

2
Q(0).

1

2
C =

1

2
Q(0) = Q(30) = Ce−30k

k =
ln 2

30
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Radioactive Decay

A sample of radioactive matter is stored in a lab in 2000. In the year 2002, it is tested
and found to contain 10 units of a particular radioactive isotope. In the year 2005, it is
tested and found to contain only 2 units of that same isotope. How many units of the
isotope were present in the year 2000?

The quantity of the isotope t years after 2000 is given by

Q(t) = Cekt

where C = Q(0) is the amount in the initial sample. Then the question asks us to solve
for C , give

10 = Q(2) = Ce2k and 2 = Q(5) = Ce5k

Then
C = 10e−2k = 2e−5k

5e3k = 1 =⇒ ek =
1

3
√

5

C = 10e−2k = 10
3
√

5
2
≈ 29
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Q ′(t) = kQ(t)

The number of atoms in a sample that decay in a given time interval is proportional to
the number of atoms in the sample.

The rate of growth of a population in a given time interval is propotional to the number
of individuals in the population, when the population has ample resources
The amount of interest a bank account accrues in a given time interval is proportional to
the balance in that bank account.

Exponential Growth

Let Q = Q(t) satisfy:
dQ

dt
= kQ

for some constant k. Then
Q(t) = Cekt

where C = Q(0) is a constant.

Suppose y(t) is a function with the properties that

dy

dt
+ 3y = 0 and y(1) = 2.

What is y(t)? y(t) = Ce−3t by the result above; solving for C , we set 2 = y(1) = Ce−3

and find C = 2e3. So, y(t) = 2e3 · e−3t = 2e3(1−t).
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Population Growth

Suppose a petri dish starts with a culture of 100 bacteria cells and a limited amount of
food and space. The population of the culture at different times is given in the table
below. At approximately what time did the culture start to show signs of limited
resources?

time population
0 100
1 1000
3 100000
5 1000000

All the populations before t = 5 follow B(t) = 100et ln 10 = 100 · 10t . At t = 5 they do
not; so some time between t = 3 and t = 5, the bacteria started reproducing at a slower
rate.
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Flu Season

The CDC keeps records (link) on the number of flu cases in the US by week. At the start
of the flu season, the 40th week of 2014, there are 100 cases of a particular strain. Five
weeks later (at week 45), there are 506 cases. What do you think was the first week to
have 5,000 cases? What about 10,000 cases?

https://pixabay.com/p-156666/?no_redirect

http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://pixabay.com/p-156666/?no_redirect


Chapter 3: Applications of Derivatives 3.3: Exponential Growth and Decay

Flu Season

The CDC keeps records (link) on the number of flu cases in the US by week. At the start
of the flu season, the 40th week of 2014, there are 100 cases of a particular strain. Five
weeks later (at week 45), there are 506 cases. What do you think was the first week to
have 5,000 cases? What about 10,000 cases?
Let’s let t = 0 be the 40th week of 2014. Then we can model the spread of the virus like so:

P(t) = 100ekt

We have one other data point: 506 = P(5) = 100e5k , so we get ek = 5.061/5. Now our equation is:

P(t) = 100(5.06)t/5

We set it equal to 5000 and solve: 5000 = 100(5.06)t/5 implies t = 5 ln 50
ln(5.06) ≈ 12.06.

Data from the CDC says Week 51 (t = 11) had 4972 cases, and Week 52 (t = 12) had 5498 cases.

Using the same formula, 10000 = 100(5.06)t/5 yields t = 5 ln 100
ln 5.06 ≈ 14.2 weeks; but the data shows that the

flu season peaked with around 5,000 cases a week, and never got much higher.

http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Cooling

Newton’s Law of Cooling

The rate of change of temperature of an object is proportional to the difference in
temperature between that object and its surroundings.

https://pixabay.com/en/thermometer-temperature-fever-309120/

dT

dt
= K [T (t)− A]

where T (t) is the temperature of the object at time t, A is the ambient temperature of
the surroundings, and K is some constant depending on the object.

https://pixabay.com/en/thermometer-temperature-fever-309120/
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where T (t) is the temperature of the object at time t, A is the ambient temperature of
the surroundings, and K is some constant depending on the object.

A. K ≥ 0

B. K ≤ 0

C. K = 0

D. K could be positive, negative, or zero, depending on the object

E. I don’t know
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Cooling

Newton’s Law of Cooling

The rate of change of temperature of an object is proportional to the difference in
temperature between that object and its surroundings.

dT

dt
= K [T (t)− A]

where T (t) is the temperature of the object at time t, A is the ambient temperature of
the surroundings, and K is some constant depending on the object.

Solution

T (t) = [T (0)− A]eKt + A

is the only equation satisfying Newton’s Law of Cooling
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Temperature of a Cooling Body

T (t) = [T (0)− A]eKt + A

Suppose T (10) < A. Then:

A. K > 0

B. T (0) > 0

C. T (0) > A

D. T (0) < A

E. I don’t know

Evaluate lim
t→∞

T (t).

A. A

B. 0

C. ∞
D. T (0)

E. I don’t know
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Temperature of a Cooling Body

T (t) = [T (0)− A]eKt + A

What assumptions are we making that might not square with the real world?
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A farrier forms a horseshoe heated to 400◦ C, then dunks it in a pool of
room-temperature (25◦ C) water. The water near the horseshoe boils for 30 seconds, but
the temperature of the pool as a whole hasn’t changed appreciably. The horseshoe is safe
for the horse when it’s 40◦ C. When can the farrier put on the horseshoe?

T (t) = [T (0)− A]eKt + A

https://upload.wikimedia.org/wikipedia/commons/thumb/9/90/West Show Jersey 2010 farrier f.jpg/794px-West Show Jersey 2010 farrier f.jpg
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We know: T (0) = 400, T (30) = 100, and A = 25. We want to find K .

100 = T (30) = [T (0)− A]e30K + 25 = 375e30k + 25

⇒ 75 = 375e30K ⇒ 1

5
= e30k ⇒ K =

− ln 5

30

Now, we set T (t) = 40 and solve for t:

40 = T (t) = 375e
− ln 5

30
t + 25

15 = 375e
−ln5

30
t = 375 · 5−t/30

1

25
= 5−t/30

25 = 5t/30

2 = t/30

So the farrier can put the shoe on after 60 seconds in the water.



Chapter 3: Applications of Derivatives 3.3: Exponential Growth and Decay

A glass of just-boiled tea is put on a porch outside. After ten minutes, the tea is 40◦,
and after 20 minutes, the tea is 25◦. What is the temperature outside?

T (t) = [T (0)− A]eKt + A

https://c1.staticflickr.com/3/2546/4211619112_53d74cc974.jpg

https://c1.staticflickr.com/3/2546/4211619112_53d74cc974.jpg
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A glass of just-boiled tea is put on a porch outside. After ten minutes, the tea is 40◦,
and after 20 minutes, the tea is 25◦. What is the temperature outside?
T (0) = 100, so T (10) = [100− A]e10k + A = 40 and T (20) = [100− A]e20k + A = 25.

Solving both for A, we get A =
40− 100e10k

1− e10k
=

25− 100e20k

1− e20k

Although this looks complicated, if we set x = e10k , it simplifies to something we can
easily solve.

A =
40− 100e10k

1− e10k
=

25− 100e20k

1− e20k

A =
40− 100x

1− x
=

25− 100x2

1− x2

(40− 100x)(1− x2) = (25− 100x2)(1− x)

(40− 100x)(1 + x)(1− x) = (25− 100x2)(1− x)

(40− 100x)(1 + x) = 25− 100x2

40− 60x − 100x2 = 25− 100x2

40− 60x = 25

x =
1

4

A =
40− 100x

1− x
=

40− 100
4

1− 1
4

= 20

It is 20 degrees outside.
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Population

In 1963, the US Fish and Wildlife Service recorded a bald eagle population of 487
breeding pairs. In 1993, that number was 4015. How many breeding pairs would you
expect there were in 2006? What about 2015?

Source: http://www.fws.gov/midwest/eagle/population/chtofprs.html

Image: https://pixabay.com/p-527426/?no_redirect

http://www.fws.gov/midwest/eagle/population/chtofprs.html
https://pixabay.com/p-527426/?no_redirect
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Since we don’t have a better model, let’s assume the population P of nesting pairs
follows:

P(t) = P(0)ekt

for some constant k. To fit the data we have, let t = 0 represent 1963, so P(0) = 487.

Then 4015 = P(30) = 487e30k , so ek =
(

4015
487

)1/30
. Now we use this to predict P(43)

(since 2006 is 43 years after 1963) and P(52) (since 2015 is 52 years after 1963).

P(43) = 487(ek)43 = 487
(

4015
487

)43/30 ≈ 10016
So we guess in 2016 there were about 10 016 breeding pairs in the lower 48.

P(52) = 487(ek)52 = 487
(

4015
487

)52/30 ≈ 18860
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Wood Bison Restoration in Alaska, Alaska Department of Fish and Game

Excerpt: “Based on experience with reintroduced populations elsewhere, wood bison
would be expected to increase at a rate of 15%-25% annually after becoming
established.... With an average annual growth rate of 20%, an intial precalving
population of 50 bison would increase to 500 in approximately 13 years.”

Are they using our same model?

Our model gives the same result.

http://www.adfg.alaska.gov/static/species/speciesinfo/woodbison/pdfs/er_no_appendices.pdf
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Compound Interest

Suppose you invest $10,000 in to an account that accrues compound interest. After one
month, your balance (with interest) is $10,100. How much money will be in your account
after a year?

Compound interest is calculated according to the formula Pert , where r is the interest
rate and t is time.

10000er·1 = 10100

er =
10100

10000
= 1.01

10000e12r = 10000 · (er )12 = 10000 · 1.0112 ≈ 11268.25
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Carrying Capacity

For a population with unrestricted access to resources, let β be the average number of
offspring each breeding pair produces per generation, where a generation has length tg .
Then b = β−2

2tg
is the net birthrate (births minus deaths) per member per unit time. This

yields dP
dt

= bP(t), hence:

P(t) = P(0)ebt

But as resources grow scarce, b might change. If K is the carrying capacity of an
ecosystem, we can model b = b0(1− P

K
). Then:

dP

dt
= b0

(
1− P(t)

K

)
P(t)
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Radiocarbon Dating

Researchers at Charlie Lake in BC have found evidence1 of habitation dating back to
around 8500 BCE. For instance, a butchered bison bone was radiocarbon dated to about
10,500 years ago.

Suppose a comparable bone of a bison alive today contains 1mg of 14C . If the half-life of
14C is about 5730 years, how much 14C do you think the researchers found in the sample?

Make a rough estimate first.

A. About 1
10,500

mg

B. About 1
4

mg

C. About 1
2

mg

D. About 1mg

E. I’m not sure how to estimate this

First, an estimate; 10500 is not so far off from 2(5730), so we might guess that there is
roughly a quarter of a miligram left.

We know Q(t) = Ce−kt = e−kt mg. We want to find Q(10500), so we need to solve for
k. Since we know the half-life: to do this, solve 1

2
= e−k·5730 to get k = ln 2

5730
. Now:

Q(10500) = e−
ln 2

5730
·10500 = 2−

10500
5730 ≈ 0.28 mg.

1http://pubs.aina.ucalgary.ca/arctic/Arctic49-3-265.pdf

http://pubs.aina.ucalgary.ca/arctic/Arctic49-3-265.pdf
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Suppose a body is discovered at 3:45 pm, in a room held at 20◦, and the body’s
temperature is 27◦: not the normal 37◦. At 5:45 pm, the temperature of the body has
dropped to 25.3◦. When did the owner of the body die?

Set our time so that t = 0 is 3:45pm and t = 2 is 5:45pm. Then T (0) = 27, T (2) = 25.4, and A = 20 . Now:

T (t) = [27− 20]eKt + 20 = 7eKt + 20

Using what we know about 5:45pm: 7e2K + 20 = T (2) = 25.3, so 7e2K = 5.3, hence e2K = 5.3
7

and eK =
(

5.3
7

)1/2
.

Now:

T (t) = 7eKt + 20 = 7

(
5.3

7

)t/2

+ 20

So we set T (t) = 37 and solve for t.

7
(

5.3
7

)t/2
+ 20 = 37

7
(

5.3
7

)t/2
= 17(

5.3
7

)t/2
= 17

7

t
2

= log 5.3
7

(
17
7

)
=

ln(17/7)

ln(5.3/7)

t = 2
ln(17/7)

ln(5.3/7)
≈ −6.4

So the person died about 6.4 hours before 3:45pm. 0.4 hours is 24 minutes, so 6 hours and 24 minutes before 3:45 pm is 6 hours
before 3:21pm, which is 9:21 am.
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