Extremal Problems in Disjoint Cycles and Graph Saturation

Elyse Yeager

yeager2@illinois.edu

Final Examination University of Illinois at Urbana-Champaign

07 April 2015

Section 1

Extremal Problems in Disjoint Cycles

- Background: Corrádi-Hajnal
- A Refinement of Corrádi-Hajnal
- Dirac's Question
- Equitable Coloring

2 Variations on Graph Saturation

- Background: Graph Saturation
- Saturation of Ramsey-Minimal Families
- Induced Saturation

Disjoint Cycles and Corrádi-Hajnal

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

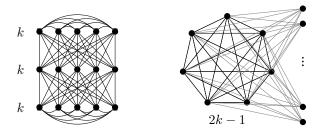
Conjecture of Erdős

Disjoint Cycles and Corrádi-Hajnal

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Conjecture of Erdős Sharpness:



Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

That is: low-degree vertices are all connected; other vertices have higher degree to compensate

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal

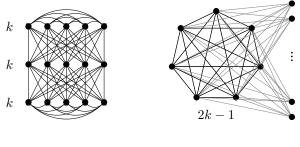
E. Yeager (yeager2@illinois.edu)

Enomoto, Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Sharpness:



n = 3k $\alpha(G)$

Section 1

Extremal Problems in Disjoint Cycles

• Background: Corrádi-Hajnal

• A Refinement of Corrádi-Hajnal

- Dirac's Question
- Equitable Coloring

2 Variations on Graph Saturation

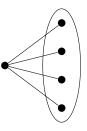
- Background: Graph Saturation
- Saturation of Ramsey-Minimal Families
- Induced Saturation

H. A. Kierstead, A. V. Kostochka and Y., On the Corrádi-Hajnal Theorem and a question of Dirac. submitted

A Note about Independence Number and Cycles

Observation

Any cycle has at least two vertices outside any independent set.

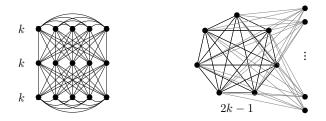


Corollary

Any graph G with k disjoint cycles has $\alpha(G) \leq |G| - 2k$.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.



Kierstead-Kostochka-Y., 2015⁺

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

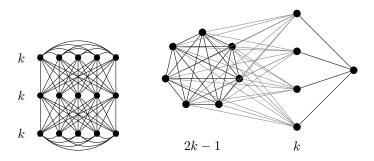
Kierstead-Kostochka-Y., 2015+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Kierstead-Kostochka-Y., 2015+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

 $n \ge 3k + 1$



Kierstead-Kostochka-Y., 2015+

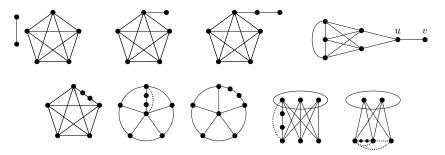
For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

k = 1:

Kierstead-Kostochka-Y., 2015+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

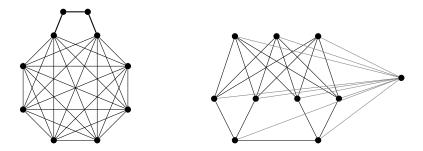
k = 2:



Kierstead-Kostochka-Y., 2015+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

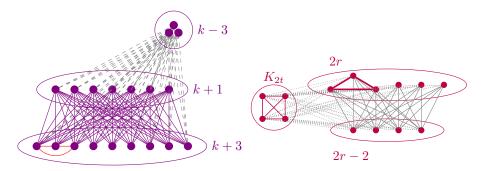
k = 3:



Kierstead-Kostochka-Y., 2015+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

 $\sigma_2 = 4k - 4$:



Section 1

Extremal Problems in Disjoint Cycles

- Background: Corrádi-Hajnal
- A Refinement of Corrádi-Hajnal
- Dirac's Question
- Equitable Coloring

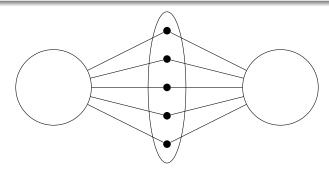
2 Variations on Graph Saturation

- Background: Graph Saturation
- Saturation of Ramsey-Minimal Families
- Induced Saturation

H. A. Kierstead, A. V. Kostochka and Y., **The** (2k - 1)-connected graphs with no k disjoint cycles. *Combinatorica*, to appear.

Dirac, 1963

What (2k - 1)-connected graphs do not have k disjoint cycles?

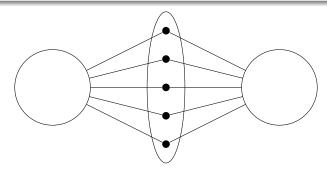


Observation:

G is (2k-1) connected $\Rightarrow \delta(G) \ge 2k-1 \Rightarrow \sigma_2(G) \ge 4k-2$

Dirac, 1963

What (2k - 1)-connected graphs do not have k disjoint cycles?



Observation:

G is (2k-1) connected $\Rightarrow \delta(G) \ge 2k-1 \Rightarrow \sigma_2(G) \ge 4k-2$ KKMY: Holds for $\sigma_2(G) \ge 4k-3$

E. Yeager (yeager2@illinois.edu)

Extremal Problems

Dirac, 1963

What (2k - 1)-connected graphs do not have k disjoint cycles?

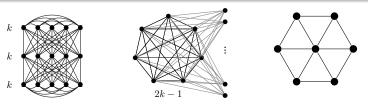
Answer to Dirac's Question for Simple Graphs

Let $k \ge 2$. Every graph G with (i) $|G| \ge 3k$ and (ii) $\delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

• if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$, and

•
$$lpha({\sf G}) \leq |{\sf G}| - 2k$$
, and

• if k = 2 then G is not a wheel.



Dirac, 1963 What (2k - 1)-connected graphs do not have k disjoint cycles?

Answer to Dirac's Question for Simple Graphs

Let $k \ge 2$. Every graph G with (i) $|G| \ge 3k$ and (ii) $\delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

- if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$, and
- $\alpha(G) \leq |G| 2k$, and
- if k = 2 then G is not a wheel.

Further:

characterization for multigraphs

Multigraph Corrádi-Hajnal

The simple degree of a vertex is the number of its (distinct) neighbors.

Theorem (Extension of Corrádi-Hajnal to Multigraphs)

For $k \in \mathbb{Z}^+$, let G be a multigraph with simple degree at least 2k. Then G has k disjoint cycles if and only if

 $|V(G)| \ge 3k - 2\ell - \alpha'$

where $3k - 2\ell - \alpha'$ is the trivially necessary number of vertices.

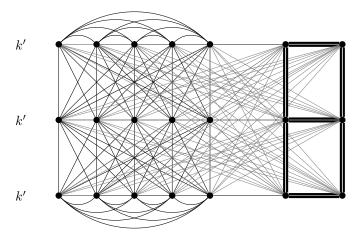
Corollary

Let G be a multigraph with simple degree at least 2k - 1 for some integer $k \ge 2$. Suppose G contains at least one loop. Then G has k disjoint cycles if and only if

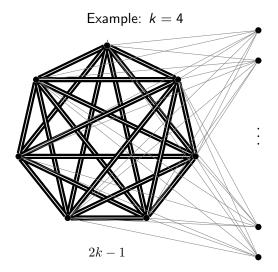
$$|V(G)| \ge 3k - 2\ell - \alpha'.$$

Multiple edges have a perfect matching

Example: k = 8



Big independent set, incident to no multiple edges



Wheel, with possibly some spokes multiple

Example: k = 2

Section 1

Extremal Problems in Disjoint Cycles

- Background: Corrádi-Hajnal
- A Refinement of Corrádi-Hajnal
- Dirac's Question
- Equitable Coloring

2 Variations on Graph Saturation

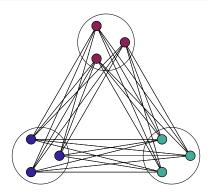
- Background: Graph Saturation
- Saturation of Ramsey-Minimal Families
- Induced Saturation

H. A. Kierstead, A. V. Kostochka, T. N. Molla, and Y., Sharpening an Ore-type version of the Corrádi-Hajnal Theorem. *in preparation*

Equitable Coloring

Definition

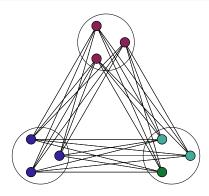
An *equitable* k-coloring of a graph G is a partition of its vertices into independent sets (called color classes) such that any two color classes differ in size by at most one.



Equitable Coloring

Definition

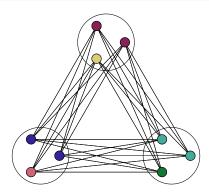
An *equitable* k-coloring of a graph G is a partition of its vertices into independent sets (called color classes) such that any two color classes differ in size by at most one.



Equitable Coloring

Definition

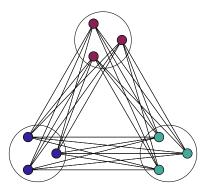
An *equitable* k-coloring of a graph G is a partition of its vertices into independent sets (called color classes) such that any two color classes differ in size by at most one.



Equitable Coloring and Cycles

n = 3k

If G has n = 3k vertices, then G has an equitable k-coloring if and only if \overline{G} has k disjoint cycles (all triangles).



Equitable Coloring and Cycles

n = 3k

If G has n = 3k vertices, then G has an equitable k-coloring if and only if \overline{G} has k disjoint cycles (all triangles).

Ore Conditions

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Ore Conditions

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y, 2015+

If G is a k-colorable 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Ore Conditions

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y, 2015+

If G is a k-colorable 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on 3k vertices with $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.

Ore Conditions

Kierstead-Kostochka-Molla-Y, 2015+

If G is a k-colorable 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

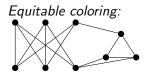
If G is a graph on 3k vertices with $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.

Kierstead-Kostochka-Y, 2015+

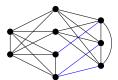
For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Exceptions

• *k* = 3

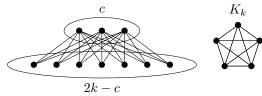


Cycles:

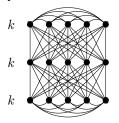


Exceptions

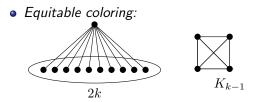
• Equitable coloring:

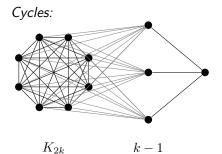


Cycles:



Exceptions





Section 2

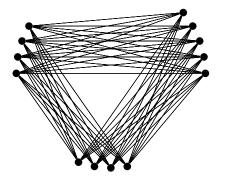
Extremal Problems in Disjoint Cycles

- Background: Corrádi-Hajnal
- A Refinement of Corrádi-Hajnal
- Dirac's Question
- Equitable Coloring

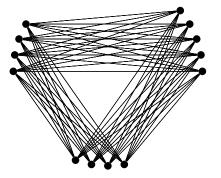
2 Variations on Graph Saturation

- Background: Graph Saturation
- Saturation of Ramsey-Minimal Families
- Induced Saturation

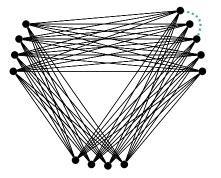
Turán: Maximum number of edges in a graph with no forbidden subgraph.



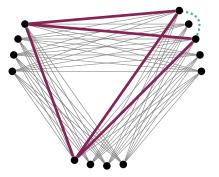
Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property:



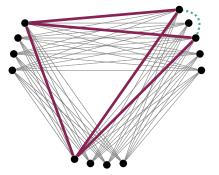
Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property:



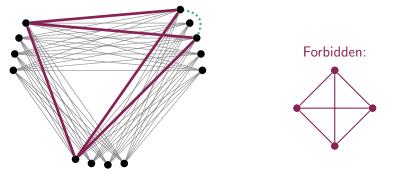
Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property:



Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property: adding any edge results in a forbidden subgraph



Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property: adding any edge results in a forbidden subgraph



Graph Saturation

A graph **G** is *H*-saturated if **G** contains no forbidden *H* subgraph, but adding any edge to **G** gives rise to an *H* subgraph.

Easy Question

What is the *minimum* number of edges in a graph **G** with no forbidden subgraph H?

Easy Question

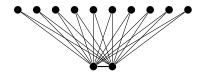
What is the *minimum* number of edges in a graph **G** with no forbidden subgraph H?

Interesting Question: Saturation Number (Erdős-Hajnal-Moon)

Easy Question

What is the *minimum* number of edges in a graph **G** with no forbidden subgraph H?

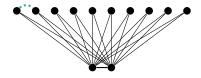
Interesting Question: Saturation Number (Erdős-Hajnal-Moon)



Easy Question

What is the *minimum* number of edges in a graph **G** with no forbidden subgraph H?

Interesting Question: Saturation Number (Erdős-Hajnal-Moon)



Easy Question

What is the *minimum* number of edges in a graph **G** with no forbidden subgraph H?

Interesting Question: Saturation Number (Erdős-Hajnal-Moon)

Section 2

Extremal Problems in Disjoint Cycles

- Background: Corrádi-Hajnal
- A Refinement of Corrádi-Hajnal
- Dirac's Question
- Equitable Coloring

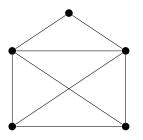
2 Variations on Graph Saturation

- Background: Graph Saturation
- Saturation of Ramsey-Minimal Families
- Induced Saturation

M. Ferrara, J. Kim, and Y., Ramsey-minimal saturation numbers for matchings. Discrete Mathematics 322(2014), 26-30.

Edge-Colored Saturation

A graph **G** is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if: (*i*) there exists a *k*-coloring with no H_i in color *i*, and (*ii*) **G** is edge-maximal with respect to this property



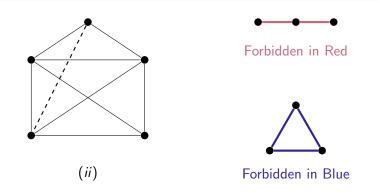
Forbidden in Red

Forbidden in Blue

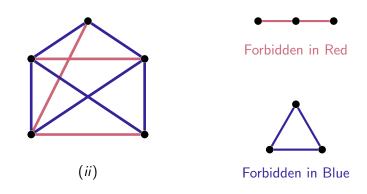
Edge-Colored Saturation



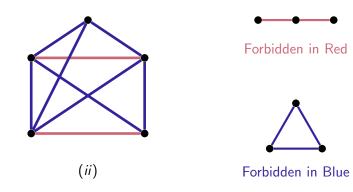
Edge-Colored Saturation



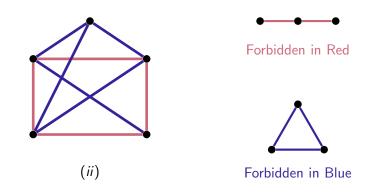
Edge-Colored Saturation



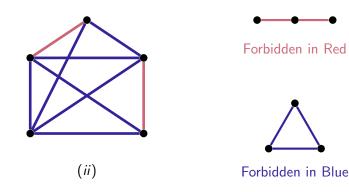
Edge-Colored Saturation



Edge-Colored Saturation

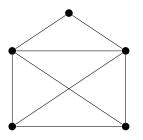


Edge-Colored Saturation



Edge-Colored Saturation

A graph **G** is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if: (*i*) there exists a *k*-coloring with no H_i in color *i*, and (*ii*) **G** is edge-maximal with respect to this property

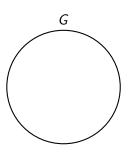


Forbidden in Red

Forbidden in Blue

Ferrara-Kim-Y, 2014

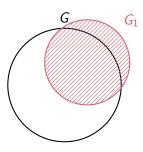
Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.



Forbidden: H_1, H_2, H_3, H_4

Ferrara-Kim-Y, 2014

Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

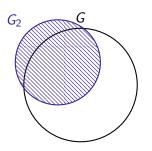


Forbidden: H_1, H_2, H_3, H_4

 G_1 is H_1 -saturated

Ferrara-Kim-Y, 2014

Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

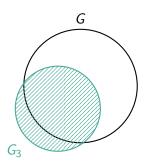


Forbidden: H_1, H_2, H_3, H_4

 G_1 is H_1 -saturated G_2 is H_2 -saturated

Ferrara-Kim-Y, 2014

Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

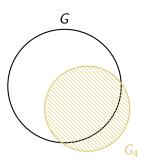


Forbidden: H_1, H_2, H_3, H_4

 G_1 is H_1 -saturated G_2 is H_2 -saturated G_3 is H_3 -saturated

Ferrara-Kim-Y, 2014

Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

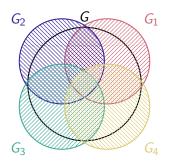


Forbidden: H_1, H_2, H_3, H_4

 G_1 is H_1 -saturated G_2 is H_2 -saturated G_3 is H_3 -saturated G_4 is H_4 -saturated

Ferrara-Kim-Y, 2014

Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.



Forbidden: H_1, H_2, H_3, H_4

 G_1 is H_1 -saturated G_2 is H_2 -saturated G_3 is H_3 -saturated G_4 is H_4 -saturated

Ferrara-Kim-Y, 2014

Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

Matchings, Ferrara-Kim-Y

If $m_1, ..., m_k \ge 1$ and $n > 3(m_1 + ... + m_k - k)$, then

 $sat(n, \mathcal{R}_{min}(m_1K_2, ..., m_kK_2)) = 3(m_1 + ... + m_k - k).$

Section 2

Extremal Problems in Disjoint Cycles

- Background: Corrádi-Hajnal
- A Refinement of Corrádi-Hajnal
- Dirac's Question
- Equitable Coloring

2 Variations on Graph Saturation

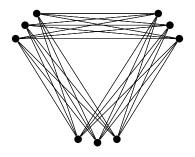
- Background: Graph Saturation
- Saturation of Ramsey-Minimal Families
- Induced Saturation

S. Behrens, C. Erbes, M. Santana, D. Yager, Y. Graphs with induced-saturation number zero. *submitted*

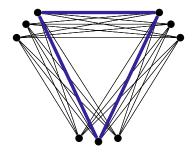
Induced Saturation

Idea for Induced Saturation:

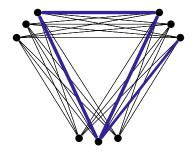
Adding or deleting any edge produces a forbidden induced subgraph.



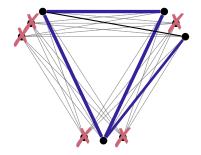
Idea for Induced Saturation:



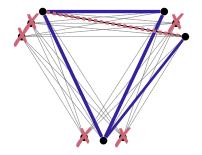
Idea for Induced Saturation:



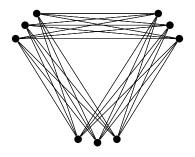
Idea for Induced Saturation:



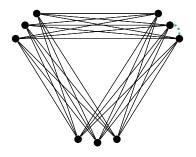
Idea for Induced Saturation:



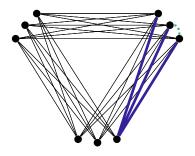
Idea for Induced Saturation:



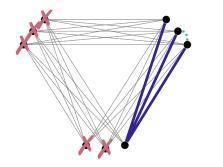
Idea for Induced Saturation:



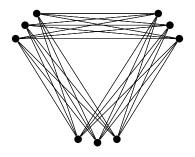
Idea for Induced Saturation:



Idea for Induced Saturation:

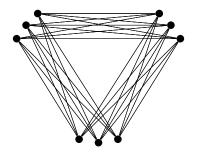


Idea for Induced Saturation:



Idea for Induced Saturation:

Adding or deleting any edge produces a forbidden induced subgraph.



Warning: not defined for all forbidden subgraphs!

Martin-Smith

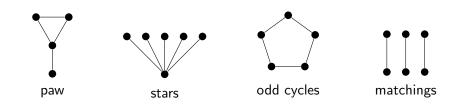
Definition that works for all forbidden subgraphs.

Martin-Smith

Definition that works for all forbidden subgraphs.

${\it Behrens-Erbes-Santana-Yager-Y,\ 2015+}$

• A large number of common families fit into the simpler definition

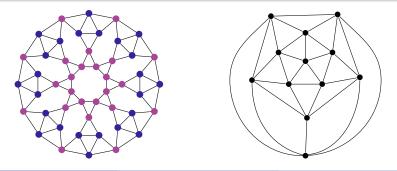


Martin-Smith

Definition that works for all forbidden subgraphs.

${\it Behrens-Erbes-Santana-Yager-Y,\ 2015+}$

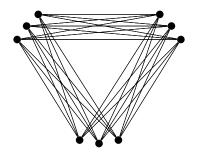
- A large number of common families fit into the simpler definition
- Using simpler definition, minimize number of edges



Induced Saturation, Behrens-Erbes-Santana-Yager-Y

Paw

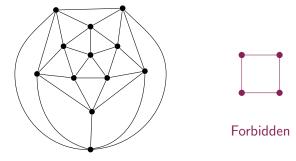
Every component of a paw-induced-saturated graph is a complete multipartite graph.



Induced Saturation, BESYY

The icosahedron is C_4 -induced saturated.

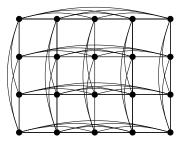
For all $n \ge 12$, there exists a graph that is a generalized version of an icosahedron that is C_4 -induced-saturated.



Induced Saturation, BESYY

Odd Cyces

For $k \ge 3$, the product of (appropriate) cliques is C_{2k-1} -induced-saturated.



Thanks for Listening!