Graph Saturation in Color

Michael Ferrara Jaehoon Kim Elyse Yeager*

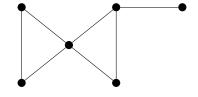
yeager2@illinois.edu

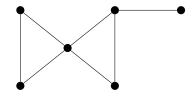
San Jose State University February 2015

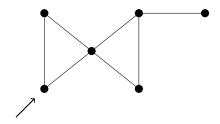
Outline

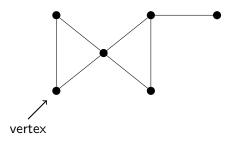
- Introduction to Graphs
- Graph Saturation
- Ramsey Theory
- Colored Graph Saturation

What Do You Know About Graphs?

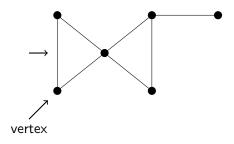




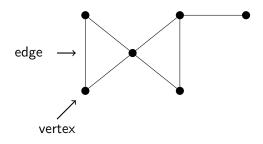




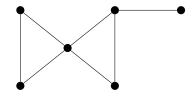
|G|: number of vertices in G

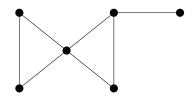


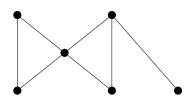
|G|: number of vertices in G

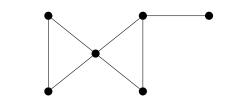


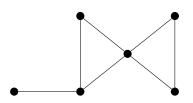
|G|: number of vertices in G||G||: number of edges in G

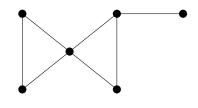


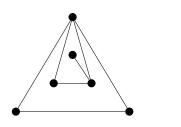


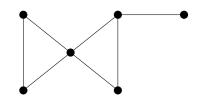


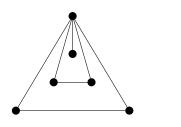


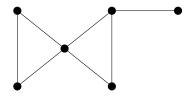




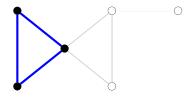




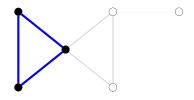




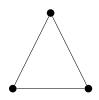
Subgraph:

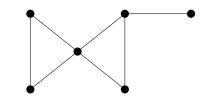


Subgraph:

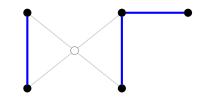


Subgraph:

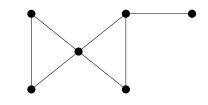




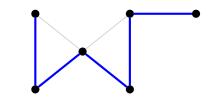
Subgraph:



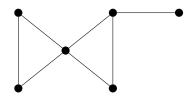
Subgraph:



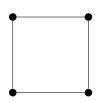
Subgraph:



Subgraph:



Subgraph:



Path:

Path:

Path:

Matching:

Path:

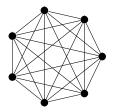
Matching:

Path:

Matching:

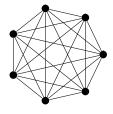
Path:

Matching:



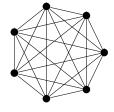
Path:

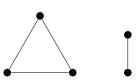
Matching:



Path:

Matching:





Outline

- Introduction to Graphs
- Graph Saturation
- Ramsey Theory
- Colored Graph Saturation

Avoid a forbidden subgraph, but add as many edges as possible.

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

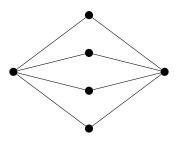
Example:

Let the triangle be forbidden.

This graph is triangle saturated

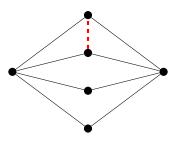
Avoid a forbidden subgraph, but add as many edges as possible.

Example:



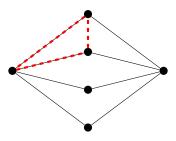
Avoid a forbidden subgraph, but add as many edges as possible.

Example:



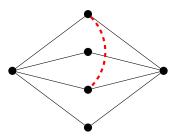
Avoid a forbidden subgraph, but add as many edges as possible.

Example:



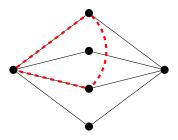
Avoid a forbidden subgraph, but add as many edges as possible.

Example:



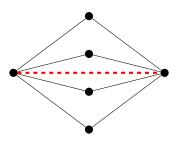
Avoid a forbidden subgraph, but add as many edges as possible.

Example:



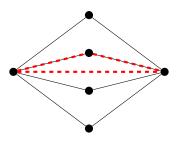
Avoid a forbidden subgraph, but add as many edges as possible.

Example:



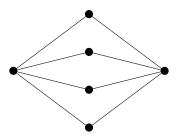
Avoid a forbidden subgraph, but add as many edges as possible.

Example:



Avoid a forbidden subgraph, but add as many edges as possible.

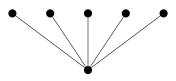
Example:



This graph is triangle saturated

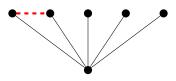
Avoid a forbidden subgraph, but add as many edges as possible.

Example:



Avoid a forbidden subgraph, but add as many edges as possible.

Example:

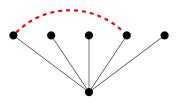


Avoid a forbidden subgraph, but add as many edges as possible.

Example:

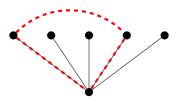
Avoid a forbidden subgraph, but add as many edges as possible.

Example:



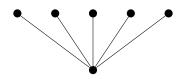
Avoid a forbidden subgraph, but add as many edges as possible.

Example:



Avoid a forbidden subgraph, but add as many edges as possible.

Example:

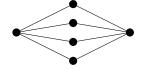


This graph is triangle saturated

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Let the triangle be forbidden.



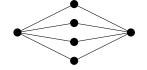
Definition

A graph *G* is *H*-saturated if:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Let the triangle be forbidden.



Definition

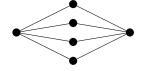
A graph G is H-saturated if:

H is not a subgraph of G

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

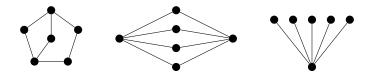
Let the triangle be forbidden.

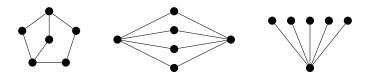


Definition

A graph G is H-saturated if:

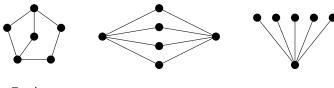
- H is not a subgraph of G and
- ② If we add any edge to G, H is a subgraph of the resulting graph.





Definition: (Erdős-Hajnal-Moon)

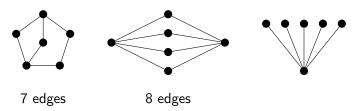
$$sat(n; H) := min\{||G|| : |G| = n \text{ and } G \text{ is } H \text{ saturated}\}$$



7 edges

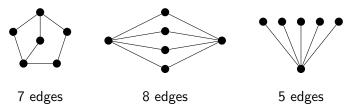
Definition: (Erdős-Hajnal-Moon)

$$sat(n; H) := min\{||G|| : |G| = n \text{ and } G \text{ is } H \text{ saturated}\}$$



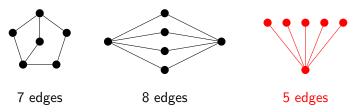
Definition: (Erdős-Hajnal-Moon)

$$sat(n; H) := min\{||G|| : |G| = n \text{ and } G \text{ is } H \text{ saturated}\}$$



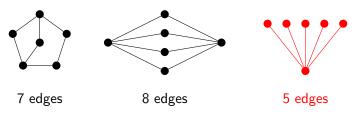
Definition: (Erdős-Hajnal-Moon)

$$sat(n; H) := min\{||G|| : |G| = n \text{ and } G \text{ is } H \text{ saturated}\}$$



Definition: (Erdős-Hajnal-Moon)

$$sat(n; H) := min\{||G|| : |G| = n \text{ and } G \text{ is } H \text{ saturated}\}$$

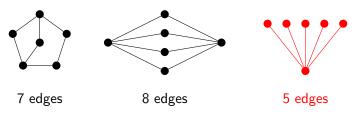


Definition: (Erdős-Hajnal-Moon)

The saturation number of a graph H and a number n is the minimum number of edges in a graph on n vertices that is H saturated.

$$sat(n; H) := min\{||G|| : |G| = n \text{ and } G \text{ is } H \text{ saturated}\}$$

Given the above examples:



Definition: (Erdős-Hajnal-Moon)

The saturation number of a graph H and a number n is the minimum number of edges in a graph on n vertices that is H saturated.

$$sat(n; H) := min\{||G|| : |G| = n \text{ and } G \text{ is } H \text{ saturated}\}$$

Given the above examples:

$$sat(6; triangle) \leq 5$$

Outline

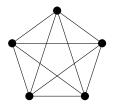
- Introduction to Graphs
- Graph Saturation
- Ramsey Theory
- Colored Graph Saturation

Definition:

An edge coloring of a graph is an assignment of a color to each edge.

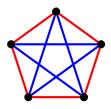
Definition:

An edge coloring of a graph is an assignment of a color to each edge.



Definition:

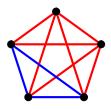
An edge coloring of a graph is an assignment of a color to each edge.



Colors: red, blue.

Definition:

An edge coloring of a graph is an assignment of a color to each edge.



Colors: red, blue.

Definition:

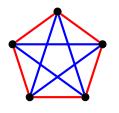
An edge coloring of a graph is an assignment of a color to each edge.

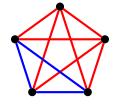
Colors: red, blue.

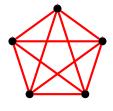
Edge Coloring

Definition:

An edge coloring of a graph is an assignment of a color to each edge.







Definition:

A graph is monochromatic if all its edges are assigned the same color.

Goal:

An edge-coloring with no forbidden monochromatic subgraph.

Goal:

An edge-coloring with no forbidden monochromatic subgraph.

Example:

Goal:

An edge-coloring with no forbidden monochromatic subgraph.

Example:

Goal:

An edge-coloring with no forbidden monochromatic subgraph.

Example:

good coloring

Goal:

An edge-coloring with no forbidden monochromatic subgraph.

Example:

bad coloring

Goal:

An edge-coloring with no forbidden monochromatic subgraph.

Example:

good coloring

bad coloring

bad coloring

Note:

Sometimes a good coloring doesn't exist!

Note:

Sometimes a good coloring doesn't exist!

Example: Any red-blue coloring of the edges of K_5 contains a

monochromatic red

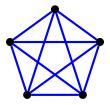


Note:

Sometimes a good coloring doesn't exist!

Example: Any red-blue coloring of the edges of K_5 contains a

monochromatic red

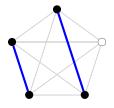


Note:

Sometimes a good coloring doesn't exist!

Example: Any red-blue coloring of the edges of K_5 contains a

monochromatic red

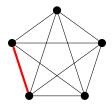


Note:

Sometimes a good coloring doesn't exist!

Example: Any red-blue coloring of the edges of K_5 contains a

monochromatic red

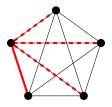


Note:

Sometimes a good coloring doesn't exist!

Example: Any red-blue coloring of the edges of K_5 contains a

monochromatic red

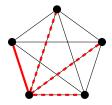


Note:

Sometimes a good coloring doesn't exist!

Example: Any red-blue coloring of the edges of K_5 contains a

monochromatic red

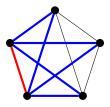


Note:

Sometimes a good coloring doesn't exist!

Example: Any red-blue coloring of the edges of K_5 contains a

monochromatic red

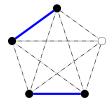


Note:

Sometimes a good coloring doesn't exist!

Example: Any red-blue coloring of the edges of K_5 contains a

monochromatic red

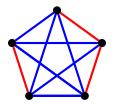


Note:

Sometimes a good coloring doesn't exist!

Example: Any red-blue coloring of the edges of K_5 contains a

monochromatic red



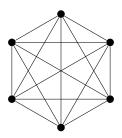
no good coloring exists

Note:

Sometimes a good coloring doesn't exist!

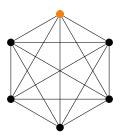
Note:

Sometimes a good coloring doesn't exist!



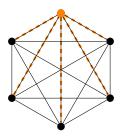
Note:

Sometimes a good coloring doesn't exist!



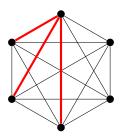
Note:

Sometimes a good coloring doesn't exist!



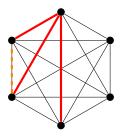
Note:

Sometimes a good coloring doesn't exist!



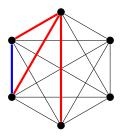
Note:

Sometimes a good coloring doesn't exist!



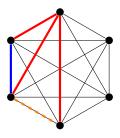
Note:

Sometimes a good coloring doesn't exist!



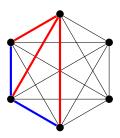
Note:

Sometimes a good coloring doesn't exist!



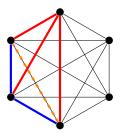
Note:

Sometimes a good coloring doesn't exist!



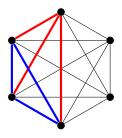
Note:

Sometimes a good coloring doesn't exist!



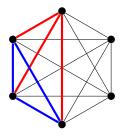
Note:

Sometimes a good coloring doesn't exist!



Note:

Sometimes a good coloring doesn't exist!



no good coloring exists

Note:

Sometimes a good coloring doesn't exist!

Ramsey's Theorem

Given **any** collection of forbidden subgraphs, and **any** sufficiently large clique, no good coloring exists.

The lowest "sufficiently large" number for a given collection of subgraphs is called the Ramsey Number.

Note:

Sometimes a good coloring doesn't exist!

Ramsey's Theorem

Given **any** collection of forbidden subgraphs, and **any** sufficiently large clique, no good coloring exists.

The lowest "sufficiently large" number for a given collection of subgraphs is called the Ramsey Number.

• R(3,3) = 6 (two triangles)

Note:

Sometimes a good coloring doesn't exist!

Ramsey's Theorem

Given **any** collection of forbidden subgraphs, and **any** sufficiently large clique, no good coloring exists.

The lowest "sufficiently large" number for a given collection of subgraphs is called the Ramsey Number.

- R(3,3) = 6 (two triangles)
- R(4,4) = 18

Note:

Sometimes a good coloring doesn't exist!

Ramsey's Theorem

Given **any** collection of forbidden subgraphs, and **any** sufficiently large clique, no good coloring exists.

The lowest "sufficiently large" number for a given collection of subgraphs is called the Ramsey Number.

- R(3,3) = 6 (two triangles)
- R(4,4) = 18
- $43 \le R(5,5) \le 49$

Note:

Sometimes a good coloring doesn't exist!

Ramsey's Theorem

Given **any** collection of forbidden subgraphs, and **any** sufficiently large clique, no good coloring exists.

Erdős-Szekeres: Given N, any sufficiently large collection of points in general position contains a subset forming the vertices of a convex N-gon

Van der Waerden: Any coloring of the natural numbers contains arbitrarily long monochromatic arithmetic sequences.

Green-Tao: The sequence of prime numbers contains arbitrarily long arithmetic progressions.

Outline

- Introduction to Graphs
- Graph Saturation
- Ramsey Theory
- Colored Graph Saturation

Marrying The Two

Recall:

A graph G is H-saturated if G contains no H subgraph, but adding any edge to G creates an H subgraph.

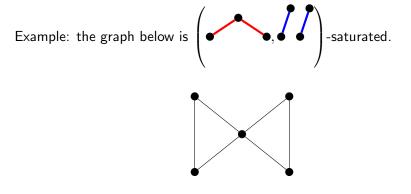
Recall:

A graph G is H-saturated if G contains no H subgraph, but adding any edge to G creates an H subgraph.

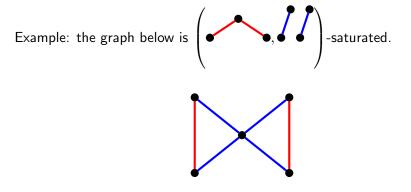
Ramsey version of saturation:

Given forbidden graphs H_1, \ldots, H_k (in colors $1, \ldots, k$ respectively), we say a graph G is (H_1, \ldots, H_k) -saturated if a good edge-coloring of G exists (using colors $1, \ldots, k$), but if we add *any* edge to G, all colorings are bad.

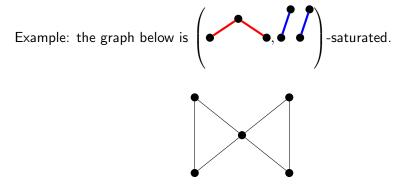
Example: the graph below is -saturated.



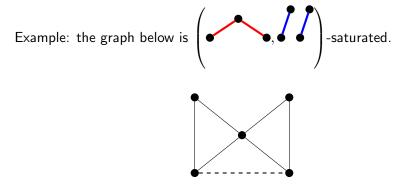
First: show a good coloring exists.



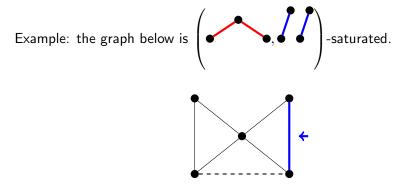
First: show a good coloring exists.



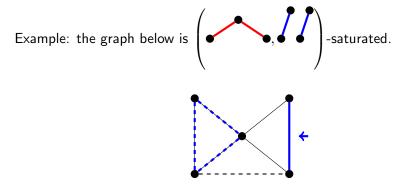
First: show a good coloring exists.



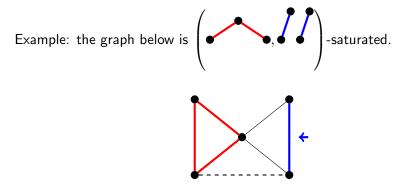
First: show a good coloring exists.



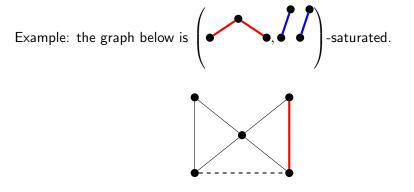
First: show a good coloring exists.



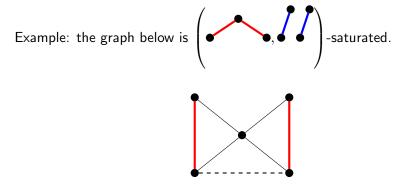
First: show a good coloring exists.



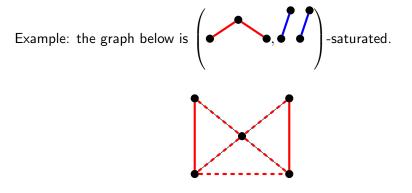
First: show a good coloring exists.



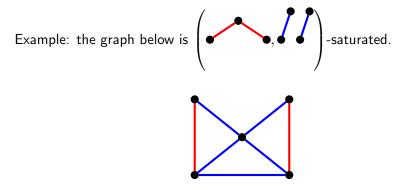
First: show a good coloring exists.



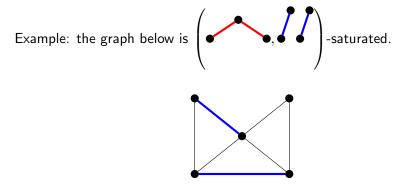
First: show a good coloring exists.



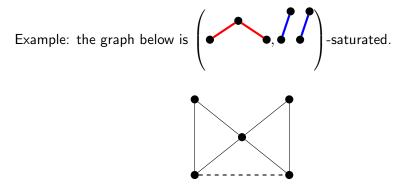
First: show a good coloring exists.



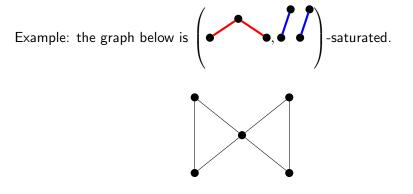
First: show a good coloring exists.



First: show a good coloring exists.



First: show a good coloring exists.



First: show a good coloring exists.

$rsat(n; H_1, \ldots, H_k)$

Again, we are interested in (H_1, \ldots, H_k) -saturated graphs with as few edges as possible.

Definition:

For a number n and forbidden subgraphs H_1, \ldots, H_k , we define

$$rsat(n; H_1, \ldots, H_k)$$

to be the minimum number of edges over all *n*-vertex graphs that are (H_1, \ldots, H_k) -saturated.

$rsat(n; H_1, \ldots, H_k)$

Again, we are interested in (H_1, \ldots, H_k) -saturated graphs with as few edges as possible.

Definition:

For a number n and forbidden subgraphs H_1, \ldots, H_k , we define

$$rsat(n; H_1, \ldots, H_k)$$

to be the minimum number of edges over all *n*-vertex graphs that are (H_1,\ldots,H_k) -saturated.

Previous Example:

$rsat(n; H_1, \ldots, H_k)$

Again, we are interested in (H_1, \ldots, H_k) -saturated graphs with as few edges as possible.

Definition:

For a number n and forbidden subgraphs H_1, \ldots, H_k , we define

$$rsat(n; H_1, \ldots, H_k)$$

to be the minimum number of edges over all *n*-vertex graphs that are (H_1,\ldots,H_k) -saturated.

Previous Example:

is
$$\left(5, \cdots, 5\right)$$
-saturated, so $rsat\left(5, \cdots, 5\right) \le 6$.

Definition:

Let $R = R(c_1, ..., c_t)$ be the smallest natural number so that, for forbidden cliques $K_{c_1}, ..., K_{c_t}$, no good coloring of K_R exists.

Definition:

Let $R = R(c_1, ..., c_t)$ be the smallest natural number so that, for forbidden cliques $K_{c_1}, ..., K_{c_t}$, no good coloring of K_R exists.

Example: R(3,3) = 6

Definition:

Let $R = R(c_1, ..., c_t)$ be the smallest natural number so that, for forbidden cliques $K_{c_1}, ..., K_{c_t}$, no good coloring of K_R exists.

Example: R(3,3) = 6

no good coloring of K_6 exists

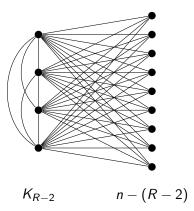
Definition:

Let $R = R(c_1, ..., c_t)$ be the smallest natural number so that, for forbidden cliques $K_{c_1}, ..., K_{c_t}$, no good coloring of K_R exists.

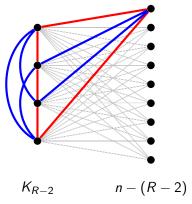
Example: R(3,3) = 6

no good coloring of K_6 exists

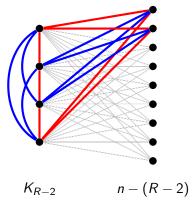
a good coloring of K_5 exists



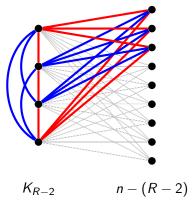
Let $R = R(c_1, ..., c_t)$. The construction below is $(K_{c_1}, ..., K_{c_t})$ -saturated.



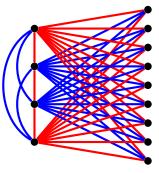
Let $R = R(c_1, ..., c_t)$. The construction below is $(K_{c_1}, ..., K_{c_t})$ -saturated.



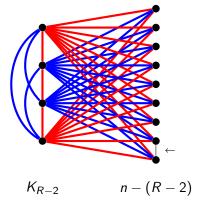
Let $R = R(c_1, ..., c_t)$. The construction below is $(K_{c_1}, ..., K_{c_t})$ -saturated.



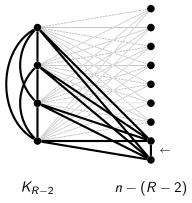
Let $R = R(c_1, \ldots, c_t)$. The construction below is $(K_{c_1}, \ldots, K_{c_t})$ -saturated.



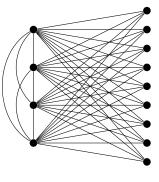
$$K_{R-2}$$
 $n-(R-2)$



- A good coloring exists
- If we add any edge, NO good coloring exists



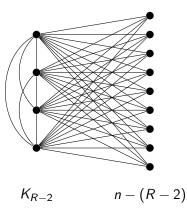
- A good coloring exists
- If we add any edge, NO good coloring exists



$$K_{R-2}$$
 $n-(R-2)$

- A good coloring exists
- If we add any edge, NO good coloring exists

Let $R = R(c_1, \ldots, c_t)$. The construction below is $(K_{c_1}, \ldots, K_{c_t})$ -saturated.



Hanson-Toft

Conjecture: The construction above has the fewest possible edges.

Hanson-Toft

Hanson-Toft Conjecture

$$\mathit{sat}(n; \mathcal{R}_{\mathit{min}}(K_{k_1}, \dots, K_{k_t})) = \left\{ \begin{array}{cc} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \geq r \end{array} \right.$$

Hanson-Toft

Hanson-Toft Conjecture

$$sat(n; \mathcal{R}_{min}(K_{k_1}, \dots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \ge r \end{cases}$$

Chen, Ferrara, Gould, Magnant, Schmitt; 2011

$$sat(n; \mathcal{R}_{min}(K_3, K_3)) = \begin{cases} \binom{n}{2} & n < 6 = r \\ 4n - 10 & n \ge 56 \end{cases}$$

Hanson-Toft

Hanson-Toft Conjecture

$$sat(n; \mathcal{R}_{min}(K_{k_1}, \dots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \ge r \end{cases}$$

Chen, Ferrara, Gould, Magnant, Schmitt; 2011

$$sat(n; \mathcal{R}_{min}(K_3, K_3)) = \begin{cases} \binom{n}{2} & n < 6 = r \\ 4n - 10 & n \ge 56 \end{cases}$$

Forbidden:

Graph:

Forbidden:

Graph:

Forbidden:

Graph:

Forbidden:

Graph:

Forbidden:

Graph:

Forbidden:

Graph:

Forbidden:

Graph:

Forbidden:

Graph:

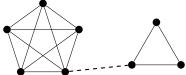
Forbidden:

Graph:

No forbidden subgraph

Forbidden:

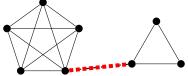
Graph:



No forbidden subgraph

Forbidden:

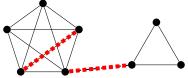
Graph:



No forbidden subgraph

Forbidden:

Graph:



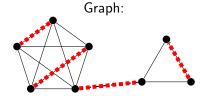
No forbidden subgraph

Forbidden:

Graph:

No forbidden subgraph

Forbidden:

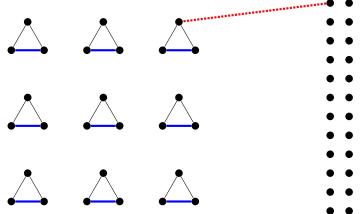


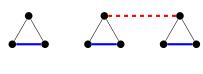
No forbidden subgraph

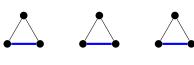
Forbidden:

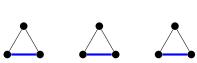
Graph:

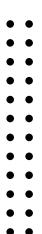
No forbidden subgraph

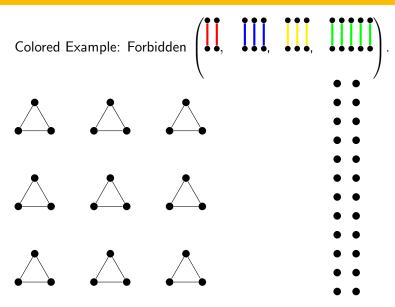


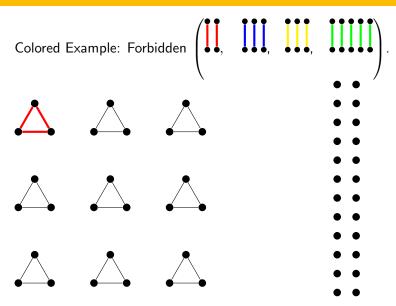


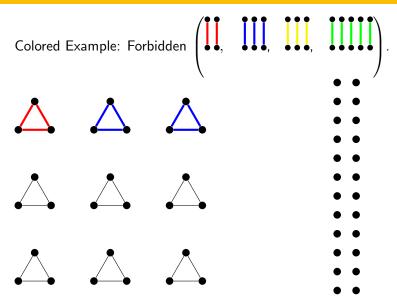


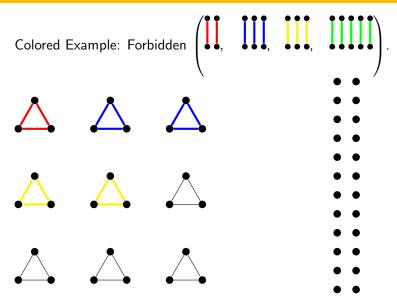


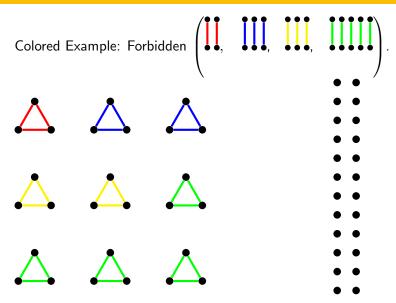


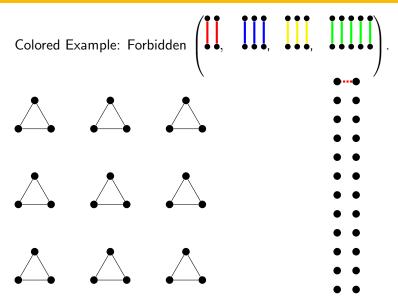


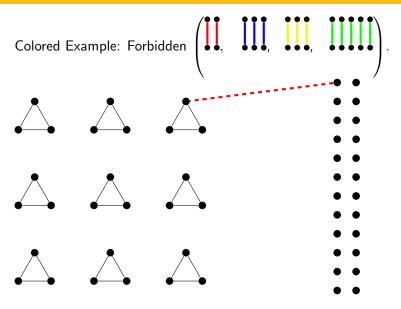


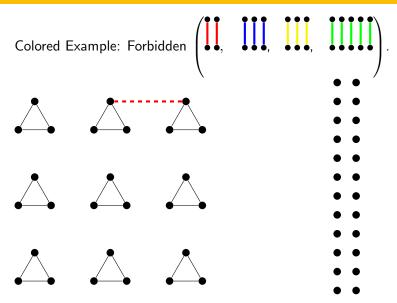












Goal:

Use results from (uncolored) saturation in the Ramsey version.

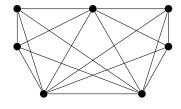
Goal:

Use results from (uncolored) saturation in the Ramsey version.

Goal:

Use results from (uncolored) saturation in the Ramsey version.

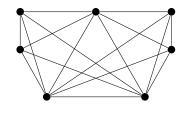
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

Example: Forbidden graphs

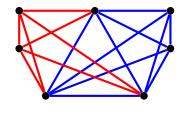


good coloring

Goal:

Use results from (uncolored) saturation in the Ramsey version.

Example: Forbidden graphs

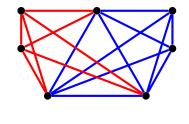


good coloring

Goal:

Use results from (uncolored) saturation in the Ramsey version.

Example: Forbidden graphs



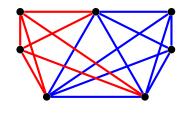
good coloring

1

Goal:

Use results from (uncolored) saturation in the Ramsey version.

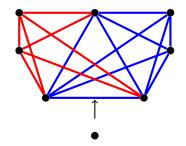
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

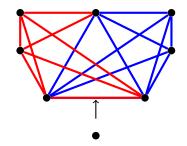
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

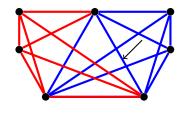
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

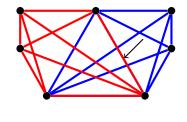
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

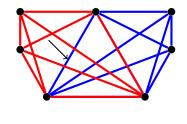
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

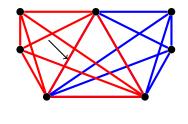
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

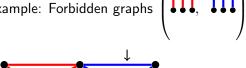
Example: Forbidden graphs

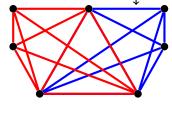


Goal:

Use results from (uncolored) saturation in the Ramsey version.

Example: Forbidden graphs

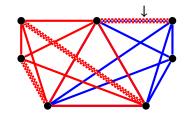




Goal:

Use results from (uncolored) saturation in the Ramsey version.

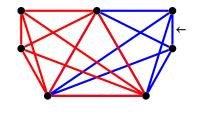
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

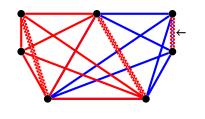
Example: Forbidden graphs (•••, •••)



Goal:

Use results from (uncolored) saturation in the Ramsey version.

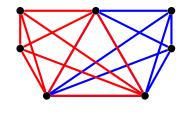
Example: Forbidden graphs (•••,



Goal:

Use results from (uncolored) saturation in the Ramsey version.

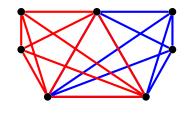
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

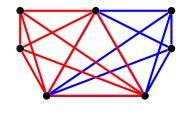
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

Example: Forbidden graphs



good coloring

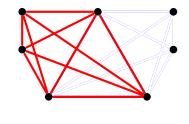
make red-heavy

take red subgraph

Goal:

Use results from (uncolored) saturation in the Ramsey version.

Example: Forbidden graphs



good coloring

↓

make red-heavy

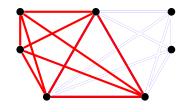
↓

take red subgraph

Goal:

Use results from (uncolored) saturation in the Ramsey version.

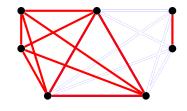
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

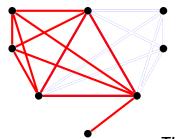
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

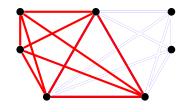
Example: Forbidden graphs



Goal:

Use results from (uncolored) saturation in the Ramsey version.

Example: Forbidden graphs



Thanks for Listening!