
Outline

Week 8: Inverses and determinants

Course Notes: 4.5, 4.6

Goals: Be able to calculate a matrix’s inverse;
understand the relationship between the invertibility of a matrix and the
solutions of associated linear systems;
calculate the determinant of a square matrix of any size, and learn some
tricks to make the computation more efficient.



Identity Matrix

I =



1 0 0 0 0 0 0 0
0 1 0 0 · · · 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

...
. . .

...
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 0 0 0 1



The identity matrix, I , is a square matrix with 1s along its diagonal, and
0s everywhere else.

For any matrix A that can be multiplied with I , AI = IA = A.



Matrix Inverses: The Closest we can Get to Division

Linear System Setup: 
x + 2y + 3z = 10

4x + 5y + 6z = 20
7x + 8y + 9z = 30

A =

1 2 3
4 5 6
7 8 9

 x =

xy
z

 b =

10
20
30



Ax = b

Solve for x .

Can’t we just divide by A?
We want: a matrix A−1 with the property A−1A = I , the identity matrix.
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Definition

A matrix A−1 is the inverse of a square matrix A if A−1A = I , where I is
the identity matrix.

What do you think the inverse of the following matrix should be?[
cos θ − sin θ
sin θ cos θ

]

What do you think the inverse of the following matrix should be?[
cos θ sin θ
sin θ − cos θ

]



Definition

A matrix A−1 is the inverse of a square matrix A if A−1A = I , where I is
the identity matrix.

What do you think the inverse of the following matrix should be?[
cos θ − sin θ
sin θ cos θ

]

What do you think the inverse of the following matrix should be?[
cos θ sin θ
sin θ − cos θ

]



Definition

A matrix A−1 is the inverse of a square matrix A if A−1A = I , where I is
the identity matrix.

What do you think the inverse of the following matrix should be?[
cos θ − sin θ
sin θ cos θ

]

What do you think the inverse of the following matrix should be?[
cos θ sin θ
sin θ − cos θ

]



Existence of Matrix Inverses

Definition

A matrix A−1 is the inverse of a square matrix A if

A−1A = I

where I is the identity matrix.

Find the inverses of the following matrices:

A =

[
2 1
0 1

]
B =

[
1 0
3 1

]
C =

[
1 0
0 1

]
D =

[
0 0
0 0

]
E =

[
1 1
1 1

]

A−1 =

[
1
2 −1

2
0 1

]
B−1 =

[
1 0
−3 1

]
C−1 =

[
1 0
0 1

]
If Ax = b, then x = A−1b
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If an Inverse Exists....

Theorem

If an n-by-n matrix A has an inverse A−1, then for any b in Rn,

Ax = b

has precisely one solution, and that solution is

x = A−1b.

So, if Ax = b has no solutions:
A is not invertible.

If Ax = b has infinitely many solutions:
A is not invertible.
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Solutions to Systems of Equations

Let A be an n-by-n matrix. The following statements are equivalent:

1) Ax = b has exactly one solution for any b .

2) Ax = 0 has no nonzero solutions.

3) The rank of A is n.

4) The reduced form of A has no zeroes along the main diagonal.

By previous theorem, if A is invertible, all these statements hold.

statements 1-4

invertible

em
p

ty

invertible

Are the statements equivalent to A being invertible?
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Solutions to Systems of Equations

Let A be an n-by-n matrix. The following statements are equivalent:

1) Ax = b has exactly one solution for any b .

2) Ax = 0 has no nonzero solutions.

3) The rank of A is n.

4) The reduced form of A has no zeroes along the main diagonal.

5) A is invertible

statements 1-4

invertible

em
p

ty
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Solutions to Systems of Equations

Theorem:
A is invertible if and only if Ax = b has exactly one solution for every b .

Suppose A is a matrix with the following reduced form. Is A invertible?

1 0 3
0 1 2
0 0 0



no

1 0 0
0 1 0
0 0 1



yes

1 0 0
0 0 1
0 0 0



no
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Computing the Inverse (when it exists)

[
A I

] reduce−−−−→
[
I A−1

]

[
2 1 1 0
0 1 0 1

]
︸ ︷︷ ︸

[A|I ]

R1−R2−−−−→
[

2 0 1 −1
0 1 0 1

]
1
2
R1−−→
[

1 0 1
2
−1
2

0 1 0 1

]
︸ ︷︷ ︸

[I |A−1]

Calculate the inverse of A =

1 0 3
2 1 6
2 0 7

 A−1 =

 7 0 −3
−2 1 0
−2 0 1


Calculate the inverse of B =

[
1 1
1 1

]
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Inverses and Products

Suppose A and B are invertible matrices, with the same dimensions.
Simplify:

ABB−1A−1

Since ABB−1A−1 = I , we conclude that the inverse of AB is B−1A−1.

What is (ABC )−1?

Simplify: [
(AC )−1A(AB)−1

]−1
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Determinants

Recall:

det

[
a b
c d

]
= ad − bc

det

  = a det − b det + c det

In general:

det


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
an,1 an,2 · · · an,n

 = a1,1D1,1−a1,2D1,2 + a1,3D1,3 · · · ± a1,nD1,n

where Di ,j is the determinant of the matrix obtained from A
by deleting row i and column j .
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...
an,1 an,2 · · · an,n

 = a1,1D1,1−a1,2D1,2 + a1,3D1,3 · · · ± a1,nD1,n

where Di ,j is the determinant of the matrix obtained from A
by deleting row i and column j .
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1 0 2 0



= 6
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0 10 10 0
1 5 0 2
2 0 5 1
0 1 3 1

 = 210
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Determinants of Triangular Matrices

Calculate, where ∗ is any number:

det


1 0 0 0 0
∗ 2 0 0 0
∗ ∗ 3 0 0
∗ ∗ ∗ 4 0
∗ ∗ ∗ ∗ 5



det


1 ∗ ∗ ∗ ∗
0 2 ∗ ∗ ∗
0 0 3 ∗ ∗
0 0 0 4 ∗
0 0 0 0 5


Fact: for any square matrix A, det(A) = det(AT )
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Determinants of Upper Triangular Matrices

Is the determinant of ANY triangular matrix the product of the diagonal
entries?

det

[
a ∗
0 b

]
= ab

For 2-by-2 matrices: yes.

The determinant of any triangular matrix (upper or lower) is the product
of the diagonal entries.
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det


10 9 8 4 12
0 5 9 7 15
0 0 1

2
1
3

2
7

0 0 0 2 32
0 0 0 0 5



= (10)(5)

(
1

2

)
(2)(5) = 250

Careful: this ONLY works with triangular matrices!



det


10 9 8 4 12
0 5 9 7 15
0 0 1

2
1
3

2
7

0 0 0 2 32
0 0 0 0 5

 = (10)(5)

(
1

2

)
(2)(5) = 250

Careful: this ONLY works with triangular matrices!



det


10 9 8 4 12
0 5 9 7 15
0 0 1

2
1
3

2
7

0 0 0 2 32
0 0 0 0 5

 = (10)(5)

(
1

2

)
(2)(5) = 250

Careful: this ONLY works with triangular matrices!



More Determinant Tricks

Helpful Facts for Calculating Determinants:

1. If B is obtained from A by multiplying one row of A by the constant c
then detB = c detA.

2. If B is obtained from A by switching two rows of A then
detB = − detA.

3. If B is obtained from A by adding a multiple of one row to another
then detB = detA.

4. det(A) = 0 if and only if A is not invertible

5. For all square matrices B of the same size as A,
det(AB) = det(A) det(B).

6. det(AT ) = det(A)
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Solutions to Systems of Equations

Let A be an n-by-n matrix. The following statements are equivalent:

1) Ax = b has exactly one solution for any b .
2) Ax = 0 has no nonzero solutions.
3) The rank of A is n.
4) The reduced form of A has no zeroes along the main diagonal.
5) A is invertible
6) det(A) 6= 0

statements 1-4invertible
nonzero determinant



Is A invertible?

A =


72 9 8 16
0 4 3 −9
0 0 5 3
0 0 0 21



det


0 10 10 0
1 5 0 2
2 0 5 1
0 1 3 1

 = −210; det


0 1 2 0

10 5 0 1
10 0 5 3
0 2 1 1

 =?

Calculate: det


1 5 10 15
0 1 1 1
0 2 1 2
0 1 2 1


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Suppose detA = 5 for an invertible matrix A. What is det(A−1)?

Suppose A is an n-by-n matrix with determinant 5. What is the
determinant of 3A?



Using Row Reduction to Calculate a Determinant

1 0 4
1 2 8
0 1 1



R2−R1−−−−→

1 0 4
0 2 4
0 1 1

 1
2R2−−→

1 0 4
0 1 2
0 1 1

 R3−R2−−−−→

1 0 4
0 1 2
0 0 − 1


det : −2

R2+R1←−−−− det : −2
2R2←−− det : −1

R3+R2←−−−− det : −1

det




2 2 2 1
1 1 1 1
3 5 8 7
9 6 1 4




= det




0 0 0 −1
1 1 1 1
3 5 8 7
9 6 1 4


 = −(−1) det

1 1 1
3 5 8
9 6 1



= det

1 1 1
0 2 5
0 −3 −8

 = 1 det

([
2 5
−3 −8

])
= −16 + 15 = −1

Is the original 4-by-4 matrix invertible?
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Suppose a matrix has the following reduced form. Is the matrix
invertible? What is its determinant?1 2 3

0 4 5
0 0 6



Invertible; determinant unknowable but nonzero

1 2 3
0 4 5
0 0 0



Not invertible; determinant 0

1 0 0
0 1 0
0 0 1



Invertible; determinant unknowable but nonzero



Suppose a matrix has the following reduced form. Is the matrix
invertible? What is its determinant?1 2 3

0 4 5
0 0 6


Invertible; determinant unknowable but nonzero1 2 3

0 4 5
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Suppose a matrix has the following reduced form. Is the matrix
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Suppose a matrix has the following reduced form. Is the matrix
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Determinant Expansion across Alternate Lines


+ − + −
− + − +
+ − + −
− + − +



det




9 8 5 6 10
1 0 0 0 1
7 0 1 1 1
8 0 1 1 1
4 3 5 6 7




det




8 9 5 6
0 1 1 0
0 7 1 1
0 8 1 1



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