Graph Saturation in Color

Michael Ferrara Jaehoon Kim Elyse Yeager*

yeager2@illinois.edu

UAA Mathematics Colloquium February 2015

Ferrara-Kim-Yeager (UCD, UIUC)

Introduction to Graphs

Oraph Saturation

Ramsey Theory

Colored Graph Saturation

What Do You Know About Graphs?

|G| : number of vertices in G

|G| : number of vertices in G

|G| : number of vertices in G||G|| : number of edges in G

Ferrara-Kim-Yeager (UCD, UIUC)

Subgraph:

Subgraph:

Ferrara-Kim-Yeager (UCD, UIUC)

Ferrara-Kim-Yeager (UCD, UIUC)

Path:

Path:

Path:

Matching:

Path:

Matching:

Path:

Matching:

Path:

Matching:

Path:

Matching:

Path:

Matching:

Introduction to Graphs

o Graph Saturation

a Ramsey Theory

Colored Graph Saturation

Avoid a forbidden subgraph, but add as many edges as possible.

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Let the triangle be forbidden.

This graph is triangle saturated

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Let the triangle be forbidden.

Ferrara-Kim-Yeager (UCD, UIUC)

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Let the triangle be forbidden.

Ferrara-Kim-Yeager (UCD, UIUC)

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Let the triangle be forbidden.

This graph is triangle saturated

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Let the triangle be forbidden.

This graph is triangle saturated

Ferrara-Kim-Yeager (UCD, UIUC)

Graph Saturation in Color

Avoid a forbidden subgraph, but add as many edges as possible.

Ferrara-Kim-Yeager (UCD, UIUC)

Avoid a forbidden subgraph, but add as many edges as possible.

Example: Let the triangle be forbidden.

Definition

- A graph G is *H*-saturated if:
 - H is not a subgraph of G

Avoid a forbidden subgraph, but add as many edges as possible.

Example:

Definition

- A graph G is *H*-saturated if:
 - H is not a subgraph of G and
 - 2 If we add any edge to G, H is a subgraph of the resulting graph.

Definition: (Erdős-Hajnal-Moon)

The saturation number of a graph H and a number n is the minimum number of edges in a graph on n vertices that is H saturated.

7 edges

Definition: (Erdős-Hajnal-Moon)

The saturation number of a graph H and a number n is the minimum number of edges in a graph on n vertices that is H saturated.

7 edges 8 edges

Definition: (Erdős-Hajnal-Moon)

The saturation number of a graph H and a number n is the minimum number of edges in a graph on n vertices that is H saturated.

Definition: (Erdős-Hajnal-Moon)

The saturation number of a graph H and a number n is the minimum number of edges in a graph on n vertices that is H saturated.

Definition: (Erdős-Hajnal-Moon)

The saturation number of a graph H and a number n is the minimum number of edges in a graph on n vertices that is H saturated.

Definition: (Erdős-Hajnal-Moon)

The saturation number of a graph H and a number n is the minimum number of edges in a graph on n vertices that is H saturated.

 $sat(n; H) := min\{||G|| : |G| = n \text{ and } G \text{ is } H \text{ saturated}\}$

Given the above examples:

sat(6; triangle)

Definition: (Erdős-Hajnal-Moon)

The saturation number of a graph H and a number n is the minimum number of edges in a graph on n vertices that is H saturated.

 $sat(n; H) := min\{||G|| : |G| = n \text{ and } G \text{ is } H \text{ saturated}\}$

Given the above examples:

 $sat(6; triangle) \leq 5$

Introduction to Graphs

Graph Saturation

8 Ramsey Theory

Colored Graph Saturation

Definition:

An *edge coloring* of a graph is an assignment of a color to each edge.

Definition:

An *edge coloring* of a graph is an assignment of a color to each edge.

Definition:

An *edge coloring* of a graph is an assignment of a color to each edge.

Colors: red, blue.

Definition:

An *edge coloring* of a graph is an assignment of a color to each edge.

Colors: red, blue.

Definition:

An *edge coloring* of a graph is an assignment of a color to each edge.

Colors: red, blue.
Edge Coloring

Definition:

An *edge coloring* of a graph is an assignment of a color to each edge.

Definition:

A graph is *monochromatic* if all its edges are assigned the same color.

Ramsey Problems

Goal:

Sometimes a good coloring doesn't exist!

Sometimes a good coloring doesn't exist!

Sometimes a good coloring doesn't exist!

Sometimes a good coloring doesn't exist!

Sometimes a good coloring doesn't exist!

Sometimes a good coloring doesn't exist!

Sometimes a good coloring doesn't exist!

Sometimes a good coloring doesn't exist!

Sometimes a good coloring doesn't exist!

Sometimes a good coloring doesn't exist!

Sometimes a good coloring doesn't exist!

Sometimes a good coloring doesn't exist!

Example: Any red-blue coloring of the edges of K_6 contains a monochromatic red triangle or a monochromatic blue triangle.

no good coloring exists

Sometimes a good coloring doesn't exist!

Ramsey's Theorem

Given **any** collection of forbidden subgraphs, and **any** sufficiently large clique, no good coloring exists.

The lowest "sufficiently large" number for a given collection of subgraphs is called the Ramsey Number.

Sometimes a good coloring doesn't exist!

Ramsey's Theorem

Given **any** collection of forbidden subgraphs, and **any** sufficiently large clique, no good coloring exists.

The lowest "sufficiently large" number for a given collection of subgraphs is called the Ramsey Number.

• R(3,3) = 6 (two triangles)

Sometimes a good coloring doesn't exist!

Ramsey's Theorem

Given **any** collection of forbidden subgraphs, and **any** sufficiently large clique, no good coloring exists.

The lowest "sufficiently large" number for a given collection of subgraphs is called the Ramsey Number.

- R(3,3) = 6 (two triangles)
- R(4,4) = 18

Sometimes a good coloring doesn't exist!

Ramsey's Theorem

Given **any** collection of forbidden subgraphs, and **any** sufficiently large clique, no good coloring exists.

The lowest "sufficiently large" number for a given collection of subgraphs is called the Ramsey Number.

- R(3,3) = 6 (two triangles)
- R(4,4) = 18
- $43 \le R(5,5) \le 49$

Sometimes a good coloring doesn't exist!

Ramsey's Theorem

Given **any** collection of forbidden subgraphs, and **any** sufficiently large clique, no good coloring exists.

Erdős-Szekeres: Given N, any sufficiently large collection of points in general position contains a subset forming the vertices of a convex N-gon

Van der Waerden: Any coloring of the natural numbers contains arbitrarily long monochromatic arithmetic sequences.

Green-Tao: The sequence of prime numbers contains arbitrarily long arithmetic progressions.

Introduction to Graphs

- **Oraph Saturation**
- Ramsey Theory

Colored Graph Saturation

Recall:

A graph G is *H*-saturated if G contains no *H* subgraph, but adding any edge to G creates an *H* subgraph.

Recall:

A graph G is *H*-saturated if G contains no *H* subgraph, but adding any edge to G creates an *H* subgraph.

Ramsey version of saturation:

Given forbidden graphs H_1, \ldots, H_k (in colors $1, \ldots, k$ respectively), we say a graph G is (H_1, \ldots, H_k) -saturated if a good edge-coloring of G exists (using colors $1, \ldots, k$), but if we add any edge to G, all colorings are bad.

Example: the graph below is $(\bullet, \bullet, \bullet)$ -saturated.

First: show a good coloring exists.

First: show a good coloring exists.

First: show a good coloring exists.

First: show a good coloring exists.

First: show a good coloring exists.

First: show a good coloring exists.

First: show a good coloring exists.

First: show a good coloring exists.

First: show a good coloring exists.

$rsat(n; H_1, \ldots, H_k)$

Again, we are interested in (H_1, \ldots, H_k) -saturated graphs with as few edges as possible.

Definition:

For a number *n* and forbidden subgraphs H_1, \ldots, H_k , we define

 $rsat(n; H_1, \ldots, H_k)$

to be the minimum number of edges over all *n*-vertex graphs that are (H_1, \ldots, H_k) -saturated.

$rsat(n; H_1, \ldots, H_k)$

Again, we are interested in (H_1, \ldots, H_k) -saturated graphs with as few edges as possible.

Definition:

For a number *n* and forbidden subgraphs H_1, \ldots, H_k , we define

 $rsat(n; H_1, \ldots, H_k)$

to be the minimum number of edges over all *n*-vertex graphs that are (H_1, \ldots, H_k) -saturated.

$rsat(n; H_1, \ldots, H_k)$

Again, we are interested in (H_1, \ldots, H_k) -saturated graphs with as few edges as possible.

Definition:

For a number *n* and forbidden subgraphs H_1, \ldots, H_k , we define

 $rsat(n; H_1, \ldots, H_k)$

to be the minimum number of edges over all *n*-vertex graphs that are (H_1, \ldots, H_k) -saturated.

Definition:

Let $R = R(c_1, \ldots, c_t)$ be the smallest natural number so that, for forbidden cliques K_{c_1}, \ldots, K_{c_t} , no good coloring of K_R exists.

Definition:

Let $R = R(c_1, \ldots, c_t)$ be the smallest natural number so that, for forbidden cliques K_{c_1}, \ldots, K_{c_t} , no good coloring of K_R exists.

Example: R(3,3) = 6

Definition:

Let $R = R(c_1, \ldots, c_t)$ be the smallest natural number so that, for forbidden cliques K_{c_1}, \ldots, K_{c_t} , no good coloring of K_R exists.

Example: R(3,3) = 6

no good coloring of K_6 exists

Definition:

Let $R = R(c_1, \ldots, c_t)$ be the smallest natural number so that, for forbidden cliques K_{c_1}, \ldots, K_{c_t} , no good coloring of K_R exists.

Example: R(3,3) = 6

no good coloring of K_6 exists

a good coloring of K_5 exists

Let $R = R(c_1, \ldots, c_t)$. The construction below is $(K_{c_1}, \ldots, K_{c_t})$ -saturated.

 K_{R-2} n - (R - 2)

Let $R = R(c_1, \ldots, c_t)$. The construction below is $(K_{c_1}, \ldots, K_{c_t})$ -saturated.

• A good coloring exists

Let $R = R(c_1, \ldots, c_t)$. The construction below is $(K_{c_1}, \ldots, K_{c_t})$ -saturated.

• A good coloring exists

Let $R = R(c_1, \ldots, c_t)$. The construction below is $(K_{c_1}, \ldots, K_{c_t})$ -saturated.

• A good coloring exists

• A good coloring exists

- A good coloring exists
- If we add any edge, NO good coloring exists

- A good coloring exists
- If we add any edge, NO good coloring exists

- A good coloring exists
- If we add any edge, NO good coloring exists

Let $R = R(c_1, \ldots, c_t)$. The construction below is $(K_{c_1}, \ldots, K_{c_t})$ -saturated.

 K_{R-2} n - (R-2)

Hanson-Toft

Conjecture: The construction above has the fewest possible edges.

Ferrara-Kim-Yeager (UCD, UIUC)

Graph Saturation in Color

Hanson-Toft

Hanson-Toft Conjecture

$$sat(n; \mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \ge r \end{cases}$$

Hanson-Toft

Hanson-Toft Conjecture

$$sat(n; \mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \ge r \end{cases}$$

Chen, Ferrara, Gould, Magnant, Schmitt; 2011

$$sat(n; \mathcal{R}_{min}(K_3, K_3)) = \begin{cases} \binom{n}{2} & n < 6 = r \\ 4n - 10 & n \ge 56 \end{cases}$$

Hanson-Toft

Hanson-Toft Conjecture

$$sat(n; \mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \ge r \end{cases}$$

Chen, Ferrara, Gould, Magnant, Schmitt; 2011

$$sat(n; \mathcal{R}_{min}(K_3, K_3)) = \begin{cases} \binom{n}{2} & n < 6 = r \\ 4n - 10 & n \ge 56 \end{cases}$$

• No forbidden subgraph

• Adding any edge creates forbidden subgraph

• No forbidden subgraph

• Adding any edge creates forbidden subgraph

• No forbidden subgraph

• No forbidden subgraph

• No forbidden subgraph

• No forbidden subgraph

• No forbidden subgraph

Example: Forbidden matching on 10 edges.

Example: Forbidden matching on 10 edges.

Example: Forbidden matching on 10 edges.

Colored Example: Forbidden $\left(\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array}, \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array}, \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array} \right)$.

Colored Example: Forbidden $\left(\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array}, \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array}, \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array} \right)$.

Colored Example: Forbidden $\left(\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array}, \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array}, \begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array} \right)$.

Colored Example: Forbidden $\left(\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array}, \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array}, \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array} \right)$.

Colored Example: Forbidden $\left(\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array}, \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array}, \begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array} \right)$.

Colored Example: Forbidden $\left(\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array}, \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array}, \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array} \right)$.

Goal:

Use results from (uncolored) saturation in the Ramsey version.

Goal:

Use results from (uncolored) saturation in the Ramsey version.

Example: Forbidden graphs $\left(\begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array} \right)$.

Goal:

Use results from (uncolored) saturation in the Ramsey version.

Example: Forbidden graphs

Goal:

Use results from (uncolored) saturation in the Ramsey version.

Example: Forbidden graphs $\left(\underbrace{\downarrow \downarrow \downarrow}_{\bullet \bullet \bullet}, \underbrace{\downarrow \downarrow \downarrow}_{\bullet \bullet \bullet} \right)$.

good coloring

Goal:

Use results from (uncolored) saturation in the Ramsey version.

Example: Forbidden graphs $\left(\overbrace{\bullet\bullet\bullet}^{\bullet\bullet\bullet}, \overbrace{\bullet\bullet\bullet}^{\bullet\bullet\bullet} \right)$.

good coloring

Thanks for Listening!