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Disjoint Cycles and Corrádi-Hajnal

Corrádi-Hajnal, 1963

If G is a graph on n vertices with n ≥ 3k and δ(G ) ≥ 2k , then G contains
k disjoint cycles.

Conjecture of Erdős

Sharpness:
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Enomoto, Wang

Corrádi-Hajnal, 1963

If G is a graph on n vertices with n ≥ 3k and δ(G ) ≥ 2k , then G contains
k disjoint cycles.

σ2(G ) := min{d(x) + d(y) : xy 6∈ E (G )}
That is: low-degree vertices are all connected;
other vertices have higher degree to compensate

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n ≥ 3k and σ2(G ) ≥ 4k − 1, then G
contains k disjoint cycles.

Implies Corrádi-Hajnal
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Enomoto, Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n ≥ 3k and σ2(G ) ≥ 4k − 1, then G
contains k disjoint cycles.

Sharpness:
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n = 3k α(G ) > n − 2k
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A Note about Independence Number and Cycles

Observation

Any cycle has at least two vertices outside any independent set.

Corollary

Any graph G with k disjoint cycles has α(G ) ≤ |G | − 2k .
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Kierstead-Kostochka-Y, 2015+

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n ≥ 3k and σ2(G ) ≥ 4k − 1, then G
contains k disjoint cycles.

k

k

k

2k − 1

Kierstead-Kostochka-Y., 2015+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .
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For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .

n ≥ 3k + 1
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Kierstead-Kostochka-Y., 2015+

Kierstead-Kostochka-Y., 2015+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .

k = 1:

E. Yeager ( yeager2@illinois.edu ) Extremal Problems 07 April 2015 10 / 37



Kierstead-Kostochka-Y., 2015+

Kierstead-Kostochka-Y., 2015+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .

k = 2:

u v
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Kierstead-Kostochka-Y., 2015+

Kierstead-Kostochka-Y., 2015+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .

k = 3:
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Kierstead-Kostochka-Y., 2015+

Kierstead-Kostochka-Y., 2015+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .

σ2 = 4k − 4:

k + 3

k + 1

k − 3

K2t

2r

2r − 2
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Dirac: (2k − 1)-connected without k disjoint cycles

Dirac, 1963

What (2k − 1)-connected graphs do not have k disjoint cycles?

Observation:

G is (2k − 1) connected ⇒ δ(G ) ≥ 2k − 1 ⇒ σ2(G ) ≥ 4k − 2

KKMY: Holds for σ2(G ) ≥ 4k − 3
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Dirac: (2k − 1)-connected without k disjoint cycles

Dirac, 1963

What (2k − 1)-connected graphs do not have k disjoint cycles?

Answer to Dirac’s Question for Simple Graphs

Let k ≥ 2. Every graph G with (i) |G | ≥ 3k and (ii) δ(G ) ≥ 2k − 1
contains k disjoint cycles if and only if

if k is odd and |G | = 3k , then G 6= 2Kk ∨ Kk , and

α(G ) ≤ |G | − 2k , and

if k = 2 then G is not a wheel.
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Dirac: (2k − 1)-connected without k disjoint cycles

Dirac, 1963

What (2k − 1)-connected graphs do not have k disjoint cycles?

Answer to Dirac’s Question for Simple Graphs

Let k ≥ 2. Every graph G with (i) |G | ≥ 3k and (ii) δ(G ) ≥ 2k − 1
contains k disjoint cycles if and only if

if k is odd and |G | = 3k , then G 6= 2Kk ∨ Kk , and

α(G ) ≤ |G | − 2k , and

if k = 2 then G is not a wheel.

Further:

characterization for multigraphs
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Multigraph Corrádi-Hajnal

The simple degree of a vertex is the number of its (distinct) neighbors.

Theorem (Extension of Corrádi-Hajnal to Multigraphs)

For k ∈ Z+, let G be a multigraph with simple degree at least 2k. Then G
has k disjoint cycles if and only if

|V (G )| ≥ 3k − 2`− α′

where 3k − 2`− α′ is the trivially necessary number of vertices.

Corollary

Let G be a multigraph with simple degree at least 2k − 1 for some integer
k ≥ 2. Suppose G contains at least one loop. Then G has k disjoint
cycles if and only if

|V (G )| ≥ 3k − 2`− α′.
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Multiple edges have a perfect matching

Example: k = 8

k′

k′

k′
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Big independent set, incident to no multiple edges

Example: k = 4

2k − 1

E. Yeager ( yeager2@illinois.edu ) Extremal Problems 07 April 2015 16 / 37



Wheel, with possibly some spokes multiple

Example: k = 2
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Equitable Coloring

Definition

An equitable k-coloring of a graph G is a partition of its vertices into
independent sets (called color classes) such that any two color classes
differ in size by at most one.
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Equitable Coloring and Cycles

n = 3k

If G has n = 3k vertices, then G has an equitable k-coloring if and only if
G has k disjoint cycles (all triangles).
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Ore Conditions

Chen-Lih-Wu Conjecture

If χ(G ),∆(G ) ≤ k and Kk,k 6⊆ G , then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y, 2015+

If G is a k-colorable 3k-vertex graph such that for each edge xy ,
d(x) + d(y) ≤ 2k + 1, then G is equitably k-colorable, or is one of several
exceptions.

Equivalent

If G is a graph on 3k vertices with σ2(G ) ≥ 4k − 3, then G contains k
disjoint cycles, or is one of several exceptions, or G is not k-colorable.

Kierstead-Kostochka-Y, 2015+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .
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Exceptions

k = 3

Equitable coloring:

Cycles:

E. Yeager ( yeager2@illinois.edu ) Extremal Problems 07 April 2015 22 / 37



Exceptions

Equitable coloring:

2k − c

c Kk

Cycles:

k

k

k
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Exceptions

Equitable coloring:

2k
Kk−1

Cycles:

K2k k − 1

E. Yeager ( yeager2@illinois.edu ) Extremal Problems 07 April 2015 22 / 37



Section 2

1 Extremal Problems in Disjoint Cycles
Background: Corrádi-Hajnal
A Refinement of Corrádi-Hajnal
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Introduction to Graph Saturation

Turán: Maximum number of edges in a graph with no forbidden subgraph.

Extra property: adding any edge results in a forbidden subgraph

Forbidden:

Graph Saturation

A graph G is H-saturated if G contains no forbidden H subgraph, but
adding any edge to G gives rise to an H subgraph.
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Saturation Number

Easy Question

What is the minimum number of edges in a graph G with no forbidden
subgraph H?

Forbidden:

Interesting Question: Saturation Number (Erdős-Hajnal-Moon)

What is the minimum number of edges in a graph G that is H-saturated?

Forbidden
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M. Ferrara, J. Kim, and Y.,
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Edge-Colored Graph Saturation

Edge-Colored Saturation

A graph G is saturated with respect to forbidden subgraphs H1, . . . ,Hk if:
(i) there exists a k-coloring with no Hi in color i , and
(ii) G is edge-maximal with respect to this property

Forbidden in Red

Forbidden in Blue

(i)(ii)
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Ferrara-Kim-Y

Ferrara-Kim-Y, 2014

Iterated Recoloring: method for using results about (uncolored) graph
saturation to illuminate problems in edge-colored graph saturation.

G

G1G2

G3 G4

Forbidden: H1,H2,H3,H4

G1 is H1-saturated

G2 is H2-saturated

G3 is H3-saturated

G4 is H4-saturated
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Iterated Recoloring: method for using results about (uncolored) graph
saturation to illuminate problems in edge-colored graph saturation.
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Ferrara-Kim-Y

Ferrara-Kim-Y, 2014

Iterated Recoloring: method for using results about (uncolored) graph
saturation to illuminate problems in edge-colored graph saturation.

Matchings, Ferrara-Kim-Y

If m1, . . . ,mk ≥ 1 and n > 3(m1 + . . .+ mk − k), then

sat(n,Rmin(m1K2, . . . ,mkK2)) = 3(m1 + . . .+ mk − k).
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Section 2

1 Extremal Problems in Disjoint Cycles
Background: Corrádi-Hajnal
A Refinement of Corrádi-Hajnal
Dirac’s Question
Equitable Coloring

2 Variations on Graph Saturation
Background: Graph Saturation
Saturation of Ramsey-Minimal Families
Induced Saturation
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Induced Saturation

Idea for Induced Saturation:

Adding or deleting any edge produces a forbidden induced subgraph.

Forbidden

77
7

7 7

77
7

77

Warning: not defined for all forbidden subgraphs!
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Induced Saturation

Martin-Smith

Definition that works for all forbidden subgraphs.

Behrens-Erbes-Santana-Yager-Y, 2015+

A large number of common families fit into the simpler definition

Using simpler definition, minimize number of edges
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Martin-Smith

Definition that works for all forbidden subgraphs.

Behrens-Erbes-Santana-Yager-Y, 2015+

A large number of common families fit into the simpler definition

Using simpler definition, minimize number of edges

paw stars odd cycles matchings
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Definition that works for all forbidden subgraphs.
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Induced Saturation, Behrens-Erbes-Santana-Yager-Y

Paw

Every component of a paw-induced-saturated graph is a complete
multipartite graph.

Forbidden
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Induced Saturation, BESYY

C4

The icosahedron is C4-induced saturated.
For all n ≥ 12, there exists a graph that is a generalized version of an
icosahedron that is C4-induced-saturated.

Forbidden
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Induced Saturation, BESYY

Odd Cyces

For k ≥ 3, the product of (appropriate) cliques is C2k−1-induced-saturated.

Forbidden
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Thanks for Listening!
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