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Conjectures and Counterexamples

A conjecture is a statement that has not been proved to be true, but that

someone has suggested might be true.

Goldbach Conjecture: Every even integer greater than 2 is the sum of two
primes.

To disprove: find one even integer greater than 2 such that no two primes add
to it.

Every perfect number is even.

To disprove: find one odd perfect number.

P = NP (where P and NP are sets of problems).

To disprove: find one problem that is in one set but not in the other.
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A Word of Caution

A pattern: 2n 6≡ 3 mod n:

n 2n 2n ≡ 3 mod n?
n = 2 2n = 4 4 6≡ 3 mod 2
n = 3 2n = 8 8 6≡ 3 mod 3
n = 4 2n = 16 16 6≡ 3 mod 4
n = 5 2n = 32 32 6≡ 3 mod 5

n = 6 2n = 64 64 6≡ 3 mod 6
n = 7 2n = 128 128 6≡ 3 mod 7
n = 8 2n = 256 256 6≡ 3 mod 8
n = 9 2n = 512 512 6≡ 3 mod 9
n = 10 2n = 1024 1024 6≡ 3 mod 10

n = 1000 2n = [big ] 21000 6≡ 3 mod 1000

n = 1 000 000 2n = [big ] 21 000 000 6≡ 3 mod 1 000 000

n = 4 700 063 496 2n = [big ] 24 700 063 496 6≡ 3 mod 4 700 063 496

n = 4 700 063 497 2n = [big ] 24 700 063 497 ≡ 3 mod 4 700 063 497

Result: D.H. and Emma Lehmer
Source: Richard K Guy, The Strong Law of Small Numbers:
http://www.maa.org/sites/default/files/pdf/upload_library/22/

Ford/Guy697-712.pdf (Recommended read!)

http://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Guy697-712.pdf
http://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Guy697-712.pdf
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Example

Conjecture: For every n ∈ N, n2 − n + 11 is prime.

N 1 2 3 4 5 6 7 8 9 10 11

n2 − n + 11 11 13 17 23 31 41 53 67 83 101 121

The conjecture is false. 11 is a natural number, and 112 − 11 + 11 = 112,
which is not prime.
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True or False?

True or False: For every x , y ∈ N, 22x + 32y+1 is prime.

False: Let x = 3 and y = 1. Then 22x + 32y+1 = 26 + 33 = 91 = 7 ∗ 13,
so 22x + 32y+1 is not prime.

True or False:
For every even natural number n other than n = 2, 2n − 1 is not prime.

True: let n be an even natural number other than 2. Then n = 2x for
some x ∈ N (since n is even) and x ≥ 2 (since n 6= 2). Then
2n − 1 = 22x − 1 = (2x − 1)(2x + 1). Since x ≥ 2, 2x + 1 > 1 and
2x − 1 > 1. Then 2n − 1 has two factors that are greater than one, hence
it is not prime.

True or False:
For every m ∈ Z, there exists an n ∈ N such that

∣∣ 1
m
− 1

n

∣∣ > 1
2
.

False: consider m = 2. We claim that for every n ∈ N,
∣∣ 1
2
− 1

n

∣∣ ≤ 1
2
.

Case 1: n = 1. Then
∣∣ 1
2
− 1

n

∣∣ = 1
2
.

Case 2: n = 2. Then
∣∣ 1
2
− 1

n

∣∣ = 0 ≤ 1
2
.

Case 3: n ≥ 33. Then 1
n
< 1

2
, so

∣∣ 1
2
− 1

n

∣∣ = 1
2
− 1

n
< 1

2
.

So, for every n ∈ N,
∣∣ 1
2
− 1

n

∣∣ ≤ 1
2
.



9. Disproof

9.1
Counterex-
amples

9.2
Disproving
Existence
Statements

9.3
Disproof
by Contra-
diction

Examples

True or False?

True or False: For every x , y ∈ N, 22x + 32y+1 is prime.

False: Let x = 3 and y = 1. Then 22x + 32y+1 = 26 + 33 = 91 = 7 ∗ 13,
so 22x + 32y+1 is not prime.

True or False:
For every even natural number n other than n = 2, 2n − 1 is not prime.

True: let n be an even natural number other than 2. Then n = 2x for
some x ∈ N (since n is even) and x ≥ 2 (since n 6= 2). Then
2n − 1 = 22x − 1 = (2x − 1)(2x + 1). Since x ≥ 2, 2x + 1 > 1 and
2x − 1 > 1. Then 2n − 1 has two factors that are greater than one, hence
it is not prime.

True or False:
For every m ∈ Z, there exists an n ∈ N such that

∣∣ 1
m
− 1

n

∣∣ > 1
2
.

False: consider m = 2. We claim that for every n ∈ N,
∣∣ 1
2
− 1

n

∣∣ ≤ 1
2
.

Case 1: n = 1. Then
∣∣ 1
2
− 1

n

∣∣ = 1
2
.

Case 2: n = 2. Then
∣∣ 1
2
− 1

n

∣∣ = 0 ≤ 1
2
.

Case 3: n ≥ 33. Then 1
n
< 1

2
, so

∣∣ 1
2
− 1

n

∣∣ = 1
2
− 1

n
< 1

2
.

So, for every n ∈ N,
∣∣ 1
2
− 1

n

∣∣ ≤ 1
2
.



9. Disproof

9.1
Counterex-
amples

9.2
Disproving
Existence
Statements

9.3
Disproof
by Contra-
diction

Examples

True or False?

True or False: For every x , y ∈ N, 22x + 32y+1 is prime.

False: Let x = 3 and y = 1. Then 22x + 32y+1 = 26 + 33 = 91 = 7 ∗ 13,
so 22x + 32y+1 is not prime.

True or False:
For every even natural number n other than n = 2, 2n − 1 is not prime.

True: let n be an even natural number other than 2. Then n = 2x for
some x ∈ N (since n is even) and x ≥ 2 (since n 6= 2). Then
2n − 1 = 22x − 1 = (2x − 1)(2x + 1). Since x ≥ 2, 2x + 1 > 1 and
2x − 1 > 1. Then 2n − 1 has two factors that are greater than one, hence
it is not prime.

True or False:
For every m ∈ Z, there exists an n ∈ N such that

∣∣ 1
m
− 1

n

∣∣ > 1
2
.

False: consider m = 2. We claim that for every n ∈ N,
∣∣ 1
2
− 1

n

∣∣ ≤ 1
2
.

Case 1: n = 1. Then
∣∣ 1
2
− 1

n

∣∣ = 1
2
.

Case 2: n = 2. Then
∣∣ 1
2
− 1

n

∣∣ = 0 ≤ 1
2
.

Case 3: n ≥ 33. Then 1
n
< 1

2
, so

∣∣ 1
2
− 1

n

∣∣ = 1
2
− 1

n
< 1

2
.

So, for every n ∈ N,
∣∣ 1
2
− 1

n

∣∣ ≤ 1
2
.



9. Disproof

9.1
Counterex-
amples

9.2
Disproving
Existence
Statements

9.3
Disproof
by Contra-
diction

Examples

True or False?

True or False: For every x , y ∈ N, 22x + 32y+1 is prime.

False: Let x = 3 and y = 1. Then 22x + 32y+1 = 26 + 33 = 91 = 7 ∗ 13,
so 22x + 32y+1 is not prime.

True or False:
For every even natural number n other than n = 2, 2n − 1 is not prime.

True: let n be an even natural number other than 2. Then n = 2x for
some x ∈ N (since n is even) and x ≥ 2 (since n 6= 2). Then
2n − 1 = 22x − 1 = (2x − 1)(2x + 1). Since x ≥ 2, 2x + 1 > 1 and
2x − 1 > 1. Then 2n − 1 has two factors that are greater than one, hence
it is not prime.

True or False:
For every m ∈ Z, there exists an n ∈ N such that

∣∣ 1
m
− 1

n

∣∣ > 1
2
.

False: consider m = 2. We claim that for every n ∈ N,
∣∣ 1
2
− 1

n

∣∣ ≤ 1
2
.

Case 1: n = 1. Then
∣∣ 1
2
− 1

n

∣∣ = 1
2
.

Case 2: n = 2. Then
∣∣ 1
2
− 1

n

∣∣ = 0 ≤ 1
2
.

Case 3: n ≥ 33. Then 1
n
< 1

2
, so

∣∣ 1
2
− 1

n

∣∣ = 1
2
− 1

n
< 1

2
.

So, for every n ∈ N,
∣∣ 1
2
− 1

n

∣∣ ≤ 1
2
.



9. Disproof

9.1
Counterex-
amples

9.2
Disproving
Existence
Statements

9.3
Disproof
by Contra-
diction

Examples

To disprove the statement ∃x s.t. P(x)
we must prove its negation: ∀x ∼ P(x).

True or False: ∃x ∈ R s.t. x3 < x < x2.

True: −2 ∈ R and (−2)3 < −2 < (−2)2.

True or False: ∃x ∈ R s.t. x4 < x < x2.

False. Suppose x ∈ R and x < x2. Then x < 0 or x > 1.
Case 1: x < 0. Then x4 > x because x4 > 0. Then it is not true that
x4 < x < x2.
Case 2: x > 1. Then x4 > x , so it is not true that x4 < x < x2.
So, for every real x , it is not true that both x < x2 and x4 < x .
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Disproof by Contradiction.

Method:
“Suppose P is true.
· · ·
Then something ridiculous happens. Therefore, P is false.”

Statement: There exists x ∈ R such that x6 + 2x2 + 1 = 0.

Suppose the statement is true, and let x be a real number such that
x6 + 2x2 + 1 = 0. Since 6 and 2 are even, x6 ≥ 0 and 2x2 ≥ 0. Then

0 = x6 + 2x2 + 1 ≥ 1

so 0 ≥ 1. This is a contradiction. We conclude the statement is false.
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x6 + 2x2 + 1 = 0. Since 6 and 2 are even, x6 ≥ 0 and 2x2 ≥ 0. Then

0 = x6 + 2x2 + 1 ≥ 1

so 0 ≥ 1. This is a contradiction. We conclude the statement is false.
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Statement: There exists x ∈ R such that x6 + 2x2 + 1 = 0.

Suppose the statement is true, and let x be a real number such that
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so 0 ≥ 1. This is a contradiction. We conclude the statement is false.
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Prove or disprove each of the following statements.

Let A, B, and C be sets. If A× C = B × C , then A = B.

False

Every even integer is the sum of three distinct even integers.

True

There exists an irrational number p and a rational number q such that
p

q
is rational.

False

There exists a rational number p and an irrational number q such that
p

q
is rational.

True

There exist prime numbers p and q such that p − q = 513.

False
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Let A, B, and C be sets. If A× C = B × C, then A = B.

False: Let C = ∅, A = ∅, and B = {1}. Then A× C = ∅ = B × C , but
A 6= B.
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Every even integer is the sum of three distinct even integers.

True: let a be an even integer. If a = 0, then a = 6 + (−4) + (−2). If a 6= 0,
then a = 4a + (−2a) + (−a), and all those integers are even and
distinct.
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There exists an irrational number p and a rational number q such that
p

q
is rational.

False. We prove by contradiction. Suppose p is irrational, and q is rational, so
q = x

y
for some nonzero integers x and y . If p

q
is rational, then p

q
= a

b
for some

nonzero integers a and b. Then q = aq
b

, and both numerator and denominator
are integers, contradicting that q is irrational. We conclude that, for every
irrational number p and every rational number q, p

q
is irrational.
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There exists a rational number p and an irrational number q such that
p

q
is rational.

True: let p = 0 and let q be any irrational number. Then p
q

= 0, which is
rational.
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There exist prime numbers p and q such that p − q = 513.

False. Suppose the statement is true. If p and q have an odd difference, then
they have different parity, so one of them is even. The only even prime is 2, so
p or q is equal to 2. Since p − q is positive, q is smaller than p, so q = 2
because 2 is the smallest prime.

Then p = 513 + 2 = 515, but 5|515, contradicting that p is prime.

We conclude that for every pair of primes p and q, p − q 6= 513.


