A **conjecture** is a statement that has not been proved to be true, but that someone has suggested might be true.

A **conjecture** is a statement that has not been proved to be true, but that someone has suggested might be true.

Goldbach Conjecture: Every even integer greater than 2 is the sum of two primes.

Every perfect number is even.

P = NP (where P and NP are sets of problems).

A **conjecture** is a statement that has not been proved to be true, but that someone has suggested might be true.

Goldbach Conjecture: Every even integer greater than 2 is the sum of two primes. To disprove: find one even integer greater than 2 such that no two primes add to it.

Every perfect number is even.

P = NP (where P and NP are sets of problems).

A **conjecture** is a statement that has not been proved to be true, but that someone has suggested might be true.

Goldbach Conjecture: Every even integer greater than 2 is the sum of two primes. To disprove: find one even integer greater than 2 such that no two primes :

To disprove: find one even integer greater than 2 such that no two primes add to it.

Every perfect number is even. To disprove: find one odd perfect number.

P = NP (where P and NP are sets of problems).

A **conjecture** is a statement that has not been proved to be true, but that someone has suggested might be true.

Goldbach Conjecture: Every even integer greater than 2 is the sum of two primes.

To disprove: find one even integer greater than 2 such that no two primes add to it.

Every perfect number is even. To disprove: find one odd perfect number.

P = NP (where P and NP are sets of problems). To disprove: find one problem that is in one set but not in the other.

	А	pattern:	2"	≢	3	mod	<i>n</i> :
--	---	----------	----	---	---	-----	------------

9. Disproof

9.1 Counterex-

amples

9.2 Disproving Existence Statements

9.3 Disproof n 2^n $2^n \equiv 3 \mod n?$ n=2 $2^n = 4$ $4 \not\equiv 3 \mod 2$ n=3 $2^n = 8$ $8 \not\equiv 3 \mod 3$ n=4 $2^n = 16$ $16 \not\equiv 3 \mod 4$ n=5 $2^n = 32$ $32 \not\equiv 3 \mod 5$

A pattern: $2^n \not\equiv 3 \mod n$:

9. Disproof

9.1 Counterexamples 9.2 Disproving Existence Statements 9.3

Disproof by Contra diction

n	2 ⁿ	$2^n \equiv 3 \mod n?$
<i>n</i> = 2	$2^{n} = 4$	$4 \not\equiv 3 \mod 2$
<i>n</i> = 3	$2^{n} = 8$	$8 \not\equiv 3 \mod 3$
<i>n</i> = 4	$2^{n} = 16$	$16 \not\equiv 3 \mod 4$
<i>n</i> = 5	$2^{n} = 32$	$32 \not\equiv 3 \mod 5$
<i>n</i> = 6	$2^{n} = 64$	$64 \not\equiv 3 \mod 6$
<i>n</i> = 7	$2^{n} = 128$	$128 \not\equiv 3 \mod 7$
<i>n</i> = 8	$2^{n} = 256$	$256 \not\equiv 3 \mod 8$
<i>n</i> = 9	$2^{n} = 512$	$512 \not\equiv 3 \mod 9$
<i>n</i> = 10	$2^n = 1024$	$1024 \not\equiv 3 \mod 10$

A pattern: $2^n \not\equiv 3 \mod n$:

9. Disproof

9.1 Counterexamples 9.2 Disproving Existence Statements

Disproof by Contra diction

n	2 ⁿ	$2^n \equiv 3 \mod n?$
<i>n</i> = 2	$2^{n} = 4$	4 ≢ 3 mod 2
<i>n</i> = 3	$2^{n} = 8$	8 ≢ 3 mod 3
<i>n</i> = 4	$2^{n} = 16$	$16 \not\equiv 3 \mod 4$
<i>n</i> = 5	$2^{n} = 32$	$32 \not\equiv 3 \mod 5$
<i>n</i> = 6	$2^{n} = 64$	$64 \not\equiv 3 \mod 6$
<i>n</i> = 7	$2^{n} = 128$	$128 eq 3 \mod 7$
<i>n</i> = 8	$2^{n} = 256$	256 ≢ 3 mod 8
<i>n</i> = 9	$2^{n} = 512$	$512 \not\equiv 3 \mod 9$
<i>n</i> = 10	$2^n = 1024$	$1024 eq 3 \mod 10$
<i>n</i> = 1000	$2^n = [big]$	$2^{1000} \not\equiv 3 \mod 1000$

A pattern: $2^n \not\equiv 3 \mod n$:

9. Disproof

9.1 Counterexamples 9.2 Disproving Existence Statements 9.3

Disproof by Contra diction

Examples

n	2 ⁿ	$2^n \equiv 3 \mod n?$
<i>n</i> = 2	$2^{n} = 4$	$4 \not\equiv 3 \mod 2$
<i>n</i> = 3	$2^{n} = 8$	$8 \not\equiv 3 \mod 3$
<i>n</i> = 4	$2^{n} = 16$	$16 \not\equiv 3 \mod 4$
<i>n</i> = 5	$2^{n} = 32$	$32 \not\equiv 3 \mod 5$
<i>n</i> = 6	$2^{n} = 64$	$64 \not\equiv 3 \mod 6$
<i>n</i> = 7	$2^{n} = 128$	$128 eq 3 \mod 7$
<i>n</i> = 8	$2^{n} = 256$	$256 \neq 3 \mod 8$
<i>n</i> = 9	$2^{n} = 512$	$512 \not\equiv 3 \mod 9$
<i>n</i> = 10	$2^n = 1024$	$1024 eq 3 \mod 10$
<i>n</i> = 1000	$2^n = [big]$	$2^{1000} \not\equiv 3 \mod 1000$
n = 1000000	$2^n = [big]$	$2^{1000000} \not\equiv 3 \mod 1000000$

A pattern: $2^n \not\equiv 3 \mod n$:

9. Disproof

9.1 Counterexamples Disproving

$2^n = 4$ $2^n = 8$	$4 \not\equiv 3 \mod 2$					
$2^{n} = 8$						
	$8 \not\equiv 3 \mod 3$					
$2^{n} = 16$	$16 \not\equiv 3 \mod 4$					
$2^{n} = 32$	$32 \not\equiv 3 \mod 5$					
$2^{n} = 64$	$64 \not\equiv 3 \mod 6$					
$2^n = 128$	$128 \not\equiv 3 \mod 7$					
2 ^{<i>n</i>} = 256	$256 \not\equiv 3 \mod 8$					
2 ^{<i>n</i>} = 512	$512 ot\equiv 3 \mod 9$					
2 ^{<i>n</i>} = 1024	$1024 ot\equiv 3 \mod 10$					
$2^n = [big]$	$2^{1000} \not\equiv 3 \mod 1000$					
$2^n = [big]$	$2^{1000000} \not\equiv 3 \mod 1000000$					
$2^n = [big]$	$2^{4700063496} \not\equiv 3 \mod 4700063496$					
	$ \frac{2^{n} = 16}{2^{n} = 32} \\ 2^{n} = 64 \\ 2^{n} = 128 \\ 2^{n} = 256 \\ 2^{n} = 512 \\ 2^{n} = 1024 \\ 2^{n} = [big] \\ 2^{n} = [big] $					

A pattern: $2^n \not\equiv 3 \mod n$:

9. Disproof

9.1 Counterexamples 9.2 Disproving Existence Statements

> 9.3 Disproof by Contra diction

n	2 ⁿ	$2^n \equiv 3 \mod n?$					
<i>n</i> = 2	$2^{n} = 4$	$4 \not\equiv 3 \mod 2$					
n = 3	$2^{n} = 8$	$8 \not\equiv 3 \mod 3$					
<i>n</i> = 4	$2^{n} = 16$	$16 \not\equiv 3 \mod 4$					
<i>n</i> = 5	$2^{n} = 32$	$32 \not\equiv 3 \mod 5$					
<i>n</i> = 6	$2^{n} = 64$	64 ≢ 3 mod 6					
n = 7	$2^{n} = 128$	$128 ot\equiv 3 \mod 7$					
<i>n</i> = 8	$2^{n} = 256$	256 ≢ 3 mod 8					
<i>n</i> = 9	$2^n = 512$	$512 \not\equiv 3 \mod 9$					
<i>n</i> = 10	$2^n = 1024$	$1024 eq 3 \mod 10$					
<i>n</i> = 1000	$2^n = [big]$	$2^{1000} \not\equiv 3 \mod 1000$					
n = 1000000	$2^n = [big]$	$2^{1000000} \not\equiv 3 \mod 1000000$					
n = 4700063496	$2^n = [big]$	$2^{4700063496} \not\equiv 3 \mod 4700063496$					
n = 4700063497	$2^n = [big]$	$2^{4700063497} \equiv 3 \mod 4700063497$					

A pattern: $2^n \not\equiv 3 \mod n$:

9. Disproof

9.1 Counterexamples 9.2 Disproving Existence

> .3 Disproof y Contraiction

n	2 ⁿ	$2^n \equiv 3 \mod n?$						
<i>n</i> = 2	$2^{n} = 4$	$4 \not\equiv 3 \mod 2$						
<i>n</i> = 3	$2^{n} = 8$	$8 \not\equiv 3 \mod 3$						
<i>n</i> = 4	$2^{n} = 16$	$16 \not\equiv 3 \mod 4$						
<i>n</i> = 5	$2^n = 32$	$32 \not\equiv 3 \mod 5$						
<i>n</i> = 6	$2^{n} = 64$	$64 \not\equiv 3 \mod 6$						
<i>n</i> = 7	$2^{n} = 128$	$128 eq 3 \mod 7$						
<i>n</i> = 8	$2^{n} = 256$	$256 \not\equiv 3 \mod 8$						
<i>n</i> = 9	$2^n = 512$	$512 \not\equiv 3 \mod 9$						
<i>n</i> = 10	$2^n = 1024$	$1024 eq 3 \mod 10$						
<i>n</i> = 1000	$2^n = [big]$	$2^{1000} \not\equiv 3 \mod 1000$						
n = 1000000	$2^n = [big]$	$2^{1000000} \not\equiv 3 \mod 1000000$						
n = 4700063496	$2^n = [big]$	$2^{4700063496} \not\equiv 3 \mod 4700063496$						
n = 4700063497	$2^n = [big]$	$2^{4700063497} \equiv 3 \mod 4700063497$						

Result: D.H. and Emma Lehmer

Source: Richard K Guy, **The Strong Law of Small Numbers**: http://www.maa.org/sites/default/files/pdf/upload_library/22/ Ford/Guy697-712.pdf (Recommended read!)

Example

Conjecture: For every $n \in \mathbb{N}$, $n^2 - n + 11$ is prime.

Example

Conjecture: For every $n \in \mathbb{N}$, $n^2 - n + 11$ is prime.

9.				
9.	-	۲	~	

9.1 Counterexamples

9.2 Disproving Existence Statements 9.3 Disproof by Contradiction

N	1	2	3	4	5	6	7	8	9	10	11
$n^2 - n + 11$	11	13	17	23	31	41	53	67	83	101	121

Example

Conjecture: For every $n \in \mathbb{N}$, $n^2 - n + 11$ is prime.

9. Disproof

9.1 Counterexamples

9.2 Disproving Existence Statements 9.3 Disproof by Contradiction

N	1	2	3	4	5	6	7	8	9	10	11
$n^2 - n + 11$	11	13	17	23	31	41	53	67	83	101	121

The conjecture is false. 11 is a natural number, and $11^2 - 11 + 11 = 11^2$, which is not prime.

True or False: For every $x, y \in \mathbb{N}$, $2^{2x} + 3^{2y+1}$ is prime.

True or False:

9. Disproof 9.1 Counterexamples

by Contra-

For every even natural number *n* other than n = 2, $2^n - 1$ is not prime.

True or False: For every $m \in \mathbb{Z}$, there exists an $n \in \mathbb{N}$ such that $\left|\frac{1}{m} - \frac{1}{n}\right| > \frac{1}{2}$.

True or False: For every $x, y \in \mathbb{N}$, $2^{2x} + 3^{2y+1}$ is prime.

False: Let x = 3 and y = 1. Then $2^{2x} + 3^{2y+1} = 2^6 + 3^3 = 91 = 7 * 13$, so $2^{2x} + 3^{2y+1}$ is not prime.

True or False:

For every even natural number *n* other than n = 2, $2^n - 1$ is not prime.

True or False:

For every $m \in \mathbb{Z}$, there exists an $n \in \mathbb{N}$ such that $\left|\frac{1}{m} - \frac{1}{n}\right| > \frac{1}{2}$.

True or False: For every $x, y \in \mathbb{N}$, $2^{2x} + 3^{2y+1}$ is prime.

False: Let x = 3 and y = 1. Then $2^{2x} + 3^{2y+1} = 2^6 + 3^3 = 91 = 7 * 13$, so $2^{2x} + 3^{2y+1}$ is not prime.

True or False:

For every even natural number *n* other than n = 2, $2^n - 1$ is not prime.

True: let *n* be an even natural number other than 2. Then n = 2x for some $x \in \mathbb{N}$ (since *n* is even) and $x \ge 2$ (since $n \ne 2$). Then $2^n - 1 = 2^{2x} - 1 = (2^x - 1)(2^x + 1)$. Since $x \ge 2$, $2^x + 1 > 1$ and $2^x - 1 > 1$. Then $2^n - 1$ has two factors that are greater than one, hence it is not prime.

True or False:

For every $m \in \mathbb{Z}$, there exists an $n \in \mathbb{N}$ such that $\left|\frac{1}{m} - \frac{1}{n}\right| > \frac{1}{2}$.

True or False: For every $x, y \in \mathbb{N}$, $2^{2x} + 3^{2y+1}$ is prime.

False: Let x = 3 and y = 1. Then $2^{2x} + 3^{2y+1} = 2^6 + 3^3 = 91 = 7 * 13$, so $2^{2x} + 3^{2y+1}$ is not prime.

True or False:

For every even natural number *n* other than n = 2, $2^n - 1$ is not prime.

True: let *n* be an even natural number other than 2. Then n = 2x for some $x \in \mathbb{N}$ (since *n* is even) and $x \ge 2$ (since $n \ne 2$). Then $2^n - 1 = 2^{2x} - 1 = (2^x - 1)(2^x + 1)$. Since $x \ge 2$, $2^x + 1 > 1$ and $2^x - 1 > 1$. Then $2^n - 1$ has two factors that are greater than one, hence it is not prime.

True or False:

For every $m \in \mathbb{Z}$, there exists an $n \in \mathbb{N}$ such that $\left|\frac{1}{m} - \frac{1}{n}\right| > \frac{1}{2}$.

False: consider m = 2. We claim that for every $n \in \mathbb{N}$, $\left|\frac{1}{2} - \frac{1}{n}\right| \le \frac{1}{2}$. Case 1: n = 1. Then $\left|\frac{1}{2} - \frac{1}{n}\right| = \frac{1}{2}$. Case 2: n = 2. Then $\left|\frac{1}{2} - \frac{1}{n}\right| = 0 \le \frac{1}{2}$. Case 3: $n \ge 33$. Then $\frac{1}{n} < \frac{1}{2}$, so $\left|\frac{1}{2} - \frac{1}{n}\right| = \frac{1}{2} - \frac{1}{n} < \frac{1}{2}$. So, for every $n \in \mathbb{N}$, $\left|\frac{1}{2} - \frac{1}{n}\right| \le \frac{1}{2}$.

9. Disproof 9.1 Counterexamples 9.2 Disproving Existence Statements 9.3 Disproof

> by Contra diction

True or False: $\exists x \in \mathbb{R} \text{ s.t. } x^3 < x < x^2$.

True or False: $\exists x \in \mathbb{R} \text{ s.t. } x^4 < x < x^2$.

9. Disproof 9.1 Counterexamples 9.2 Disproving Existence Statements 9.3 Disproof by Contra-

diction Examples

True or False: $\exists x \in \mathbb{R} \text{ s.t. } x^3 < x < x^2$. True: $-2 \in \mathbb{R} \text{ and } (-2)^3 < -2 < (-2)^2$.

• True or False: $\exists x \in \mathbb{R} \text{ s.t. } x^4 < x < x^2$.

■ True or False: $\exists x \in \mathbb{R} \text{ s.t. } x^3 < x < x^2$. True: $-2 \in \mathbb{R}$ and $(-2)^3 < -2 < (-2)^2$.

• True or False: $\exists x \in \mathbb{R} \text{ s.t. } x^4 < x < x^2$. False. Suppose $x \in \mathbb{R}$ and $x < x^2$. Then x < 0 or x > 1. Case 1: x < 0. Then $x^4 > x$ because $x^4 > 0$. Then it is not true that $x^4 < x < x^2$. Case 2: x > 1. Then $x^4 > x$, so it is not true that $x^4 < x < x^2$. So, for every real x, it is not true that both $x < x^2$ and $x^4 < x$.

Disproof by Contradiction.

Method: "Suppose *P* is true.

. . .

9. Disproof 9.1 Counterexamples 9.2 Disproving Existence Statements 9.3 Disproof by Contradiction

Then something ridiculous happens. Therefore, P is false."

Disproof by Contradiction.

Method: "Suppose *P* is true.

. . .

9. Disproof 9.1 Counterexamples 9.2 Disproving Existence Statements 9.3 Disproof by Contradiction Examples

Then something ridiculous happens. Therefore, P is false."

Statement: There exists $x \in \mathbb{R}$ such that $x^6 + 2x^2 + 1 = 0$.

Disproof by Contradiction.

Method: "Suppose *P* is true.

9. Disproof 9.1 Counterexamples 9.2 Disproving Existence Statements 9.3 Disproof by Contradiction Examples

Then something ridiculous happens. Therefore, P is false."

Statement: There exists $x \in \mathbb{R}$ such that $x^6 + 2x^2 + 1 = 0$.

Suppose the statement is true, and let x be a real number such that $x^6 + 2x^2 + 1 = 0$. Since 6 and 2 are even, $x^6 \ge 0$ and $2x^2 \ge 0$. Then

$$0 = x^6 + 2x^2 + 1 \ge 1$$

so $0 \ge 1$. This is a contradiction. We conclude the statement is false.

Prove or disprove each of the following statements.

• Let A, B, and C be sets. If
$$A \times C = B \times C$$
, then $A = B$.

- Every even integer is the sum of three *distinct* even integers.
- There exists an irrational number p and a rational number q such that $\frac{p}{q}$ is rational.
- There exists a rational number p and an irrational number q such that $\frac{p}{q}$ is rational.
- There exist prime numbers p and q such that p q = 513.

Prove or disprove each of the following statements.

- 9. Disproof 9.1 Counterexamples 9.2 Disproving Existence Statements 9.3 Disproof by Contradiction Examples
- Let A, B, and C be sets. If $A \times C = B \times C$, then A = B. False
- Every even integer is the sum of three *distinct* even integers. True
- There exists a rational number p and an irrational number q such that $\frac{p}{q}$ is rational. $\frac{q}{True}$
- There exist prime numbers p and q such that p q = 513. False

Let A, B, and C be sets. If $A \times C = B \times C$, then A = B.

False: Let $C = \emptyset$, $A = \emptyset$, and $B = \{1\}$. Then $A \times C = \emptyset = B \times C$, but $A \neq B$.

Every even integer is the sum of three distinct even integers.

9. Disproof 9.1 Counterexamples 9.2 Disproving Existence Statements 9.3 Disproof by Contradiction **Examples** True: let *a* be an even integer. If a = 0, then a = 6 + (-4) + (-2). If $a \neq 0$, then a = 4a + (-2a) + (-a), and all those integers are even and distinct.

There exists an irrational number p and a rational number q such that $\frac{p}{q}$ is rational.

9.1 Counterexamples 9.2 Disproving Existence Statements 9.3 Disproof by Contradiction Examples

9. Disproof

False. We prove by contradiction. Suppose *p* is irrational, and *q* is rational, so $q = \frac{x}{y}$ for some nonzero integers *x* and *y*. If $\frac{p}{q}$ is rational, then $\frac{p}{q} = \frac{a}{b}$ for some nonzero integers *a* and *b*. Then $q = \frac{aq}{b}$, and both numerator and denominator are integers, contradicting that *q* is irrational. We conclude that, for every irrational number *p* and every rational number *q*, $\frac{p}{q}$ is irrational.

There exists a rational number p and an irrational number q such that $\frac{p}{q}$ is rational.

True: let p = 0 and let q be any irrational number. Then $\frac{p}{q} = 0$, which is rational.

There exist prime numbers p and q such that p - q = 513.

9. Disproof 9.1 Counterexamples 9.2 Disproving Existence Statements 9.3 Disproof by Contradiction **Fxamples** False. Suppose the statement is true. If p and q have an odd difference, then they have different parity, so one of them is even. The only even prime is 2, so p or q is equal to 2. Since p - q is positive, q is smaller than p, so q = 2 because 2 is the smallest prime.

Then p = 513 + 2 = 515, but 5|515, contradicting that p is prime.

We conclude that for every pair of primes p and q, $p - q \neq 513$.