Outline

Week 11: Eigenvalues and eigenvectors: complex numbers and random walks

Course Notes: 6.1, 6.2

Goals: More practice finding eigenvalues and eigenvectors; expanding these to the complex numbers; using them in the context of random walks.

from to	pass	fail
pass	$\frac{1}{2}$	$\frac{1}{3}$
fail	$\frac{1}{2}$	$\frac{2}{3}$

	from		fail	
	to	pass	Idli	
	pass	$\frac{1}{2}$	$\frac{1}{3}$	
	fail	$\frac{1}{2}$	$\frac{2}{3}$	
$\lambda_1 = rac{1}{6}$, $\mathbf{k}_1 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$;		$\lambda_2 =$	1, k ₁ =	$= \begin{bmatrix} 2\\ 3 \end{bmatrix}$
Suppose your initial stat	e is $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.	. What	: happe	ns after <i>n</i> tests?
$\mathbf{x}_0 = rac{3}{5}\mathbf{k}_1 + rac{1}{5}\mathbf{k}_2$				
$P^n \mathbf{x}_0 = \frac{3}{5} P^n \mathbf{k}_1 + \frac{1}{5} P^n \mathbf{k}_2$	$=rac{3}{5}\left(rac{1}{6} ight)^n\mathbf{k}_1$ -	$+\frac{1}{5}k_2$		
$\lim_{n\to\infty}P^n\mathbf{x}_0=\frac{1}{5}\mathbf{k}_2=\begin{bmatrix}2/\\3/\end{bmatrix}$	5] 5]			

What if you had failed the first test?

Theorem

If P is a transition matrix (non-negative entries with all columns summing to one) that in addition has all positive entries then P has an eigenvalue 1 with a single eigenvector k_1 that can chosen to be a probability vector. All other eigenvalues satisfy $|\lambda| < 1$ with eigenvectors with components that sum to zero. Thus,

$$\lim_{n\to\infty}x_n=k_1$$

for any x_0 . That is, k_1 is an equilibrium probability.

Theorem

If P is a transition matrix (non-negative entries with all columns summing to one) that in addition has all positive entries then P has an eigenvalue 1 with a single eigenvector k_1 that can chosen to be a probability vector. All other eigenvalues satisfy $|\lambda| < 1$ with eigenvectors with components that sum to zero. Thus,

$$\lim_{n\to\infty}x_n=k_1$$

for any x_0 . That is, k_1 is an equilibrium probability.

[Proof, of sorts]

In short: that last example was typical. As long as a probability matrix has no zeroes:

- Probability matrices have eigenvalues
- There will be some equilibrium that the system will reach in the long run, regardless of initial state.

	alive	dead
In any given day, your odds of dying are 1 in 1,000. al	ve 0.999	0
de	ad 0.001	1

Which of these random walk models seems likely to have an equilibrium probability? Is it clear what would it be?

In any given day, your odds of dying are 1 in 1,000. $\begin{array}{c|c} & alive & dead \\ \hline alive & 0.999 & 0 \\ dead & 0.001 & 1 \\ \hline \\ Equilibrium probability: \begin{bmatrix} 0 \\ 1 \end{bmatrix}; everybody dies. \end{array}$

	alive	dead
In any given day, your odds of dying are 1 in 1,000. aliv	e 0.999	0
dea	1 0.001	1

		N/S Am.	Other
Region of residence for a rat.	N/S Am.	.99	.01
	Other	.01	.99

			alive	dead
In any given day, your odds of dying are 1	in 1,000.	alive	0.999	0
		dead	0.001	1
	N/S Am.	Other		
Region of residence for a rat. N/S Am.	.99	.01	_	
Other	.01	.99		
Equilibrium probability: $\begin{bmatrix} .5\\ .5 \end{bmatrix}$; long-term a	verage.			

				alive	dead
In any given day, your odds of	dying are 1	l in 1,000.	alive	0.999	0
			dead	0.001	1
		N/S Am.	Other		
Region of residence for a rat.	N/S Am.	.99	.01		
	Other	.01	.99		
		single	partne	red	
In a relationship or not, by year	ar. single	e .4	.25		
	partner	ed .6	.75		

Find the equilibrium probability of the system.				
		single	partnered	
In a relationship or not, by year.	single	.4	.25	
	partnered	.6	.75	

Find the equilibrium probability of the system.					
		single	partnered		
In a relationship or not, by year.	single	.4	.25		
	partnered	.6	.75		
Eigenvalues and eigenvectors:					

Find the equilibrium probability of the system.In a relationship or not, by year.single.4.25partnered.6.75

Eigenvalues and eigenvectors:

$\lambda_1 = 1$	$k_1 =$	$\begin{bmatrix} 1\\ \frac{12}{5} \end{bmatrix}$
$\lambda_2 = \frac{3}{20}$	$k_2 =$	$\begin{bmatrix} 1\\ -1 \end{bmatrix}$

Find the equilibrium probability of the system.					
			single	partnered	
In a relationship or not, b	y year.	single	.4	.25	
		partnered	.6	.75	
Eigenvalues and eigenvect	ors:				
$\begin{array}{ c c c } \lambda_1 = 1 & \mathbf{k_1} = \begin{bmatrix} 1\\ \underline{12}\\ 5 \end{bmatrix} \\ \lambda_2 = \frac{3}{20} & \mathbf{k_2} = \begin{bmatrix} 1\\ -1 \end{bmatrix} \end{array}$					

Theorem

If P is a transition matrix that in addition has all positive entries then Phas an eigenvalue 1 with a single eigenvector \mathbf{k}_1 that can chosen to be a probability vector; in this case \mathbf{k}_1 is the equilibrium probability.

|-1| |

Find the equilibrium probability of the system.				
		single	partnered	
n a relationship or not, by year.	single	.4	.25	
	partnered	.6	.75	
Eigenvalues and eigenvectors:				

$\lambda_1 = 1$	$k_1 =$	$\begin{bmatrix} 1\\ \frac{12}{5} \end{bmatrix}$
$\lambda_2 = \frac{3}{20}$	$k_2 =$	$\begin{bmatrix} 1\\ -1 \end{bmatrix}$

For any $\mathbf{x}_0 = a_1 \mathbf{k}_1 + a_2 \mathbf{k}_2$:

$$P^{n}\mathbf{x}_{0} = a_{2}\mathbf{k}_{1} + a_{2}\left(\frac{3}{20}\right)^{n}\mathbf{k}_{2} \xrightarrow{n \to \infty} a_{2}\mathbf{k}_{1}$$

Find the equilibrium probability of the system.					
		single	partnered		
n a relationship or not, by year.	single	.4	.25		
	partnered	.6	.75		
Eigenvalues and eigenvectors:					

 $\begin{array}{c|c} \lambda_1 = 1 & \mathbf{k_1} = \begin{bmatrix} 1 \\ \frac{12}{5} \end{bmatrix} \\ \lambda_2 = \frac{3}{20} & \mathbf{k_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \end{array}$

For any $\mathbf{x}_0 = a_1 \mathbf{k_1} + a_2 \mathbf{k_2}$:

$$P^{n}\mathbf{x}_{0} = a_{2}\mathbf{k}_{1} + a_{2}\left(\frac{3}{20}\right)^{n}\mathbf{k}_{2} \xrightarrow{n \to \infty} a_{2}\mathbf{k}_{1}$$

$$\lim_{n \to \infty} P^n \mathbf{x}_0 = \begin{bmatrix} 5/17\\12/17 \end{bmatrix} \text{ regardless of } \mathbf{x}_0$$

Computation Practice

$$P = \begin{bmatrix} 1/3 & 1/2 \\ 2/3 & 1/2 \end{bmatrix} \qquad \mathbf{x}_0 = \begin{bmatrix} \mathbf{a} \\ 1 - \mathbf{a} \end{bmatrix}, \ \mathbf{a} \in [0, 1]$$

- 1. Find all eigenvalues of *P*, and an associated eigenvector to each.
- 2. Write \mathbf{x}_0 as a linear combination of eigenvectors of P.
- 3. Calculate \mathbf{x}_n , where *n* is some positive integer.
- 4. Find the equilibrium probability of *P*.

By our theorem, we know that 1 will be an eigenvalue. However, for the sake of practice, let's find them the old-fashioned way.

Eigenvalues of *P* are precisely those scalars λ such that det $(P - \lambda I) = 0$. So we set the determinant equal to zero:

$$\det \begin{bmatrix} 1/3 - \lambda & 1/2 \\ 2/3 & 1/2 - \lambda \end{bmatrix} = \left(\frac{1}{3} - \lambda\right) \left(\frac{1}{2} - \lambda\right) - \left(\frac{1}{2}\right) \left(\frac{2}{3}\right) = \lambda^2 - \frac{5}{6}\lambda - \frac{1}{6}$$

And find $\lambda_1 = 1$ (as expected) and $\lambda_2 = -\frac{1}{6}$.

To find the associated eigenvectors, we set $P\mathbf{x} = \lambda \mathbf{x}$. (Next Slide)

1. Find Eigenvalues and Eigenvectors

$$\lambda_1 = 1$$

$$\begin{bmatrix} 1/3 & 1/2 \\ 2/3 & 1/2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1 \begin{bmatrix} x \\ y \end{bmatrix} \quad \rightarrow \quad \begin{bmatrix} -2/3 & 1/2 \\ 2/3 & -1/2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The solutions to this system are of the form $s \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ for some scalar *s*. Any vector of this form will do.

$$\lambda_2 = -\frac{1}{6}$$

$$\begin{bmatrix} 1/3 & 1/2 \\ 2/3 & 1/2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{6} \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} 1/2 & 1/2 \\ 2/3 & 2/3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The solutions to this system are of the form $s \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ for some scalar *s*. Any vector of this form will do.

2. Basis Vectors

To find \mathbf{x}_0 as a combination of eigenvectors, we have to CHOOSE our eigenvectors. I like integers, so I'll use $\mathbf{k}_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\mathbf{k}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Your vectors may be scalar multiples of these. The equation we have to solve is:

$$\begin{bmatrix} a \\ 1-a \end{bmatrix} = x \begin{bmatrix} 3 \\ 4 \end{bmatrix} + y \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

which can be rewritten as

$$\begin{bmatrix} 3 & 1 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ 1-a \end{bmatrix}$$

Since *a* is a constant, we can solve this using an augmented matrix and row reduction.

$$\begin{bmatrix} 3 & 1 & | & a \\ 4 & -1 & | & 1-a \end{bmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{bmatrix} 3 & 1 & | & a \\ 7 & 0 & | & 1 \end{bmatrix}$$

So $x = \frac{1}{7}$ and $y = a - \frac{3}{7}$. That is, $\mathbf{x}_0 = \frac{1}{7}\mathbf{k_1} + (a - \frac{3}{7})\mathbf{k_2}$.

3. Find \mathbf{x}_n

Recall $\mathbf{x}_n = P^n \mathbf{x}_0$. With our previous work, the answer is an easy calculation.

$$\mathbf{x}_{n} = P^{n}\mathbf{x}_{0} = P^{n}\left(\frac{1}{7}\mathbf{k}_{1} + \left(\frac{3}{7} - a\right)\mathbf{k}_{2}\right)$$

$$= \frac{1}{7}P^{n}\mathbf{k}_{1} + \left(\frac{3}{7} - a\right)P^{n}\mathbf{k}_{2}$$

$$= \frac{1}{7}\mathbf{k}_{1} + \left(\frac{3}{7} - a\right)\left(-\frac{1}{6}\right)^{n}\mathbf{k}_{2}$$

$$= \left[\frac{3}{7}\right] + \left[\frac{(\frac{3}{7} - a)(-1/6)^{n}}{-(\frac{3}{7} - a)(-1/6)^{n}}\right]$$

$$= \left[\frac{3}{7} + (\frac{3}{7} - a)(-1/6)^{n}\right]$$

4. Find the Equilibrium Probability

Recall the equilibrium probability is $\lim_{n\to\infty} \mathbf{x}_n = \lim_{n\to\infty} P^n \mathbf{x}_0$. With our previous work, the answer is an easy calculation. Using an intermediate result from the last slide:

$$\lim_{n \to \infty} \mathbf{x}_n = \lim_{n \to \infty} \left[\frac{1}{7} \mathbf{k}_1 + \left(\frac{3}{7} - a \right) \left(-\frac{1}{6} \right)^n \mathbf{k}_2 \right]$$
$$= \frac{1}{7} \mathbf{k}_1$$
$$= \begin{bmatrix} \frac{3}{7} \\ \frac{4}{7} \end{bmatrix}$$

ALTERNATELY, our theorem tells us that the equilibrium probability will always be an eigenvector associated with the eigenvalue $\lambda = 1$. Since our eigenvectors were of the form s[3,4], we can find the equilibrium probability by figuring out which value of s gives us a vector whose entries sum to one; s = 7 is that scalar.

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Calculate $A^{90}\mathbf{x}$.

Calculate $A^{90}\mathbf{x}$.

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\lambda_1 = i, \mathbf{k}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$$
 $\lambda_2 = -i, \mathbf{k}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Calculate $A^{90}\mathbf{x}$.

$$\lambda_1 = i, \mathbf{k}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$$
 $\lambda_2 = -i, \mathbf{k}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$

 $\mathbf{x} = (1.5+i)\mathbf{k}_1 + (1.5-i)\mathbf{k}_2$

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Calculate $A^{90}\mathbf{x}$.

$$\lambda_1 = i, \mathbf{k}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$$
 $\lambda_2 = -i, \mathbf{k}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$

 $\mathbf{x} = (1.5+i)\mathbf{k}_1 + (1.5-i)\mathbf{k}_2$

$$A^{90}\mathbf{x} = (1.5+i)A^{90}\mathbf{k}_1 + (1.5-i)A^{90}\mathbf{k}_2$$

= (1.5+i)(i)^{90}\mathbf{k}_1 + (1.5-i)(-i)^{90}\mathbf{k}_2
= (1.5+i)(-1)\mathbf{k}_1 + (1.5-i)(-1)\mathbf{k}_2 = \begin{bmatrix} -2\\ -3 \end{bmatrix}

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
$$\lambda_1 = i, \mathbf{k}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix} \qquad \lambda_2 = -i, \mathbf{k}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
$$\lambda_1 = i, \mathbf{k}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix} \qquad \lambda_2 = -i, \mathbf{k}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$$

The eigenvalues and eigenvectors are complex conjugates of one another.

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
$$\lambda_1 = i, \mathbf{k}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix} \qquad \lambda_2 = -i, \mathbf{k}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$$

The eigenvalues and eigenvectors are complex conjugates of one another.

$$A\mathbf{x} = \lambda \mathbf{x} \quad \Leftrightarrow \quad \overline{A\mathbf{x}} = \overline{\lambda \mathbf{x}} \quad \Leftrightarrow \quad \overline{A}\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}} \quad \Leftrightarrow \quad A\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}}$$

$$A = egin{bmatrix} -3 & 5 \ -2 & -1 \end{bmatrix}$$

$$A = egin{bmatrix} -3 & 5 \ -2 & -1 \end{bmatrix}$$

$$\det \left(\begin{bmatrix} -3 & 5\\ -2 & -1 \end{bmatrix} - \begin{bmatrix} \lambda & 0\\ 0 & \lambda \end{bmatrix} \right) = \det \begin{bmatrix} -3 - \lambda & 5\\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 13$$

Roots:
$$\frac{-4 \pm \sqrt{16 - 4(13)}}{2} = -2 \pm 3i$$

$$egin{array}{cc} A = egin{bmatrix} -3 & 5 \ -2 & -1 \end{bmatrix}$$

$$\det \left(\begin{bmatrix} -3 & 5\\ -2 & -1 \end{bmatrix} - \begin{bmatrix} \lambda & 0\\ 0 & \lambda \end{bmatrix} \right) = \det \begin{bmatrix} -3 - \lambda & 5\\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 13$$

Roots:
$$\frac{-4 \pm \sqrt{16 - 4(13)}}{2} = -2 \pm 3i$$

$$\lambda_1 = -2 - 3i,$$

$$A = egin{bmatrix} -3 & 5 \ -2 & -1 \end{bmatrix}$$

$$\det \left(\begin{bmatrix} -3 & 5\\ -2 & -1 \end{bmatrix} - \begin{bmatrix} \lambda & 0\\ 0 & \lambda \end{bmatrix} \right) = \det \begin{bmatrix} -3 - \lambda & 5\\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 13$$

Roots:
$$\frac{-4 \pm \sqrt{16 - 4(13)}}{2} = -2 \pm 3i$$

$$\lambda_1 = -2 - 3i, \quad \mathbf{x}_1 = \begin{bmatrix} 1 + 3i \\ 2 \end{bmatrix}$$

Find all eigenvalues and eigenvectors of :

$$A = egin{bmatrix} -3 & 5 \ -2 & -1 \end{bmatrix}$$

$$\det \left(\begin{bmatrix} -3 & 5\\ -2 & -1 \end{bmatrix} - \begin{bmatrix} \lambda & 0\\ 0 & \lambda \end{bmatrix} \right) = \det \begin{bmatrix} -3 - \lambda & 5\\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 13$$

Roots:
$$\frac{-4 \pm \sqrt{16 - 4(13)}}{2} = -2 \pm 3i$$

$$\lambda_1 = -2 - 3i, \quad \mathbf{x}_1 = \begin{bmatrix} 1 + 3i \\ 2 \end{bmatrix}$$

 $\lambda_2 = -2 + 3i,$

$$egin{array}{cc} A = egin{bmatrix} -3 & 5 \ -2 & -1 \end{bmatrix}$$

$$\det \left(\begin{bmatrix} -3 & 5\\ -2 & -1 \end{bmatrix} - \begin{bmatrix} \lambda & 0\\ 0 & \lambda \end{bmatrix} \right) = \det \begin{bmatrix} -3 - \lambda & 5\\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 13$$

Roots:
$$\frac{-4 \pm \sqrt{16 - 4(13)}}{2} = -2 \pm 3i$$

$$\lambda_1 = -2 - 3i, \quad \mathbf{x}_1 = \begin{bmatrix} 1 + 3i \\ 2 \end{bmatrix}$$
$$\lambda_2 = -2 + 3i, \quad \mathbf{x}_2 = \begin{bmatrix} 1 - 3i \\ 2 \end{bmatrix}$$

Let A be a matrix with eigenvalue λ and associated eigenvector ${\bf k}.$ True or False:

- 1. 2**k** is an eigenvector of A, associated with λ .
- 2. It is possible that **k** is an eigenvalue of A associated with a *different* eigenvalue (that is, other than λ).
- 3. All eigenvectors of A associate with λ are scalar multiples of **k**.
- 4. **k** might be the zero vector.
- 5. λ might be zero.
- 6. If A has only real entries, and **k** has only real entries, then λ is real.
- 7. If A has only real entries, then λ is real.