Outline

Week 2: Determinants, Cross Products, Lines, and Planes

Course Notes: 2.4-2.5

Goals: Introduce determinants and cross products, computationally and with geometric interpretations. Lines and planes.

Matrices!

$$\begin{bmatrix} 8 & 15 & -4 \\ 9 & -4 & 7 \\ 6 & 1 & 1 \\ -5 & -3 & 0 \end{bmatrix}$$

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$

$$\det \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

$$\det\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1b_2 - a_2b_1$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_3 b_2 c_1 - a_2 b_1 c_3 - a_1 b_3 c_2$$

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_3 b_2 c_1 - a_2 b_1 c_3 - a_1 b_3 c_2$$

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - a_3b_2c_1 - a_2b_1c_3 - a_1b_3c_2$$

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_3 b_2 c_1 - a_2 b_1 c_3 - a_1 b_3 c_2$$

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - a_3b_2c_1 - a_2b_1c_3 - a_1b_3c_2$$

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - a_3b_2c_1 - a_2b_1c_3 - a_1b_3c_2$$

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_3 b_2 c_1 - a_2 b_1 c_3 - a_1 b_3 c_2$$

 $\det\begin{bmatrix}1 & 3\\2 & 5\end{bmatrix}$

$$\det\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$

$$\det \begin{bmatrix} -2 & 8 \\ 3 & 5 \end{bmatrix}$$

$$\det\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$

$$\det \begin{bmatrix} -2 & 8 \\ 3 & 5 \end{bmatrix}$$

$$\det\begin{bmatrix} 3 & 2 & 5 \\ 5 & 7 & 3 \\ 2 & 1 & 3 \end{bmatrix}$$

$$\det \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$

$$\det \begin{bmatrix} -2 & 8 \\ 3 & 5 \end{bmatrix}$$

$$\det\begin{bmatrix} 3 & 2 & 5 \\ 5 & 7 & 3 \\ 2 & 1 & 3 \end{bmatrix}$$

$$\det\begin{bmatrix} 2 & 4 & 8 \\ 3 & 5 & 7 \\ 1 & 10 & 5 \end{bmatrix}$$

$$\det\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1b_2 - a_2b_1$$

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$
$$= \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$

$$= \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$
$$= \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

If
$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = 0$$
,

then

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$
$$= \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

If
$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = 0$$
,
then $\begin{bmatrix} -a_2 \\ a_1 \end{bmatrix}$ is orthogonal to $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$,

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$
$$= \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

If
$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = 0$$
,
then $\begin{bmatrix} -a_2 \\ a_1 \end{bmatrix}$ is orthogonal to $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$,
so $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ and $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ are

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$
$$= \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

If
$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = 0$$
,
then $\begin{bmatrix} -a_2 \\ a_1 \end{bmatrix}$ is orthogonal to $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$,
so $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ and $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ are scalar multiples of one another (parallel).

$$\det\begin{bmatrix} 1 & 2 \\ -4 & -8 \end{bmatrix}$$

$$\det\begin{bmatrix}1 & 2\\ -4 & -8\end{bmatrix} = 0$$

$$\det\begin{bmatrix} 1 & 2 \\ -4 & -8 \end{bmatrix} = 0$$

$$\det\begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix}$$

$$\det\begin{bmatrix} 1 & 2 \\ -4 & -8 \end{bmatrix} = 0$$

$$\det\begin{bmatrix}1 & 2\\4 & 6\end{bmatrix} \neq 0$$

$$\det\begin{bmatrix} 1 & 2 \\ -4 & -8 \end{bmatrix} = 0$$

$$\det\begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix} \neq 0$$

$$\det \begin{bmatrix} a_1 & a_2 \\ 5a_1 & 5a_2 \end{bmatrix}$$

$$\det\begin{bmatrix} 1 & 2 \\ -4 & -8 \end{bmatrix} = 0$$

$$\det\begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix} \neq 0$$

$$\det \begin{bmatrix} a_1 & a_2 \\ 5a_1 & 5a_2 \end{bmatrix} = 0$$

$$\det\begin{bmatrix} 1 & 2 \\ -4 & -8 \end{bmatrix} = 0$$

$$\det\begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix} \neq 0$$

$$\det \begin{bmatrix} a_1 & a_2 \\ 5a_1 & 5a_2 \end{bmatrix} = 0$$

$$\det \begin{bmatrix} a_1 & a_2 \\ 0 & 0 \end{bmatrix}$$

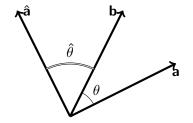
$$\det\begin{bmatrix}1&2\\-4&-8\end{bmatrix}=0$$

$$\det\begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix} \neq 0$$

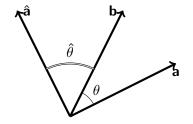
$$\det \begin{bmatrix} a_1 & a_2 \\ 5a_1 & 5a_2 \end{bmatrix} = 0$$

$$\det \begin{bmatrix} a_1 & a_2 \\ 0 & 0 \end{bmatrix} = 0$$

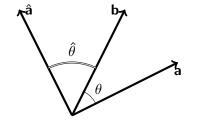
$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \hat{\mathbf{a}} \cdot \mathbf{b}$$



$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \hat{\mathbf{a}} \cdot \mathbf{b}$$
$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\hat{\theta})$$



$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \hat{\mathbf{a}} \cdot \mathbf{b}$$
$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\hat{\theta})$$
$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\pi/2 - \theta)$$

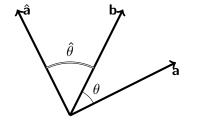


$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \hat{\mathbf{a}} \cdot \mathbf{b}$$

$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\hat{\theta})$$

$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\pi/2 - \theta)$$

$$= \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta)$$



$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \hat{\mathbf{a}} \cdot \mathbf{b}$$

$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\hat{\theta})$$

$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \sin(\pi/2 - \theta)$$

$$= \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta)$$

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \hat{\mathbf{a}} \cdot \mathbf{b}$$

$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\hat{\theta})$$

$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\pi/2 - \theta)$$

$$= \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta)$$

More Geometric Interpretation in Two Dimensions

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \hat{\mathbf{a}} \cdot \mathbf{b}$$

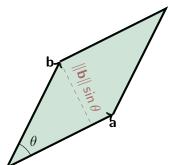
$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\hat{\theta})$$

$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \sin(\pi/2 - \theta)$$

$$= \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta)$$

More Geometric Interpretation in Two Dimensions

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \hat{\mathbf{a}} \cdot \mathbf{b}$$
$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\hat{\theta})$$
$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\pi/2 - \theta)$$
$$= \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta)$$



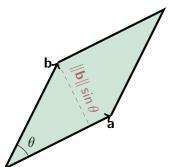
More Geometric Interpretation in Two Dimensions

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \hat{\mathbf{a}} \cdot \mathbf{b}$$

$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\hat{\theta})$$

$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\pi/2 - \theta)$$

$$= \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta) = \text{shaded area}$$



 $\begin{vmatrix} \det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \text{ area of parallelogram spanned by } \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \text{ and } \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$

In general:

In general:

$$\left|\detegin{bmatrix} a_1 & a_2 \ b_1 & b_2 \end{bmatrix}
ight|= ext{ area of parallelogram spanned by } egin{bmatrix} a_1 \ a_2 \end{bmatrix} ext{ and } egin{bmatrix} b_1 \ b_2 \end{bmatrix}$$

Example: Find the area of the parallelogram with one side given by $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$ and the other side $\begin{bmatrix} -3 \\ 4 \end{bmatrix}$.

In general:

$$\left|\detegin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}
ight|= ext{ area of parallelogram spanned by } egin{bmatrix} a_1 \\ a_2 \end{bmatrix} ext{ and } egin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Example: Find the area of the parallelogram with one side given by $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$ and the other side $\begin{bmatrix} -3 \\ 4 \end{bmatrix}$.

$$\det \begin{bmatrix} 2 & 6 \\ -3 & 4 \end{bmatrix} = (2)(4) - (6)(-3)$$
$$= 8 + 18 = 26$$

In general:

$$\left|\det\begin{bmatrix}a_1 & a_2\\b_1 & b_2\end{bmatrix}\right| = \text{ area of parallelogram spanned by } \begin{bmatrix}a_1\\a_2\end{bmatrix} \text{ and } \begin{bmatrix}b_1\\b_2\end{bmatrix}$$

Example: Find the area of the parallelogram with one side given by $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$ and the other side $\begin{bmatrix} -3 \\ 4 \end{bmatrix}$.

$$\det \begin{bmatrix} 2 & 6 \\ -3 & 4 \end{bmatrix} = (2)(4) - (6)(-3)$$
$$= 8 + 18 = 26$$

Silly Example: Find the area of the rectangle with corners (0,0), (x,0), (0,y), and (x,y).

Cross Product

ONLY defined in three dimensions.

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

$$\mathbf{b} = \begin{vmatrix} b_1 \\ b_2 \\ b_3 \end{vmatrix}$$

Cross Product

ONLY defined in three_dimensions.

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

Cross Product

ONLY defined in three_dimensions.

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

Mnemonic:

$$\det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = \mathbf{i} \det \begin{bmatrix} a_2 & a_3 \\ b_2 & b_3 \end{bmatrix} - \mathbf{j} \det \begin{bmatrix} a_1 & a_3 \\ b_1 & b_3 \end{bmatrix} + \mathbf{k} \det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$$
$$= \mathbf{i} (a_2b_3 - a_3b_2) - \mathbf{j} (a_1b_3 - a_3b_1) + \mathbf{k} (a_1b_2 - a_2b_1)$$
$$= \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

Practice

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Practice

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Not commutative!

1. $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} and to \mathbf{b} .

1. $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} and to \mathbf{b} .

Verify:

$$\begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = 0$$

1. $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} and to \mathbf{b} .

Verify:

$$\begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = 0$$

2. $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} , $0 \le \theta \le \pi$.

1. $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} and to \mathbf{b} .

Verify:

$$\begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = 0$$

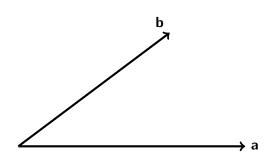
2. $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} , $0 \le \theta \le \pi$. Thus, $\sin \theta$ is positive, and $\|\mathbf{a} \times \mathbf{b}\|$ is the area of the parallelogram spanned by \mathbf{a} and \mathbf{b} .

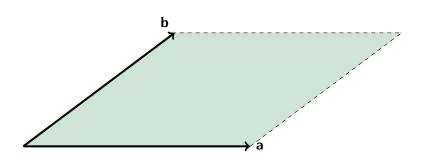
1. $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} and to \mathbf{b} .

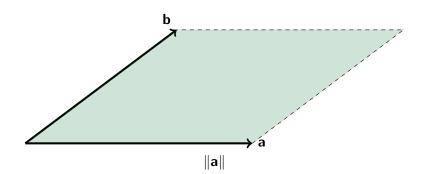
Verify:

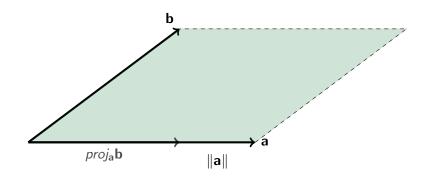
$$\begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = 0$$

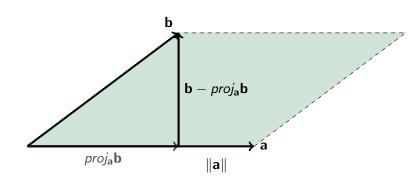
- 2. $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} , $0 \le \theta \le \pi$. Thus, $\sin \theta$ is positive, and $\|\mathbf{a} \times \mathbf{b}\|$ is the area of the parallelogram spanned by \mathbf{a} and \mathbf{b} .
- 3. The vectors \mathbf{a} , \mathbf{b} , and $\mathbf{a} \times \mathbf{b}$ obey the *right hand rule*. That is, if you curl your fingers towards your palm from \mathbf{a} to \mathbf{b} , your thumb points in the direction of $\mathbf{a} \times \mathbf{b}$.

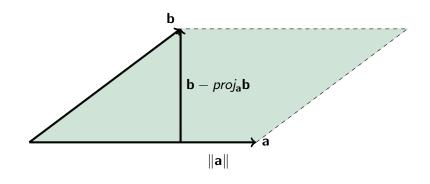












 $A = (base)(height) = ||\mathbf{a}|| ||\mathbf{b} - proj_{\mathbf{a}}\mathbf{b}||$

$\|\mathbf{a} \times \mathbf{b}\|$ = area of parallelogram

$$A^2 = \|\mathbf{a}\|^2 \|\mathbf{b} - \textit{proj}_{\mathbf{a}}\mathbf{b}\|^2$$

 $\|\mathbf{a} \times \mathbf{b}\| =$ area of parallelogram

$$A^{2} = \|\mathbf{a}\|^{2} \|\mathbf{b} - proj_{\mathbf{a}}\mathbf{b}\|^{2}$$
$$= \|\mathbf{a}\|^{2} \|\mathbf{b} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right) \mathbf{a} \|^{2}$$

$\|\mathbf{a} imes \mathbf{b}\| =$ area of parallelogram

$$A^{2} = \|\mathbf{a}\|^{2} \|\mathbf{b} - \operatorname{proj}_{\mathbf{a}} \mathbf{b}\|^{2}$$

$$= \|\mathbf{a}\|^{2} \|\mathbf{b} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right) \mathbf{a}\|^{2}$$

$$= \|\mathbf{a}\|^{2} \left(\mathbf{b} \cdot \mathbf{b} - 2(\mathbf{b} \cdot \mathbf{a}) \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right) + \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right)^{2} \|\mathbf{a}\|^{2}\right)$$

$$= \|\mathbf{a}\|^{2} \left(\|\mathbf{b}\|^{2} - \frac{(\mathbf{a} \cdot \mathbf{b})^{2}}{\|\mathbf{a}\|^{2}}\right)$$

 $\|\mathbf{a} imes \mathbf{b}\| =$ area of parallelogram

$$A^{2} = \|\mathbf{a}\|^{2} \|\mathbf{b} - proj_{\mathbf{a}}\mathbf{b}\|^{2}$$

$$= \|\mathbf{a}\|^{2} \|\mathbf{b} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right) \mathbf{a}\|^{2}$$

$$= \|\mathbf{a}\|^{2} \left(\mathbf{b} \cdot \mathbf{b} - 2(\mathbf{b} \cdot \mathbf{a}) \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right) + \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right)^{2} \|\mathbf{a}\|^{2}\right)$$

$$= \|\mathbf{a}\|^{2} \left(\|\mathbf{b}\|^{2} - \frac{(\mathbf{a} \cdot \mathbf{b})^{2}}{\|\mathbf{a}\|^{2}}\right)$$

$$= \|\mathbf{a}\|^{2} \|\mathbf{b}\|^{2} - (\mathbf{a} \cdot \mathbf{b})^{2}$$

$$= (a_{1}^{2} + a_{2}^{2} + a_{3}^{2})^{2} (b_{1}^{2} + b_{2}^{2} + b_{3}^{2})^{2} - (a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3})^{2}$$

$$= \cdots = (a_{2}b_{3} - a_{3}b_{2})^{2} + (a_{3}b_{1} - a_{1}b_{3})^{2} + (a_{1}b_{2} - a_{2}b_{1})^{2}$$

$$= \|\mathbf{a} \times \mathbf{b}\|^{2}$$

Find the Area of the Parallelograms

Find the area of the parallelogram spanned by $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$.

Find the area of the parallelogram spanned by $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$.

Find the Area of the Parallelograms

Find the area of the parallelogram spanned by $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$.

Find the area of the parallelogram spanned by $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$.

Can you do that with a cross product, by imagining these vectors in \mathbb{R}^3 ?

Suppose a plane contains the points $P_1(3,2,2)$, $P_2(2,2,1)$, and $P_3(1,1,1)$. Find a normal vector to the plane. That is, find a vector that is perpendicular to every line on the plane.

1.
$$\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a}$$

1.
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

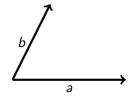
1.
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

2.
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$$

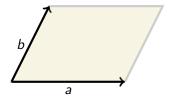
- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 2. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$ https://proofwiki.org/wiki/Lagrange's_Formula

- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 2. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$
- 3. $s(\mathbf{a} \times \mathbf{b}) = (s\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (s\mathbf{b})$

- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 2. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$
- 3. $s(\mathbf{a} \times \mathbf{b}) = (s\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (s\mathbf{b})$



- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 2. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$
- 3. $s(\mathbf{a} \times \mathbf{b}) = (s\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (s\mathbf{b})$



- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 2. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$
- 3. $s(\mathbf{a} \times \mathbf{b}) = (s\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (s\mathbf{b})$

- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 2. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$
- 3. $s(\mathbf{a} \times \mathbf{b}) = (s\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (s\mathbf{b})$

- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 2. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$
- 3. $s(\mathbf{a} \times \mathbf{b}) = (s\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (s\mathbf{b})$

4.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 2. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$
- 3. $s(\mathbf{a} \times \mathbf{b}) = (s\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (s\mathbf{b})$

- 4. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$
- 5. $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$

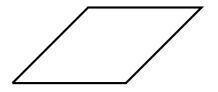
- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 2. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$
- 3. $s(\mathbf{a} \times \mathbf{b}) = (s\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (s\mathbf{b})$

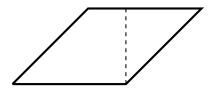
- 4. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$
- 5. $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ Is it also true that $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times (\mathbf{b} \cdot \mathbf{c})$?

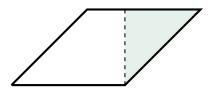
- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 2. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$
- 3. $s(\mathbf{a} \times \mathbf{b}) = (s\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (s\mathbf{b})$

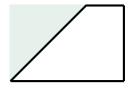
4.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

5.
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$
 "triple product"

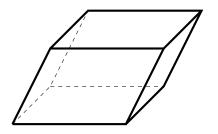


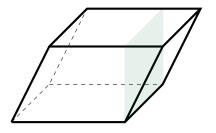


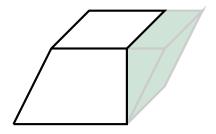


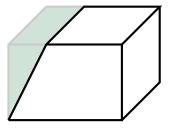


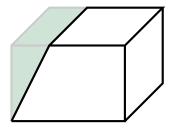
Area: $(base) \times (height)$





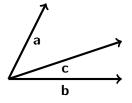


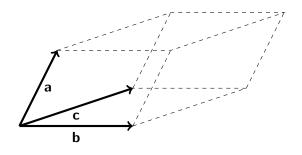


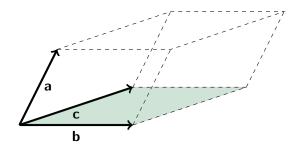


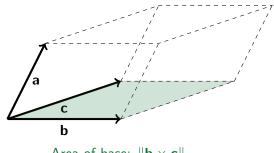
Volume: (area of base) \times (height)

Triple Product: $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$

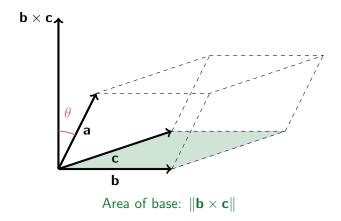


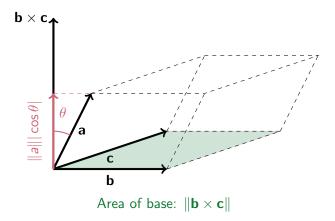


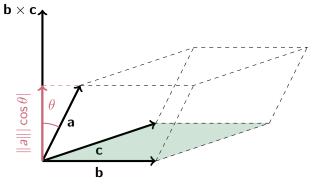


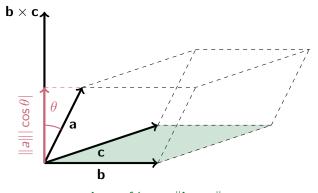


Area of base: $\|\mathbf{b} \times \mathbf{c}\|$









Area of base: $\|\mathbf{b} \times \mathbf{c}\|$ Height of parallelepiped: $\|\mathbf{a}\| |\cos \theta|$

Volume of parallelepiped: (area of base)(height)= $\|\mathbf{a}\| \|\mathbf{b} \times \mathbf{c}\| |\cos \theta| = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) =$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = \mathbf{a} \cdot \begin{bmatrix} \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} \\ -\det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} \\ \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = \mathbf{a} \cdot \begin{bmatrix} \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} \\ -\det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} \\ \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix} \end{bmatrix}$$
$$= a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = \mathbf{a} \cdot \begin{bmatrix} \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} \\ -\det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} \\ \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix} \end{bmatrix}$$
$$= a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$
$$= \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

Find the volume of the parallelepiped spanned by $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$.

Find the volume of the parallelepiped spanned by $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$.

For positive a, b, and c, find the determinant and interpret it as a volume:

$$\det \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$

Find the volume of the parallelepiped spanned by
$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$.

For positive a, b, and c, find the determinant and interpret it as a volume:

$$\det \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$

Calculate and explain geometrically:

$$\det \begin{bmatrix} 2 & 0 & 3 \\ 8 & 1 & 7 \\ 20 & 3 & 15 \end{bmatrix}$$

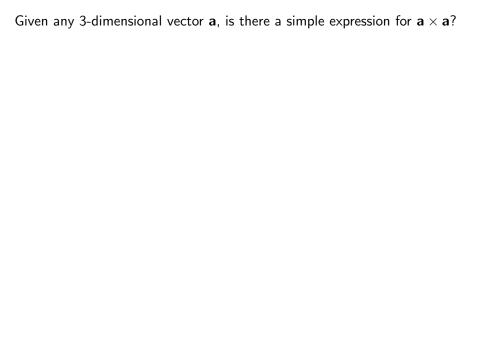
Right-Hand Rule

Predict the following cross products without using the cross-product calculation. Draw your results. Check using the cross-product calculation.

$$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 7 \end{bmatrix} \times \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2\\0\\0\end{bmatrix} \times \begin{bmatrix} 0\\7\\0\end{bmatrix}$$



Given any 3-dimensional vector \mathbf{a} , is there a simple expression for $\mathbf{a} \times \mathbf{a}$?

What about $(s\mathbf{a}) \times \mathbf{a}$ for a scalar s?

Given any 3-dimensional vector \mathbf{a} , is there a simple expression for $\mathbf{a} \times \mathbf{a}$?

What about $(s\mathbf{a}) \times \mathbf{a}$ for a scalar s?

What about $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b})$?

Given any 3-dimensional vector \mathbf{a} , is there a simple expression for $\mathbf{a} \times \mathbf{a}$?

What about $(s\mathbf{a}) \times \mathbf{a}$ for a scalar s?

What about $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b})$?

Consider $a\times(b\times c).$ Will this vector be in the same plane as b and c , or in an orthogonal plane?

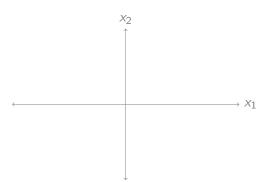
Given any 3-dimensional vector \mathbf{a} , is there a simple expression for $\mathbf{a} \times \mathbf{a}$?

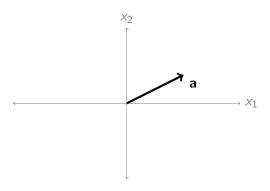
What about $(s\mathbf{a}) \times \mathbf{a}$ for a scalar s?

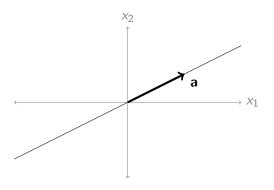
What about $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b})$?

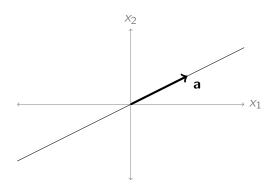
Consider $a\times (b\times c).$ Will this vector be in the same plane as b and c , or in an orthogonal plane?

Notice $\mathbf{a} imes (\mathbf{b} imes \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$: a linear combination of \mathbf{b} and \mathbf{c} .

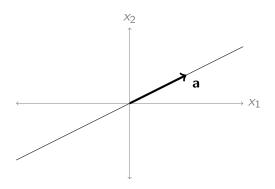




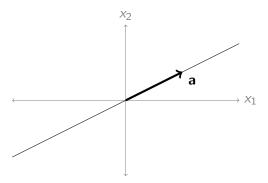




 $\mathbf{x} = s\mathbf{a}$



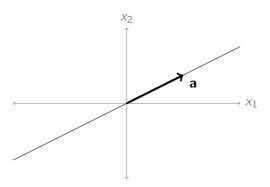
$$\mathbf{x} = s\mathbf{a}$$



Line passing through the origin:

$$\mathbf{x} = s\mathbf{a}$$

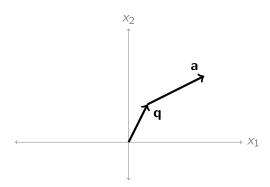
Question: is this the only such equation for the line?

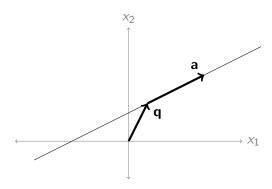


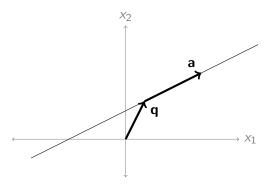
Line passing through the origin:

$$\mathbf{x} = s\mathbf{a}$$

Can we use this equation with a line not passing through the origin?

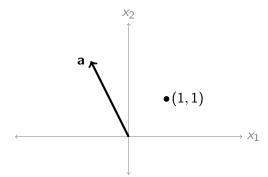




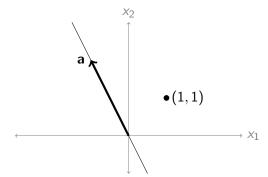


General equation of a line:

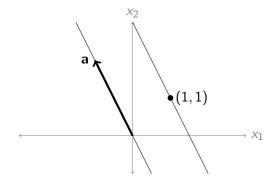
$$\mathbf{x} = \mathbf{q} + s\mathbf{a}$$



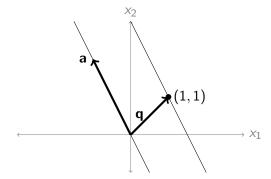
Find a parametric equation describing the line in the direction of $\mathbf{a} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, passing through the point (1,1).



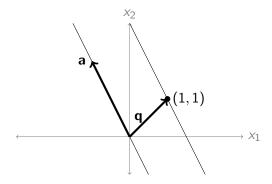
Find a parametric equation describing the line in the direction of $\mathbf{a} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, passing through the point (1,1).



Find a parametric equation describing the line in the direction of $\mathbf{a} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, passing through the point (1,1).

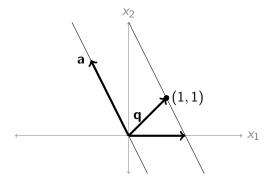


Find a parametric equation describing the line in the direction of $\mathbf{a} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, passing through the point (1,1).



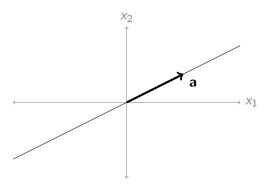
Find a parametric equation describing the line in the direction of $\mathbf{a} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, passing through the point (1,1).

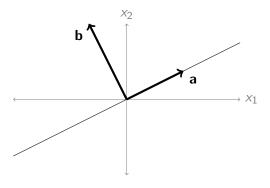
Can you find another?

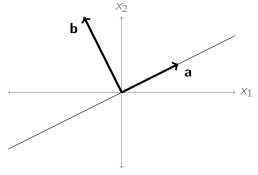


Find a parametric equation describing the line in the direction of $\mathbf{a} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, passing through the point (1,1).

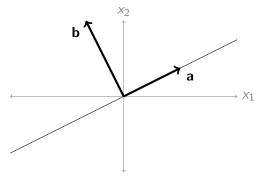
Can you find another?



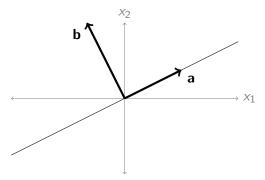




Line passing through the origin:

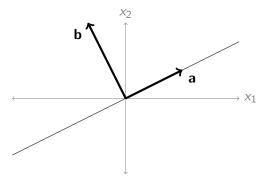


$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$



$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

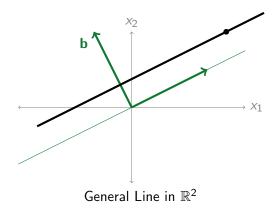
$$\Rightarrow \begin{bmatrix} b_1 x_1 + b_2 x_2 = 0 \end{bmatrix}$$

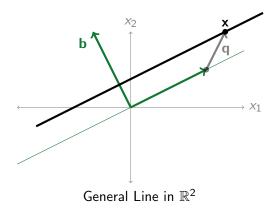


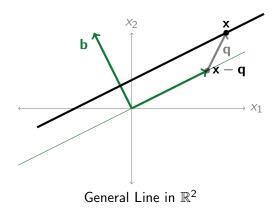
$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

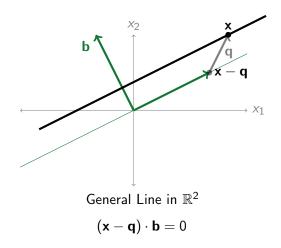
$$\Rightarrow b_1 x_1 + b_2 x_2 = 0$$

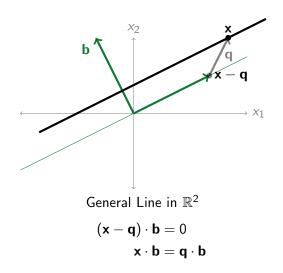
$$\Rightarrow x_2 = (-b_2/b_1)x_1$$

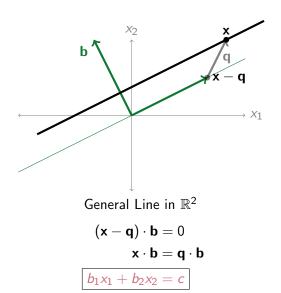












Suppose the parametric equation of a line is given by $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$ Convert this to an equation of the form $ax_1 + bx_2 = c$.

Suppose the parametric equation of a line is given by $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 2 \\ 7 \end{bmatrix}$. Convert this to an equation of the form $ax_1 + bx_2 = c$.

Suppose the parametric equation of a line is given by $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Convert this to an equation of the form $ax_1 + bx_2 = c$.

$$\begin{bmatrix} + s & 1 \end{bmatrix}$$
 . Convert this to an equation of the for $= c$.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} x_1 = 3 + s \\ x_2 = -1 + s \end{cases}$$

Suppose the parametric equation of a line is given by $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Convert this to an equation of the form

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$
 Convert this to an equation of the form $ax_1 + bx_2 = c$.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} x_1 = 3 + s \\ x_2 = -1 + s \end{cases}$$

$$\Leftrightarrow \begin{cases} s = x_1 - 3 \\ s = x_2 + 1 \end{cases}$$

Suppose the parametric equation of a line is given by $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$ Convert this to an equation of the form $ax_1 + bx_2 = c$.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} x_1 = 3 + s \\ x_2 = -1 + s \end{cases}$$

$$\Leftrightarrow \begin{cases} s = x_1 - 3 \\ s = x_2 + 1 \end{cases}$$

 $\Rightarrow x_1 - 3 = x_2 + 1$ $\Leftrightarrow x_1 - x_2 = 2$

Suppose the parametric equation of a line is given by $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$ Convert this to an equation of the form $ax_1 + bx_2 = c$.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} x_1 = 3 + s \\ x_2 = -1 + s \end{cases}$$

$$\Leftrightarrow \begin{cases} s = x_1 - 3 \\ s = x_2 + 1 \end{cases}$$

$$\Rightarrow x_1 - 3 = x_2 + 1$$

$$\Leftrightarrow x_1 - x_2 = 2$$

Suppose the parametric equation of a line is given by $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 2 \\ 7 \end{bmatrix}$. Convert this to an equation of the form $ax_1 + bx_2 = c$.

 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$ Convert this to an equation of the form $ax_1 + bx_2 = c$.

Suppose the parametric equation of a line is given by

Suppose the parametric equation of a line is given by

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 2 \\ 7 \end{bmatrix}.$$
 Convert this to an equation of the form $ax_1 + bx_2 = c$.

$$\begin{cases} x_1 = 3 + 2s \\ x_2 = -1 + 7s \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 - 3 = 2s \\ x_2 + 1 = 7s \end{cases}$$

$$\Leftrightarrow \begin{cases} 7x_1 - 21 = 14s \\ 2x_2 + 2 = 14s \end{cases}$$

$$\Rightarrow 7x_1 - 12 = 2x_2 + 2$$

$$\Leftrightarrow 7x_1 - 2x_2 = 23$$

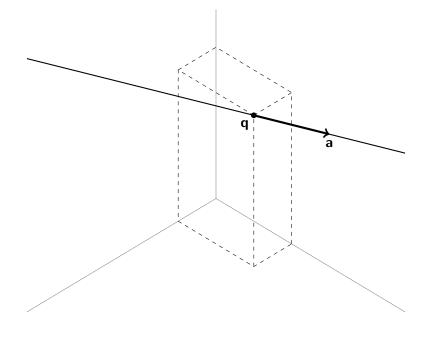
Give a parametric equation for the line $x_2 = 3x_1 + 5$.

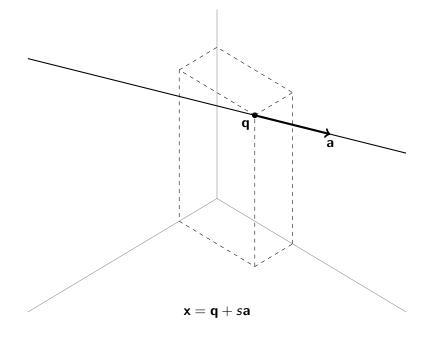
Give a parametric equation for the line $x_2 = 3x_1 + 5$. a

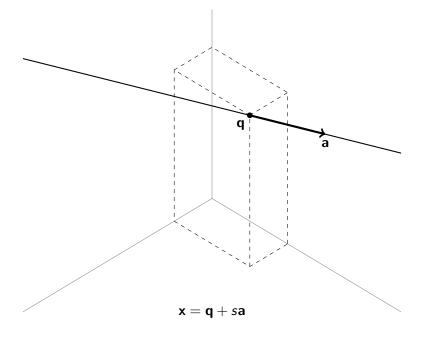
Give a parametric equation for the line $x_2 = 3x_1 + 5$. a

Give a parametric equation for the line $x_2 = 3x_1 + 5$. q

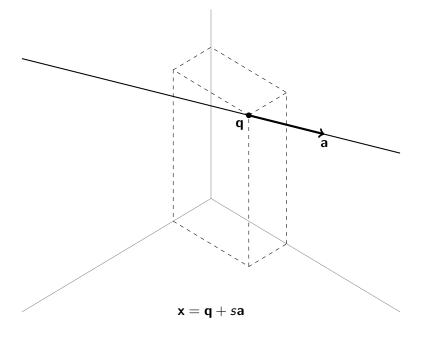
Give a parametric equation for the line $x_2 = 3x_1 + 5$. sa q



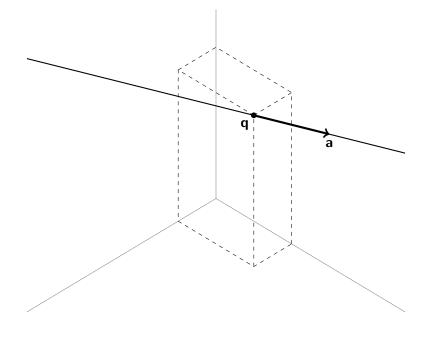


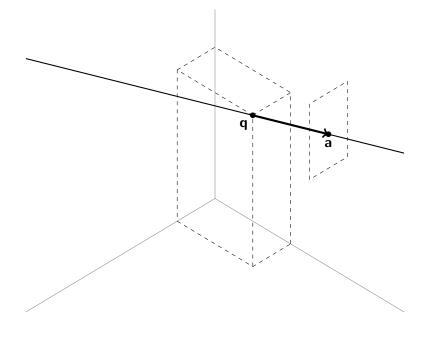


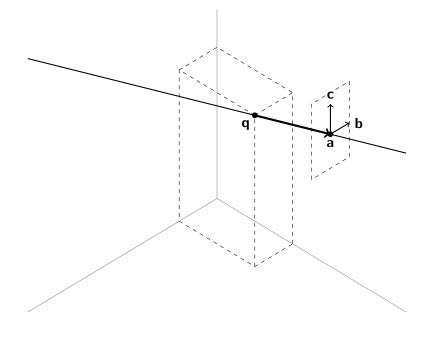
How many components do the vectors have?

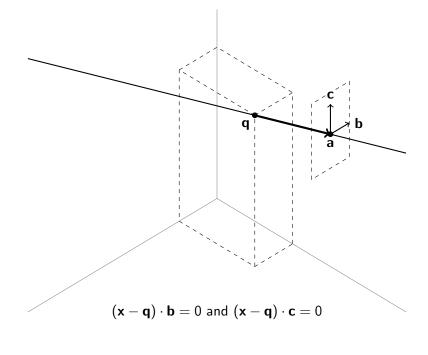


How many dimensions does a vector have?









Equation of a Line in \mathbb{R}^3

$$(\mathbf{x} - \mathbf{q}) \cdot \mathbf{b} = 0$$
 and $(\mathbf{x} - \mathbf{q}) \cdot \mathbf{c} = 0$

Equation of a Line in \mathbb{R}^3

$$(\mathbf{x} - \mathbf{q}) \cdot \mathbf{b} = 0$$
 and $(\mathbf{x} - \mathbf{q}) \cdot \mathbf{c} = 0$

$$\mathbf{x} \cdot \mathbf{b} = \mathbf{q} \cdot \mathbf{b}$$
 and $\mathbf{x} \cdot \mathbf{c} = \mathbf{q} \cdot \mathbf{c}$

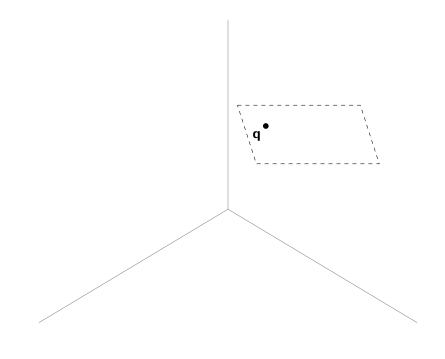
Equation of a Line in \mathbb{R}^3

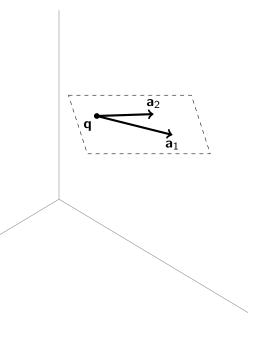
$$(\boldsymbol{x}-\boldsymbol{q})\cdot\boldsymbol{b}=0$$
 and $(\boldsymbol{x}-\boldsymbol{q})\cdot\boldsymbol{c}=0$

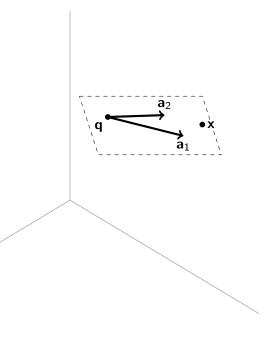
$$\mathbf{x} \cdot \mathbf{b} = \mathbf{q} \cdot \mathbf{b}$$
 and $\mathbf{x} \cdot \mathbf{c} = \mathbf{q} \cdot \mathbf{c}$

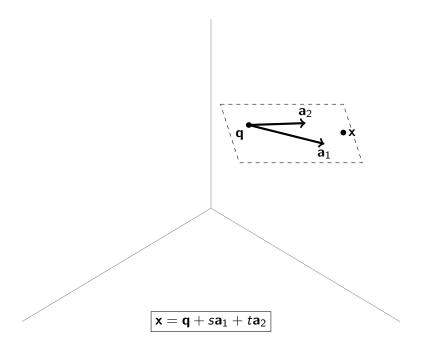
To define a line in \mathbb{R}^3 , we need a *system* of equations:

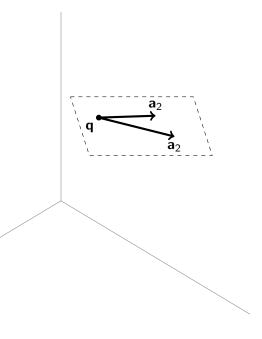
$$\begin{cases} x_1b_1 + x_2b_2 + x_3b_3 &= s_1 \\ x_1c_1 + x_2c_2 + x_3c_3 &= s_2 \end{cases}$$

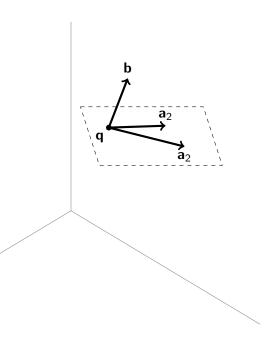




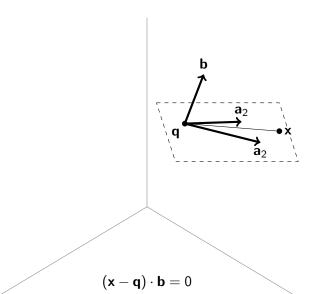


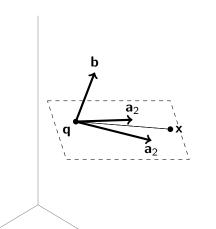


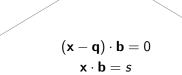


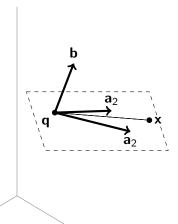


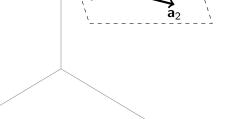












 $(\mathbf{x} - \mathbf{q}) \cdot \mathbf{b} = 0$ $\mathbf{x} \cdot \mathbf{b} = s$ $b_1x_1 + b_2x_2 + b_3x_3 = s$

	Parametric	Component
Line in \mathbb{R}^2	$\mathbf{x} = \mathbf{q} + s\mathbf{a}$	$b_1x_1+b_2x_2=s$
Line in \mathbb{R}^3	x = q + sa	$\begin{cases} b_1x_1 + b_2x_2 + b_3x_3 = s \\ c_1x_1 + c_2x_2 + c_3x_3 = t \end{cases}$
Plane in \mathbb{R}^3	$\mathbf{x} = \mathbf{q} + s\mathbf{a} + t\mathbf{b}$	$b_1 x_1 + b_2 x_2 + b_3 x_3 = s$

2	Parametric	Component
Line in \mathbb{R}^2	$\mathbf{x} = \mathbf{q} + s\mathbf{a}$	$b_1x_1+b_2x_2=s$
Line in \mathbb{R}^3	$\mathbf{x} = \mathbf{q} + s\mathbf{a}$	$\begin{cases} b_1x_1 + b_2x_2 + b_3x_3 = s \\ c_1x_1 + c_2x_2 + c_3x_3 = t \end{cases}$
Plane in \mathbb{R}^3	$\mathbf{x} = \mathbf{q} + s\mathbf{a} + t\mathbf{b}$	$b_1x_1 + b_2x_2 + b_3x_3 = s$

Suppose **q** and **a** are vectors in \mathbb{R}^{18} . What would you call the geometric object resulting from the equation $\mathbf{x} = \mathbf{q} + s\mathbf{a}$?

Parametric Component
$$b_1x_1 + b_2x_2 = s$$
 Line in \mathbb{R}^3 $\mathbf{x} = \mathbf{q} + s\mathbf{a}$
$$\begin{cases} b_1x_1 + b_2x_2 + s_3x_3 = s \\ c_1x_1 + c_2x_2 + c_3x_3 = t \end{cases}$$
 Plane in \mathbb{R}^3 $\mathbf{x} = \mathbf{q} + s\mathbf{a} + t\mathbf{b}$
$$b_1x_1 + b_2x_2 + b_3x_3 = s$$

Suppose **q** and **a** are vectors in \mathbb{R}^{18} . What would you call the geometric object resulting from the equation $\mathbf{x} = \mathbf{q} + s\mathbf{a}$?

Suppose P and Q are planes. What is the intersection of P and Q?

$$\begin{array}{lll} & \text{Parametric} & \text{Component} \\ \text{Line in } \mathbb{R}^2 & \textbf{x} = \textbf{q} + s\textbf{a} & b_1x_1 + b_2x_2 = s \\ \\ \text{Line in } \mathbb{R}^3 & \textbf{x} = \textbf{q} + s\textbf{a} & \left\{ \begin{array}{ll} b_1x_1 + b_2x_2 + b_3x_3 = s \\ c_1x_1 + c_2x_2 + c_3x_3 = t \end{array} \right. \\ \\ \text{Plane in } \mathbb{R}^3 & \textbf{x} = \textbf{q} + s\textbf{a} + t\textbf{b} & b_1x_1 + b_2x_2 + b_3x_3 = s \end{array}$$

Suppose **q** and **a** are vectors in \mathbb{R}^{18} . What would you call the geometric object resulting from the equation $\mathbf{x} = \mathbf{q} + s\mathbf{a}$?

Suppose P and Q are planes. What is the intersection of P and Q?

Are there any vectors \mathbf{q} and \mathbf{a} in \mathbb{R}^3 for which the equation $\mathbf{x} = \mathbf{q} + s\mathbf{a}$ is **not** a line?

Parametric Component
Line in
$$\mathbb{R}^2$$
 $\mathbf{x} = \mathbf{q} + s\mathbf{a}$ $b_1x_1 + b_2x_2 = s$

Line in \mathbb{R}^3 $\mathbf{x} = \mathbf{q} + s\mathbf{a}$
$$\begin{cases} b_1x_1 + b_2x_2 + b_3x_3 = s \\ c_1x_1 + c_2x_2 + c_3x_3 = t \end{cases}$$

Plane in \mathbb{R}^3 $\mathbf{x} = \mathbf{q} + s\mathbf{a} + t\mathbf{b}$ $b_1x_1 + b_2x_2 + b_3x_3 = s$

Suppose **q** and **a** are vectors in \mathbb{R}^{18} . What would you call the geometric object resulting from the equation $\mathbf{x} = \mathbf{q} + s\mathbf{a}$?

Suppose P and Q are planes. What is the intersection of P and Q?

Are there any vectors \mathbf{q} and \mathbf{a} in \mathbb{R}^3 for which the equation $\mathbf{x} = \mathbf{q} + s\mathbf{a}$ is **not** a line?

Are there any vectors \mathbf{q} , \mathbf{a} , and \mathbf{b} in \mathbb{R}^3 for which the equation $\mathbf{x} = \mathbf{q} + s\mathbf{a} + t\mathbf{b}$ is **not** a plane?

Parametric Component
$$b_1x_1 + b_2x_2 = s$$

Line in \mathbb{R}^2 $\mathbf{x} = \mathbf{q} + s\mathbf{a}$ $\begin{cases} b_1x_1 + b_2x_2 = s \\ c_1x_1 + c_2x_2 + c_3x_3 = s \end{cases}$

Plane in \mathbb{R}^3 $\mathbf{x} = \mathbf{q} + s\mathbf{a} + t\mathbf{b}$ $b_1x_1 + b_2x_2 + b_3x_3 = s$

Are there any constants b_1 , b_2 , and s for which the equation $b_1x_1 + b_2x_2 = s$ is **not** a line?

Are there any constants b_1 , b_2 , and s for which the equation $b_1x_1 + b_2x_2 = s$ is **not** a line?

Recall: **b** was the normal vector to the plane $b_1x_1 + b_2x_2 + b_3x_3 = s$.

Parametric Component
$$b_1x_1 + b_2x_2 = s$$

Line in \mathbb{R}^3 $\mathbf{x} = \mathbf{q} + s\mathbf{a}$

$$\begin{cases} b_1x_1 + b_2x_2 = s \\ c_1x_1 + c_2x_2 + c_3x_3 = s \end{cases}$$
Plane in \mathbb{R}^3 $\mathbf{x} = \mathbf{q} + s\mathbf{a} + t\mathbf{b}$

$$b_1x_1 + b_2x_2 + b_3x_3 = s$$

Are there any constants b_1 , b_2 , and s for which the equation $b_1x_1 + b_2x_2 = s$ is **not** a line?

Recall: **b** was the normal vector to the plane $b_1x_1 + b_2x_2 + b_3x_3 = s$.

True or False: for point P on the plane $5x_1 + 7x_2 + 11x_3 = 22$, the vector with head at P and tail at the origin is orthogonal to the vector [5, 7, 11].

Parametric Component
$$\mathbf{x} = \mathbf{q} + s\mathbf{a}$$

$$b_1x_1 + b_2x_2 = s$$
 Line in \mathbb{R}^3
$$\mathbf{x} = \mathbf{q} + s\mathbf{a}$$

$$\begin{cases} b_1x_1 + b_2x_2 + b_3x_3 = s \\ c_1x_1 + c_2x_2 + c_3x_3 = t \end{cases}$$

Plane in \mathbb{R}^3 $\mathbf{x} = \mathbf{q} + s\mathbf{a} + t\mathbf{b}$ $b_1x_1 + b_2x_2 + b_3x_3 = s$

Are there any constants b_1 , b_2 , and s for which the equation $b_1x_1 + b_2x_2 = s$ is **not** a line?

Recall: **b** was the normal vector to the plane $b_1x_1 + b_2x_2 + b_3x_3 = s$.

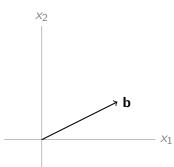
True or False: for point P on the plane $5x_1 + 7x_2 + 11x_3 = 22$, the vector with head at P and tail at the origin is orthogonal to the vector [5, 7, 11].

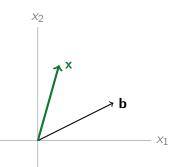
True or False: for any two distinct points P_1 and P_2 on the plane $5x_1 + 7x_2 + 11x_3 = 22$, the vector with head at P_1 and tail at P_2 is orthogonal to the vector [5, 7, 11].

Prove It

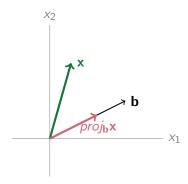
Suppose a plane has equation $b_1x_1 + b_2x_2 + b_3x_3 = s$.

Show that, for any two points on this plane, the vector with head at one and tail at the other is orthogonal to $[b_1, b_2, b_3]$.

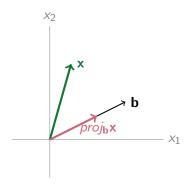






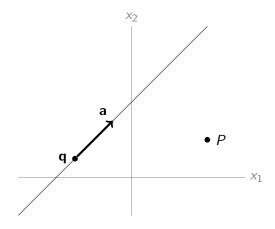


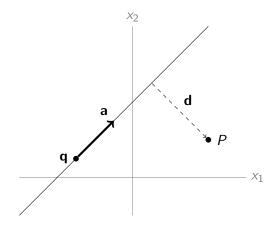
Draw lots of other vectors whose projections onto \boldsymbol{b} are also the pink vector.

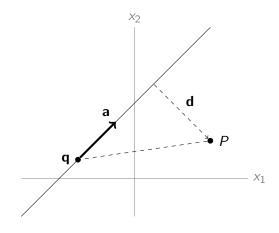


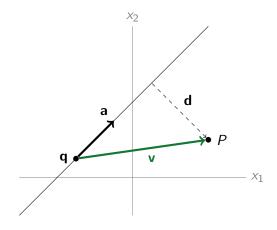
Draw lots of other vectors whose projections onto ${\bf b}$ are also the pink vector.

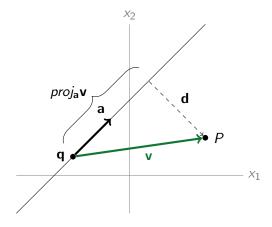
Find a simplified expression for the collection of vectors $[x_1, x_2]$ that all have the same projection onto \mathbf{b} in.

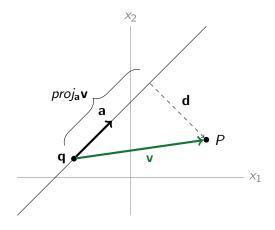




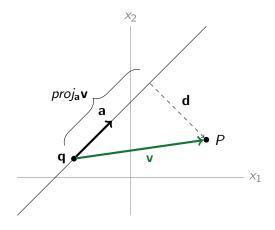




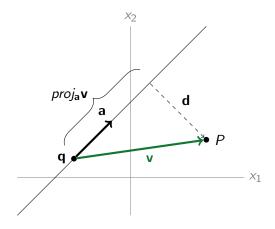




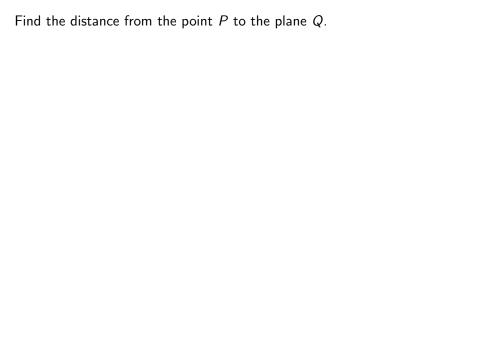
How can you find the distance from the point P to the line $\mathbf{x} = \mathbf{q} + s\mathbf{a}$? $\mathbf{d} + proj_{\mathbf{a}}\mathbf{v} =$

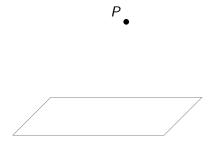


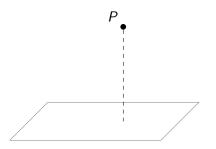
How can you find the distance from the point P to the line $\mathbf{x} = \mathbf{q} + s\mathbf{a}$? $\mathbf{d} + proj_{\mathbf{a}}\mathbf{v} = \mathbf{v}$, so

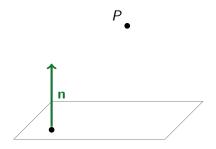


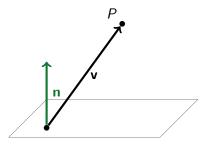
How can you find the distance from the point P to the line $\mathbf{x} = \mathbf{q} + s\mathbf{a}$? $\mathbf{d} + proj_{\mathbf{a}}\mathbf{v} = \mathbf{v}$, so $\|\mathbf{d}\| = \|\mathbf{v} - proj_{\mathbf{a}}\mathbf{v}\|$



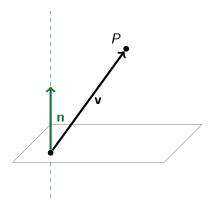




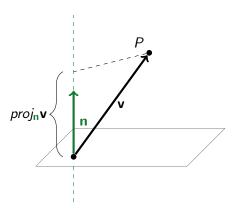


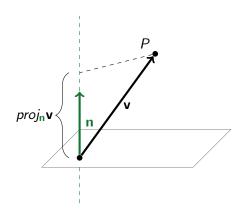


Find the distance from the point P to the plane Q.



Find the distance from the point P to the plane Q.





Find the distance from the point (3,5,1) to the plane

$$\mathbf{x} = \begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix} + t \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}.$$

Let P be the plane with equation 2x + 2y + 2z = 1, and let Q be the plane with equation x + y + z = 1.

What will their intersection be: a plane, a line, a point, or nothing?

Let P be the plane with equation 2x + 2y + 2z = 1, and let Q be the plane with equation x + y + z = 1.

What will their intersection be: a plane, a line, a point, or nothing?

Let P be the plane with equation 2x+y-z=1, and let Q be the plane with equation x+2y+3z=0.

What will their intersection be: a plane, a line, a point, or nothing?

Let P be the plane with equation 2x + 2y + 2z = 1, and let Q be the plane with equation x + y + z = 1.

What will their intersection be: a plane, a line, a point, or nothing?

Let P be the plane with equation 2x+y-z=1, and let Q be the plane with equation x+2y+3z=0.

What will their intersection be: a plane, a line, a point, or nothing?

Find it in parametric form.