Outline

Week 7: Rotations, projections and reflections in 2D; matrix representation
and composition of linear transformations; random walks; transpose.

Course Notes: 4.2, 4.3, 4.4

Goals: Understand that a linear transformation of a vector can always be

achieved by matrix multiplication; use specific examples of linear
transformations.
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Functions and Transformations
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pairs of vectors in R3 R3

f(uyv) =uxv
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Linear Transformations

f(x) = x2
f(2+3)=25
f(2)+f(3)=4+9=13
f(2%3) =236
2f(3) =2-9 = 18

g(x) = bx
g(24+3)=25

g(2) + g(3) = 10 + 15 = 25
(2% 3) =30
2¢(3) =2 - 15 = 30



Linear Transformations

Definition
A transformation T is called linear if, for any x,y in the domain of T, and
any scalar s,
T(x+y)=T(x)+ T(y)
and
T(sx) = sT(x).
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Linear Transformations

Definition
A transformation T is called linear if, for any x,y in the domain of T, and

any scalar s,
T(x+y)=T(x)+ T(y)

and
T(sx) = sT(x).

If Ais a matrix, then the transformation
T(x) = Ax

of a vector x is linear.

Is every line (f(x) = mx + b) a linear transformation?
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Example

Let T(x) be the rotation of x by ninety degrees.

T(x)+ T(y)

Rotation by a fixed angle is a linear transformation.
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Computing Rotations
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Computing Rotations

Vllsin(0+ 6) — A T(v)
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x = ||v|| cos(0 + ¢)
= ||v||(cos 6 cos ¢ — sin ¢ sin §)

= V1 COSp — VrSing

y = |lv||sin(0 + ¢)
= ||v||(sin 6 cos ¢ + cos 0 sin ¢)

= vising + vacos ¢



Computing Rotations

v =[vi, na; T(v) =[xyl
x = ||v| cos(6 + ¢) y = [lv]sin(0 + ¢)
= ||v||(cos 0 cos ¢ — sin ¢ sin 0) = ||v||(sin € cos ¢ + cos @ sin @)

= V1 COSp — Vo sin g = vysin¢g + v cos @



Computing Rotations

V:[V17V2]; T(V):[va]
x = ||v| cos(6 + ¢) y = [lv]sin(0 + ¢)
= ||v||(cos 0 cos ¢ — sin ¢ sin 0) = ||v||(sin € cos ¢ + cos @ sin @)
= V1 COSP — Vrsing = vysin¢g + v cos @

x| _|cosp —sing| vy
[y} - [singb cosd)] [vz]



Computing Rotations

V:[V17V2]; T(V):[va]
x = ||v| cos(0 + ¢) y = [lv]sin(0 + ¢)
= ||v||(cos 0 cos ¢ — sin ¢ sin 0) = ||v||(sin € cos ¢ + cos @ sin @)
= V1 COSP — Vrsing = vysin¢g + v cos @

x| _|cosp —sing| vy
[y} - [simb cosd>] [vz]

The matrix is called a rotation matrix, Roty



Computing Rotations

__|cos¢p —sing
Roty = [sin ¢ cosop ]
: : 4 :
What matrix should you multiply [2} by to rotate it 90 degrees?



Computing Rotations

__|cos¢p —sing
Rot‘l’_[sinqﬁ cosqﬁ]

What matrix should you multiply [ﬂ by to rotate it 90 degrees?

0 —1
ROtﬂ,/2 = |:1 0 :|



Computing Rotations
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What matrix should you multiply [ﬂ by to rotate it 90 degrees?

0 —1
ROtﬂ,/Q = |:1 0 :|

What matrix should you multiply [ﬂ by to rotate it 30 degrees?
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Computing Rotations

__|cos¢p —sing
ROtd’_[sinqﬁ cosqﬁ]

What matrix should you multiply [ﬂ by to rotate it 90 degrees?

0 —1
ROtﬂ,/Q = |:1 0 :|

What matrix should you multiply [ﬂ by to rotate it 30 degrees?

NI= N
= fS)

ROtﬂ./6 = [

Are rotations commutative?
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Computing Projections

Let a = [a1, a2] and x = [x1, x2].

1 32 aia X
DrojX 1 142 1
"0 32—|—a2 aia 32 X
1 2 142 2 2




Computing Projections

Let a = [a1, a2] and x = [x1, x2].

Projax — 1 af aias| [x1
ar — 2
at+a [ma a5 | |x

Let a = [1,1] and x = [2, 3]. Calculate projax two ways.



Computing Projections

Let a = [a1, a2] and x = [x1, x2].

1 a2  aa X
Lo+ 1 142 1
ProRX =272 a2 22 | |x
1 2 2 2

Let a =[1,1] and x = [2,3]. Calculate projax two ways.

T(x) = proj, (projax)

Is the projection of a projection a projection?
(Is there a vector c so that T(x) = projcx?)

1 1
Example: a = {2} , b= {5}
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Reflections

For a fixed vector a , let Ref(x) be the reflection of x across the line

through the origin in the direction of a .
X

Projax — X

\ .
\Projax
\

Ref (x) = x + 2(projax — X) = 2projax — x



Ref (x) = 2projax — x



Reflections

Ref (x) = 2projax — x

Projections:

Projax — 1 af aras| [x1
alh — 2
at+a3 [ma a5 | |x

o 2 2] = 2

Identity:



Reflections

Ref (x) = 2projax — x

Projections:

Projax — 1 af aras| [x1
alh — 2
at+a3 [ma a5 | |x

o 2 2] = 2

Ref (x) = 2projax — x

Identity:

2a; 1 2ajap
_ a%+a3 ai—l—a% X1
2a1ap 2a, 1| [x

2.2 2.2
ajtaz ajta;



28 2am,
Ref(x) _ | al+a3 ai-i—a% X1
2aian 2a3 -1 X2

2., 2 2.2
ajta; ajta;



Cleanup

28 2a1ay
Ry = |72 1 | [
2aiap 225 1 X2

2, 2 2, .2
ajtajs aj+as

If a is a unit vector, then a? + a3 = 1. Then:

o 23% -1 23132 :| |:X1:|

Ref(x) = 2a1ap 235 — 1| |x



Cleanup

2
2a7

-1 2ajar
2, .2 2, 2 X
_ | at+a; aj+a;s 1
Ref(x) - 23132 23% _ 1 X2
aita;  art+a

If a is a unit vector, then a? + a3 = 1. Then:

Ref (x) = [23% -1 2aa } [xl}

23132 23% —1 X2

And if a makes angle 6 with the x-axis, then a; = cos# and a; = sin, so

Reii) = 570200 eonh)) o

X2
cos? ) = % sin 17%0529 sin260 = 2sinf cos?



Reflections

To reflect x across the line through the origin that makes angle 6 with the

X-axis: B (26) in(26) %
rene) = (o) ] [2)



Reflections

To reflect x across the line through the origin that makes angle 8 with the

x-axis: ~ [cos(20) sin(20) ] [x
Refy(x) = sin(26) —c05(29)] [Xj

Example: find the reflection of the vector [2,4] across the line through the
origin that makes an angle of 15 degrees with the x-axis.



Reflections

To reflect x across the line through the origin that makes angle 8 with the

T [z e

Example: find the reflection of the vector [2, 4] across the line through the
origin that makes an angle of 15 degrees with the x-axis.

) ] = irre) o] 14

[ERES

cos(2(m/12))  sin(2
sin(2(7/12)) — cos(
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Reflections

To reflect x across the line through the origin that makes angle 6 with the

X-axis: B (26) in(26) %
rene) = (o) ] [2)

What happens when we do two reflections?



Reflections

To reflect x across the line through the origin that makes angle 6 with the

T e[z )

What happens when we do two reflections?

[cos(20)  sin(20) | [cos(2¢)  sin(29)
|sin(20) — cos(26 } [sm — cos(2q§)}
_ [cos(26) cos(2¢) + sin(26) |n(2¢) cos(26) sin(2¢) — sin(26) cos(2¢)}
sin(20) cos(2¢) — cos(20) sin(2¢) sin(20) sin(2¢) 4 cos(26) cos(2¢)
_ [eos(2(6 —¢)) —sin(2(6 — )] _ .
sin(2(0 — ) cos(2(8—¢)) | O




Reflections

To reflect x across the line through the origin that makes angle 6 with the

e e

What happens when we do two reflections?

[cos(20)  sin(20) cos(2¢) sin(2¢)

|sin(20) — cos(20)} )}
[cos(26) cos(2¢) + sin(26)
|sin(26) cos(2¢)) — cos(26)
[cos(2(0 — ¢)) —sin(2(6 — ¢))] . |
[sin(2(0 — ¢))  cos(2(6 — ¢)) 2(6—)

Are reflections commutative?

in(2¢) cos(20)sin(2¢) — sin(26) cos(2¢)}
(2¢) sin(20)sin(2¢) + cos(26) cos(2¢)




Reflections

To reflect x across the line through the origin that makes angle 6 with the

T e[z )

What happens when we do two reflections?

[cos(26)  sin(20) | [cos sin(2¢)
|sin(20) — cos(26 ] [sm (2¢) — cos(2q§)}
_ [cos(260) cos(2¢) + sin(26) sin(2¢)  cos(26) sin(2¢) — sin(26) cos(2¢)}
~ [sin(26) cos(2¢) — cos(26) sin(2¢)  sin(20) sin(2¢) 4 cos(26) cos(2¢)
_[eos(@(0—¢)) —sin@(0 -~ )] _ 5
[sin(2(60 — ¢))  cos(2(6 — ¢)) A00)

Are reflections commutative?

Are reflections commutative with rotations?



Reflections and Rotations

Try the following with a cell phone or book:
1. Rotate 90 degrees clockwise
2. Flip 180 degrees vertically

Alternately:
1. Flip 180 degrees vertically
2. Rotate 90 degrees clockwise



Summary: Examples of Linear Transformations

To compute the rotation of the vector x by 8, multiply x by the matrix

cosf) —sin 0}

Roty = [sin@ cos
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To compute the rotation of the vector x by 8, multiply x by the matrix

cosf) —sin 0}
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To compute the projection of the vector x onto the vector [a1, a2], multiply

x by the matrix

22
1 aiaz
2 2 2 2
- as+a as+a
— 1 2 1 2
pro_/[al,ag] - a1an ag

.7 oL
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To compute the rotation of the vector x by 8, multiply x by the matrix
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Roty = [sin@ cos
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Summary: Examples of Linear Transformations

To compute the rotation of the vector x by 8, multiply x by the matrix

cosf) —sin 0}

Roty = [sin@ cos

To compute the projection of the vector x onto the vector [a1, a2], multiply

x by the matrix

32
1 aiaz
2 2 2 2
- as+a as+a
— 1 2 1 2
pro_/[al,ag] - a1an ag

2,2 2, 2
ajta;  apta;

Which transformations are equivalent to matrix multiplication?
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Every linear transformation T that takes a vector as an input, and gives a
vector as an output, is equivalent to a matrix multiplication.




Which transformations are equivalent to matrix multiplication?

Theorem

Every linear transformation T that takes a vector as an input, and gives a
vector as an output, is equivalent to a matrix multiplication.

Extended Theorem
Suppose T is a linear transformation that transforms vectors of R" into

vectors of R™. If eq,..., e, is the standard basis of R”, then:
X1 X1
T : =1|T(e1) T(e2) -+ T(en)

Xn Xn
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General Linear Transformations

T:R"—R"
Standard basis of R":
1
0 1
L= |.],8= s
0 0
X1
T = |T(e1) T(e2)

linear
0
0
y€n = | .
1
1
X2
T(en) :
\ .



Examples

Suppose a linear transformation T from R? to R? has the following
properties:

7(Jo]) =2
()=l

Give a matrix A so that T(x) = Ax for every vector x in R?.



Examples

Suppose a linear transformation T from R? to R? has the following
properties:

7(Jo]) =2
()=l

Give a matrix A so that T(x) = Ax for every vector x in R?.

Suppose a linear transformation T from R? to R? has the following
properties:

g
()=l

Give a matrix A so that T(x) = Ax for every vector x in R?.



Examples

Suppose T is a transformation from R? to R3, where T(x) = Ax for the
matrix

1 2
A= |3 4
5 6
(4
Which vector x = {Xl] has T(x) = [10]?
2 16

1
Which vector y = [)/1} has T(y) = (2|7
Y2 1



Examples

Suppose T is a transformation from R? to R3, where T(x) = Ax for the
matrix

1 2
A= |3 4
5 6
(4
Which vector x = {Xl] has T(x) = [10]?
2 16

1
Which vector y = [)/1} has T(y) = (2|7
Y2 1

Characterize vectors that can come out ot T.



Random Walks: Another Use of Matrix Multiplication

en states
eFixed probability p; ; of moving to state / if you are in state j.
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Random Walks: Another Use of Matrix Multiplication

en states
eFixed probability p; ; of moving to state / if you are in state j.

Examples:
https://en.wikipedia.org/wiki/Random_walk
model Brownian Motion (Wiener process)

genetic drift

stock markets

use sampling to estimate properties of a large system


 https://en.wikipedia.org/wiki/Random_walk

Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is
observed once per hour.

fr;m sleeping fishing playing
sleeping .5 7 A4
fishing .25 0 3
playing .25 3 3

Sleeping: https://pixabay.com/en/penguin-linux-sleeping-animal-159784/
Fishing: By Mimooh (Own work), via Wikimedia Commons
Playing: By Sllvermoonllght217 http://silvermoonlight217.deviantart.com/art/Penguin-Sledding-262107547


https://pixabay.com/en/penguin-linux-sleeping-animal-159784/
http://silvermoonlight217.deviantart.com/art/Penguin-Sledding-262107547

Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is
observed once per hour.

fr;m sleeping fishing playing
sleeping .5 7 A4
fishing .25 0 3
playing .25 3 3

Let x, be the vector describing the probability that the penguin is
sleeping/fishing/playing after n hours.
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Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is

observed once per hour.

fr;m sleeping fishing playing
sleeping .5 7 A4
fishing .25 0 3
playing .25 3 3

Let x, be the vector describing the probability that the penguin is

sleeping/fishing/playing after n hours.
xp: initial state of penguin. For example: [1,0,0]" if we know the penguin

is sleeping.
x1: [.5,.25,.25]"
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Random Walks

In general:
en states

ep; j probability of moving to state i if you are in state j; P = [p; ]

Given x,:
Xpi1 = Pxp, = Pt
n+1 = FXp = X0

P: "transition matrix”



Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very
good yet. With every step you take, your chances of falling to the right are
1%, and your changes of falling to the left are 5%, because of an old
math-related injury that causes you to lean left when you're scared. When
you fall, you stay on the ground.

"rs

Rob, https://www.flickr.com/photos/rh1985/22218233156


https://www.flickr.com/photos/rh1985/22218233156

Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very
good yet. With every step you take, your chances of falling to the right are
1%, and your changes of falling to the left are 5%, because of an old

math-related injury that causes you to lean left when you're scared. When
you fall, you stay on the ground.

from

Left ground Rope Right ground

to
Left ground
Rope

Right ground
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Suppose you are learning to walk on a tight rope, but you are not very
good yet. With every step you take, your chances of falling to the right are
1%, and your changes of falling to the left are 5%, because of an old

math-related injury that causes you to lean left when you're scared. When
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Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very
good yet. With every step you take, your chances of falling to the right are
1%, and your changes of falling to the left are 5%, because of an old

math-related injury that causes you to lean left when you're scared. When
you fall, you stay on the ground.

fi .
o Left ground Rope Right ground
Left ground 1 0.05
Rope 0
Right ground 0




Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very
good yet. With every step you take, your chances of falling to the right are
1%, and your changes of falling to the left are 5%, because of an old

math-related injury that causes you to lean left when you're scared. When
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Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very
good yet. With every step you take, your chances of falling to the right are
1%, and your changes of falling to the left are 5%, because of an old

math-related injury that causes you to lean left when you're scared. When
you fall, you stay on the ground.

fi .
o Left ground Rope Right ground
Left ground 1 0.05 0
Rope 0 0.94 0
Right ground 0 0.01 1

Where are you after 100 steps?



Random Walk Example: Error Messages

Suppose you are using a buggy program. You start up without a problem.

e If you have never encountered an error message, your odds of
encountering an error message with your next click are 0.01.

e If you have already encountered exactly one error message, your odds
of encountering a second on your next click are 0.05.

e |f you have encountered two error messages, the odds of encountering
a third on your next click are 0.1.

e After the third error message, you uninstall the program.
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Possible states: no errors; one error; two errors; three errors; uninstalled.



Random Walk Example

Suppose you are using a buggy program. You start up without a problem.

e If you have never encountered an error message, your odds of encountering an
error message with your next click are 0.01.

e If you have already encountered exactly one error message, your odds of
encountering a second on your next click are 0.05.

e If you have encountered two error messages, the odds of encountering a third on
your next click are 0.1.

o After the third error message, you uninstall the program.

Possible states: no errors; one error; two errors; three errors; uninstalled.

from | g 1 2 3 4
to

0 99 0 0 0 0
1 01 95 0 0 0
2 0 05 9 00
3 0 0 100
u 0 0 0 11
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Transpose: rows < columns.
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Transpose

Transpose: rows < columns.

1 4
A:EEE} AT =12 5
3 6
1 2 3 111
B=1|1 2 3 BT=12 2 2
12 3 3 3 3

6 12 18
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Transpose

Previous example of noncommutativity of matrix multiplication:
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Transpose

Previous example of noncommutativity of matrix multiplication:

1 2][7 5] [13 5
0 0/|[3 0/ |0 O
7 5| [1 2] (7 14
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Transpose and Dot Product

y- (Ax) = (ATy) - x

where A is an m-by-n matrix, x € R” and y € R™.
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y- (Ax) = (ATy) - x

where A is an m-by-n matrix, x € R” and y € R™.
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True or False?

Summary

e Transpose swaps rows and columns
e AB=(BTAT)T

oy (Ax)=(ATy) x

e« (AT) =4

() -+

o (AB)x = (xTBT)TA

oy (Ax)=x-(ATy)
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True or False?

Summary

e Transpose swaps rows and columns
e AB=(BTAT)T

oy (Ax)=(ATy) x

° (AT) T_ A true

(1)) =4

(AB)x = (xTBT)" A

y- (Ax) = x- (ATy) true





















