Conjectures and Counterexamples

A conjecture is a statement that has not been proved to be true, but that someone has suggested might be true.

Conjectures and Counterexamples

A conjecture is a statement that has not been proved to be true, but that someone has suggested might be true.

Goldbach Conjecture: Every even integer greater than 2 is the sum of two primes.

Every perfect number is even.
$P=N P$ (where P and NP are sets of problems).

Conjectures and Counterexamples

A conjecture is a statement that has not been proved to be true, but that someone has suggested might be true.

Goldbach Conjecture: Every even integer greater than 2 is the sum of two primes.
To disprove: find one even integer greater than 2 such that no two primes add to it.

Every perfect number is even.
$P=N P$ (where P and NP are sets of problems).

Conjectures and Counterexamples

A conjecture is a statement that has not been proved to be true, but that someone has suggested might be true.

Goldbach Conjecture: Every even integer greater than 2 is the sum of two primes.
To disprove: find one even integer greater than 2 such that no two primes add to it.

Every perfect number is even.
To disprove: find one odd perfect number.
$P=N P$ (where P and NP are sets of problems).

Conjectures and Counterexamples

A conjecture is a statement that has not been proved to be true, but that someone has suggested might be true.

Goldbach Conjecture: Every even integer greater than 2 is the sum of two primes.
To disprove: find one even integer greater than 2 such that no two primes add to it.

Every perfect number is even.
To disprove: find one odd perfect number.
$P=N P$ (where P and NP are sets of problems).
To disprove: find one problem that is in one set but not in the other.

A Word of Caution

A pattern: $2^{n} \not \equiv 3 \bmod n$:

\mathbf{n}	$\mathbf{2}^{\mathbf{n}}$	$\mathbf{2}^{\mathbf{n}} \equiv \mathbf{3} \bmod \mathbf{n} ?$
$n=2$	$2^{n}=4$	$\mathbf{4} \not \equiv 3 \bmod 2$
$n=3$	$2^{n}=8$	$8 \not \equiv 3 \bmod 3$
$n=4$	$2^{n}=16$	$16 \not \equiv 3 \bmod 4$
$n=5$	$2^{n}=32$	$32 \not \equiv 3 \bmod 5$

A Word of Caution

A pattern: $2^{n} \neq 3 \bmod n$:

\mathbf{n}	$\mathbf{2}^{\mathbf{n}}$	$\mathbf{2}^{\mathbf{n}} \equiv \mathbf{3} \bmod \mathbf{n} ?$
$n=2$	$2^{n}=4$	$4 \not \equiv 3 \bmod 2$
$n=3$	$2^{n}=8$	$8 \not \equiv 3 \bmod 3$
$n=4$	$2^{n}=16$	$16 \not \equiv 3 \bmod 4$
$n=5$	$2^{n}=32$	$32 \not \equiv 3 \bmod 5$
$n=6$	$2^{n}=64$	$64 \not \equiv 3 \bmod 6$
$n=7$	$2^{n}=128$	$128 \not \equiv 3 \bmod 7$
$n=8$	$2^{n}=256$	$256 \not \equiv 3 \bmod 8$
$n=9$	$2^{n}=512$	$512 \not \equiv 3 \bmod 9$
$n=10$	$2^{n}=1024$	$1024 \not \equiv 3 \bmod 10$

A Word of Caution

A pattern: $2^{n} \not \equiv 3 \bmod n$:

\mathbf{n}	$\mathbf{2}^{\mathbf{n}}$	$\mathbf{2}^{\mathbf{n}} \equiv \mathbf{3} \bmod \mathbf{n} ?$
$n=2$	$2^{n}=4$	$\mathbf{4} \not \equiv 3 \bmod 2$
$n=3$	$2^{n}=8$	$8 \not \equiv 3 \bmod 3$
$n=4$	$2^{n}=16$	$16 \not \equiv 3 \bmod 4$
$n=5$	$2^{n}=32$	$32 \not \equiv 3 \bmod 5$
$n=6$	$2^{n}=64$	$64 \not \equiv 3 \bmod 6$
$n=7$	$2^{n}=128$	$128 \not \equiv 3 \bmod 7$
$n=8$	$2^{n}=256$	$256 \not \equiv 3 \bmod 8$
$n=9$	$2^{n}=512$	$512 \not \equiv 3 \bmod 9$
$n=10$	$2^{n}=1024$	$1024 \not \equiv 3 \bmod 10$
$n=1000$	$2^{n}=[b i g]$	$2^{1000} \not \equiv 3 \bmod 1000$

A Word of Caution

A pattern: $2^{n} \not \equiv 3 \bmod n$:

\mathbf{n}	$\mathbf{2}^{\mathbf{n}}$	$\mathbf{2}^{\mathbf{n}} \equiv \mathbf{3} \bmod \mathbf{n} ?$
$n=2$	$2^{n}=4$	$4 \not \equiv 3 \bmod 2$
$n=3$	$2^{n}=8$	$8 \not \equiv 3 \bmod 3$
$n=4$	$2^{n}=16$	$16 \not \equiv 3 \bmod 4$
$n=5$	$2^{n}=32$	$32 \not \equiv 3 \bmod 5$
$n=6$	$2^{n}=64$	$64 \not \equiv 3 \bmod 6$
$n=7$	$2^{n}=128$	$128 \not \equiv 3 \bmod 7$
$n=8$	$2^{n}=256$	$256 \not \equiv 3 \bmod 8$
$n=9$	$2^{n}=512$	$512 \not \equiv 3 \bmod 9$
$n=10$	$2^{n}=1024$	$1024 \not \equiv 3 \bmod 10$
$n=1000$	$2^{n}=[$ big $]$	$2^{1000} \not \equiv 3 \bmod 1000$
$n=1000000$	$2^{n}=[$ big $]$	$2^{1000000} \not \equiv 3 \bmod 1000000$

A Word of Caution

A pattern: $2^{n} \not \equiv 3 \bmod n$:

\mathbf{n}	$\mathbf{2}^{\mathbf{n}}$	$\mathbf{2}^{\mathbf{n}} \equiv \mathbf{3} \bmod \mathbf{n} ?$
$n=2$	$2^{n}=4$	$4 \not \equiv 3 \bmod 2$
$n=3$	$2^{n}=8$	$8 \not \equiv 3 \bmod 3$
$n=4$	$2^{n}=16$	$16 \not \equiv 3 \bmod 4$
$n=5$	$2^{n}=32$	$32 \not \equiv 3 \bmod 5$
$n=6$	$2^{n}=64$	$64 \not \equiv 3 \bmod 6$
$n=7$	$2^{n}=128$	$128 \not \equiv 3 \bmod 7$
$n=8$	$2^{n}=256$	$256 \not \equiv 3 \bmod 8$
$n=9$	$2^{n}=512$	$512 \not \equiv 3 \bmod 9$
$n=10$	$2^{n}=1024$	$1024 \not \equiv 3 \bmod 10$
$n=1000$	$2^{n}=[$ big $]$	$2^{1000} \not \equiv 3 \bmod 1000$
$n=1000000$	$2^{n}=[\mathrm{big}]$	$2^{1000000} \not \equiv 3 \bmod 1000000$
$n=4700063496$	$2^{n}=[$ big $]$	$2^{4700063496} \not \equiv 3 \bmod 4700063496$

A Word of Caution

A pattern: $2^{n} \not \equiv 3 \bmod n$: amples

\mathbf{n}	$\mathbf{2}^{\mathbf{n}}$	$\mathbf{2}^{\mathbf{n}} \equiv \mathbf{3} \bmod \mathbf{n} ?$
$n=2$	$2^{n}=4$	$4 \not \equiv 3 \bmod 2$
$n=3$	$2^{n}=8$	$8 \not \equiv 3 \bmod 3$
$n=4$	$2^{n}=16$	$16 \not \equiv 3 \bmod 4$
$n=5$	$2^{n}=32$	$32 \not \equiv 3 \bmod 5$
$n=6$	$2^{n}=64$	$64 \not \equiv 3 \bmod 6$
$n=7$	$2^{n}=128$	$128 \not \equiv 3 \bmod 7$
$n=8$	$2^{n}=256$	$256 \not \equiv 3 \bmod 8$
$n=9$	$2^{n}=512$	$512 \not \equiv 3 \bmod 9$
$n=10$	$2^{n}=1024$	$1024 \not \equiv 3 \bmod 10$
$n=1000$	$2^{n}=[$ big $]$	$2^{1000} \not \equiv 3 \bmod 1000$
$n=1000000$	$2^{n}=[$ big $]$	$2^{1000000} \not \equiv 3 \bmod 1000000$
$n=4700063496$	$2^{n}=[$ big $]$	$2^{4700063496} \not \equiv 3 \bmod 4700063496$
$n=4700063497$	$2^{n}=[$ big $]$	$2^{4700063497} \equiv 3 \bmod 4700063497$

A Word of Caution

A pattern: $2^{n} \not \equiv 3 \bmod n$:

\mathbf{n}	$\mathbf{2}^{\mathbf{n}}$	$\mathbf{2}^{\mathbf{n}} \equiv \mathbf{3} \bmod \mathbf{n} ?$
$n=2$	$2^{n}=4$	$4 \not \equiv 3 \bmod 2$
$n=3$	$2^{n}=8$	$8 \not \equiv 3 \bmod 3$
$n=4$	$2^{n}=16$	$16 \not \equiv 3 \bmod 4$
$n=5$	$2^{n}=32$	$32 \not \equiv 3 \bmod 5$
$n=6$	$2^{n}=64$	$64 \not \equiv 3 \bmod 6$
$n=7$	$2^{n}=128$	$128 \not \equiv 3 \bmod 7$
$n=8$	$2^{n}=256$	$256 \not \equiv 3 \bmod 8$
$n=9$	$2^{n}=512$	$512 \not \equiv 3 \bmod 9$
$n=10$	$2^{n}=1024$	$1024 \not \equiv 3 \bmod 10$
$n=1000$	$2^{n}=[$ big $]$	$2^{1000} \not \equiv 3 \bmod 1000$
$n=1000000$	$2^{n}=[$ big $]$	$2^{1000000} \not \equiv 3 \bmod 1000000$
$n=4700063496$	$2^{n}=[$ big $]$	$2^{4700063496} \not \equiv 3 \bmod 4700063496$
$n=4700063497$	$2^{n}=[$ big $]$	$2^{4700063497} \equiv 3 \bmod 4700063497$

Result: D.H. and Emma Lehmer
Source: Richard K Guy, The Strong Law of Small Numbers:
http://www.maa.org/sites/default/files/pdf/upload_library/22/ Ford/Guy697-712.pdf (Recommended read!)

Example

Conjecture: For every $n \in \mathbb{N}, n^{2}-n+11$ is prime.
9. Disproof

9.1

Counterex-
amples
9.2

Disproving
Existence
Statements
9.3

Disproof by Contradiction Examples

Example

Conjecture: For every $n \in \mathbb{N}, n^{2}-n+11$ is prime.
9. Disproof

N	1	2	3	4	5	6	7	8	9	10	11
$\mathrm{n}^{2}-\mathrm{n}+\mathbf{1 1}$	11	13	17	23	31	41	53	67	83	101	121

Example

Conjecture: For every $n \in \mathbb{N}, n^{2}-n+11$ is prime.

N	1	2	3	4	5	6	7	8	9	10	11
$\mathrm{n}^{2}-\mathrm{n}+\mathbf{1 1}$	11	13	17	23	31	41	53	67	83	101	121

The conjecture is false. 11 is a natural number, and $11^{2}-11+11=11^{2}$, which is not prime.

True or False?

- True or False: For every $x, y \in \mathbb{N}, 2^{2 x}+3^{2 y+1}$ is prime.

9. Disproof
9.1 Counterexamples 9.2

Disproving
Existence
Statements
9.3

Disproof by Contradiction

- True or False:

For every even natural number n other than $n=2,2^{n}-1$ is not prime.

- True or False:

For every $m \in \mathbb{Z}$, there exists an $n \in \mathbb{N}$ such that $\left|\frac{1}{m}-\frac{1}{n}\right|>\frac{1}{2}$.

True or False?

- True or False: For every $x, y \in \mathbb{N}, 2^{2 x}+3^{2 y+1}$ is prime.

9. Disproof
9.1 Counterexamples 9.2

Disproving Existence Statements

False: Let $x=3$ and $y=1$. Then $2^{2 x}+3^{2 y+1}=2^{6}+3^{3}=91=7 * 13$,
so $2^{2 x}+3^{2 y+1}$ is not prime.

- True or False:

For every even natural number n other than $n=2,2^{n}-1$ is not prime.

- True or False:

For every $m \in \mathbb{Z}$, there exists an $n \in \mathbb{N}$ such that $\left|\frac{1}{m}-\frac{1}{n}\right|>\frac{1}{2}$.

True or False?

- True or False: For every $x, y \in \mathbb{N}, 2^{2 x}+3^{2 y+1}$ is prime.

False: Let $x=3$ and $y=1$. Then $2^{2 x}+3^{2 y+1}=2^{6}+3^{3}=91=7 * 13$,
so $2^{2 x}+3^{2 y+1}$ is not prime.

- True or False:

For every even natural number n other than $n=2,2^{n}-1$ is not prime.
True: let n be an even natural number other than 2 . Then $n=2 x$ for some $x \in \mathbb{N}$ (since n is even) and $x \geq 2($ since $n \neq 2)$. Then $2^{n}-1=2^{2 x}-1=\left(2^{x}-1\right)\left(2^{x}+1\right)$. Since $x \geq 2,2^{x}+1>1$ and $2^{x}-1>1$. Then $2^{n}-1$ has two factors that are greater than one, hence it is not prime.

- True or False:

For every $m \in \mathbb{Z}$, there exists an $n \in \mathbb{N}$ such that $\left|\frac{1}{m}-\frac{1}{n}\right|>\frac{1}{2}$.

True or False?

- True or False: For every $x, y \in \mathbb{N}, 2^{2 x}+3^{2 y+1}$ is prime.

False: Let $x=3$ and $y=1$. Then $2^{2 x}+3^{2 y+1}=2^{6}+3^{3}=91=7 * 13$,
so $2^{2 x}+3^{2 y+1}$ is not prime.

- True or False:

For every even natural number n other than $n=2,2^{n}-1$ is not prime.
True: let n be an even natural number other than 2 . Then $n=2 x$ for some $x \in \mathbb{N}$ (since n is even) and $x \geq 2($ since $n \neq 2)$. Then $2^{n}-1=2^{2 x}-1=\left(2^{x}-1\right)\left(2^{x}+1\right)$. Since $x \geq 2,2^{x}+1>1$ and $2^{x}-1>1$. Then $2^{n}-1$ has two factors that are greater than one, hence it is not prime.

- True or False:

For every $m \in \mathbb{Z}$, there exists an $n \in \mathbb{N}$ such that $\left|\frac{1}{m}-\frac{1}{n}\right|>\frac{1}{2}$.
False: consider $m=2$. We claim that for every $n \in \mathbb{N},\left|\frac{1}{2}-\frac{1}{n}\right| \leq \frac{1}{2}$. Case 1: $n=1$. Then $\left|\frac{1}{2}-\frac{1}{n}\right|=\frac{1}{2}$.
Case 2: $n=2$. Then $\left|\frac{1}{2}-\frac{1}{n}\right|=0 \leq \frac{1}{2}$
Case 3: $n \geq 33$. Then $\frac{1}{n}<\frac{1}{\frac{1}{2}}$, so $\left|\frac{1}{2}-\frac{1}{n}\right|=\frac{1}{2}-\frac{1}{n}<\frac{1}{2}$.
So, for every $n \in \mathbb{N},\left|\frac{1}{2}-\frac{1}{n}\right| \leq \frac{1}{2}$.

To disprove the statement $\exists x$ s.t. $P(x)$ we must prove its negation: $\forall x \sim P(x)$.

To disprove the statement $\exists x$ s.t. $P(x)$ we must prove its negation: $\forall x \sim P(x)$.

9. Disproof 9.1 Counterexamples 9.2 Disproving Existence Statements

- True or False: $\exists x \in \mathbb{R}$ s.t. $x^{3}<x<x^{2}$.
- True or False: $\exists x \in \mathbb{R}$ s.t. $x^{4}<x<x^{2}$.

To disprove the statement $\exists x$ s.t. $P(x)$ we must prove its negation: $\forall x \sim P(x)$.

9. Disproof 9.1 Counterexamples 9.2 Disproving Existence Statements

- True or False: $\exists x \in \mathbb{R}$ s.t. $x^{3}<x<x^{2}$. True: $-2 \in \mathbb{R}$ and $(-2)^{3}<-2<(-2)^{2}$
- True or False: $\exists x \in \mathbb{R}$ s.t. $x^{4}<x<x^{2}$.

To disprove the statement $\exists x$ s.t. $P(x)$ we must prove its negation: $\forall x \sim P(x)$.
9. Disproof 9.1 Counterexamples 9.2 Disproving Existence Statements

- True or False: $\exists x \in \mathbb{R}$ s.t. $x^{3}<x<x^{2}$. True: $-2 \in \mathbb{R}$ and $(-2)^{3}<-2<(-2)^{2}$.
- True or False: $\exists x \in \mathbb{R}$ s.t. $x^{4}<x<x^{2}$.

False. Suppose $x \in \mathbb{R}$ and $x<x^{2}$. Then $x<0$ or $x>1$. Case 1: $x<0$. Then $x^{4}>x$ because $x^{4}>0$. Then it is not true that $x^{4}<x<x^{2}$. Case 2: $x>1$. Then $x^{4}>x$, so it is not true that $x^{4}<x<x^{2}$. So, for every real x, it is not true that both $x<x^{2}$ and $x^{4}<x$.

Disproof by Contradiction.

Method:
"Suppose P is true.
Then something ridiculous happens. Therefore, P is false."

Disproof by Contradiction.

Method:
"Suppose P is true.
Then something ridiculous happens. Therefore, P is false."
Statement: There exists $x \in \mathbb{R}$ such that $x^{6}+2 x^{2}+1=0$.

Disproof by Contradiction.

Method:

"Suppose P is true.
Then something ridiculous happens. Therefore, P is false."
Statement: There exists $x \in \mathbb{R}$ such that $x^{6}+2 x^{2}+1=0$.
Suppose the statement is true, and let x be a real number such that $x^{6}+2 x^{2}+1=0$. Since 6 and 2 are even, $x^{6} \geq 0$ and $2 x^{2} \geq 0$. Then

$$
0=x^{6}+2 x^{2}+1 \geq 1
$$

so $0 \geq 1$. This is a contradiction. We conclude the statement is false.

Prove or disprove each of the following statements.

■ Let A, B, and C be sets. If $A \times C=B \times C$, then $A=B$.

■ Every even integer is the sum of three distinct even integers.

- There exists an irrational number p and a rational number q such that $\frac{p}{q}$ is rational.
- There exists a rational number p and an irrational number q such that $\frac{p}{q}$ is rational.
- There exist prime numbers p and q such that $p-q=513$.

Prove or disprove each of the following statements.

- Let A, B, and C be sets. If $A \times C=B \times C$, then $A=B$. False

■ Every even integer is the sum of three distinct even integers. True

- There exists an irrational number p and a rational number q such that $\frac{p}{q}$ is rational.
q False
- There exists a rational number p and an irrational number q such that $\frac{p}{q}$ is rational. True
- There exist prime numbers p and q such that $p-q=513$.

False

Let A, B, and C be sets. If $A \times C=B \times C$, then $A=B$.
False: Let $C=\emptyset, A=\emptyset$, and $B=\{1\}$. Then $A \times C=\emptyset=B \times C$, but $A \neq B$.

Every even integer is the sum of three distinct even integers.
9. Disproof 9.1 Counterexamples

True: let a be an even integer. If $a=0$, then $a=6+(-4)+(-2)$. If $a \neq 0$, then $a=4 a+(-2 a)+(-a)$, and all those integers are even and distinct.

There exists an irrational number p and a rational number q such that $\frac{p}{q}$ is rational.

False. We prove by contradiction. Suppose p is irrational, and q is rational, so $q=\frac{x}{y}$ for some nonzero integers x and y. If $\frac{p}{q}$ is rational, then $\frac{p}{q}=\frac{a}{b}$ for some nonzero integers a and b. Then $q=\frac{a q}{b}$, and both numerator and denominator are integers, contradicting that q is irrational. We conclude that, for every irrational number p and every rational number $q, \frac{p}{q}$ is irrational.

There exists a rational number p and an irrational number q such that $\frac{p}{q}$ is rational.

True: let $p=0$ and let q be any irrational number. Then $\frac{p}{q}=0$, which is rational.

There exist prime numbers p and q such that $p-q=513$.
9. Disproof

False. Suppose the statement is true. If p and q have an odd difference, then they have different parity, so one of them is even. The only even prime is 2 , so p or q is equal to 2 . Since $p-q$ is positive, q is smaller than p, so $q=2$ because 2 is the smallest prime.

Then $p=513+2=515$, but $5 \mid 515$, contradicting that p is prime.
We conclude that for every pair of primes p and $q, p-q \neq 513$.

