Outline

Week 9: complex numbers; complex exponential and polar form

Course Notes: 5.1, 5.2, 5.3, 5.4

Goals:

Fluency with arithmetic on complex numbers

Using matrices with complex entries: finding determinants and inverses,
solving systems, etc.

Visualizing complex numbers in coordinate systems



We use i (as in "imaginary”) to denote the number whose square is —1. '
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Complex Arithmetic

i

We use i (as in "imaginary”) to denote the number whose square is —1. J

i?=-1 (—i)?=—1 i3 =—i i* =1
When we talk about "complex numbers,” we allow numbers to have real
parts and imaginary parts:
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Complex Arithmetic

Addition happens component-wise, just like with vectors or polynomials.
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Complex Arithmetic

Addition happens component-wise, just like with vectors or polynomials.
(2+3)+(3—-4)=5—1

imaginary




Multiplication is similar to polynomials.
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Multiplication is similar to polynomials.
(24+3)(3—41)=2-343/-34+(2)(—41)+ (3/)(—4i)
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Multiplication is similar to polynomials.
(24+3)(3—41)=2-343/-34+(2)(—41)+ (3/)(—4i)
=6+9 —8/ +12=18+1



Complex Arithmetic

Multiplication is similar to polynomials.
(24+3)(3—-4i)=2-343i-34+(2)(—4/)+ (3/)(—4))
=6+9 -8/ +12=18+
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Complex Arithmetic

Multiplication is similar to polynomials.
(24+3)(3—-4i)=2-343i-34+(2)(—4/)+ (3/)(—4))
=6+9 -8/ +12=18+

I: 0

A (—4+30)+(1—1) l: -1

~
~

B:i(2+3i) . .-
Il Vi 2412
C(i+1)(i—1) e

;-2

V342
D: (21 +3)(i+4) VI: 3+2i
" VI 104116



The modulus of (x + yi) is:

X+ yil = V/x? + y?

like the norm of a vector.




Complex Arithmetic

Modulus
The modulus of (x + yi) is:

|x +yi] = VX2 + y?

like the norm of a vector.

Complex Conjugate

The complex conjugate of (x + yi) is:

X+yi=x—yi

the reflection of the vector over the real (x) axis.




[x +yi] = V/x2+ y? X+yi=x—yi




Complex Arithmetic

|x + yi| = V/x% + y? X+yi=x—yi

Suppose z = x + yi and w = a+ bi. Calculate the following.
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Complex Arithmetic
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Complex Arithmetic

|x + yi| = V/x% + y? X+yi=x—yi

Suppose z = x + yi and w = a + bi. Calculate the following.
o Z

k4

H

z—z =2y y is called the imaginary part of z

z+Zz=2x x is called the real part of z

zz—|z>=0 So, zz = |z|?
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Complex Arithmetic

|x + yi| = V/x% + y? X+yi=x—yi

Suppose z = x + yi and w = a + bi. Calculate the following.
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e z—Z =2y y is called the imaginary part of z
e z+7— 2x x is called the real part of z

e 77— |z[>=0 So, zz = |z|?

o zw — (Z)(W)=0 So,zZW =Z W



[x +yi] = V/x2+ y? X+yi=x—yi

Suppose z = x + yi and w = a + bi. Calculate the following.
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[x +yi] = V/x2+ y? X+yi=x—yi

Suppose z = x + yi and w = a + bi. Calculate the following.
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[x +yi] = V/x2+ y? X+yi=x—yi

Suppose z = x + yi and w = a + bi. Calculate the following.
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e z—Z =2yl y is called the imaginary part of z
e z+4+Zz=2x x is called the real part of z
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Every polynomial can be factored completely over the complex numbers. |




Every polynomial can be factored completely over the complex numbers. I

Example: x2 +1 = (x — i)(x + i)
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Theorem

Every polynomial can be factored completely over the complex numbers. J

Example: x? 4+ 1 = (x — i)(x + i)
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Polynomial Factorizations

Theorem

Every polynomial can be factored completely over the complex numbers. J

Example: x? 4+ 1 = (x — i)(x + i)
Example: x% +2x +10 = (x + 1+ 3i)(x + 1 — 3i)

Example: x2 +4x +5=(x +2+i)(x +2 — i)



Calculating Determinants

We calcuate the determinant of a matrix with complex entries in the same
way we calculate the determinant of a matrix with real entries.
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We calcuate the determinant of a matrix with complex entries in the same
way we calculate the determinant of a matrix with real entries.
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Calculating Determinants

We calcuate the determinant of a matrix with complex entries in the same
way we calculate the determinant of a matrix with real entries.
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Calculating Determinants

We calcuate the determinant of a matrix with complex entries in the same
way we calculate the determinant of a matrix with real entries.

1+

det[ 5

1/,':| :(1—|—i)(ll)—(17’.)(2): —3+3i






Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

ix1 + X + 2x3 = 0
x2 + 3x3
2ix;y + (2 — i)X2 + x3 = 0

I
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Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

ix1 + X + 2x3 = 0
xo + 3x3 =
2iX1 —+ (2 — i)X2 —+ X3
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ixy + 2% = 9
g + (L+ie = 548
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Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

ix1 + X + 2x3 = 0
x2 + 3x3
2iX1 —+ (2 — i)X2 —+ X3
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[x1,x2, x3] = s[—3 + 2i,3i,1]
Solve the following system of equations:

ixy + 2% = 9
3q + (L+ie = 548i

Find the inverse of the matrix ! 1.
2 3i



Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

ix1 + X + 2x3 = 0
x2 + 3x3
2iX1 —+ (2 — i)X2 —+ X3

Il
o o

[x1,x2, x3] = s[—3 + 2i,3i,1]
Solve the following system of equations:

ixy + 2% = 9
3q + (L+ie = 548i

x1=1, x=>5

Find the inverse of the matrix ! 1.
2 3i



Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

ix1 + X + 2x3 = 0
x2 + 3x3
2iX1 —+ (2 — i)X2 —+ X3

Il
o o

[x1,x2,x3] = s[—3 + 2/,3i,1]

Solve the following system of equations:

ixy + 2% = 9
3x1 + (14+i)xx = 5+8i
X1 =1, x=25
i1 =3; 1
Find the inverse of the matrix . % 5.
2 3/ 5 *g/



What to do when / is the power of a function?
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What to do when / is the power of a function?
Maclaurin (Taylor) Series:
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Exponentials

What to do when / is the power of a function?
Maclaurin (Taylor) Series:

x2 3 4 5

X X X 6

X
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Exponentials

What to do when / is the power of a function?
Maclaurin (Taylor) Series:

= lbx+ o
31 6!
(ix)? (’X)3 (ix)* | (ix)®  (ix)°
C=14 it 3 T a T T e
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Exponentials

What to do when / is the power of a function?
Maclaurin (Taylor) Series:

x> x3 X x5 x5
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Exponentials

What to do when / is the power of a function?

Maclaurin (Taylor) Series:

x2 X3 X x5 XS
€ =l4xt oyttt et
3! 6!
x3 x5 x7
sm(x)zx—nga ﬁJr-'
x2  x* x5
cos(x) =1 §+E §+”
. 2 . 3 . 4 . 5 . 6
4., X)) (x)T (k)T (x)° | (ix)
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Exponentials

What to do when / is the power of a function?

Maclaurin (Taylor) Series:

X2 X3 X4 X5 X6
€ =l4xt oyttt et
3! 6!
- X3 X5 X7
Sln(X)—X*§+a ﬁ+
X2 X4 X6
COS() 17§+E a+
2 )3 4 )5 . \6
i1 ) (X)) (x)* (x)° (ix)
eIkttt T
_ ] 2 X3 X4 X5 X6
B T TR TR TR
o 1 X2 X4 X6 X3 X5
_§+E_a+ “+ 1 X—i‘Fa_
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e™ = cosx + isinx

dix[eax] _ aeax;

dix [eIX]



e™ = cosx + isinx

d%'([eax] _ aeax;

4 [eX]= L[cos x + isin x]



Does that even make sense?

e = cosx + isinx

ax] - aeax;
= d%[cosx + isin x]

d
axle
d
&[e . . .2 . . . . . .
= —sinx 4 icosx = i“sinx + i cos x = i(cos x + isin x) = ie™



Does that even make sense?

e = cosx + isinx

%[eax] = 2e%%;
d%[e"x]: d%[cosx%—isinx] .
= —sinx + icosx = i?sinx + i cos x = i(cos x + isinx) = ieX

ety = eXeY;



Does that even make sense?

e = cosx + isinx

%[eax] = 2e%%;

diraix1— d o

Z[e%]= g [cosx + isinx] '
= —sinx + icosx = i?sinx + i cos x = i(cos x + isinx) = ieX

ety = eXeY;

eix+iy —



Does that even make sense?

e = cosx + isinx

d :

ax (€] = ae®;

di[ =4 d [cosx+ i sin x]
= —sinx + icosx = i%sinx 4 i cos x = i(cos x + isin x) = ieX

ety = XeY;

e* Y =el(x 4+ y) = cos(x + y) +isin(x + y)
= cosx cosy — sinxsiny + i[sin x cos y + cos x sin y|
= (cosx + isiny)(cosy + isinx) = eXeV



Does that even make sense?

e = cosx + isinx

d :

ax (€] = ae®;

di[ =4 d [cosx + isin x]
= —sinx + icosx = i%sinx 4 i cos x = i(cos x + isin x) = ieX

ety = eXeY;

e* Y =el(x 4+ y) = cos(x + y) +isin(x + y)
= COS X COSy — sinxsiny + i[sin x cos y + cos x sin y|
= (cosx + isiny)(cosy + isinx) = e*eV

Simplify:

e2+i

Q25

e7ri + 1



Complex exponentiation: e* = cosx + isin x

True or False?

(1) e =cosl+isinl
(2) € =cosx

(3) e = elx+2m)

(4) X — _gi(x+)

(5) €™+ e ™ is a real number
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Complex number : r(cos + isin ) = re'
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Roots

Find all complex numbers z such that z3 = 8.

Find all complex numbers z such that z3 = 27e7.

Find all complex numbers z such that z* = 81e?".















