
Outline

Week 7: Rotations, projections and reflections in 2D; matrix representation
and composition of linear transformations; random walks; transpose.

Course Notes: 4.2, 4.3, 4.4

Goals: Understand that a linear transformation of a vector can always be
achieved by matrix multiplication; use specific examples of linear
transformations.



Functions and Transformations

f
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f (v) = ‖v‖

vectors R

f (v) = 3v

vectors vectors

f (u, v) = u × v

pairs of vectors in R3 R3
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Linear Transformations

f (x) = x2

f (2 + 3) = 25
f (2) + f (3) = 4 + 9 = 13
f (2 ∗ 3) = 36
2f (3) = 2 · 9 = 18

g(x) = 5x

g(2 + 3) = 25
g(2) + g(3) = 10 + 15 = 25
g(2 ∗ 3) = 30
2g(3) = 2 · 15 = 30
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Linear Transformations

Definition

A transformation T is called linear if, for any x, y in the domain of T , and
any scalar s,

T (x + y) = T (x) + T (y)

and
T (sx) = sT (x).

If A is a matrix, then the transformation

T (x) = Ax

of a vector x is linear.

Is every line (f (x) = mx + b) a linear transformation?
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Example

Let T (x) be the rotation of x by ninety degrees.

x

T (x)

2x

2T (x)

y

T (y)

x + y

T (x) + T (y)

Rotation by a fixed angle is a linear transformation.
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Computing Rotations

v

θ

‖v‖ cos θ

‖v‖ sin θ

T (v)

φ

‖v‖ cos(θ + φ)

‖v‖ sin(θ + φ)

cos(θ+φ) = cos θcosφ− sin θsinφ sin(θ+φ) = sin θcosφ+cos θsinφ
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v

θ

‖v‖ cos θ

‖v‖ sin θ

T (v)

φ

‖v‖ cos(θ + φ)

‖v‖ sin(θ + φ)

v = [v1, v2]; T (v) = [x , y ]

x = ‖v‖ cos(θ + φ) y = ‖v‖ sin(θ + φ)

= ‖v‖(cos θ cosφ− sinφ sin θ) = ‖v‖(sin θ cosφ+ cos θ sinφ)

= v1 cosφ− v2 sinφ = v1 sinφ+ v2 cosφ
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[
x
y

]
=

[
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Computing Rotations

v = [v1, v2]; T (v) = [x , y ]

x = ‖v‖ cos(θ + φ) y = ‖v‖ sin(θ + φ)

= ‖v‖(cos θ cosφ− sinφ sin θ) = ‖v‖(sin θ cosφ+ cos θ sinφ)

= v1 cosφ− v2 sinφ = v1 sinφ+ v2 cosφ

[
x
y

]
=

[
cosφ − sinφ
sinφ cosφ

] [
v1

v2

]
The matrix is called a rotation matrix, Rotφ



Computing Rotations

Rotφ =

[
cosφ − sinφ
sinφ cosφ

]

What matrix should you multiply

[
4
2

]
by to rotate it 90 degrees?

Rotπ/2 =

[
0 −1
1 0

]

What matrix should you multiply

[
4
2

]
by to rotate it 30 degrees?

Rotπ/6 =

[√
3

2 −1
2

1
2

√
3

2

]

Are rotations commutative?
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Computing Projections

Let a = [a1, a2] and x = [x1, x2].

projax =
1

a2
1 + a2

2

[
a2

1 a1a2

a1a2 a2
2

] [
x1

x2

]

Let a = [1, 1] and x = [2, 3]. Calculate projax two ways.

T (x) = projb (projax)

Is the projection of a projection a projection?
(Is there a vector c so that T (x) = projcx?)

Example: a =

[
1
2

]
, b =

[
1
5

]
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For a fixed vector a , let Ref (x) be the reflection of x across the line
through the origin in the direction of a .
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Ref (x) = x + 2(projax− x) = 2projax− x
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Reflections

Ref (x) = 2projax− x

Projections:

projax =
1

a2
1 + a2

2

[
a2

1 a1a2

a1a2 a2
2

] [
x1

x2

]
Identity: [

1 0
0 1

] [
x1

x2

]
=

[
x1

x2

]

Ref (x) = 2projax− x

=

 2a2
1

a2
1+a2

2
− 1 2a1a2

a2
1+a2

2

2a1a2

a2
1+a2

2

2a2
2

a2
1+a2

2
− 1

[x1

x2
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Cleanup

Ref (x) =

 2a2
1

a2
1+a2

2
− 1 2a1a2

a2
1+a2

2

2a1a2

a2
1+a2

2

2a2
2

a2
1+a2

2
− 1

[x1

x2
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If a is a unit vector, then a2
1 + a2

2 = 1. Then:

Ref (x) =

[
2a2

1 − 1 2a1a2

2a1a2 2a2
2 − 1

] [
x1

x2

]

And if a makes angle θ with the x-axis, then a1 = cos θ and a2 = sin θ, so:

Refθ(x) =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

] [
x1

x2

]

cos2 θ =
1 + cos 2θ

2
sin2 θ =

1− cos 2θ

2
sin 2θ = 2 sin θ cos θ
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Reflections

To reflect x across the line through the origin that makes angle θ with the
x-axis:

Refθ(x) =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

] [
x1

x2

]

What happens when we do two reflections?
Are reflections commutative?

Are reflections commutative with rotations?
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Reflections

To reflect x across the line through the origin that makes angle θ with the
x-axis:

Refθ(x) =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

] [
x1

x2

]
Example: find the reflection of the vector [2, 4] across the line through the
origin that makes an angle of 15 degrees with the x-axis.

[
cos(2(π/12)) sin(2(π/12))
sin(2(π/12)) − cos(2(π/12))

] [
2
4

]
=

[
cos(π/6) sin(π/6)
sin(π/6) − cos(π/6))

] [
2
4

]
=

[√
3

2
1
2

1
2 −

√
3

2

] [
2
4

]
≈
[

3.7
−2.4

]

What happens when we do two reflections?
Are reflections commutative?

Are reflections commutative with rotations?
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Reflections

To reflect x across the line through the origin that makes angle θ with the
x-axis:

Refθ(x) =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

] [
x1

x2

]
What happens when we do two reflections?

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

] [
cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

]
=

[
cos(2θ) cos(2φ) + sin(2θ) sin(2φ) cos(2θ) sin(2φ)− sin(2θ) cos(2φ)
sin(2θ) cos(2φ)− cos(2θ) sin(2φ) sin(2θ) sin(2φ) + cos(2θ) cos(2φ)

]
=

[
cos(2(θ − φ)) − sin(2(θ − φ))
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Are reflections commutative?

Are reflections commutative with rotations?



Reflections

To reflect x across the line through the origin that makes angle θ with the
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Reflections and Rotations

Try the following with a cell phone or book:
1. Rotate 90 degrees clockwise
2. Flip 180 degrees vertically

Alternately:
1. Flip 180 degrees vertically
2. Rotate 90 degrees clockwise



Summary: Examples of Linear Transformations

To compute the rotation of the vector x by θ, multiply x by the matrix

Rotθ =

[
cos θ − sin θ
sin θ cos θ

]

To compute the projection of the vector x onto the vector [a1, a2], multiply
x by the matrix

proj[a1,a2] =

 a2
1

a2
1+a2

2

a1a2

a2
1+a2

2

a1a2

a2
1+a2

2

a2
2

a2
1+a2

2


To compute the reflection of the vector x across the line through the origin
that makes an angle of φ with the x-axis, multiply x by the matrix

Refθ =

[
cos 2φ sin 2φ
sin 2φ − cos 2φ

]
Which transformations are equivalent to matrix multiplication?
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Which transformations are equivalent to matrix multiplication?

Theorem

Every linear transformation T that takes a vector as an input, and gives a
vector as an output, is equivalent to a matrix multiplication.

Extended Theorem

Suppose T is a linear transformation that transforms vectors of Rn into
vectors of Rm. If e1, . . . , en is the standard basis of Rn, then:

T




x1

x2
...

xn


 =

 | | |
T (e1) T (e2) · · · T (en)
| | |




x1

x2
...

xn


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General Linear Transformations
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General Linear Transformations
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Examples

Suppose a linear transformation T from R2 to R2 has the following
properties:

T

([
1
0

])
=

[
1
2

]
T

([
0
1

])
=

[
7
7

]
Give a matrix A so that T (x) = Ax for every vector x in R2.

Suppose a linear transformation T from R2 to R2 has the following
properties:

T

([
1
1

])
=

[
1
2
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T
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0
1
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Examples

Suppose T is a transformation from R2 to R3, where T (x) = Ax for the
matrix

A =

1 2
3 4
5 6



Which vector x =

[
x1

x2

]
has T (x) =

 4
10
16

?

Which vector y =

[
y1

y2

]
has T (y) =

1
2
1

?

Characterize vectors that can come out ot T .
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Random Walks: Another Use of Matrix Multiplication

•n states
•Fixed probability pi ,j of moving to state i if you are in state j .

Examples:
https://en.wikipedia.org/wiki/Random_walk

model Brownian Motion (Wiener process)
genetic drift
stock markets
use sampling to estimate properties of a large system

 https://en.wikipedia.org/wiki/Random_walk
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Random Walks: Another Use of Matrix Multiplication

•n states
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Examples:
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Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is
observed once per hour.

from
to

sleeping fishing playing

sleeping .5 .7 .4
fishing .25 0 .3
playing .25 .3 .3

Sleeping: https://pixabay.com/en/penguin-linux-sleeping-animal-159784/

Fishing: By Mimooh (Own work), via Wikimedia Commons
Playing: By Silvermoonlight217 http://silvermoonlight217.deviantart.com/art/Penguin-Sledding-262107547

Let xn be the vector describing the probability that the penguin is sleeping/fishing/playing after n hours.

x0: initial state of penguin. For example: [1, 0, 0]T if we know the penguin is sleeping.

x1: [.5, .25, .25]T

x2:

 .5 .7 .4
.25 0 .3
.25 .3 .3

 .5
.25
.25

= Px1 =P2x0

https://pixabay.com/en/penguin-linux-sleeping-animal-159784/
http://silvermoonlight217.deviantart.com/art/Penguin-Sledding-262107547
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Random Walks

In general:
•n states
•pi ,j probability of moving to state i if you are in state j ; P = [pi ,j ]

Given xn:
xn+1 = Pxn = Pn+1x0

P: ”transition matrix”
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Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very
good yet. With every step you take, your chances of falling to the right are
1%, and your changes of falling to the left are 5%, because of an old
math-related injury that causes you to lean left when you’re scared. When
you fall, you stay on the ground.

Rob, https://www.flickr.com/photos/rh1985/22218233156

from
to

Left ground Rope Right ground

Left ground

1 0.05 0

Rope

0 0.94 0

Right ground

0 0.01 1

Where are you after 100 steps?
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Random Walk Example: Error Messages

Suppose you are using a buggy program. You start up without a problem.

• If you have never encountered an error message, your odds of
encountering an error message with your next click are 0.01.

• If you have already encountered exactly one error message, your odds
of encountering a second on your next click are 0.05.

• If you have encountered two error messages, the odds of encountering
a third on your next click are 0.1.

• After the third error message, you uninstall the program.

Possible states: no errors; one error; two errors; three errors; uninstalled.
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Random Walk Example

Suppose you are using a buggy program. You start up without a problem.

• If you have never encountered an error message, your odds of encountering an
error message with your next click are 0.01.

• If you have already encountered exactly one error message, your odds of
encountering a second on your next click are 0.05.

• If you have encountered two error messages, the odds of encountering a third on
your next click are 0.1.

• After the third error message, you uninstall the program.

Possible states: no errors; one error; two errors; three errors; uninstalled.

from
to

0 1 2 3 u

0 .99 0 0 0 0
1 .01 .95 0 0 0
2 0 .05 .9 0 0
3 0 0 .1 0 0
u 0 0 0 1 1



Transpose

Transpose: rows ↔ columns.

A =

[
1 2 3
4 5 6

]
AT =

1 4
2 5
3 6



B =

1 2 3
1 2 3
1 2 3

 BT =

1 1 1
2 2 2
3 3 3



AB =

[
6 12 18

15 30 45

]
BA = DNE

BTAT =

 6 15
12 30
18 45

 AB = (BTAT )T
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Transpose

Previous example of noncommutativity of matrix multiplication:[
1 2
0 0

] [
7 5
3 0

]
=

[
13 5
0 0

]
[

7 5
3 0

] [
1 2
0 0

]
=

[
7 14
3 6

]

[
7 3
5 0

] [
1 0
2 0

]
=

[
13 0
5 0

]



Transpose

Previous example of noncommutativity of matrix multiplication:[
1 2
0 0

] [
7 5
3 0

]
=

[
13 5
0 0

]
[

7 5
3 0

] [
1 2
0 0

]
=

[
7 14
3 6

]
[

7 3
5 0

] [
1 0
2 0

]
=

[
13 0
5 0

]



Transpose and Dot Product

y · (Ax) = (ATy) · x

where A is an m-by-n matrix, x ∈ Rn and y ∈ Rm.

1
2
3

 ·
 1 0

0 1
−1 1

[8
9

] =

1
2
3

 ·
8

9
1

 = 8 + 18 + 3 = 29

[1 0 −1
0 1 1

]1
2
3

 · [8
9

]
=

[
−2
5

]
·
[

8
9

]
= −16 + 45 = 29
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True or False?

Summary

• Transpose swaps rows and columns

• AB = (BTAT )T

• y · (Ax) = (ATy) · x

•
(
AT
)T

= A

true

•

((((
AT
)T)T)T

)T

= A

false

• (AB)x =
(
xTBT

)T
A

false

• y · (Ax) = x · (ATy)

true
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