
Outline

Week 2: Determinants, Cross Products, Lines, and Planes

Course Notes: 2.4-2.5

Goals: Introduce determinants and cross products, computationally and
with geometric interpretations. Lines and planes.



Matrices!


8 15 −4
9 −4 7
6 1 1
−5 −3 0





Determinants in Two and Three Dimensions

det

[
a1 a2
b1 b2

]
= a1b2 − a2b1

det

a1 a2 a3
b1 b2 b3
c1 c2 c3

 = a1 det

[
b2 b3
c2 c3

]
− a2 det

[
b1 b3
c1 c3

]
+ a3 det

[
b1 b2
c1 c2

]

Tricky way: ONLY in three dimensions:

det

a1 a2 a3
b1 b2 b3
c1 c2 c3

 = a1b2c3 + a2b3c1 + a3b1c2 − a3b2c1 − a2b1c3 − a1b3c2
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det

[
1 3
2 5

]

det

[
−2 8
3 5

]

det

3 2 5
5 7 3
2 1 3


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2 4 8
3 5 7
1 10 5
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Geometric Interpretation: Determinant in Two Dimensions

det

[
a1 a2
b1 b2

]
= a1b2 − a2b1

=

[
−a2
a1

]
·
[
b1
b2

]
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[
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·
[
b1
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= a1b2 − a2b1
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·
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x

y

[
a1
a2

]
[
−a2
a1

]



Geometric Interpretation: Determinant in Two Dimensions

det

[
a1 a2
b1 b2

]
= a1b2 − a2b1

=

[
−a2
a1

]
·
[
b1
b2

]

If det

[
a1 a2
b1 b2

]
= 0,

then

[
−a2
a1

]
is orthogonal to

[
b1
b2

]
,

so

[
a1
a2

]
and

[
b1
b2

]
are scalar multiples of one another (parallel).
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Zero Determinants

Are the following determinants zero, or nonzero?

det

[
1 2
−4 −8

]

= 0

det

[
1 2
4 6

]

6= 0

det

[
a1 a2

5a1 5a2

]

= 0

det

[
a1 a2
0 0

]

= 0
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More Geometric Interpretation in Two Dimensions

det

[
a1 a2
b1 b2

]
=

[
−a2
a1

]
·
[
b1
b2

]
= â · b

= ‖â‖‖b‖ cos(θ̂)

= ‖â‖‖b‖ cos(π/2− θ)

= ‖a‖‖b‖ sin(θ)

= shaded area

a

bâ

θ

‖b‖
sin
θ

θ̂
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= ‖â‖‖b‖ cos(θ̂)
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= ‖â‖‖b‖ cos(π/2− θ)

= ‖a‖‖b‖ sin(θ)

= shaded area

a

b

â

θ

‖b‖
sin
θθ̂



More Geometric Interpretation in Two Dimensions

det

[
a1 a2
b1 b2

]
=

[
−a2
a1

]
·
[
b1
b2

]
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â

θ

‖b‖
sin
θ

θ̂



More Geometric Interpretation in Two Dimensions

det

[
a1 a2
b1 b2

]
=

[
−a2
a1

]
·
[
b1
b2

]
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â

θ

‖b‖
sin
θ

θ̂



More Geometric Interpretation in Two Dimensions

det

[
a1 a2
b1 b2

]
=

[
−a2
a1

]
·
[
b1
b2

]
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â

θ

‖b‖
sin
θ

θ̂



In general:∣∣∣∣det

[
a1 a2
b1 b2

]∣∣∣∣ = area of parallelogram spanned by

[
a1
a2

]
and

[
b1
b2

]

Example: Find the area of the parallelogram with one side given by

[
2
6

]
and the other side

[
−3
4

]
.

det

[
2 6
−3 4

]
= (2)(4)− (6)(−3)

= 8 + 18 = 26

Silly Example: Find the area of the rectangle with corners (0, 0), (x , 0),
(0, y), and (x , y).
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Cross Product

ONLY defined in three dimensions.

a =

a1a2
a3

 b =

b1b2
b3



a× b =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


Mnemonic:

det

 i j k
a1 a2 a3
b1 b2 b3

 = i det

[
a2 a3
b2 b3

]
− j det

[
a1 a3
b1 b3

]
+ k det

[
a1 a2
b1 b2

]
= i(a2b3 − a3b2)− j(a1b3 − a3b1) + k(a1b2 − a2b1)

=

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1
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Practice

1
2
3

×
 0

1
−1

  0
1
−1

×
1

2
3



Not commutative!
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Geometric Interpretation

1. a× b is orthogonal to a and to b .

Verify: a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 ·
a1a2
a3

 = 0

2. ‖a× b‖ = ‖a‖‖b‖ sin θ,
where θ is the angle between a and b , 0 ≤ θ ≤ π.
Thus, sin θ is positive, and ‖a× b‖ is the area of the parallelogram
spanned by a and b .

3. The vectors a , b , and a× b obey the right hand rule. That is, if you
curl your fingers towards your palm from a to b , your thumb points
in the direction of a× b.
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Find the Area of the Parallelograms

Find the area of the parallelogram spanned by

1
1
1

 and

 3
1
−2

.

Find the area of the parallelogram spanned by

[
1
2

]
and

[
4
3

]
.

Can you do that with a cross product, by imagining these vectors in R3?
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Suppose a plane contains the points P1(3, 2, 2), P2(2, 2, 1), and
P3(1, 1, 1). Find a normal vector to the plane. That is, find a vector that
is perpendicular to every line on the plane.



Properties of Cross Product

1. a× b =

−

b× a

2. a× (b× c) = (c · a)b− (b · a)c

3. s(a× b) = (sa)× b = a× (sb)

4. a× (b + c) = a× b + a× c

5. a · (b× c) = (a× b) · c “triple product”
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4. a× (b + c) = a× b + a× c

5. a · (b× c) = (a× b) · c Is it also true that (a · b)× c = a× (b · c)?
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Triple Product: a · (b× c)

b
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θ

‖a
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co
s
θ|

Area of base: ‖b× c‖
Height of parallelepiped: ‖a‖| cos θ|

Volume of parallelepiped:
(area of base)(height)= ‖a‖‖b× c‖| cos θ| = |a · (b× c)|
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Calculating the Triple Product

a · (b× c) =

a · det

 i j k
b1 b2 b3
c1 c2 c3



= a ·


det

[
b2 b3
c2 c3

]
− det

[
b1 b3
c1 c3

]
det

[
b1 b2
c1 c2

]



= a1 det

[
b2 b3
c2 c3

]
− a2 det

[
b1 b3
c1 c3

]
+ a3 det

[
b1 b2
c1 c2

]
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a1 a2 a3
b1 b2 b3
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Find the volume of the parallelepiped spanned by

0
0
1

,

 1
−1
1

, and

−1
−1
1

.

For positive a, b, and c , find the determinant and interpret it as a volume:

det

a 0 0
0 b 0
0 0 c



Calculate and explain geometrically:

det

 2 0 3
8 1 7

20 3 15


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Right-Hand Rule

Predict the following cross products without using the cross-product
calculation. Draw your results. Check using the cross-product calculation.

2
0
0

×
0

0
7


0

0
7

×
0

2
0


−2

0
0

×
0

7
0





Given any 3-dimensional vector a, is there a simple expression for a× a?

What about (sa)× a for a scalar s?

What about a · (a× b)?

Consider a× (b× c). Will this vector be in the same plane as b and c , or
in an orthogonal plane?

Notice a× (b× c) = (c · a)b− (b · a)c: a linear combination of b and c .
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a

Line passing through the origin:
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Parametric Equations of Lines

x1

x2

a

Line passing through the origin:

x = sa

Question: is this the only such equation for the line?



Parametric Equations of Lines

x1

x2

a

Line passing through the origin:

x = sa

Can we use this equation with a line not passing through the origin?
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To define a line in R3, we need a system of equations:{
x1b1 + x2b2 + x3b3 = s1
x1c1 + x2c2 + x3c3 = s2
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Plane in R3 x = q + sa + tb b1x1 + b2x2 + b3x3 = s
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True or False: for point P on the plane 5x1 + 7x2 + 11x3 = 22, the vector
with head at P and tail at the origin is orthogonal to the vector [5, 7, 11].
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Prove It

Suppose a plane has equation b1x1 + b2x2 + b3x3 = s.

Show that, for any two points on this plane, the vector with head at one
and tail at the other is orthogonal to [b1, b2, b3].
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have the same projection onto b in.
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Let P be the plane with equation 2x + 2y + 2z = 1, and let Q be the
plane with equation x + y + z = 1.

What will their intersection be: a plane, a line, a point, or nothing?

Let P be the plane with equation 2x + y − z = 1, and let Q be the plane
with equation x + 2y + 3z = 0.

What will their intersection be: a plane, a line, a point, or nothing?

Find it in parametric form.
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