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HOW TO USE THIS BOOK

Ĳ Introduction

First of all, welcome to Calculus!

This book is written as a companion to the Math 100 textbook.

§§ How to Work Questions

This book is organized into four sections: Questions, Hints, Answers, and Solutions. As you are
working problems, resist the temptation to prematurely peek at the back! It’s important to allow
yourself to struggle for a time with the material. Even professional mathematicians don’t always
know right away how to solve a problem. The art is in gathering your thoughts and figuring out a
strategy to use what you know to find out what you don’t.

If you find yourself at a real impasse, go ahead and look for a hint in the Hints section. Think about
it for a while, and don’t be afraid to read back in the notes to look for a key idea that will help you
proceed. If you still can’t solve the problem, well, we included the Solutions section for a reason!
As you’re reading the solutions, try hard to understand why we took the steps we did, instead of
memorizing step-by-step how to solve that one particular problem.

If you struggled with a question quite a lot, it’s probably a good idea to return to it in a few days.
That might have been enough time for you to internalize the necessary ideas, and you might find it
easily conquerable. Pat yourself on the back–sometimes math makes you feel good! If you’re still
having troubles, read over the solution again, with an emphasis on understanding why each step
makes sense.

One of the reasons so many students are required to study calculus is the hope that it will improve
their problem-solving skills. In this class, you will learn lots of concepts, and be asked to apply them
in a variety of situations. Often, this will involve answering one really big problem by breaking it up
into manageable chunks, solving those chunks, then putting the pieces back together. When you see
a particularly long question, remain calm and look for a way to break it into pieces you can handle.
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HOW TO USE THIS BOOK

§§ Working with Friends
Study buddies are fantastic! If you don’t already have friends in your class, you can ask your
neighbours in lecture to form a group. Often, a question that you might bang your head against for
an hour can be easily cleared up by a friend who sees what you’ve missed. Regular study times
make sure you don’t procrastinate too much, and friends help you maintain a positive attitude when
you might otherwise succumb to frustration. Struggle in mathematics is desirable, but suffering is
not.

When working in a group, make sure you try out problems on your own before coming together
to discuss with others. Learning is a process, and getting answers to questions that you haven’t
considered on your own can rob you of the practice you need to master skills and concepts, and the
tenacity you need to develop to become a competent problem-solver.

§§ Types of Questions
The majority of questions in this book come from CLP Calculus, and have the organization shown
below. However, some chapters are taken from Keshet’s Differential Equations for the Life Sciences,
and have slightly different organization. Those questions aren’t organized into stages, and don’t
have hints or solutions.

Q[1](˚):
In addition to original problems, this book contains problems pulled from quizzes and exams given at
UBC for Math 100 and 180 (first-semester calculus) and Math 120 (honours first-semester calculus).
These problems are marked with a star. The authors would like to acknowledge the contributions of
the many people who collaborated to produce these exams over the years.

Instructions and other comments that are attached to more than one question are written in this font. The
questions are organized into Stage 1, Stage 2, and Stage 3.

§§ Stage 1
The first category is meant to test and improve your understanding of basic underlying concepts.
These often do not involve much calculation. They range in difficulty from very basic reviews of
definitions to questions that require you to be thoughtful about the concepts covered in the section.

§§ Stage 2
Questions in this category are for practicing skills. It’s not enough to understand the philosophical
grounding of an idea: you have to be able to apply it in appropriate situations. This takes practice!

§§ Stage 3
The last questions in each section go a little farther than Stage 2. Often they will combine more than
one idea, incorporate review material, or ask you to apply your understanding of a concept to a new
situation.

In exams, as in life, you will encounter questions of varying difficulty. A good skill to practice is
recognizing the level of difficulty a problem poses. Exams will have some easy questions, some
standard questions, and some harder questions.
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Part I
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POWER FUNCTIONS
AS BUILDING BLOCKS

Chapter 1

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Remark: these questions are adapted from Differential Calculus for the Life Sciences by Leah
Edelstein-Keshet, Chapter 1. That book intentionally does not publish full solutions, and only
provides answers to selected questions.

§§ Stage 1
Q[1]: answer
Consider the functions y = xn, y = x1/n, y = x´n, where n is a positive integer (n = 1,2, . . .).

(a) Which of these functions increases most steeply for values of x greater than 1?

(b) Which decreases for large values of x?

(c) Which functions are not defined for negative x values?

(d) Compare the values of these functions for 0ă xă 1.

(e) Which of these functions are not defined at x = 0?

Q[2]:
Consider the power function

y = axn, ´8ă xă8.

Explain, possibly using a sketch, how the shape of the function changes when the coefficient a
increases or decreases (for fixed n). How is this change in shape different from the shape change
that results from changing the power n?

Q[3]: answer
Consider the graphs of the simple functions y = x, y = x2, and y = x3. Describe what happens to
each of these graphs when the functions are transformed as follows:

(a) y = Ax, y = Ax2, and y = Ax3 where Aą 1 is some constant.
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POWER FUNCTIONS AS BUILDING BLOCKS

(b) y = x+ a, y = x2 + a, and y = x3 + a where aą 0 is some constant.

(c) y = (x´b)2, and y = (x´b)3 where bą 0 is some constant.

Q[4]:
Consider the function

f (x) =
A
xa

where Aą 0,aą 1, with a an integer. This is the same as the function f (x) = Ax´a, which is a
power function with a negative power.

(a) Sketch a rough graph of this function for xą 0.

(b) How does the function change if A is increased?

(c) How does the function change if a is increased?

Q[5]:
Sketch the graphs of the following functions:

(a) y = x2,

(b) y = (x+ 4)2,

(c) y = a(x´b)2 + c for the case aą 0, bą 0, cą 0.

(d) Comment on the effects of the constants a, b, c on the properties of the graph
of y = a(x´b)2 + c.

Q[6]:

(a) Sketch the graph of the function y = ρx´ x5 for positive and negative values of the constant ρ .
Comment on behaviour close to zero and far away from zero.

(b) What are the zeros of this function and how does this depend on ρ?

§§ Stage 2
Q[7]:
Use arguments from Section 1.2 to sketch graphs of the following polynomials:

(a) y = 2x5´3x2

(b) y = x3´4x5

Q[8]: answer

(a) Consider the two functions f (x) = 3x2 and g(x) = 2x5. Find all x-values where these functions
intersect.

(b) Repeat for functions f (x) = x3 and g(x) = 4x5.

Q[9]: answer
Consider functions f (x) = Axn and g(x) = Bxm. Suppose mą ną 1 are integers, and A,Bą 0.
Determine the values of x at which the the functions are the same - i.e. they intersect. Are there two
places of intersection or three? How does this depend on the integer m´n?
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Note: The point (0,0) is always an intersection point. Thus, we are asking: when is there only one
more and when there are two more intersection points?

Q[10]: answer
Find the intersection of each pair of curves.

(a) y =
?

x, y = x2

(b) y = ´?x, y = x2

(c) y = x2´1, x2

4 + y2 = 1

Q[11]: answer
Find the range m such that the equation x2´2x´m = 0 has two unequal roots.

Q[12]: answer
Consider two functions of the form

f (x) =
A
xa , g(x) =

B
xb .

Suppose that A,B ą 0, a,b ą 1 and that A ą B. Determine the x-values where these functions
intersect for positive x values.

Q[13]: answer
Find all real zeros of the following polynomials:

(a) x3´2x2´3x,

(b) x5´1,

(c) 3x2 + 5x´2.

Q[14]: answer
Find the points of intersection of the functions y = x3 + x2´2x+ 1 and y = x3.

Q[15]: answer
According to the biologist Breder, two fish in a school prefer to stay some specific distance apart.
Breder suggested that the fish that are a distance x apart are attracted to one another by a
force FA(x) = A/xa and repelled by a second force FR(x) = R/xr, to keep from getting too close.
He found the preferred spacing distance (also called the individual distance) by determining the
value of x at which the repulsion and the attraction exactly balance.

Find the individual distance in terms of the quantities A,R,a,r (all assumed to be positive constants.)

Q[16]: answer
The volume V and surface area S of a cube whose sides have length a are given by the formulae

V = a3, S = 6a2.

Note that these relationships are expressed in terms of power functions. The independent variable
is a, not x. We say that “V is a function of a” (and also “S is a function of a”).

(a) Sketch V as a function of a and S as a function of a on the same set of axes. Which one grows
faster as a increases?

(b) What is the ratio of the volume to the surface area; that is, what is V
S in terms of a? Sketch a

graph of V
S as a function of a.
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(c) The formulae above tell us the volume and the area of a cube of a given side length. Suppose
we are given either the volume or the surface area and asked to find the side.

(i) Find the length of the side as a function of the volume (i.e. express a in terms of V ).

(ii) Find the side as a function of the surface area.

(iii) Use your results to find the side of a cubic tank whose volume is 1 litre.

Note that 1 litre = 103 cm3.

(iv) Find the side of a cubic tank whose surface area is 10 cm2.

Q[17]: answer
The volume V and surface area S of a sphere of radius r are given by the formulae

V =
4π

3
r3, S = 4πr2.

Note that these relationships are expressed in terms of power functions with constant multiples such
as 4π . The independent variable is r, not x. We say that “V is a function of r” (and also “S is a
function of r”).

(a) Sketch V as a function of r and S as a function of r on the same set of axes. Which one grows
faster as r increases?

(b) What is the ratio of the volume to the surface area; that is, what is V
S in terms of r? Sketch a

graph of V
S as a function of r.

(c) The formulae above tell us the volume and the area of a sphere of a given radius. But suppose
we are given either the volume or the surface area and asked to find the radius.

(i) Find the radius as a function of the volume (i.e. express r in terms of V ).

(ii) Find the radius as a function of the surface area.

(iii) Use your results to find the radius of a balloon whose volume is 1 litre.

(iv) Find the radius of a balloon whose surface area is 10 cm2.

(v) Find the surface area of a balloon whose volume is 36 cm3.

§§ Stage 3
Q[18]: answer
Answer the following by solving for x in each case. Find all values of x for which the following
functions cross the x-axis (equivalently: the zeros of the function, or roots of the
equation f (x) = 0.)

(a) f (x) = I´ γx, where I,γ are positive constants.

(b) f (x) = I´ γx+ εx2, where I,γ ,ε are positive constants. Are there cases where this function
does not cross the x axis?

(c) In the case where the root(s) exist in part (b), are they positive, negative or of mixed signs?
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Q[19]: answer
Properties of animals are often related to their physical size or mass. For example, the metabolic
rate of the animal (R), and its pulse rate (P) may be related to its body mass m by the approximate
formulae R = Amb and P =Cmd , where A,C,b,d are positive constants. Such relationships are
known as allometric relationships.

(a) Use these formulae to derive a relationship between the metabolic rate and the pulse rate (hint:
eliminate m).

(b) A similar process can be used to relate the Volume V = (4/3)πr3 and surface area S = 4πr2 of
a sphere to one another. Eliminate r to find the corresponding relationship between volume and
surface area for a sphere.

Q[20]:
This question has been deleted, because it does not fit nicely with Math 100 assessable content.

Q[21]: answer
It is known that the rate v at which a certain chemical reaction proceeds depends on the
concentration of the reactant c according to the formula

v =
Kc2

a2 + c2 ,

where K, a are positive constants. When the chemist plots the values of the quantity 1/v (on the
vertical axis) versus the values of 1/c2 (on the horizontal axis), she finds that the points are best
described by a straight line with slope 8 that intersects the vertical axis at 2. Use this result to find
the values of the constants K and a.
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LIMITS

Chapter 2

2.1Ĳ Quick review of limits

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: answer solution
Given the function shown below, evaluate the following:

(a) lim
xÑ´2

f (x)

(b) lim
xÑ0

f (x)

(c) lim
xÑ2

f (x)

x

y

y = f (x)

´2 2

´2

1

2

Q[2]: hint answer solution
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Given the function shown below, evaluate lim
xÑ0

f (x).

x

y y = f (x)

´1

1

Q[3]: hint answer solution
Given the function shown below, evaluate:

(a) lim
xÑ´1´

f (x)

(b) lim
xÑ´1+

f (x)

(c) lim
xÑ´1

f (x)

(d) lim
xÑ´2+

f (x)

(e) lim
xÑ2´

f (x)

x

y

y = f (x)

´2 ´1 1 2

´2

2

Q[4]: answer solution
Draw a curve y = f (x) with lim

xÑ3
f (x) = f (3) = 10.

Q[5]: hint answer solution
Draw a curve y = f (x) with lim

xÑ3
f (x) = 10 and f (3) = 0.
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Q[6]: hint answer solution
Suppose lim

xÑ3
f (x) = 10. True or false: f (3) = 10.

Q[7]: hint answer solution
Suppose f (3) = 10. True or false: lim

xÑ3
f (x) = 10.

Q[8]: hint answer solution
Suppose f (x) is a function defined on all real numbers, and lim

xÑ´2
f (x) = 16. What is lim

xÑ´2´
f (x)?

Q[9]: hint answer solution
Suppose f (x) is a function defined on all real numbers, and lim

xÑ´2´
f (x) = 16. What is lim

xÑ´2
f (x)?

§§ Stage 2
In Questions 10 through 17, evaluate the given limits. If you aren’t sure where to begin, it’s nice to
start by drawing the function.

Q[10]: answer solution
lim
tÑ0

sin t

Q[11]: answer solution
lim

xÑ0+
logx

Q[12]: answer solution
lim
yÑ3

y2

Q[13]: answer solution

lim
xÑ0´

1
x

Q[14]: hint answer solution

lim
xÑ0

1
x

Q[15]: answer solution

lim
xÑ0

1
x2

Q[16]: hint answer solution

lim
xÑ3

1
10

Q[17]: hint answer solution

lim
xÑ3

f (x), where f (x) =
"

sinx xď 2.9
x2 xą 2.9

.

2.1.1 §§ Calculating limits with limit laws

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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§§ Stage 1
Q[1]: answer solution
Suppose lim

xÑa
f (x) = 0 and lim

xÑa
g(x) = 0. Which of the following limits can you compute, given this

information?

(a) lim
xÑa

f (x)
2

(b) lim
xÑa

2
f (x)

(c) lim
xÑa

f (x)
g(x)

(d) lim
xÑa

f (x)g(x)

Q[2]: hint answer solution

Give two functions f (x) and g(x) that satisfy lim
xÑ3

f (x) = lim
xÑ3

g(x) = 0 and lim
xÑ3

f (x)
g(x)

= 10.

Q[3]: hint answer solution

Give two functions f (x) and g(x) that satisfy lim
xÑ3

f (x) = lim
xÑ3

g(x) = 0 and lim
xÑ3

f (x)
g(x)

= 0.

Q[4]: answer solution

Give two functions f (x) and g(x) that satisfy lim
xÑ3

f (x) = lim
xÑ3

g(x) = 0 and lim
xÑ3

f (x)
g(x)

=8.

Q[5]: hint answer solution

Suppose lim
xÑa

f (x) = lim
xÑa

g(x) = 0. What are the possible values of lim
xÑa

f (x)
g(x)

?

§§ Stage 2
For Questions 6 through 39, evaluate the given limits.

Q[6]: hint answer solution

lim
tÑ10

2(t´10)2

t

Q[7]: hint answer solution

lim
yÑ0

(y+ 1)(y+ 2)(y+ 3)
cosy

Q[8]: hint answer solution

lim
xÑ3

(
4x´2
x+ 2

)4

Q[9](˚): hint answer solution

lim
tÑ´3

(
1´ t

cos(t)

)
Q[10](˚): hint answer solution
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lim
hÑ0

(2+ h)2´4
2h

Q[11](˚): answer solution

lim
tÑ´2

(
t´5
t + 4

)
Q[12](˚): answer solution

lim
xÑ1

a

5x3 + 4

Q[13](˚): answer solution

lim
tÑ´1

(
t´2
t + 3

)
Q[14](˚): hint answer solution

lim
xÑ1

log(1+ x)´ x
x2

Q[15](˚): hint answer solution

lim
xÑ2

(
x´2
x2´4

)
Q[16](˚): hint answer solution

lim
xÑ4

x2´4x
x2´16

Q[17](˚): hint answer solution

lim
xÑ2

x2 + x´6
x´2

Q[18](˚): hint answer solution

lim
xÑ´3

x2´9
x+ 3

Q[19]: hint answer solution

lim
tÑ2

1
2

t4´3t3 + t

Q[20](˚): hint answer solution

lim
xÑ´1

?
x2 + 8´3

x+ 1
.

Q[21](˚): hint answer solution

lim
xÑ1

?
x+ 2´?4´ x

x´1

Q[22](˚): hint answer solution

lim
xÑ3

?
x´2´?4´ x

x´3
.

Q[23]: hint answer solution

lim
xÑ0

´x2 cos
(

3
x

)
Q[24]:
This question has been deleted, because it does not fit nicely with Math 100 assessable content.
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Q[25](˚): hint answer solution

lim
xÑ0

xsin2
(

1
x

)
Q[26]: hint answer solution

lim
wÑ5

2w2´50
(w´5)(w´1)

Q[27]: hint answer solution

lim
rÑ´5

r
r2 + 10r+ 25

Q[28]: hint answer solution

lim
xÑ´1

d

x3 + x2 + x+ 1
3x+ 3

Q[29]: hint answer solution

lim
xÑ0

x2 + 2x+ 1
3x5´5x3

Q[30]: hint answer solution

lim
tÑ7

t2x2 + 2tx+ 1
t2´14t + 49

, where x is a positive constant

Q[31]: hint answer solution
lim
dÑ0

x5´32x+ 15, where x is a constant

Q[32]: hint answer solution

lim
xÑ1

(x´1)2 sin

[(
x2´3x+ 2
x2´2x+ 1

)2

+ 15

]
Q[33](˚): hint answer solution
Evaluate

lim
xÑ0

x1/101 sin
(
x´100)

or explain why this limit does not exist.

Q[34](˚): hint answer solution

lim
xÑ2

x2´4
x2´2x

Q[35]: hint answer solution

lim
xÑ5

(x´5)2

x+ 5

Q[36]: hint answer solution

Evaluate lim
tÑ 1

2

1
3t2 +

1
t2´1

2t´1
.

Q[37]: hint answer solution

Evaluate lim
xÑ0

(
3+

|x|
x

)
.

Q[38]: hint answer solution
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Evaluate lim
dÑ´4

|3d + 12|
d + 4

Q[39]: hint answer solution

Evaluate lim
xÑ0

5x´9
|x|+ 2

.

Q[40]: hint answer solution

Suppose lim
xÑ´1

f (x) = ´1. Evaluate lim
xÑ´1

x f (x)+ 3
2 f (x)+ 1

.

Q[41](˚): hint answer solution

Find the value of the constant a for which lim
xÑ´2

x2 + ax+ 3
x2 + x´2

exists.

Q[42]: answer solution
Suppose f (x) = 2x and g(x) = 1

x . Evaluate the following limits.

(a) lim
xÑ0

f (x)

(b) lim
xÑ0

g(x)

(c) lim
xÑ0

f (x)g(x)

(d) lim
xÑ0

f (x)
g(x)

(e) lim
xÑ2

[ f (x)+ g(x)]

(f) lim
xÑ0

f (x)+ 1
g(x+ 1)

§§ Stage 3

Q[43](˚): hint answer solution

lim
xÑ2

?
x+ 7´?11´ x

2x´4
.

Q[44](˚): hint answer solution

lim
tÑ1

3t´3
2´?5´ t

.

Q[45]: hint answer solution

The curve y = f (x) is shown in the graph below. Sketch the graph of y =
1

f (x)
.
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LIMITS 2.1 QUICK REVIEW OF LIMITS

x

y

1

1
y = f (x)

Q[46]: hint answer solution
The graphs of functions f (x) and g(x) are shown in the graphs below. Use these to sketch the graph

of
f (x)
g(x)

.

x

y

1

1
y = f (x)

x

y

1

1 y = g(x)

Q[47]: answer solution
Let f (x) = 1

x and g(x) = ´1
x .

(a) Evaluate lim
xÑ0

f (x) and lim
xÑ0

g(x).

(b) Evaluate lim
xÑ0

[ f (x)+ g(x)]

(c) Is it always true that lim
xÑa

[ f (x)+ g(x)] = lim
xÑa

f (x)+ lim
xÑa

g(x)?

Q[48]: hint answer solution
Suppose

f (x) =

$

&

%

x2 + 3 , xą 0
0 , x = 0
x2´3 , xă 0

(a) Evaluate lim
xÑ0´

f (x).
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LIMITS 2.1 QUICK REVIEW OF LIMITS

(b) Evaluate lim
xÑ0+

f (x).

(c) Evaluate lim
xÑ0

f (x).

Q[49]: hint answer solution
Suppose

f (x) =

$

’

’

&

’

’

%

x2 + 8x+ 16
x2 + 30x´4

, xą´4

x3 + 8x2 + 16x , xď´4

(a) Evaluate lim
xÑ´4´

f (x).

(b) Evaluate lim
xÑ´4+

f (x).

(c) Evaluate lim
xÑ´4

f (x).

2.1.2 §§ Limits at infinity

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
Give a polynomial f (x) with the property that both lim

xÑ8
f (x) and lim

xÑ´8
f (x) are (finite) real

numbers.

Q[2]: hint answer solution
Give a polynomial f (x) that satisfies lim

xÑ8
f (x) ‰ lim

xÑ´8
f (x).

§§ Stage 2
Q[3]: hint answer solution
Evaluate lim

xÑ8
2´x

Q[4]: hint answer solution
Evaluate lim

xÑ8
2x

Q[5]: hint answer solution
Evaluate lim

xÑ´8
2x

Q[6]: hint answer solution
Evaluate lim

xÑ´8
cosx

Q[7]: hint answer solution
Evaluate lim

xÑ8
x´3x5 + 100x2.
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LIMITS 2.1 QUICK REVIEW OF LIMITS

Q[8]: hint answer solution

Evaluate lim
xÑ8

?
3x8 + 7x4 + 10
x4´2x2 + 1

.

Q[9](˚): hint answer solution

lim
xÑ8

[?
x2 + 5x´?x2´ x

]
Q[10](˚): hint answer solution

Evaluate lim
xÑ´8

3x?
4x2 + x´2x

.

Q[11](˚): hint answer solution

Evaluate lim
xÑ´8

1´ x´ x2

2x2´7
.

Q[12](˚): hint answer solution
Evaluate lim

xÑ8

(?
x2 + x´ x

)
Q[13](˚): hint answer solution

Evaluate lim
xÑ+8

5x2´3x+ 1
3x2 + x+ 7

.

Q[14](˚): hint answer solution

Evaluate lim
xÑ+8

?
4x+ 2

3x+ 4
.

Q[15](˚): hint answer solution

Evaluate lim
xÑ+8

4x3 + x
7x3 + x2´2

.

Q[16]: hint answer solution

Evaluate lim
xÑ´8

3
?

x2 + x´ 4
?

x4 + 5
x+ 1

Q[17](˚): hint answer solution

Evaluate lim
xÑ+8

5x2 + 10
3x3 + 2x2 + x

.

Q[18]: hint answer solution

Evaluate lim
xÑ´8

x+ 1?
x2

.

Q[19]: hint answer solution

Evaluate lim
xÑ8

x+ 1?
x2

Q[20](˚): hint answer solution

Find the limit lim
xÑ´8

sin
(

π

2
|x|
x

)
+

1
x

.

Q[21](˚): answer solution

Evaluate lim
xÑ´8

3x+ 5?
x2 + 5´ x

.

Q[22](˚): hint answer solution
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LIMITS 2.2 ASYMPTOTES

Evaluate lim
xÑ´8

5x+ 7?
4x2 + 15´ x

Q[23]: hint answer solution

Evaluate lim
xÑ´8

3x7 + x5´15
4x2 + 32x

.

Q[24](˚): hint answer solution

Evaluate lim
nÑ8

(
a

n2 + 5n´n
)

.

Q[25]: hint answer solution

Evaluate lim
aÑ0+

a2´ 1
a

a´1
.

Q[26]: hint answer solution

Evaluate lim
xÑ3

2x+ 8
1

x´3 +
1

x2´9

.

§§ Stage 3
Q[27]: hint answer solution
Give a rational function f (x) with the properties that lim

xÑ8
f (x) ‰ lim

xÑ´8
f (x), and both limits are

(finite) real numbers.

Q[28]: hint answer solution
Suppose the concentration of a substance in your body t hours after injection is given by some
formula c(t), and lim

tÑ8
c(t) ‰ 0. What kind of substance might have been injected?

2.2Ĳ Asymptotes

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS. These questions are adapted
from Keshet, Chapter 1. Note that text does not provide entire solutions.

Q[1]: answer
Consider the Michaelis-Menten kinetics where the speed of an enzyme-catalyzed reaction is given
by v = Kx

kn+x .

(a) Explain the statement that “when x is large there is a horizontal asymptote” and find the value
of v to which that asymptote approaches.

(b) Determine the reaction speed when x = kn and explain why the constant kn is sometimes called
the “half-max” concentration.

Q[2]: answer
Hill functions are sometimes used to represent a biochemical “switch,” that is a rapid transition from
one state to another. Consider the functions:

y1(x) =
x2

1+ x2 , y2(x) =
x5

1+ x5 ,

where xě 0.
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LIMITS 2.3 LIMITS AND CONTINUITY

(a) Where do these functions intersect?

(b) What are the asymptotes of these functions?

(c) Which of these functions increases fastest near the origin?

(d) Which is the sharpest “switch” and why?

2.3Ĳ Limits and continuity

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
Give an example of a function (you can write a formula, or sketch a graph) that has infinitely many
infinite discontinuities.

Q[2]: hint answer solution
Suppose f (t) is continuous at t = 5. True or false: t = 5 is in the domain of f (t).

Q[3]: hint answer solution
Suppose lim

tÑ5
f (t) = 17, and suppose f (t) is continuous at t = 5. True or false: f (5) = 17.

Q[4]: hint answer solution
Suppose lim

tÑ5
f (t) = 17. True or false: f (5) = 17.

Q[5]: hint answer solution

Suppose f (x) and g(x) are continuous at x = 0, and let h(x) =
x f (x)

g2(x)+ 1
. What is lim

xÑ0+
h(x)?

§§ Stage 2
Q[6]: hint answer solution
Find a constant k so that the function

a(x) =
"

xsin
(1

x

)
when x‰ 0

k when x = 0

is continuous at x = 0.

Q[7](˚): hint answer solution

Describe all points for which the function is continuous: f (x) =
1

x2´1
.

Q[8](˚): hint answer solution

Describe all points for which this function is continuous: f (x) =
1?

x2´1
.

Q[9](˚): hint answer solution

Describe all points for which this function is continuous:
1

a

1+ cos(x)
.
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Q[10](˚): hint answer solution

Describe all points for which this function is continuous: f (x) =
1

sinx
.

Q[11](˚): hint answer solution
Find all values of c such that the following function is continuous at x = c:

f (x) =
"

8´ cx if xď c
x2 if xą c

Use the definition of continuity to justify your answer.

Q[12](˚): hint answer solution
Find all values of c such that the following function is continuous everywhere:

f (x) =

#

x2 + c xě 0
coscx xă 0

Use the definition of continuity to justify your answer.

Q[13](˚): hint answer solution
Find all values of c such that the following function is continuous:

f (x) =

#

x2´4 if xă c
3x if xě c .

Use the definition of continuity to justify your answer.

Q[14](˚): hint answer solution
Find all values of c such that the following function is continuous:

f (x) =
"

6´ cx if xď 2c
x2 if xą 2c

Use the definition of continuity to justify your answer.
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INTRODUCTION TO THE DERIVATIVE

Chapter 3

3.1Ĳ Review: lines

No exercises for Section 3.1
Jump to TABLE OF CONTENTS.

3.2Ĳ Slopes and rates of change

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: answer solution
Shown below is the graph y = f (x). If we choose a point Q on the graph to the left of the y-axis, is
the slope of the secant line through P and Q positive or negative? If we choose a point Q on the
graph to the right of the y-axis, is the slope of the secant line through P and Q positive or negative?

x

y

y = f (x)

P

Q[2]: hint answer solution
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INTRODUCTION TO THE DERIVATIVE 3.2 SLOPES AND RATES OF CHANGE

Shown below is the graph y = f (x).

(a) If we want the slope of the secant line through P and Q to increase, should we slide Q closer to
P, or further away?

(b) Which is larger, the slope of the tangent line at P, or the slope of the secant line through P and
Q?

x

y
P

Q

Q[3]: hint answer solution
Group the functions below into collections whose secant lines from x = ´2 to x = 2 all have the
same slopes.

x

y

´2 2

(a)

x

y

´2 2

(b)

x

y

´2 2

(c)

x

y

´2 2

(d)

x

y

´2 2

(e)

x

y

´2 2

(f)

§§ Stage 2
Q[4]: hint answer solution
Give your best approximation of the slope of the tangent line to the graph below at the point x = 5.
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INTRODUCTION TO THE DERIVATIVE 3.2 SLOPES AND RATES OF CHANGE

x

y

1 5

1

Q[5]: hint answer solution
On the graph below, sketch the tangent line to y = f (x) at P. Then, find two points Q and R on the
graph so that the secant line through Q and R has the same slope as the tangent line at P.

x

y

y = f (x)

P

Q[6]: hint answer solution
Mark the points where the curve shown below has a tangent line with slope 0.
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INTRODUCTION TO THE DERIVATIVE 3.3 THE DERIVATIVE

x

y

y = f (x)

(Later on, we’ll learn how these points tell us a lot about the shape of a graph.)

3.3Ĳ The derivative

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution

The function f (x) is shown. Select all options below that describe its derivative,
d f
dx

:

(a) constant (b) increasing (c) decreasing
(d) always positive (e) always negative

x

y

y = f (x)

Q[2]: hint answer solution

The function f (x) is shown. Select all options below that describe its derivative,
d f
dx

:

(a) constant (b) increasing (c) decreasing
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INTRODUCTION TO THE DERIVATIVE 3.3 THE DERIVATIVE

(d) always positive (e) always negative

x

y

y = f (x)

Q[3]: hint answer solution

The function f (x) is shown. Select all options below that describe its derivative,
d f
dx

:

(a) constant (b) increasing (c) decreasing
(d) always positive (e) always negative

x

y

y = f (x)

Q[4](˚): answer solution
State, in terms of a limit, what it means for f (x) = x3 to be differentiable at x = 0.

Q[5]: hint answer solution
For which values of x does f 1(x) not exist?
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x

y

1

1

Q[6]: hint answer solution
Suppose f (x) is a function defined at x = a with

lim
hÑ0´

f (a+ h)´ f (a)
h

= lim
hÑ0+

f (a+ h)´ f (a)
h

= 1.

True or false: f 1(a) = 1.

Q[7]: hint answer solution
Suppose f (x) is a function defined at x = a with

lim
xÑa´

f 1(x) = lim
xÑa+

f 1(x) = 1.

True or false: f 1(a) = 1.

Q[8]: hint answer solution
Suppose s(t) is a function, with t measured in seconds, and s measured in metres. What are the units
of s1(t)?

§§ Stage 2
Q[9]: hint answer solution
Use the definition of the derivative to find the equation of the tangent line to the curve y(x) = x3 +5
at the point (1,6).

Q[10]: hint answer solution
Use the definition of the derivative to find the derivative of f (x) = 1

x .

Q[11](˚): hint answer solution
Let f (x) = x|x|. Using the definition of the derivative, show that f (x) is differentiable at x = 0.

Q[12](˚): hint answer solution
Use the definition of the derivative to compute the derivative of the function f (x) = 2

x+1 .

Q[13](˚): answer solution
Use the definition of the derivative to compute the derivative of the function f (x) = 1

x2+3 .
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Q[14]: hint answer solution
Use the definition of the derivative to find the slope of the tangent line to the curve
f (x) = x log10(2x+ 10) at the point x = 0.

Q[15](˚): hint answer solution
Compute the derivative of f (x) = 1

x2 directly from the definition.

Q[16](˚): hint answer solution
Find the values of the constants a and b for which

f (x) =
"

x2 xď 2
ax+ b xą 2

is differentiable everywhere.

Remark: In the text, you have already learned the derivatives of x2 and ax+ b. In this question, you
are only asked to find the values of a and b—not to justify how you got them—so you don’t have to
use the definition of the derivative. However, on an exam, you might be asked to justify your answer,
in which case you would show how to differentiate the two branches of f (x) using the definition of
a derivative.

Q[17](˚): hint answer solution
Use the definition of the derivative to compute f 1(x) if f (x) =

?
1+ x. Where does f 1(x) exist?

§§ Stage 3
Q[18]: hint answer solution
Use the definition of the derivative to find the velocity of an object whose position is given by the
function s(t) = t4´ t2.

Q[19](˚): hint answer solution
Determine whether the derivative of following function exists at x = 0.

f (x) =

#

xcosx if xě 0?
x2 + x4 if xă 0

You must justify your answer using the definition of a derivative.

Q[20](˚): hint answer solution
Determine whether the derivative of the following function exists at x = 0

f (x) =

#

xcosx if xď 0?
1+ x´1 if xą 0

You must justify your answer using the definition of a derivative.

Q[21](˚): hint answer solution
Determine whether the derivative of the following function exists at x = 0

f (x) =

#

x3´7x2 if xď 0
x3 cos

(1
x

)
if xą 0

You must justify your answer using the definition of a derivative.
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Q[22](˚): hint answer solution
Determine whether the derivative of the following function exists at x = 1

f (x) =

$

&

%

4x2´8x+ 4 if xď 1

(x´1)2 sin
(

1
x´1

)
if xą 1

You must justify your answer using the definition of a derivative.

Q[23]: hint answer solution
Sketch a function f (x) with f 1(0) = ´1 that takes the following values:

x ´1 ´1
2 ´1

4 ´1
8 0 1

8
1
4

1
2 1

f(x) ´1 ´1
2 ´1

4 ´1
8 0 1

8
1
4

1
2 1

Remark: you can’t always guess the behaviour of a function from its points, even if the points seem
to be making a clear pattern.

Q[24]: hint answer solution
Let p(x) = f (x)+ g(x), for some functions f and g whose derivatives exist. Use limit laws and the
definition of a derivative to show that p1(x) = f 1(x)+ g1(x).

Remark: this is called the sum rule, and we’ll learn more about it in Lemma 4.1.1.

Q[25]: hint answer solution
Let f (x) = 2x, g(x) = x, and p(x) = f (x) ¨g(x).
(a) Find f 1(x) and g1(x).

(b) Find p1(x).

(c) Is p1(x) = f 1(x) ¨g1(x)?
In Theorem 4.1.3, you’ll learn a rule for calculating the derivative of a product of two functions.

Q[26](˚): hint answer solution
There are two distinct straight lines that pass through the point (1,´3) and are tangent to the curve
y = x2. Find equations for these two lines.

Remark: the point (1,´3) does not lie on the curve y = x2.

Q[27](˚): hint answer solution
For which values of a is the function

f (x) =
"

0 xď 0
xa sin 1

x xą 0

differentiable at 0?

Ĳ Interpretations of the derivative

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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INTRODUCTION TO THE DERIVATIVE 3.4 HIGHER ORDER DERIVATIVES

§§ Stage 2
Q[28]: hint answer solution
Suppose h(t) gives the height at time t of the water at a dam, where the units of t are hours and the
units of h are meters.

(a) What is the physical interpretation of the slope of the secant line through the points (0,h(0))
and (24,h(24))?

(b) What is the physical interpretation of the slope of the tangent line to the curve y = h(t) at the
point (0,h(0))?

Q[29]: answer solution
Suppose p(t) is a function that gives the profit generated by selling t widgets. What is the practical
interpretation of p1(t)?

Q[30]: answer solution
T (d) gives the temperature of water at a particular location d metres below the surface. What is the
physical interpretation of T 1(d)? Would you expect the magnitude of T 1(d) to be larger when d is
near 0, or when d is very large?

Q[31]: answer solution
C(w) gives the calories in w grams of a particular dish. What does C1(w) describe?

Q[32]: answer solution
The velocity of a moving object at time t is given by v(t). What is v1(t)?

Q[33]: answer solution
The function T ( j) gives the temperature in degrees Celsius of a cup of water after j joules of heat
have been added. What is T 1( j)?

Q[34]: answer solution
A population of bacteria, left for a fixed amount of time at temperature T , grows to P(T ) individuals.
Interpret P1(T ).

§§ Stage 3
Q[35]: hint answer solution
You hammer a small nail into a wooden wagon wheel. R(t) gives the number of rotations the nail
has undergone t seconds after the wagon started to roll. Give an equation for how quickly the nail is
rotating, measured in degrees per second.

Q[36]: hint answer solution
A population of bacteria, left for a fixed amount of time at temperature T , grows to P(T ) individuals.
There is one ideal temperature where the bacteria population grows largest, and the closer the sample
is to that temperature, the larger the population is (unless the temperature is so extreme that it causes
all the bacteria to die by freezing or boiling). How will P1(T ) tell you whether you are colder or
hotter than the ideal temperature?

3.4Ĳ Higher order derivatives

Exercises
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INTRODUCTION TO THE DERIVATIVE 3.5 DERIVATIVES OF EXPONENTIAL FUNCTIONS

Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 3

Q[1]: hint answer solution
A function f (x) satisfies f 1(x) ă 0 and f 2(x) ą 0 over (a,b). Which of the following curves below
might represent y = f (x)?

x

y

a b

(i)

x

y

a b

(ii)

x

y

a b

(iii)

x

y

a b

(iv)

x

y

a b

(v)

3.5Ĳ Derivatives of exponential functions

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Match the curves in the graph to the following functions:

(a) y =
(

1
2

)x

(b) y = 1x (c) y = 2x (d) y = 2´x (e) y = 3x

32



INTRODUCTION TO THE DERIVATIVE 3.5 DERIVATIVES OF EXPONENTIAL FUNCTIONS

x

y

D

CA B

Q[2]: hint answer solution
The graph below shows an exponential function f (x) = ax and its derivative f 1(x). Choose all the
options that describe the constant a.

(a) aă 0 (b) aą 0 (c) aă 1 (d) aą 1 (e) aă e ( f ) aą e

x

y y = f (x)

y = f 1(x)

Q[3]: hint answer solution

True or false:
d
dx
texu= xex´1

Q[4]: hint answer solution
A population of bacteria is described by P(t) = 100e0.2t , for 0ď t ď 10. Over this time period, is
the population increasing or decreasing?

Q[5]: hint answer solution
What is the 180th derivative of the function f (x) = ex?

§§ Stage 3
Q[6]: hint answer solution
Which of the following functions describe a straight line?

(a) y = e3logx + 1 (b) 2y+ 5 = e3+logx (c) y = e2x + 4 (d) y = elogx3e + log2
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COMPUTING DERIVATIVES

Chapter 4

4.1Ĳ Arithmetic of derivatives

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution

True or false:
d
dx
t f (x)+ g(x)u= f 1(x)+ g1(x) when f and g are differentiable functions.

Q[2]: hint answer solution

True or false:
d
dx
t f (x)g(x)u= f 1(x)g1(x) when f and g are differentiable functions.

Q[3]: hint answer solution

True or false:
d
dx

"

f (x)
g(x)

*

=
f 1(x)
g(x)

´ f (x)g1(x)
g2(x)

when f and g are differentiable functions.

Q[4]: hint answer solution
Let f be a differentiable function. Use at least three different rules to differentiate g(x) = 3 f (x) in
different ways, and verify that they all give the same answer.

§§ Stage 2
Q[5]: hint answer solution
Differentiate f (x) = 3x2 + 4x1/2 for xą 0.

Q[6]: hint answer solution
Let f (x) = 2x. What is f (n)(x), if n is a whole number?

Q[7]: hint answer solution
Use the product rule to differentiate f (x) = (2x+ 5)(8

?
x´9x).
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COMPUTING DERIVATIVES 4.1 ARITHMETIC OF DERIVATIVES

Q[8](˚): hint answer solution

Find the equation of the tangent line to the graph of y = x3 at x =
1
2

.

Q[9](˚): hint answer solution
A particle moves along the x–axis so that its position at time t is given by x = t3´4t2 + 1 .

(a) At t = 2, what is the particle’s speed? That is, what is the absolute value of its velocity?

(b) At t = 2, in what direction is the particle moving?

(c) At t = 2, is the particle’s speed increasing or decreasing?

Q[10](˚): answer solution

Calculate and simplify the derivative of
2x´1
2x+ 1

Q[11]: hint answer solution

What is the slope of the graph y =
(

3x+ 1
3x´2

)2

when x = 1?

§§ Stage 3
Q[12]: hint answer solution
Let g(x) = f (x)ex, for a differentiable function f (x). Give a simplified formula for g1(x).

Functions of the form g(x) are relatively common. If you remember this formula, you can save
yourself some time when you need to differentiate them.

Q[13]: hint answer solution
A town is founded in the year 2000. After t years, it has had b(t) births and d(t) deaths. Nobody
enters or leaves the town except by birth or death (whoa). Give an expression for the rate the
population of the town is growing.

Q[14](˚): answer solution
Find all points on the curve y = 3x2 where the tangent line passes through (2,9).

Q[15](˚): hint answer solution

Evaluate lim
yÑ0

(?
100180+ y´?100180

y

)
by interpreting the limit as a derivative.

Q[16]: hint answer solution
A rectangle is growing. At time t = 0, it is a square with side length 1 metre. Its width increases
at a constant rate of 2 metres per second, and its length increases at a constant rate of 5 metres per
second. How fast is its area increasing at time t ą 0?

Q[17]: hint answer solution
Let f (x) = x2g(x) for some differentiable function g(x). What is f 1(0)?

Q[18]: answer solution

Verify that differentiating f (x) =
g(x)
h(x)

using the quotient rule gives the same answer as differentiat-

ing f (x) =
g(x)
k(x)

¨ k(x)
h(x)

using the product rule and the quotient rule, when k(x) ‰ 0.
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Q[19](˚): hint answer solution
Find constants a, b so that the following function is differentiable:

f (x) =
"

ax2 + b xď 1
ex xą 1

Q[20]: hint answer solution
Let g(x) = f (x)ex. In Question 12, Section 3.5, we learned that g1(x) = [ f (x)+ f 1(x)]ex.

(a) What is g2(x)?

(b) What is g3(x)?

(c) Based on your answers above, guess a formula for g(4)(x). Check it by differentiating.

Q[21]:
This question is now Question 36 in Section 4.3, because it uses the chain rule.

§§ Using the arithmetic of derivatives - examples

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[22]: hint answer solution
Spot and correct the error(s) in the following calculation.

f (x) =
2x

x+ 1

f 1(x) =
2(x+ 1)+ 2x

(x+ 1)2

=
2(x+ 1)
(x+ 1)2

=
2

x+ 1

Q[23]: hint answer solution

True or false:
d
dx
t2xu= x2x´1.

§§ Stage 2
Q[24]: hint answer solution

Find the derivative of f (x) =
ex

2x
.

Q[25]: hint answer solution
Differentiate f (x) = e2x.
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Q[26]: hint answer solution
Differentiate f (x) = ea+x, where a is a constant.

Q[27]: hint answer solution
For which values of x is the function f (x) = xex increasing?

Q[28]: hint answer solution

Suppose the position of a particle at time t is given by s(t) =
et

t2 + 1
. Find the acceleration of the

particle (s2(t)) at time t = 1.

Q[29]: hint answer solution
Differentiate f (x) = (ex + 1)(ex´1).

Q[30]: hint answer solution
A particle’s position is given by

s(t) = t2et .

When is the particle moving in the negative direction?

Q[31]: hint answer solution
Let f (x) = ax15 for some constant a. Which value of a results in f (15)(x) = 3?

Q[32]: hint answer solution
Differentiate f (x) = 2

3x6 + 5x4 + 12x2 + 9 and factor the result.

Q[33]: hint answer solution
Differentiate s(t) = 3t4 + 5t3´ 1

t .

Q[34]: hint answer solution

Differentiate x(y) =
(

2y+ 1
y

)
¨ y3.

Q[35]: hint answer solution

Differentiate T (x) =
?

x+ 1
x2 + 3

.

Q[36](˚): answer solution

Compute the derivative of
(

7x+ 2
x2 + 3

)
.

Q[37]: hint answer solution
What is f 1(0), when f (x) = (3x3 + 4x2 + x+ 1)(2x+ 5)?

Q[38]: hint answer solution

Differentiate f (x) =
3x3 + 1
x2 + 5x

.

Q[39](˚): answer solution

Compute the derivative of
(

3x2 + 5
2´ x

)
Q[40](˚): answer solution

Compute the derivative of
(

2´ x2

3x2 + 5

)
.

Q[41](˚): answer solution
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Compute the derivative of
(

2x3 + 1
x+ 2

)
.

Q[42](˚): hint answer solution

For what values of x does the derivative of
?

x
1´ x2 exist? Explain your answer.

Q[43]: hint answer solution
Differentiate f (x) = (3 5

?
x+ 15 3

?
x+ 8)

(
3x2 + 8x´5

)
.

Q[44]: hint answer solution

Differentiate f (x) =
(x2 + 5x+ 1)(

?
x+ 3

?
x)

x
.

§§ Stage 3
Q[45]: hint answer solution
Let f (x) = ax3 + bx2 + cx+ d, where a, b, c, and d are nonzero constants. What is the smallest

integer n so that
dn f
dxn = 0 for all x?

Q[46](˚): hint answer solution
Let f (x) = x|x|.
(a) Show that f (x) is differentiable at x = 0, and find f 1(0).

(b) Find the second derivative of f (x). Explicitly state, with justification, the point(s) at which
f 2(x) does not exist, if any.

Q[47](˚): hint answer solution
Find an equation of a line that is tangent to both of the curves y = x2 and y = x2´2x+2 (at different
points).

Q[48](˚): hint answer solution
Find all lines that are tangent to both of the curves y = x2 and y = ´x2 + 2x´ 5. Illustrate your
answer with a sketch.

Q[49](˚): hint answer solution

Evaluate lim
xÑ2

(
x2015´22015

x´2

)
.

4.2Ĳ Trigonometric functions and their derivatives

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
Graph sine and cosine on the same axes, from x = ´2π to x = 2π . Mark the points where sinx has
a horizontal tangent. What do these points correspond to, on the graph of cosine?
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Q[2]: hint answer solution
Graph sine and cosine on the same axes, from x = ´2π to x = 2π . Mark the points where sinx has
a tangent line of maximum (positive) slope. What do these points correspond to, on the graph of
cosine?

Q[3]: hint answer solution
The height of a particle at time t seconds is given by h(t) = ´cos t. Is the particle speeding up or
slowing down at t = 1?

Q[4]: hint answer solution
The height of a particle at time t seconds is given by h(t) = t3´ t2´5t +10. Is the particle’s motion
getting faster or slower at t = 1?

Q[5]: hint answer solution
Which statements below are true, and which false?

(a)
d4

dx4 sinx = sinx

(b)
d4

dx4 cosx = cosx

(c)
d4

dx4 tanx = tanx

§§ Stage 2
Q[6]: hint answer solution
Differentiate f (x) = sinx+ cosx+ tanx.

Q[7]: hint answer solution
For which values of x does the function f (x) = sinx+ cosx have a horizontal tangent?

Q[8]: hint answer solution
Differentiate f (x) = sin2 x+ cos2 x.

Q[9]: hint answer solution
Differentiate f (x) = 2sinxcosx.

Q[10]: answer solution
Differentiate f (x) = ex cotx.

Q[11]: hint answer solution

Differentiate f (x) =
2sinx+ 3tanx

cosx+ tanx

Q[12]: answer solution

Differentiate f (x) =
5secx+ 1

ex .

Q[13]: answer solution
Differentiate f (x) = (ex + cotx)(5x6´ cscx).

Q[14]: hint answer solution
Differentiate f (θ ) = sin

(
π

2 ´θ
)
.

Q[15]: hint answer solution
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Differentiate f (x) = sin(´x)+ cos(´x).

Q[16]: hint answer solution

Differentiate s(θ ) =
cosθ + sinθ

cosθ ´ sinθ
.

Q[17](˚): hint answer solution
Find the values of the constants a and b for which

f (x) =
"

cos(x) xď 0
ax+ b xą 0

is differentiable everywhere.

Q[18](˚): answer solution

Find the equation of the line tangent to the graph of y = cos(x)+ 2x at x =
π

2
.

§§ Stage 3
Q[19](˚): hint answer solution

Evaluate lim
xÑ2015

(
cos(x)´ cos(2015)

x´2015

)
.

Q[20](˚): hint answer solution

Evaluate lim
xÑπ/3

(
cos(x)´1/2

x´π/3

)
.

Q[21](˚): hint answer solution

Evaluate lim
xÑπ

(
sin(x)
x´π

)
.

Q[22]: hint answer solution
Show how you can use the quotient rule to find the derivative of tangent, if you already know the
derivatives of sine and cosine.

Q[23](˚): hint answer solution
The derivative of the function

f (x) =
"

ax+ b for xă 0
6cosx

2+sinx+cosx for xě 0

exists for all x. Determine the values of the constants a and b.

Q[24](˚): hint answer solution
For which values of x does the derivative of f (x) = tanx exist?

Q[25](˚): answer solution

For what values of x does the derivative of
10sin(x)
x2 + x´6

exist? Explain your answer.

Q[26](˚): answer solution

For what values of x does the derivative of
x2 + 6x+ 5

sin(x)
exist? Explain your answer.

Q[27](˚): answer solution

Find the equation of the line tangent to the graph of y = tan(x) at x =
π

4
.
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Q[28](˚): answer solution
Find the equation of the line tangent to the graph of y = sin(x)+ cos(x)+ ex at x = 0.

Q[29]: answer solution
For which values of x does the function f (x) = ex sinx have a horizontal tangent line?

Q[30]:
This question has been deleted, because it does not fit nicely with Math 100 assessable content.

Q[31](˚): hint answer solution
Differentiate the function

h(x) = sin(|x|)
and give the domain where the derivative exists.

Q[32](˚): hint answer solution
For the function

f (x) =

#

0 xď 0
sin(x)
?

x xą 0

which of the following statements is correct?

i. f is undefined at x = 0.

ii. f is neither continuous nor differentiable at x = 0.

iii. f is continuous but not differentiable at x = 0.

iv. f is differentiable but not continuous at x = 0.

v. f is both continuous and differentiable at x = 0.

Q[33](˚): hint answer solution

Evaluate lim
xÑ0

sinx27 + 2x5ex99

sin5 x
.

4.3Ĳ The chain rule

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
Suppose the amount of kelp in a harbour depends on the number of urchins. Urchins eat kelp: when
there are more urchins, there is less kelp, and when there are fewer urchins, there is more kelp.
Suppose further that the number of urchins in the harbour depends on the number of otters, who find
urchins extremely tasty: the more otters there are, the fewer urchins there are.

Let O, U , and K be the populations of otters, urchins, and kelp, respectively.

(a) Is dK
dU positive or negative?

(b) Is dU
dO positive or negative?
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(c) Is dK
dO positive or negative?

Remark: An urchin barren is an area where unchecked sea urchin grazing has decimated the
kelp population, which in turn causes the other species that shelter in the kelp forests to leave.
Introducing otters to urchin barrens is one intervention to increase biodiversity. A short video
with a more complex view of otters and urchins in Canadian waters is available on YouTube:
https://youtu.be/ASJ82wyHisE

Q[2]: hint answer solution
Suppose A, B, C, D, and E are functions describing an interrelated system, with the following
signs: dA

dB ą 0, dB
dC ą 0, dC

dD ă 0, and dD
dE ą 0. Is dA

dE positive or negative?

§§ Stage 2
Q[3]: hint answer solution
Evaluate the derivative of f (x) = cos(5x+ 3).

Q[4]: hint answer solution

Evaluate the derivative of f (x) =
(
x2 + 2

)5.

Q[5]: hint answer solution

Evaluate the derivative of T (k) =
(
4k4 + 2k2 + 1

)17.

Q[6]: hint answer solution

Evaluate the derivative of f (x) =

c

x2 + 1
x2´1

.

Q[7]: hint answer solution
Evaluate the derivative of f (x) = ecos(x2).

Q[8](˚): hint answer solution
Evaluate f 1(2) if f (x) = g

(
x/h(x)

)
, h(2) = 2, h1(2) = 3, g1(1) = 4.

Q[9](˚): hint answer solution
Find the derivative of excos(x).

Q[10](˚): hint answer solution
Evaluate f 1(x) if f (x) = ex2+cosx.

Q[11](˚): hint answer solution

Evaluate f 1(x) if f (x) =

c

x´1
x+ 2

.

Q[12](˚): hint answer solution
Differentiate the function

f (x) =
1
x2 +

a

x2´1

and give the domain where the derivative exists.

Q[13](˚): answer solution

Evaluate the derivative of f (x) =
sin5x
1+ x2

Q[14]: hint answer solution
Evaluate the derivative of f (x) = sec(e2x+7).
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Q[15]: hint answer solution

Find the tangent line to the curve y =
(
tan2 x+ 1

)(
cos2 x

)
at the point x =

π

4
.

Q[16]: hint answer solution
The position of a particle at time t is given by s(t) = et3´7t2+8t . For which values of t is the velocity
of the particle zero?

Q[17]: hint answer solution

What is the slope of the tangent line to the curve y = tan
(

ex2
)

at the point x = 1?

Q[18](˚): hint answer solution
Differentiate y = e4x tanx. You do not need to simplify your answer.

Q[19](˚): hint answer solution

Evaluate the derivative of the following function at x = 1: f (x) =
x3

1+ e3x .

Q[20](˚): hint answer solution

Differentiate esin2(x).

Q[21](˚): hint answer solution
Compute the derivative of y = sin

(
e5x)

Q[22](˚): hint answer solution
Find the derivative of ecos(x2).

Q[23](˚): hint answer solution
Compute the derivative of y = cos

(
x2 +

?
x2 + 1

)
Q[24](˚): hint answer solution
Evaluate the derivative.

y = (1+ x2)cos2 x

Q[25](˚): answer solution
Evaluate the derivative.

y =
e3x

1+ x2

Q[26](˚): answer solution
Find g1(2) if g(x) = x3h(x2), where h(4) = 2 and h1(4) = ´2.

Q[27](˚): hint answer solution
At what points (x,y) does the curve y = xe´(x

2´1)/2 have a horizontal tangent?

Q[28]: hint answer solution
A particle starts moving at time t = 1, and its position thereafter is given by

s(t) = sin
(

1
t

)
.

When is the particle moving in the negative direction?
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Q[29]: hint answer solution

Compute the derivative of f (x) =
ex

cos3(5x´7)
.

Q[30](˚): hint answer solution

Evaluate
d
dx

 

xe2x cos4x
(

.

§§ Stage 3
Q[31]: hint answer solution
A particle moves along the Cartesian plane from time t = ´π/2 to time t = π/2. The x-coordinate
of the particle at time t is given by x = cos t, and the y-coordinate is given by y = sin t, so the particle
traces a curve in the plane. When does the tangent line to that curve have slope ´1?

Q[32](˚): hint answer solution
Show that, for all xą 0, ex+x2 ą 1+ x.

Q[33]: hint answer solution
We know that sin(2x) = 2sinxcosx. What other trig identity can you derive from this, using
differentiation?

Q[34]: hint answer solution

Evaluate the derivative of f (x) = 3

d

ecscx2

?
x3´9tanx

. You do not have to simplify your answer.

Q[35]: hint answer solution
Suppose a particle is moving in the Cartesian plane over time. For any real number t ě 0, the
coordinate of the particle at time t is given by (sin t, cos2 t).

(a) Sketch a graph of the curve traced by the particle in the plane by plotting points, and describe
how the particle moves along it over time.

(b) What is the slope of the curve traced by the particle at time t =
10π

3
?

Q[36](˚): hint answer solution

f (x) = ex+x2
h(x) = 1+ x+

3
2

x2

(a) Find the first and second derivatives of both functions

(b) Evaluate both functions and their first and second derivatives at 0.

(c) Show that for all xą 0, f (x) ą h(x).

Remark: for some applications, we only need to know that a function is “big enough.” Since f (x) is
a difficult function to evaluate, it may be useful in some circumstances to know that it is bigger than
h(x) when x is positive.

4.4Ĳ Logarithmic differentiation

Exercises
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Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS. Reminder: in these notes, we use
logx to mean loge x, which is also commonly written elsewhere as lnx.

§§ Stage 1
Q[1]: hint answer solution
The volume in decibels (dB) of a sound is given by the formula:

V (P) = 10log10

(
P
S

)
where P is the intensity of the sound and S is the intensity of a standard baseline sound. (That is: S
is some constant.)

How much noise will ten speakers make, if each speaker produces 3dB of noise? What about one
hundred speakers?

Q[2]: hint answer solution
An investment of $1000 with an interest rate of 5% per year grows to

A(t) = 1000et/20

dollars after t years. When will the investment double?

Q[3]: hint answer solution
Which of the following expressions, if any, is equivalent to log

(
cos2 x

)
?

(a) 2log(cosx) (b) 2log |cosx| (c) log2(cosx) (d) log(cosx2))

§§ Stage 2
Q[4]: hint answer solution
Differentiate f (x) = log(10x).

Q[5]: hint answer solution
Differentiate f (x) = log(x2).

Q[6]: hint answer solution
Differentiate f (x) = log(x2 + x).

Q[7]: hint answer solution
Differentiate f (x) = log10 x.

Q[8](˚): answer solution

Find the derivative of y =
logx
x3 .

Q[9]: hint answer solution

Evaluate
d
dθ

log(secθ ).

Q[10]: hint answer solution
Differentiate the function f (x) = ecos(logx).
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Q[11](˚): hint answer solution
Evaluate the derivative. You do not need to simplify your answer.

y = log(x2 +
a

x4 + 1)

Q[12](˚): hint answer solution
Differentiate

a´ log(cosx).

Q[13](˚): hint answer solution
Calculate and simplify the derivative of log

(
x+

?
x2 + 4

)
.

Q[14](˚): hint answer solution
Evaluate the derivative of g(x) = log(ex2

+
?

1+ x4).

Q[15](˚): hint answer solution

Evaluate the derivative of the following function at x = 1: g(x) = log
(2x´1

2x+ 1

)
.

Q[16]: hint answer solution

Evaluate the derivative of the function f (x) = log

d

(x2 + 5)3

x4 + 10

.

Q[17]: hint answer solution
Evaluate f 1(2) if f (x) = log

(
g
(
xh(x)

))
, h(2) = 2, h1(2) = 3, g(4) = 3, g1(4) = 5.

Q[18](˚): hint answer solution
Differentiate the function

g(x) = π
x + xπ .

Q[19]: hint answer solution
Differentiate f (x) = xx.

Q[20](˚): hint answer solution
Find f 1(x) if f (x) = xx + log10 x.

Q[21]: hint answer solution

Differentiate f (x) = 4

c

(x4 + 12)(x4´ x2 + 2)
x3 .

Q[22]: hint answer solution
Differentiate f (x) = (x+ 1)(x2 + 1)2(x3 + 1)3(x4 + 1)4(x5 + 1)5.

Q[23]: hint answer solution

Differentiate f (x) =
(

5x2 + 10x+ 15
3x4 + 4x3 + 5

)(
1

10(x+ 1)

)
.

Q[24](˚): hint answer solution
Let f (x) = (cosx)sinx, with domain 0ă xă π

2 . Find f 1(x).

Q[25](˚): hint answer solution
Find the derivative of (tan(x))x, when x is in the interval (0,π/2).
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Q[26](˚): hint answer solution
Find f 1(x) if f (x) = (x2 + 1)(x

2+1)

Q[27](˚): hint answer solution
Differentiate f (x) = (x2 + 1)sin(x).

Q[28]: hint answer solution

Evaluate
d3

dx3 tlog(5x2´12)u.

Q[29](˚): hint answer solution
Let f (x) = xcos3(x), with domain (0,8). Find f 1(x).

Q[30](˚): hint answer solution
Differentiate f (x) = (3+ sin(x))x2´3.

§§ Stage 3

Q[31]: hint answer solution

Let f (x) and g(x) be differentiable functions, with f (x) ą 0. Evaluate
d
dx

!

[ f (x)]g(x)
)

.

Q[32]: hint answer solution
Let f (x) be a function whose range includes only positive numbers. Show that the curves y = f (x)
and y = log( f (x)) have horizontal tangent lines at the same values of x.

4.5Ĳ Implicit differentiation

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
If we implicitly differentiate x2 + y2 = 1, we get the equation 2x+ 2yy1 = 0. In the step where we
differentiate y2 to obtain 2yy1, which rule(s) below are we using?

(a) power rule (b) chain rule (c) quotient rule
(d) derivatives of exponential functions

Q[2]: hint answer solution

Using the picture below, estimate
dy
dx

at the three points where the curve crosses the y-axis.
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x

y

1 2 3 4

1

2

3

4

´4 ´3 ´2 ´1

´4

´3

´2

´1

Remark: for this curve, one value of x may correspond to multiple values of y. So, we cannot express
this curve as y = f (x) for any function x. This is one typical situation where we might use implicit
differentiation.

Q[3]: hint answer solution
Consider the unit circle, formed by all points (x,y) that satisfy x2 + y2 = 1.

x

y

(a) Is there a function f (x) so that y = f (x) completely describes the unit circle? That is, so that
the points (x,y) that make the equation y = f (x) true are exactly the same points that make the
equation x2 + y2 = 1 true?

(b) Is there a function f 1(x) so that y = f 1(x) completely describes the slope of the unit circle?
That is, so that for every point (x,y) on the unit circle, the slope of the tangent line to the circle
at that point is given by f 1(x)?

(c) Use implicit differentiation to find an expression for
dy
dx

. Simplify until the expression is a
function in terms of x only (not y), or explain why this is impossible.
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Q[4]: hint answer solution
Find the mistake(s) in the following work, and provide a corrected answer.

Suppose ´14x2 + 2xy+ y2 = 1. We find
d2y
dx2 at the point (1,3). Differentiating

implicitly:

´28x+ 2y+ 2xy1+ 2yy1 = 0

Plugging in x = 1, y = 3:

´28+ 6+ 2y1+ 6y1 = 0

y1 =
11
4

Differentiating:

y2 = 0

§§ Stage 2
Q[5](˚): hint answer solution

Find
dy
dx

if xy+ ex + ey = 1.

Q[6](˚): hint answer solution

If ey = xy2 + x, compute
dy
dx

.

Q[7](˚): hint answer solution
If x2 tan(πy/4)+ 2x log(y) = 16, then find y1 at the points where y = 1.

Q[8]: hint answer solution
Suppose a curve is defined implicitly by

x2 + x+ y = sin(xy)

What is
d2y
dx2 at the point (0,0)?

Q[9](˚): answer solution
If x3 + y4 = cos(x2 + y) compute dy

dx .

Q[10](˚): hint answer solution
If x2ey + 4xcos(y) = 5, then find y1 at the points where y = 0.

Q[11]: hint answer solution

The unit circle consists of all point x2 + y2 = 1. Give an expression for
d2y
dx2 in terms of y.

Q[12](˚): answer solution
If x2 + y2 = sin(x+ y) compute dy

dx .

Q[13](˚): hint answer solution
If x2 cos(y)+ 2xey = 8, then find y1 at the points where y = 0.
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Q[14]: hint answer solution
At what points on the ellipse x2 + 3y2 = 1 is the tangent line parallel to the line y = x?

Q[15](˚): hint answer solution
For the curve defined by the equation

?
xy = x2y´2, find the slope of the tangent line at the point

(1,4).

Q[16](˚): hint answer solution

If x2y2 + xsin(y) = 4, find
dy
dx

.

Q[17]: hint answer solution
Let f (x) = (logx´1)x. Evaluate f 2(x).

§§ Stage 3
Q[18](˚): hint answer solution
If x2 +(y+ 1)ey = 5, then find y1 at the points where y = 0.

Q[19]: answer solution
For what values of x do the circle x2 + y2 = 1 and the ellipse x2 + 3y2 = 1 have parallel tangent
lines?

Q[20](˚): hint answer solution
The equation x3y+ y3 = 10x defines y implicitly as a function of x near the point (1,2).

(a) Compute y1 at this point.

(b) It can be shown that y2 is negative when x = 1. Use this fact and your answer to (a) to make a
sketch showing the relationship of the curve to its tangent line at (1,2).

4.6Ĳ Inverse functions

No exercises for Section 4.6
Jump to TABLE OF CONTENTS.

4.7Ĳ Inverse trigonometric functions and their derivatives

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
Give the domains of each of the following functions.

(a) f (x) = arcsin(cosx) (b) g(x) = arccsc(cosx) (c) h(x) = sin(arccosx)
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Q[2]: hint answer solution
A particle starts moving at time t = 10, and it bobs up and down, so that its height at time t ě 10 is
given by cos t. True or false: the particle has height 1 at time t = arccos(1).

Q[3]: hint answer solution
The curve y = f (x) is shown below, for some function f . Restrict f to the largest possible interval
containing 0 over which it is one–to–one, and sketch the curve y = f´1(x).

x

y

1

Q[4]: hint answer solution
Let a be some constant. Where does the curve y = ax+ cosx have a horizontal tangent line?

Q[5]: hint answer solution
Define a function f (x) = arcsinx+ arccscx. What is the domain of f (x)? Where is f (x) differen-
tiable?

§§ Stage 2
Q[6]: hint answer solution

Differentiate f (x) = arcsin
(x

3

)
. What is the domain of f (x)?

Q[7]: hint answer solution

Differentiate f (t) =
arccos t
t2´1

. What is the domain of f (t)?

Q[8]: hint answer solution
Differentiate f (x) = arcsec(´x2´2). What is the domain of f (x)?

Q[9]: hint answer solution

Differentiate f (x) =
1
a

arctan
(x

a

)
, where a is a nonzero constant.

What is the domain of f (x)?

Q[10]: hint answer solution
Differentiate f (x) = xarcsinx+

?
1´ x2. What is the domain of f (x)?

Q[11]: hint answer solution
For which values of x is the tangent line to y = arctan(x2) horizontal?

Q[12]: hint answer solution
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Evaluate
d
dx
tarcsinx+ arccosxu.

Q[13](˚): hint answer solution
Find the derivative of y = arcsin

(1
x

)
.

Q[14]: hint answer solution

Evaluate
d2

dx2 tarctanxu.
Q[15](˚): answer solution
Find the derivative of y = arctan

(1
x

)
.

Q[16](˚): answer solution
Calculate and simplify the derivative of (1+ x2)arctanx.

Q[17]: hint answer solution

Show that
d
dx
tsin (arctan(x))u= (x2 + 1)´3/2.

Q[18]: hint answer solution

Show that
d
dx
tcot (arcsin(x))u= ´1

x2
?

1´ x2
.

Q[19](˚): hint answer solution
Determine all points on the curve y = arcsinx where the tangent line is parallel to the line y = 2x+9.

Q[20]: hint answer solution
For which values of x does the function f (x) = arctan(cscx) have a horizontal tangent line?

§§ Stage 3
Q[21](˚): hint answer solution
Let f (x) = x+ cosx, and let g(y) = f´1(y) be the inverse function. Determine g1(y).

Q[22](˚): hint answer solution
f (x) = 2x´ sin(x) is one–to–one. Find

(
f´1)1(π´1).

Q[23](˚): hint answer solution
f (x) = ex + x is one–to–one. Find

(
f´1)1(e+ 1).

Q[24]: hint answer solution
Differentiate f (x) = [sinx+ 2]arcsecx. What is the domain of this function?

Q[25]: hint answer solution

Suppose you can’t remember whether the derivative of arcsine is
1?

1´ x2
or

1?
x2´1

. Describe

how the domain of arcsine suggests that one of these is wrong.

Q[26]: hint answer solution

Evaluate lim
xÑ1

(
(x´1)´1

(
arctanx´ π

4

))
.

Q[27]: hint answer solution

Suppose f (2x+ 1) =
5x´9
3x+ 7

. Evaluate f´1(7).

Q[28]: hint answer solution
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Suppose f´1(4x´1) =
2x+ 3
x+ 1

. Evaluate f (0).

Q[29]: hint answer solution
Suppose a curve is defined implicitly by

arcsin(x+ 2y) = x2 + y2.

Solve for y1 in terms of x and y.
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Chapter 5

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
Suppose the quantities P and Q are related by the formula P = Q3. P and Q are changing with
respect to time, t. Given this information, which of the following are problems you could solve?

i. Given
dP
dt

(0), find
dQ
dt

(0). (Remember: the notation
dP
dt

(0) means the derivative of P with
respect to t at the time t = 0.)

ii. Given
dP
dt

(0) and the value of Q when t = 0, find
dQ
dt

(0).

iii. Given
dQ
dt

(0), find
dP
dt

(0).

iv. Given
dQ
dt

(0) and the value of P when t = 0, find
dP
dt

(0).

§§ Stage 2
For problems 2 through 4, the relationship between several variables is explicitly given. Use this information
to relate their rates of change.

Q[2](˚): hint answer solution

A point is moving on the unit circle
 

(x,y) : x2 + y2 = 1
(

in the xy–plane. At the point
(

2?
5
, 1?

5

)
,

its y–coordinate is increasing at rate 3. What is the rate of change of its x–coordinate?

Q[3](˚): hint answer solution
The quantities P, Q and R are functions of time and are related by the equation R = PQ. Assume that
P is increasing instantaneously at the rate of 8% per year and that Q is decreasing instantaneously
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at the rate of 2% per year. That is,
P1

P
= 0.08 and

Q1

Q
= ´0.02. Determine the percentage rate of

change for R.

Q[4](˚): hint answer solution
Three quantities, F , P and Q all depend upon time t and are related by the equation

F =
P
Q

(a) Assume that at a particular moment in time P = 25 and P is increasing at the instantaneous rate
of 5 units/min. At the same moment, Q = 5 and Q is increasing at the instantaneous rate of 1
unit/min. What is the instantaneous rate of change in F at this moment?

(b) Assume that at another moment in time P is increasing at the instantaneous rate of 10% and Q
is decreasing at the instantaneous rate 5%. What can you conclude about the rate of change of
F at this moment?

For Questions 5 through 9, look for a way to use the Pythagorean Theorem.

Q[5](˚): hint answer solution
Two particles move in the Cartesian plane. Particle A travels on the x-axis starting at (10,0) and
moving towards the origin with a speed of 2 units per second. Particle B travels on the y-axis starting
at (0,12) and moving towards the origin with a speed of 3 units per second. What is the rate of
change of the distance between the two particles when particle A reaches the point (4,0)?

Q[6](˚): hint answer solution
Two particles A and B are placed on the Cartesian plane at (0,0) and (3,0) respectively. At time 0,
both start to move in the +y direction. Particle A moves at 3 units per second, while B moves at 2
units per second. How fast is the distance between the particles changing when particle A is at a
distance of 5 units from B.

Q[7](˚): hint answer solution
Ship A is 400 miles directly south of Hawaii and is sailing south at 20 miles/hour. Ship B is 300
miles directly east of Hawaii and is sailing west at 15 miles/hour. At what rate is the distance
between the ships changing?

Q[8](˚): hint answer solution
Two tall sticks are vertically planted into the ground, separated by a distance of 30 cm. We
simultaneously put two snails at the base of each stick. The two snails then begin to climb their
respective sticks. The first snail is moving with a speed of 25 cm per minute, while the second snail
is moving with a speed of 15 cm per minute. What is the rate of change of the distance between the
two snails when the first snail reaches 100 cm above the ground?

Q[9](˚): hint answer solution
A 20m long extension ladder leaning against a wall starts collapsing in on itself at a rate of 2m/s,
while the foot of the ladder remains a constant 5m from the wall. How fast is the ladder moving
down the wall after 3.5 seconds?

For Questions 10 through 14, look for tricks from trigonometry.

Q[10]: hint answer solution
A watering trough has a cross section shaped like an isosceles trapezoid. The trough is 2 metres
long, 50 cm high, 1 metre wide at the top, and 60 cm wide at the bottom.
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60 cm

1 m

50 cm

2 m

A pig is drinking water from the trough at a rate of 3 litres per minute. When the height of the water
is 25 cm, how fast is the height decreasing?

Q[11]: hint answer solution
A tank is 5 metres long, and has a trapezoidal cross section with the dimensions shown below.

1.25 m

3 m3 m

1 m

5 m

A hose is filling the tank up at a rate of one litre per second. How fast is the height of the water
increasing when the water is 10 centimetres deep?

Q[12]: hint answer solution
A rocket is blasting off, 2 kilometres away from you. You and the rocket start at the same height.
The height of the rocket in kilometres, t hours after liftoff, is given by

h(t) = 61750t2

How fast (in radians per second) is your line of sight rotating to keep looking at the rocket, one
minute after liftoff?

Q[13](˚): hint answer solution
A high speed train is traveling at 2 km/min along a straight track. The train is moving away from a
movie camera which is located 0.5 km from the track.

(a) How fast is the distance between the train and the camera increasing when they are 1.3 km
apart?

(b) Assuming that the camera is always pointed at the train, how fast (in radians per min) is the
camera rotating when the train and the camera are 1.3 km apart?
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Q[14]: hint answer solution
A clock has a minute hand that is 10 cm long, and an hour hand that is 5 cm long. Let D be the
distance between the tips of the two hands. How fast is D decreasing at 4:00?

D

For Questions 15 through 20, you’ll need to know formulas for volume or area.

Q[15](˚): hint answer solution
Find the rate of change of the area of the annulus t(x,y) : r2 ď x2 + y2 ď R2u. (i.e. the points
inside the circle of radius R but outside the circle of radius r) if

R = 3 cm, r = 1 cm,
dR
dt

= 2
cm
s

, and
dr
dt

= 7
cm
s

.

R

r

Q[16]: hint answer solution
Two spheres are centred at the same point. The radius R of the bigger sphere at time t is given by
R(t) = 10+ 2t, while the radius r of the smaller sphere is given by r(t) = 6t, t ě 0. How fast is the
volume between the spheres (inside the big sphere and outside the small sphere) changing when the
bigger sphere has a radius twice as large as the smaller?

Q[17]: hint answer solution
You attach two sticks together at their ends, and stick the other ends in the mud. One stick is 150 cm
long, and the other is 200 cm.

150 cm 200 cm1.4 m
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The structure starts out being 1.4 metres high at its peak, but the sticks slide, and the height decreases
at a constant rate of three centimetres per minute. How quickly is the area of the triangle (formed by
the two sticks and the level ground) changing when the height of the structure is 120 cm?

Q[18]: hint answer solution
The circular lid of a salt shaker has radius 8. There is a cut-out to allow the salt to pour out of the lid,
and a door that rotates around to cover the cut-out. The door is a quarter-circle of radius 7 cm. The
cut-out has the shape of a quarter-annulus with outer radius 6 cm and inner radius 1 cm. If the
uncovered area of the cut-out is A cm2, then the salt flows out at 1

5A cm3 per second.

salt shaker lid
cut-out uncovered

salt shaker lid
cut-out partially covered

Recall: an annulus is the set of points inside one circle and outside another, like a flat doughnut (see
Question 15).

annulus quarter annulus

While pouring out salt, you spin the door around the lid at a constant rate of π

6 radians per second,
covering more and more of the cut-out. When exactly half of the cut-out is covered, how fast is the
flow of salt changing?

Q[19]: hint answer solution
A cylindrical sewer pipe with radius 1 metre has a vertical rectangular door that slides in front of it
to block the flow of water, as shown below. If the uncovered area of the pipe is A m2, then the flow
of water through the pipe is 1

5A cubic metres per second.

The door slides over the pipe, moving vertically at a rate of 1 centimetre per second. How fast is the
flow of water changing when the door covers the top 25 centimetres of the pipe?
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Q[20]: hint answer solution
A martini glass is shaped like a cone, with top diameter 10 cm and side length 10 cm.

10

1010

When the liquid in the glass is 7 cm high, it is evaporating at a rate of 5 mL per minute. How fast is
the height of the liquid decreasing?

§§ Stage 3
Q[21]: hint answer solution
A floating buoy is anchored to the bottom of a river. As the river flows, the buoy is pulled in the
direction of flow until its 2-metre rope is taut. A sensor at the anchor reads the angle θ between the
rope and the riverbed, as shown in the diagram below. This data is used to measure the depth D of
water in the river, which depends on time.

θ

D

(a) If θ =
π

4
and

dθ

dt
= 0.25

rad
hr

, how fast is the depth D of the water changing?

(b) A measurement shows
dθ

dt
= 0, but

dD
dt
‰ 0. Under what circumstances does this occur?
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(c) Another measurement shows
dθ

dt
ą 0, but

dD
dt
ă 0. Under what circumstances does this occur?

Q[22]: hint answer solution
A point is moving in the xy-plane along the quadrilateral shown below.

x

y

1

1

(a) When the point is at (0,´2), it is moving to the right. An observer stationed at the origin must
turn at a rate of one radian per second to keep looking directly at the point. How fast is the point
moving?

(b) When the point is at (0,2), its x-coordinate is increasing at a rate of one unit per second. How
fast it its y-coordinate changing? How fast is the point moving?

Q[23]: hint answer solution
You have a cylindrical water bottle 20 cm high, filled with water. Its cross section is a circle of
radius 5. You slowly smoosh the sides, so the cross section becomes an ellipse with major axis
(widest part) 2a and minor axis (skinniest part) 2b.

5
5

20

a
b

20

After t seconds of smooshing the bottle, a = 5+ t cm. The perimeter of the cross section is
unchanged as the bottle deforms. The perimeter of an ellipse is actually quite difficult to calculate,
but we will use an approximation derived by Ramanujan and assume that the perimeter p of our
ellipse is

p« π

[
3(a+ b)´

b

(a+ 3b)(3a+ b)
]

.

61



RELATED RATES

The area of an ellipse is πab.

(a) Give an equation that relates a and b (and no other variables).

(b) Give an expression for the volume of the bottle as it is being smooshed, in terms of a and b (and
no other variables).

(c) Suppose the bottle was full when its cross section was a circle. How fast is the water spilling
out when a is twice as big as b?

Q[24]: hint answer solution
The quantities A, B, C, and D all depend on time, and are related by the formula

AB = log
(
C2 +D2 + 1

)
.

At time t = 10, the following values are known:

• A = 0

•
dA
dt

= 2 units per second

What is B when t = 10?
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L’HÔPITAL’S RULE AND
INDETERMINATE FORMS

Chapter 6

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
In Questions 1 to 20, you are asked to give pairs of functions that combine to make indeterminate forms.
Remember that an indeterminate form is indeterminate precisely because its limit can take on a number of
values.

Q[1]: hint answer solution
Give two functions f (x) and g(x) with the following properties:

(i) lim
xÑ8

f (x) =8
(ii) lim

xÑ8
g(x) =8

(iii) lim
xÑ8

f (x)
g(x)

= 2.5

Q[2]: hint answer solution
Give two functions f (x) and g(x) with the following properties:

(i) lim
xÑ8

f (x) =8
(ii) lim

xÑ8
g(x) =8

(iii) lim
xÑ8

f (x)
g(x)

= 0

§§ Stage 2
Q[3](˚): hint answer solution
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Evaluate lim
xÑ1

x3´ ex´1

sin(πx)
.

Q[4](˚): hint answer solution

Evaluate lim
xÑ0+

logx
x

. (Remember: in these notes, log means logarithm base e.)

Q[5](˚): hint answer solution
Evaluate lim

xÑ8
(logx)2e´x.

Q[6](˚): hint answer solution
Evaluate lim

xÑ8
x2e´x.

Q[7](˚): hint answer solution

Evaluate lim
xÑ0

x´ xcosx
x´ sinx

.

Q[8]: hint answer solution

Evaluate lim
xÑ0

?
x6 + 4x4

x2 cosx
.

Q[9](˚): hint answer solution

Evaluate lim
xÑ8

(logx)2

x
.

Q[10](˚): answer solution

Evaluate lim
xÑ0

1´ cosx
sin2 x

.

Q[11]: hint answer solution

Evaluate lim
xÑ0

x
secx

.

Q[12]: hint answer solution

Evaluate lim
xÑ0

cscx ¨ tanx ¨ (x2 + 5)
ex .

Q[13](˚): hint answer solution

Evaluate lim
xÑ0

sin(x3 + 3x2)

sin2 x
.

Q[14](˚): answer solution

Evaluate lim
xÑ1

log(x3)

x2´1
.

Q[15](˚): hint answer solution

Evaluate lim
xÑ0

e´1/x2

x4 .

Q[16](˚): answer solution

Evaluate lim
xÑ0

xex

tan(3x)
.

Q[17](˚): hint answer solution

Find c so that lim
xÑ0

1+ cx´ cosx
ex2´1

exists.
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§§ Stage 3
Q[18](˚): hint answer solution

Evaluate lim
xÑ0

ek sin(x2)´ (1+ 2x2)

x4 , where k is a constant.

Q[19]: hint answer solution
Suppose an algorithm, given an input with with n variables, will terminate in at most
S(n) = 5n4´13n3´4n+ log(n) steps. A researcher writes that the algorithm will terminate in
roughly at most A(n) = 5n4 steps. Show that the percentage error involved in using A(n) instead of
S(n) tends to zero as n gets very large. What happens to the absolute error?

Remark: this is a very common kind of approximation. When people deal with functions that give
very large numbers, often they don’t care about the exact large number–they only want a ballpark.
So, a complicated function might be replaced by an easier function that doesn’t give a large relative
error.

The two standard indeterminate forms we’ve seen are 0
0 and 8

8 , but these are not the only indeterminate forms.
In Questions 20 to 24, you will see indeterminate forms that, broadly speaking, involve a function raised to
function. You saw something similar when we talked about logarithmic differentiation (section 4.4); similar
algebraic manipulation will come in handy.

Q[20]: hint answer solution
Give two functions f (x) and g(x) with the following properties:

(i) lim
xÑ8

f (x) = 1

(ii) lim
xÑ8

g(x) =8

(iii) lim
xÑ8

[ f (x)]g(x) = 5

Q[21]: hint answer solution

Evaluate lim
xÑ0

x2?
sin2 x.

Q[22]: hint answer solution
Evaluate lim

xÑ0
x2?cosx.

Q[23]: hint answer solution
Evaluate lim

xÑ0+
ex logx.

Q[24]: hint answer solution
Evaluate lim

xÑ0

[´ log(x2)
]x

.
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SKETCHING GRAPHS

Chapter 7

7.1Ĳ Domain, intercepts and asymptotes

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
Suppose f (x) is a function given by

f (x) =
g(x)

x2´9
where g(x) is also a function. True or false: f (x) has a vertical asymptote at x = ´3.

§§ Stage 2
Q[2]: hint answer solution
Match the functions f (x), g(x), h(x), and k(x) to the curves y = A(x) through y = D(x).

f (x) =
?

x2 + 1 g(x) =
?

x2´1 h(x) =
?

x2 + 4 k(x) =
?

x2´4

x

y

y = A(x)

1´1 2´2

1

2

x

y

y = B(x)

1´1 2´2

1

2
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x

y

y =C(x)

1´1 2´2

1

2

x

y

y = D(x)

1´1 2´2

1

2

Q[3]: hint answer solution
Below is the graph of

y = f (x) =
b

log2(x+ p)

(a) What is p?

(b) What is b (marked on the graph)?

(c) What is the x-intercept of f (x)?

Remember log(x+ p) is the natural logarithm of x+ p, loge(x+ p).

x

y

b

1

2

3

´6 ´5 ´4 ´3 ´2 ´1 1 2´8

Q[4]: hint answer solution

Find all asymptotes of f (x) =
x(2x+ 1)(x´7)

3x3´81
.

Q[5]: hint answer solution
Find all asymptotes of f (x) = 103x´7.

7.2Ĳ First derivative - increasing or decreasing

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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§§ Stage 1

Q[1]: hint answer solution
Match each function graphed below to its derivative from the list. (For example, which function on
the list corresponds to A1(x)?)

The y-axes have been scaled to make the curve’s behaviour clear, so the vertical scales differ from
graph to graph.

l(x) = (x´2)4 m(x) = (x´2)4(x+ 2) n(x) = (x´2)2(x+ 2)2

o(x) = (x´2)(x+ 2)3 p(x) = (x+ 2)4

x

y
y = A(x)

2´2
x

y
y = B(x)

2´2

x

y

y =C(x)

2´2
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x

y

y = D(x)

2´2
x

y

y = E(x)

2´2

§§ Stage 2

Q[2](˚): hint answer solution

Find the largest open interval on which f (x) =
ex

x+ 3
is increasing.

Q[3](˚): hint answer solution

Find the largest open interval on which f (x) =
?

x´1
2x+ 4

is increasing.

Q[4](˚): hint answer solution
Find the largest open interval on which f (x) = 2arctan(x)´ log(1+ x2) is increasing.

7.3Ĳ Second derivative - concavity

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
On the graph below, mark the intervals where f 2(x) ą 0 (i.e. f (x) is concave up) and where
f 2(x) ă 0 (i.e. f (x) is concave down).
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x

y

Q[2]: hint answer solution
Sketch a curve that is:

• concave up when |x| ą 5,

• concave down when |x| ă 5,

• increasing when xă 0, and

• decreasing when xą 0.

Q[3]: hint answer solution
Suppose f (x) is a function whose second derivative exists and is continuous for all real numbers.

True or false: if f 2(3) = 0, then x = 3 is an inflection point of f (x).

§§ Stage 2
Q[4](˚): answer solution
Find all inflection points for the graph of f (x) = 3x5´5x4 + 13x.

7.4Ĳ Symmetries

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
What symmetries (even, odd, periodic) does the function graphed below have?
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x

y

y = f (x)

Q[2]: hint answer solution
What symmetries (even, odd, periodic) does the function graphed below have?

x

y

y = f (x)

Q[3]: hint answer solution
Suppose f (x) is an even function defined for all real numbers. Below is the curve y = f (x) when
xą 0. Complete the sketch of the curve.
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x

y

Q[4]: hint answer solution
Suppose f (x) is an odd function defined for all real numbers. Below is the curve y = f (x) when
xą 0. Complete the sketch of the curve.

x

y

§§ Stage 2
Q[5]: hint answer solution

f (x) =
x4´ x6

ex2

Show that f (x) is even.

Q[6]: hint answer solution
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SKETCHING GRAPHS 7.5 A CHECKLIST FOR SKETCHING

f (x) = sin(x)+ cos
(x

2

)
Show that f (x) is periodic.

In Questions 7 through 10, find the symmetries of a function from its equation.

Q[7]: hint answer solution

f (x) = x4 + 5x2 + cos
(
x3)

What symmetries (even, odd, periodic) does f (x) have?

Q[8]: hint answer solution

f (x) = x5 + 5x4

What symmetries (even, odd, periodic) does f (x) have?

Q[9]: hint answer solution

f (x) = tan (πx)

What is the period of f (x)?

§§ Stage 3
Q[10]: hint answer solution

f (x) = tan (3x)+ sin (4x)

What is the period of f (x)?

7.5Ĳ A checklist for sketching

No exercises for Section 7.5
Jump to TABLE OF CONTENTS.

7.6Ĳ Sketching examples

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 2
Q[1](˚): hint answer solution
Let f (x) = x

?
3´ x.

(a) Find the domain of f (x).

(b) Determine the x-coordinates of the local maxima and minima (if any) and intervals where f (x)
is increasing or decreasing.
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(c) Determine intervals where f (x) is concave upwards or downwards, and the x coordinates of
inflection points (if any). You may use, without verifying it, the formula

f 2(x) =
(3x´12)

4(3´ x)3/2 .

(d) There is a point at which the tangent line to the curve y = f (x) is vertical. Find this point.

(e) Sketch the graph y = f (x), showing the features given in items (a) to (d) above and giving the
(x,y) coordinates for all points occurring above.

In Questions 2 through 4, you will sketch the graphs of rational functions.

Q[2](˚): hint answer solution
Sketch the graph of

f (x) =
x3´2

x4 .

Indicate the critical points, local and absolute maxima and minima, vertical and horizontal asymp-
totes, inflection points and regions where the curve is concave upward or downward.

Q[3](˚): hint answer solution

The first and second derivatives of the function f (x) =
x4

1+ x3 are:

f 1(x) =
4x3 + x6

(1+ x3)2 and f 2(x) =
12x2´6x5

(1+ x3)3

Graph f (x). Include local and absolute maxima and minima, regions where f (x) is increasing or
decreasing, regions where the curve is concave upward or downward, and any asymptotes.

Q[4](˚): hint answer solution

The first and second derivatives of the function f (x) =
x3

1´ x2 are:

f 1(x) =
3x2´ x4

(1´ x2)2 and f 2(x) =
6x+ 2x3

(1´ x2)3

Graph f (x). Include local and absolute maxima and minima, regions where the curve is concave
upward or downward, and any asymptotes.

Q[5](˚): hint answer solution
The function f (x) is defined by

f (x) =

#

ex xă 0
x2+3

3(x+1) xě 0

(a) Explain why f (x) is continuous everywhere.

(b) Determine all of the following if they are present:

i. x–coordinates of local maxima and minima, intervals where f (x) is increasing or
decreasing;
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ii. intervals where f (x) is concave upwards or downwards;

iii. equations of any horizontal or vertical asymptotes.

(c) Sketch the graph of y = f (x), giving the (x,y) coordinates for all points of interest above.

In Questions 6 and 7, you will sketch the graphs of functions with an exponential component. In the next
section, you will learn how to find their horizontal asymptotes, but for now these are given to you.

Q[6](˚): hint answer solution
The function f (x) and its derivative are given below:

f (x) = (1+ 2x)e´x2
and f 1(x) = 2(1´ x´2x2)e´x2

Sketch the graph of f (x). Indicate the critical points, local and/or absolute maxima and minima, and
asymptotes. Without actually calculating the inflection points, indicate on the graph their
approximate location.

Note: lim
xÑ˘8

f (x) = 0.

Q[7](˚): hint answer solution
Consider the function f (x) = xe´x2/2.

Note: lim
xÑ˘8

f (x) = 0.

(a) Find all inflection points and intervals of increase, decrease, convexity up, and convexity down.
You may use without proof the formula f 2(x) = (x3´3x)e´x2/2.

(b) Find local and global minima and maxima.

(c) Use all the above to draw a graph for f . Indicate all special points on the graph.

In Questions 8 and 9, you will sketch the graphs of functions that have a trigonometric component.

Q[8]: hint answer solution
Use the techniques from this section to sketch the graph of f (x) = x+ 2sinx.

Q[9](˚): hint answer solution

f (x) = 4sinx´2cos2x

Graph the equation y = f (x), including all important features. (In particular, find all local maxima
and minima and all inflection points.) Additionally, find the maximum and minimum values of f (x)
on the interval [0,π ].

Q[10]: hint answer solution

Sketch the curve y = 3

c

x+ 1
x2 .

You may use the facts y1(x) =
´(x+ 2)

3x5/3(x+ 1)2/3 and y2(x) =
4x2 + 16x+ 10
9x8/3(x+ 1)5/3 .

§§ Stage 3
Q[11](˚): hint answer solution
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A function f (x) defined on the whole real number line satisfies the following conditions

f (0) = 0 f (2) = 2 lim
xÑ+8

f (x) = 0 f 1(x) = K(2x´ x2)e´x

for some positive constant K. (Read carefully: you are given the derivative of f (x), not f (x) itself.)

(a) Determine the intervals on which f is increasing and decreasing and the location of any local
maximum and minimum values of f .

(b) Determine the intervals on which f is concave up or down and the x–coordinates of any
inflection points of f .

(c) Determine lim
xÑ´8

f (x).

(d) Sketch the graph of y = f (x), showing any asymptotes and the information determined in parts
(a) and (b).

Q[12](˚): hint answer solution
Let f (x) = e´x , xě 0.

(a) Sketch the graph of the equation y = f (x). Indicate any local extrema and inflection points.

(b) Sketch the graph of the inverse function y = g(x) = f´1(x).

(c) Find the domain and range of the inverse function g(x) = f´1(x).

(d) Evaluate g1(1
2).

Q[13](˚): answer solution

(a) Sketch the graph of y = f (x) = x5´ x, indicating asymptotes, local maxima and minima,
inflection points, and where the graph is concave up/concave down.

(b) Consider the function f (x) = x5´ x+ k, where k is a constant, ´8ă k ă8. How many roots
does the function have? (Your answer might depend on the value of k.)

Q[14](˚): hint answer solution
The hyperbolic trigonometric functions sinh(x) and cosh(x) are defined by

sinh(x) =
ex´ e´x

2
cosh(x) =

ex + e´x

2

They have many properties that are similar to corresponding properties of sin(x) and cos(x). In
particular, it is easy to see that

d
dx

sinh(x) = cosh(x)
d
dx

cosh(x) = sinh(x) cosh2(x)´ sinh2(x) = 1

You may use these properties in your solution to this question.

(a) Sketch the graphs of sinh(x) and cosh(x).

(b) Define inverse hyperbolic trigonometric functions sinh´1(x) and cosh´1(x), carefully specifing
their domains of definition. Sketch the graphs of sinh´1(x) and cosh´1(x).

(c) Find
d
dx

 

cosh´1(x)
(

.

77



SKETCHING GRAPHS 7.6 SKETCHING EXAMPLES

78



OPTIMIZATION

Chapter 8

8.1Ĳ Local and global maxima and minima

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Identify every critical point and every singular point of f (x) shown on the graph below.
Which correspond to local extrema?

x

y

y = f (x)

Q[2]: hint answer solution
Identify every critical point and every singular point of f (x) on the graph below. Which correspond
to local extrema? Which correspond to global extrema over the interval shown?
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x

y

y = f (x)

Q[3]: hint answer solution
Draw a graph y = f (x) where f (2) is a local maximum, but it is not a global maximum.

§§ Stage 2

Q[4]: hint answer solution

Suppose f (x) =
x´1
x2 + 3

.

(a) Find all critical points.

(b) Find all singular points.

(c) What are the possible points where local extrema of f (x) may exist?

§§ Stage 3

Q[5]: hint answer solution
Below are a number of curves, all of which have a singular point at x = 2. For each, label whether
x = 2 is a local maximum, a local minimum, or neither.

x

y

2
x

y

2
x

y

2
x

y

2

Q[6]: hint answer solution
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Draw a graph y = f (x) where f (2) is a local maximum, but x = 2 is not a critical point and is not
an endpoint.

Q[7]: hint answer solution

f (x) =
b

|(x´5)(x+ 7)|
Find all critical points and all singular points of f (x). You do not have to specify whether a point is
critical or singular.

Q[8]: hint answer solution
Suppose f (x) is the constant function f (x) = 4. What are the critical points and singular points of
f (x)? What are its local and global maxima and minima?

8.2Ĳ Finding global maxima and minima

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
Sketch a function f (x) such that:

• f (x) is defined over all real numbers

• f (x) has a global max but no global min.

Q[2]: hint answer solution
Sketch a function f (x) such that:

• f (x) is defined over all real numbers

• f (x) is always positive

• f (x) has no global max and no global min.

Q[3]: hint answer solution
Sketch a function f (x) such that:

• f (x) is defined over all real numbers

• f (x) has a global minimum at x = 5

• f (x) has a global minimum at x = ´5, too.

§§ Stage 2
Q[4]: hint answer solution
f (x) = x2 + 6x´10. Find all global extrema on the interval [´5,5]

Q[5]: hint answer solution

f (x) =
2
3

x3´2x2´30x+ 7. Find all global extrema on the interval [´4,0].
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8.3Ĳ Max/min examples

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 2
For Questions 1 through 3, the quantity to optimize is already given to you as a function of a single variable.

Q[1](˚): hint answer solution
Find the global maximum and the global minimum for f (x) = x5´5x+ 2 on the interval [´2,0].

Q[2](˚): hint answer solution
Find the global maximum and the global minimum for f (x) = x5´5x´10 on the interval [0,2].

Q[3](˚): answer solution
Find the global maximum and the global minimum for f (x) = 2x3´6x2´2 on the interval [1,4].

For Questions 4 and 5, you can decide whether a critical point is a local extremum by considering the
derivative of the function.

Q[4](˚): hint answer solution
Consider the function h(x) = x3´12x+4. What are the coordinates of the local maximum of h(x)?
What are the coordinates of the local minimum of h(x)?

Q[5](˚): hint answer solution
Consider the function h(x) = 2x3´ 24x+ 1. What are the coordinates of the local maximum of
h(x)? What are the coordinates of the local minimum of h(x)?

For Questions 6 through 13, you will have to find an expression for the quantity you want to optimize as a
function of a single variable.

Q[6](˚): hint answer solution
You are in a dune buggy at a point P in the desert, 12 km due south of the nearest point A on a
straight east-west road. You want to get to a town B on the road 18 km east of A. If your dune buggy
can travel at an average speed of 15 km/hr through the desert and 30 km/hr along the road, towards
what point Q on the road should you head to minimize your travel time from P to B?

A Q B

P

12 km

Q[7](˚): hint answer solution
A closed three dimensional box is to be constructed in such a way that its volume is 4500 cm3. It is
also specified that the length of the base is 3 times the width of the base. Find the dimensions of the
box that satisfies these conditions and has the minimum possible surface area. Justify your answer.
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Q[8](˚): hint answer solution
A closed rectangular container with a square base is to be made from two different materials. The
material for the base costs $5 per square metre, while the material for the other five sides costs $1
per square metre. Find the dimensions of the container which has the largest possible volume if the
total cost of materials is $72.

Q[9](˚): hint answer solution
Find a point X on the positive x–axis and a point Y on the positive y–axis such that (taking
O = (0,0))

(i) The triangle XOY contains the first quadrant portion of the unit circle x2 + y2 = 1 and

(ii) the area of the triangle XOY is as small as possible.

A complete and careful mathematical justification of property (i) is required.

Q[10](˚): hint answer solution
A rectangle is inscribed in a semicircle of radius R so that one side of the rectangle lies along a
diameter of the semicircle. Find the largest possible perimeter of such a rectangle, if it exists, or
explain why it does not. Do the same for the smallest possible perimeter.

Q[11](˚): hint answer solution
Find the maximal possible volume of a cylinder with surface area A.1

Q[12](˚): hint answer solution
What is the largest possible area of a window, with perimeter P, in the shape of a rectangle with a
semicircle on top (so the diameter of the semicircle equals the width of the rectangle)?

Q[13](˚): answer solution
Consider an open-top rectangular baking pan with base dimensions x centimetres by y centimetres
and height z centimetres that is made from A square centimetres of tin plate. Suppose y = px for
some fixed constant p.

(a) Find the dimensions of the baking pan with the maximum capacity (i.e., maximum volume).
Prove that your answer yields the baking pan with maximum capacity. Your answer will depend
on the value of p.

(b) Find the value of the constant p that yields the baking pan with maximum capacity and give the
dimensions of the resulting baking pan. Prove that your answer yields the baking pan with
maximum capacity.

1 Food is often packaged in cylinders, and companies wouldn’t want to waste the metal they are made out of. So,
you might expect the dimensions you find in this problem to describe a tin of, say, cat food. Read here about why
this isn’t the case.
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§§ Stage 3
Q[14](˚): hint answer solution
Let f (x) = xx for xą 0.

(a) Find f 1(x).

(b) At what value of x does the curve y = f (x) have a horizontal tangent line?

(c) Does the function f have a local maximum, a local minimum, or neither of these at the point x
found in part (b)?

Q[15](˚): hint answer solution
A length of wire is cut into two pieces, one of which is bent to form a circle, the other to form a
square. How should the wire be cut if the area enclosed by the two curves is maximized? How
should the wire be cut if the area enclosed by the two curves is minimized? Justify your answers.

8.4Ĳ Sample optimization problems

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Q[1]:
Find the numbers. The sum of two positive number is 20. Find the numbers

(a) if their product is a maximum,

(b) if the sum of their squares is a minimum,

(c) if the product of the square of one and the cube of the other is a maximum.

Q[2]:
Distance, velocity and acceleration. A tram ride departs from its starting place at t = 0 and
travels to the end of its route and back. Its distance from the terminal at time t can be approximately
described by the expression

S(t) = 4t3(10´ t)

where t is in minutes, 0ă t ă 10, and S is distance in meters.

(a) Find the velocity as a function of time.

(b) When is the tram moving at the fastest rate?

(c) At what time does it get to the furthest point away from its starting position?

(d) Sketch the acceleration, the velocity, and the position of the tram on the same set of axes.

Q[3]:
Distance of two cars. At 9A.M., car B is 25 km west of car A. Car A then travels to the south
at 30 km/h and car B travels east at 40 km/h. When are they closest to each other and what is this
distance?

Q[4]:
Cannonball movement. A cannonball is shot vertically upwards from the ground with initial
velocity v0 = 15m/sec. The height of the ball, y (in meters), as a function of the time, t (in sec) is
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given by
y = v0t´4.9t2

Determine the following:

(a) the time at which the cannonball reaches its highest point,

(b) the velocity and acceleration of the cannonball at t = 0.5 s, and t = 1.5 s, and

(c) the time at which the cannonball hits the ground.

Q[5]:
Dimensions of a box. A closed 3-dimensional box is to be constructed in such a way that its
volume is 4500 cm3. It is also specified that the length of the base is 3 times the width of the base.

Determine the dimensions of the box which satisfy these conditions and have the minimum possible
surface area. Justify your answer.

Q[6]:
Dimensions of a box. A box with a square base is to be made so that its diagonal has length 1; see
Figure 8.1.

(a) What height y would make the volume maximal?

(b) What is the maximal volume? (hint: a box having side lengths `, w, h has diagonal length D
where D2 = `2 +w2 + h2 and volume V = `wh).

y

x
x

D

Figure 8.1: Figure for Exercise 6; box with a square base.

Q[7]:
Minimum distance. Find the minimum distance from a point on the positive x-axis (a,0) to the
parabola y2 = 8x.

Q[8]:

The largest garden. You are building a fence to completely enclose part of your backyard for a
vegetable garden. You have already purchased material for a fence of length 100 ft.

What is the largest rectangular area that this fence can enclose?

Q[9]:
Two gardens. A fence of length 100 ft is to be used to enclose two gardens. One garden is to have
a circular shape, and the other to be square.
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Determine how the fence should be cut so that the sum of the areas inside both gardens is as large as
possible.

Q[10]:
Dimensions of an open box. A rectangular piece of cardboard with dimension 12 cm by 24 cm is
to be made into an open box (i.e., no lid) by cutting out squares from the corners and then turning up
the sides.

Find the size of the squares that should be cut out if the volume of the box is to be a maximum.

Q[11]:
Alternate solution to Kepler’s wine barrel. In this exercise we follow an alternate approach to
the most economical wine barrel problem posed by Kepler (as in Example 8.4.2 in the text).

Through this approach, we find the proportions (height:radius) of the cylinder that minimizes the
length L of the wet rod in Figure 8.2 for a fixed volume.

(a) Explain why minimizing L is equivalent to minimizing L2 in Eqn. 8.4.2

(b) Explain how Eqn. 8.4.1 can be used to specify a constraint for this problem. (hint: consider
the volume, V to be fixed and show that you can solve for r2).

(c) Use your result in (c) to eliminate r from the formula for L2. Now L2(h) depends only on the
height of the cylindrical wine barrel.

(d) Use calculus to find any local minima for L2(h). Be sure to verify that your result is a
minimum.

(e) Find the corresponding value of r using your result in (b).

(f) Find the ratio h/r. You should obtain the same result as in Eqn. 8.4.3.

Q[12]:
Rectangle with largest area. Find the side lengths, x and y, of the rectangle with largest area whose
diameter L is given (hint: eliminate one variable using the constraint. To simplify the derivative,
consider that critical points of A would also be critical points of A2, where A = xy is the area of the
rectangle. If you have already learned the chain rule, you can use it in the differentiation).

Q[13]:
Shortest path. Find the shortest path that would take a milk-maid from her house at (10,10) to
fetch water at the river located along the x-axis and then to the thirsty cow at (3,5).

Q[14]:
Water and ice. Why does ice float on water? Because the density of ice is lower! In fact, water is
the only common liquid whose maximal density occurs above its freezing temperature. This
phenomenon favours the survival of aquatic life by preventing ice from forming at the bottoms of
lakes. According to the Handbook of Chemistry and Physics, a mass of water that occupies one liter
at 0˝C occupies a volume (in liters) of

V = ´aT 3 + bT 2´ cT + 1

at T ˝C where 0ď T ď 30 and where the coefficients are

a = 6.79ˆ10´8, b = 8.51ˆ10´6, c = 6.42ˆ10´5.
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Find the temperature between 0˝C and 30˝C at which the density of water is the greatest. (hint:
maximizing the density is equivalent to minimizing the volume. Why is this?).

Q[15]:
Drug doses and sensitivity. The reaction R(x) of a patient to a drug dose of size x depends on the
type of drug. For a certain drug, it was determined that a good description of the relationship is:

R(x) = Ax2(B´ x)

where A and B are positive constants. The sensitivity of the patient’s body to the drug is defined to
be R1(x).

(a) For what value of x is the reaction a maximum, and what is that maximum reaction value?

(b) For what value of x is the sensitivity a maximum? What is the maximum sensitivity?

Q[16]:
Thermoregulation in a swarm of bees. In the winter, honeybees sometimes escape the hive and
form a tight swarm in a tree, where, by shivering, they can produce heat and keep the swarm
temperature elevated.

Heat energy is lost through the surface of the swarm at a rate proportional to the surface area (k1S
where k1 ą 0 is a constant). Heat energy is produced inside the swarm at a rate proportional to the
mass of the swarm (which you may take to be a constant times the volume). We assume that the
heat production is k2V where k2 ą 0 is constant.

Swarms that are not large enough may lose more heat than they can produce, and then they die. The
heat depletion rate is the loss rate minus the production rate. Assume that the swarm is spherical.

Find the size of the swarm for which the rate of depletion of heat energy is greatest.

Q[17]:
Circular cone circumscribed about a sphere. A right circular cone is circumscribed about a
sphere of radius 5. Find the dimension of this cone if its volume is to be a minimum.

Note: this is a rather challenging geometric problem.

Q[18]:
Optimal reproductive strategy. Animals that can produce many healthy babies that survive to the
next generation are at an evolutionary advantage over other, competing, species. However, too many
young produce a heavy burden on the parents (who must feed and care for them). If this causes the
parents to die, the advantage is lost. Further, competition of the young with one another for food and
parental attention jeopardizes the survival of these babies.

Suppose that the evolutionary Advantage A to the parents of having litter size x is

A(x) = ax´bx2.

Suppose that the Cost C to the parents of having litter size x is

C(x) = mx+ e.

The Net Reproductive Gain G is defined as

G = A´C.
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(a) Explain the expressions for A,C and G.

(b) At what litter size is the advantage, A, greatest?

(c) At what litter size is there least cost to the parents?

(d) At what litter size is the Net Reproductive Gain greatest?.

Q[19]:
Behavioural Ecology. Social animals that live in groups can spend less time scanning for predators
than solitary individuals. However, they waste time fighting with the other group members over the
available food. There is some group size at which the net benefit is greatest because the animals
spend the least time on these unproductive activities - and thus can spend time on feeding, mating,
etc.

Assume that for a group of size x, the fraction of time spent scanning for predators is

S(x) = A
1

(x+ 1)

and the fraction of time spent fighting with other animals over food is

F(x) = B(x+ 1)2

where A,B are constants.

Find the size of the group for which the time wasted on scanning and fighting is smallest.

Q[20]:
Logistic growth. Consider a fish population whose density (individuals per unit area) is N, and
suppose this fish population grows logistically, so that the rate of growth R satisfies

R(N) = rN(1´N/K)

where r and K are positive constants.

(a) Sketch R as a function of N or explain Figure 8.2.

0 K/2 K

N

G

Figure 8.2: In logistic growth, the population growth rate G depends on population size N as shown
here.
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(b) Use a first derivative test to justify the claim that N = K/2 is a local maximum for the
function G(N).

Q[21]:
Logistic growth with harvesting. Consider a fish population of density N growing logistically, i.e.
with rate of growth R(N) = rN(1´N/K) where r and K are positive constants. The rate of
harvesting (i.e. removal) of the population is

h(N) = qEN

where E, the effort of the fishermen, and q, the catchability of this type of fish, are positive
constants.

At what density of fish does the growth rate exactly balance the harvesting rate? This density is
called the maximal sustainable yield: MSY.

Q[22]:
Conservation of a harvested population. Conservationists insist that the density of fish should
never be allowed to go below a level at which growth rate of the fish exactly balances with the
harvesting rate. At this level, the harvesting is at its maximal sustainable yield. If more fish are
taken, the population keeps dropping and the fish eventually go extinct.

What level of fishing effort should be used to lead to the greatest harvest at this maximal sustainable
yield?

Note: you should first complete the Exercise 21.

Q[23]:
Rate of net energy gain while foraging and traveling. Animals spend energy in traveling and
foraging. In some environments this energy loss is a significant portion of the energy budget. In
such cases, it is customary to assume that to survive, an individual would optimize the rate of net
energy gain, defined as

Q(t) =
Net energy gained

total time spent
=

Energy gained´Energy lost
total time spent

(8.4.1)

Assume that the animal spends p energy units per unit time in all activities (including foraging and
traveling). Assume that the energy gain in the patch (“patch energy function”) is given by
Eqn. 8.4.4.

Find the optimal patch time, that is the time at which Q(t) is maximized in this scenario.

Q[24]:
Maximizing net energy gain: Suppose that the situation requires an animal to maximize its net
energy gained E(t) defined as

E(t) = energy gained while foraging
´energy spent while foraging and traveling.

(This means that E(t) = f (t)´ r(t + τ) where r is the rate of energy spent per unit time and τ is
the fixed travel time).
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Assume as before that the energy gained by foraging for a time t in the food patch
is f (t) = Emaxt/(k+ t).

(a) Find the amount of time t spent foraging that maximizes E(t).

(b) Indicate a condition of the form k ă ? that is required for existence of this critical point.
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APPROXIMATING FUNCTIONS
NEAR A SPECIFIED POINT
– TAYLOR POLYNOMIALS

Chapter 9

9.1Ĳ Zeroth approximation

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
The graph below shows three curves. The black curve is y = f (x), the red curve is
y = g(x) = 1+ 2sin(1+ x), and the blue curve is y = h(x) = 0.7. If you want to estimate f (0),
what might cause you to use g(0)? What might cause you to use h(0)?
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x

y

y = f (x)
y = g(x)

y = h(x)

§§ Stage 2

In this and following sections, we will ask you to approximate the value of several constants, such as log(0.93).
A valid question to consider is why we would ask for approximations of these constants that take lots of time,
and are less accurate than what you get from a calculator.

One answer to this question is historical: people were approximating logarithms before they had calculators,
and these are some of the ways they did that. Pretend you’re on a desert island without any of your usual
devices and that you want to make a number of quick and dirty approximate evaluations.

Another reason to make these approximations is technical: how does the calculator get such a good approxi-
mation of log(0.93)? The techniques you will learn later on in this chapter give very accurate formulas for
approximating functions like logx and sinx, which are sometimes used in calculators.

A third reason to make simple approximations of expressions that a calculator could evaluate is to provide a
reality check. If you have a ballpark guess for your answer, and your calculator gives you something wildly
different, you know to double-check that you typed everything in correctly.

For now, questions like Question 2 through Question 4 are simply for you to practice the fundamental ideas
we’re learning.

Q[2]: hint answer solution
Use a constant approximation to estimate the value of log(x) when x = 0.93. Sketch the curve
y = f (x) and your constant approximation.

(Remember that we use logx to mean the natural logarithm of x, loge x.)

Q[3]: hint answer solution
Use a constant approximation to estimate arcsin(0.1).

Q[4]: hint answer solution
Use a constant approximation to estimate

?
3tan(1).
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§§ Stage 3
Q[5]: hint answer solution
Use a constant approximation to estimate the value of 10.13. Your estimation should be something
you can calculate in your head.

9.2Ĳ Linear approximation

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
Suppose f (x) is a function, and we calculated its linear approximation near x = 5 to be
f (x) « 3x´9.

(a) What is f (5)?

(b) What is f 1(5)?

(c) What is f (0)?

Q[2]: hint answer solution
The curve y = f (x) is shown below. Sketch the linear approximation of f (x) about x = 2.

x

y

y = f (x)

2

Q[3]: hint answer solution
What is the linear approximation of the function f (x) = 2x+ 5 about x = a?

§§ Stage 2
Q[4]: hint answer solution
Use a linear approximation to estimate log(x) when x = 0.93. Sketch the curve y = f (x) and your
linear approximation.

(Remember we use logx to mean the natural logarithm of x, loge x.)

Q[5]: hint answer solution
Use a linear approximation to estimate

?
5.
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Q[6]: hint answer solution
Use a linear approximation to estimate 5

?
30

§§ Stage 3
Q[7]: hint answer solution
Use a linear approximation to estimate 10.13, then compare your estimation with the actual value.

Q[8]: hint answer solution
Imagine f (x) is some function, and you want to estimate f (b). To do this, you choose a value a and
take an approximation (linear or constant) of f (x) about a. Give an example of a function f (x), and
values a and b, where the constant approximation gives a more accurate estimation of f (b) than the
linear approximation.

Q[9]: hint answer solution
The function

L(x) =
1
4

x+
4π´?27

12
is the linear approximation of f (x) = arctanx about what point x = a?

9.3Ĳ Quadratic approximation

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
The quadratic approximation of a function f (x) about x = 3 is

f (x) «´x2 + 6x

What are the values of f (3), f 1(3), f 2(3), and f3(3)?

Q[2]: hint answer solution
Give a quadratic approximation of f (x) = 2x+ 5 about x = a.

§§ Stage 2
Q[3]: hint answer solution
Use a quadratic approximation to estimate log(0.93).

(Remember we use logx to mean the natural logarithm of x, loge x.)

Q[4]: hint answer solution

Use a quadratic approximation to estimate cos
(

1
15

)
.

Q[5]: hint answer solution
Calculate the quadratic approximation of f (x) = e2x about x = 0.
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Q[6]: hint answer solution

Use a quadratic approximation to estimate 5
4
3 .

Q[7]: hint answer solution
Evaluate the expressions below.

(a)
30
ÿ

n=5

1

(b)
3
ÿ

n=1

[
2(n+ 3)´n2]

(c)
10
ÿ

n=1

[
1
n
´ 1

n+ 1

]

(d)
4
ÿ

n=1

5 ¨2n

4n+1

Q[8]: hint answer solution
Write the following in sigma notation:

(a) 1+ 2+ 3+ 4+ 5

(b) 2+ 4+ 6+ 8

(c) 3+ 5+ 7+ 9+ 11

(d) 9+ 16+ 25+ 36+ 49

(e) 9+ 4+ 16+ 5+ 25+ 6+ 36+ 7+ 49+ 8

(f) 8+ 15+ 24+ 35+ 48

(g) 3´6+ 9´12+ 15´18

§§ Stage 3
Q[9]: hint answer solution
Use a quadratic approximation of f (x) = 2arcsinx about x = 0 to approximate f (1). What number
are you approximating?

Q[10]: hint answer solution
Use a quadratic approximation of ex to estimate e as a decimal.

Q[11]: hint answer solution
Group the expressions below into collections of equivalent expressions.

(a)
10
ÿ

n=1

2n

(b)
10
ÿ

n=1

2n
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(c)
10
ÿ

n=1

n2

(d) 2
10
ÿ

n=1

n

(e) 2
11
ÿ

n=2

(n´1)

(f)
14
ÿ

n=5

(n´4)2

(g)
1
4

10
ÿ

n=1

(
4n+1

2n

)

9.4Ĳ Still Better approximations

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
The 3rd degree Taylor polynomial for a function f (x) about x = 1 is

T3(x) = x3´5x2 + 9x

What is f 2(1)?

Q[2]: hint answer solution
The nth degree Taylor polynomial for f (x) about x = 5 is

Tn(x) =
n
ÿ

k=0

2k+ 1
3k´9

(x´5)k

What is f (10)(5)?

§§ Stage 3
Q[3]: hint answer solution
The 4th-degree Maclaurin polynomial for f (x) is

T4(x) = x4´ x3 + x2´ x+ 1

What is the third-degree Maclaurin polynomial for f (x)?
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Q[4]: hint answer solution
The 4th degree Taylor polynomial for f (x) about x = 1 is

T4(x) = x4 + x3´9

What is the third degree Taylor polynomial for f (x) about x = 1?

Q[5]: hint answer solution
For any even number n, suppose the nth degree Taylor polynomial for f (x) about x = 5 is

n/2
ÿ

k=0

2k+ 1
3k´9

(x´5)2k

What is f (10)(5)?

Q[6]: hint answer solution

The third-degree Taylor polynomial for f (x) = x3
[

2logx´ 11
3

]
about x = a is

T3(x) = ´2
3

?
e3 + 3ex´6

?
ex2 + x3

What is a?

9.5Ĳ Some examples

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 2
Q[1]: hint answer solution
Give the 16th degree Maclaurin polynomial for f (x) = sinx+ cosx.

Q[2]: hint answer solution
Give the 100th degree Taylor polynomial for s(t) = 4.9t2´ t + 10 about t = 5.

Q[3]: hint answer solution
Write the nth-degree Taylor polynomial for f (x) = 2x about x = 1 in sigma notation.

Q[4]: hint answer solution
Find the 6th degree Taylor polynomial of f (x) = x2 logx+ 2x2 + 5 about x = 1, remembering that
logx is the natural logarithm of x, loge x.

Q[5]: hint answer solution

Give the nth degree Maclaurin polynomial for
1

1´ x
in sigma notation.

§§ Stage 3
Q[6]: hint answer solution
Calculate the 3rd-degree Taylor Polynomial for f (x) = xx about x = 1.

97
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Q[7]: hint answer solution
Use a 5th-degree Maclaurin polynomial for 6arctanx to approximate π .

Q[8]: hint answer solution
Write the 100th-degree Taylor polynomial for f (x) = x(logx´1) about x = 1 in sigma notation.

Q[9]: hint answer solution

Write the (2n)th-degree Taylor polynomial for f (x) = sinx about x =
π

4
in sigma notation.

Q[10]: hint answer solution
Estimate the sum below

1+
1
2
+

1
3!

+
1
4!

+ ¨ ¨ ¨+ 1
157!

by interpreting it as a Maclaurin polynomial.

Q[11]: hint answer solution
Estimate the sum below

100
ÿ

k=0

(´1)k

2k!

(
5π

4

)2k

by interpreting it as a Maclaurin polynomial.

9.6Ĳ (Flavour A) Error in Taylor polynomials
Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
Suppose f (x) is a function that we approximated by F(x). Further, suppose f (10) =´3, while our
approximation was F(10) = 5. Let R(x) = f (x)´F(x).

(a) True or false: |R(10)| ď 7

(b) True or false: |R(10)| ď 8

(c) True or false: |R(10)| ď 9

(d) True or false: |R(10)| ď 100

Q[2]: hint answer solution
Let f (x) = ex, and let T3(x) be the third-degree Maclaurin polynomial for f (x),

T3(x) = 1+ x+
1
2

x2 +
1
3!

x3

Use Equation 9.6.6 to give a reasonable bound on the error | f (2)´T3(2)|. Then, find the error
| f (2)´T3(2)| using a calculator.

Q[3]: hint answer solution
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Let f (x) = 5x3´24x2+ex´π4, and let T5(x) be the fifth-degree Taylor polynomial for f (x) about
x = 1. Give the best bound you can on the error | f (37)´T (37)|.
Q[4]: hint answer solution
You and your friend both want to approximate sin(33). Your friend uses the first-degree Maclaurin
polynomial for f (x) = sinx, while you use the zeroth-degree (constant) Maclaurin polynomial for
f (x) = sinx. Who has a better approximation, you or your friend?

§§ Stage 2
Q[5]: hint answer solution
Suppose a function f (x) has sixth derivative

f (6)(x) =
6!(2x´5)

x+ 3
.

Let T5(x) be the 5th-degree Taylor polynomial for f (x) about x = 11.

Give a bound for the error | f (11.5)´T5(11.5)|.
Q[6]: hint answer solution
Let f (x) = tanx, and let T2(x) be the second-degree Taylor polynomial for f (x) about x = 0. Give
a reasonable bound on the error | f (0.1)´T (0.1)| using Equation 9.6.6.

Q[7]: hint answer solution
Let f (x) = log(1´ x), and let T5(x) be the fifth-degree Maclaurin polynomial for f (x). Use
Equation 9.6.6 to give a bound on the error | f (´1

4

)´T5
(´1

4

) |.
(Remember logx = loge x, the natural logarithm of x.)

Q[8]: hint answer solution
Let f (x) = 5

?
x, and let T3(x) be the third-degree Taylor polynomial for f (x) about x = 32. Give a

bound on the error | f (30)´T3(30)|.
Q[9]: hint answer solution
Let

f (x) = sin
(

1
x

)
and let T1(x) be the first-degree Taylor polynomial for f (x) about x =

1
π

. Give a bound on the error

| f (0.01)´T1(0.01)|, using Equation 9.6.6. You may leave your answer in terms of π .

Then, give a reasonable bound on the error | f (0.01)´T1(0.01)|.
Q[10]: hint answer solution
Let f (x) = arcsinx, and let T2(x) be the second-degree Maclaurin polynomial for f (x). Give a
reasonable bound on the error

ˇ

ˇ f
(1

2

)´T2
(1

2

)ˇ
ˇ using Equation 9.6.6. What is the exact value of the

error
ˇ

ˇ f
(1

2

)´T2
(1

2

)ˇ
ˇ?

§§ Stage 3
Q[11]: hint answer solution

Flavour
A
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Let f (x) = log(x), and let Tn(x) be the nth-degree Taylor polynomial for f (x) about x = 1. You
use Tn(1.1) to estimate log(1.1). If your estimation needs to have an error of no more than 10´4,
what is an acceptable value of n to use?

Q[12]: hint answer solution
Give an estimation of 7

?
2200 using a Taylor polynomial. Your estimation should have an error of

less than 0.001.

Q[13]: hint answer solution
Use Equation 9.6.6 to show that

4241
5040

ď sin(1) ď 4243
5040

Q[14]: hint answer solution
In this question, we use the remainder of a Maclaurin polynomial to approximate e.

(a) Write out the 4th degree Maclaurin polynomial T4(x) of the function ex.

(b) Compute T4(1).

(c) Use your answer from (b) to conclude
326
120

ă eă 325
119

.

100



NEWTON’S METHOD

(FLAVOUR A) NEWTON’S METHOD

Chapter 10

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Q[1]: answer
Starting at x0 = 3, use two iterations of Newton’s method to approximate the root of f (x) = x2´10.
You may leave your answer in calculator-ready form.

Q[2]: answer
Starting at x0 = 3, use one iteration of Newton’s method to approximate the root of f (x) = x3´30.
Express your answer as a simplified fraction. Then, check that you’re on the right path by cubing
your answer with a calculator.

Q[3]: answer solution
Use two iterations of Newton’s method to approximate the x-value of the critical point of the function
g(x) = x´ x2´ x4.

Q[4]: answer solution
Use one iteration of Newton’s method to approximate the value of x where arctanx = x´10. Leave
your answer in calculator-ready form.

Q[5]: answer solution
Use two iterations of Newton’s method to approximate a root of the function

f (x) = x3´12x+ 15

close to x = 2. Leave your answer in calculator-ready form.

Q[6]: answer
Use one iteration of Newton’s method to find an approximate value for

?
8 that is a rational number.

(Hint: first think of a function, f (x), such that f (x) = 0 has the solution x =
?

8.)

Q[7]: answer
Approximate the root of x3 + 3x´1 = 0 using two iterations of Newton’s method.

Q[8]: answer
Approximate the root of x3 + x2 + x´2 = 0 using one iterations of Newton’s method.
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NEWTON’S METHOD

Q[9]: hint answer
Use the method of linear approximation (i.e. one iteration of Newton’s method) to find the cube root
of:

(a) 0.065

(b) 215
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INTRODUCTION TO DIFFERENTIAL EQUATIONS

(FLAVOURS A, B) INTRODUCTION
TO DIFFERENTIAL EQUATIONS

Chapter 11

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

These questions are adapted from Keshet, Chapter 11. The selected answers provided here are used
with permission. Many answers are given in exact terms, e.g. “10

3 log8,” as well as with decimal
approximations. You should be able to solve all questions exactly without use of a calculator; the
decimal approximations are included because they are easier to understand in the context of a model.

Q[1]: answer
A colony of bacteria is treated with a mild antibiotic agent so that the bacteria start to die. It is
observed that the population of bacteria as a function of time follows the approximate
relationship b(t) = 85e´0.5t where t is time in hours.

Determine the time it takes for half of the bacteria to die; this is called the half-life.

Find how long it takes for 99% of the bacteria to die.

Q[2]:
A differential equation is an equation in which some function is related to its own derivative(s).

For each of the following functions, calculate the appropriate derivative, and show that the function
satisfies the indicated differential equation.

(a) f (x) = 2e´3x, f 1(x) = ´3 f (x)

(b) f (t) =Cekt , f 1(t) = k f (t)

(c) f (t) = 1´ e´t , f 1(t) = 1´ f (t)

Q[3]: answer
Consider the function y = f (t) =Cekt where C and k are constants. For what value(s) of these
constants does this function satisfy the equations below?
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(a) dy
dt = ´5y,

(b) dy
dt = 3y

Q[4]:
Check that the function

N(t) = N0ekt = N0e(r´m)t

satisfies the differential equation
dN
dt

= (r´m)N

and the initial condition N(0) = N0.

Q[5]: answer
Find a function that satisfies each of the following differential equations.

Note: all your answers should be exponential functions, but they may have different dependent and
independent variables. Question 2 may help.

(a)
dy
dt

= ´y,

(b)
dc
dx

= ´0.1c and c(0) = 20,

(c)
dz
dt

= 3z and z(0) = 5.

Q[6]: answer
The per capita birthrate of one species of rodent is 0.05 newborns per day. This means that, on
average, each member of the population results in 5 newborn rodents every 100 days. Suppose that
over the period of 1000 days there are no deaths, and that the initial population of rodents is 250.

(a) Write a differential equation for the population size N(t) at time t (in days).

(b) Write down the initial condition that N satisfies.

(c) Find the solution, i.e. express N as some function of time t that satisfies your differential
equation and initial condition.

(d) How many rodents are there after 1 year ?

Q[7]: answer
Suppose a population of bacteria starts from a single bacterium, and grows at a rate proportional to
the number of bacteria in the population. Suppose further that it takes 20 minutes for the population
to double.

Find the appropriate differential equation that describes this growth, the appropriate initial condition,
and the exponential function that is the solution to that differential equation. Use units of hours for
time t.

Q[8]:
In Canada, women have only about 2 children during their 40 years of fertility, and people live to
age 80. In underdeveloped countries, people on average live to age 60 and women have a child
roughly every 4 years between ages 13 and 45.
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Compare the per capita birth and mortality rates and the predicted population growth or decay in
each of these scenarios, using arguments analogous to those of Section 11.2.

Find the growth rate k in percent per year and the doubling time for the growing population.

Q[9]: answer
A population of animals has a per-capita birth rate of b = 0.08 per year and a per-capita death rate
of m = 0.01 per year. The population density, P(t) is found to satisfy the differential equation

dP(t)
dt

= bP(t)´mP(t)

(a) If the population is initially P(0) = 1000, find how big the population is in 5 years.

(b) When does the population double?

Q[10]: answer

(a) The population y(t) of a certain microorganism grows continuously and follows an exponential
behaviour over time. Its doubling time is found to be 0.27 hours. What differential equation
would you use to describe its growth?

Note: you must find the value of the rate constant, k, using the doubling time.

(b) With exposure to ultra-violet radiation, the population ceases to grow, and the microorganisms
continuously die off. It is found that the half-life is then 0.1 hours. What differential equation
would now describe the population?

Q[11]: answer
A bacterial population grows at a rate proportional to the population size at time t. Let y(t) be the
population size at time t. By experiment it is determined that the population at t = 10 min is 15,000
and at t = 30 min it is 20,000.

(a) What was the initial population?

(b) What is the population at time t = 60min?

Q[12]: answer
Two populations are studied. Population 1 is found to obey the differential equation

dy1

dt
= 0.2y1

and population 2 obeys
dy2

dt
= ´0.3y2

where t is time in years.

(a) Which population is growing and which is declining?

(b) Find the doubling time (respectively half-life) associated with the given population.

(c) If the initial levels of the two populations were y1(0) = 100 and y2(0) = 10,000, how big
would each population be at time t?

(d) At what time would the two populations be exactly equal?
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Q[13]: answer
The human population on Earth doubles roughly every 50 years. In October 2000 there
were 6.1 billion humans on earth.

(a) Determine what the human population would be 500 years later under the uncontrolled growth
scenario.

(b) How many people would have to inhabit each square kilometer of the planet for this population
to fit on earth? (Take the circumference of the earth to be 40,000 km for the purpose of
computing its surface area and assume that the oceans have dried up.)

Q[14]: answer
Two lakes have populations of fish, but the conditions are quite different in these lakes. In the first
lake, the fish population is growing and satisfies the differential equation

dy
dt

= 0.2y

where t is time in years. At time t = 0 there were 500 fish in this lake. In the second lake, the
population is dying due to pollution. Its population satisfies the differential equation

dy
dt

= ´0.1y,

and initially there were 4000 fish in this lake.

At what time are the fish populations in the two lakes identical?

Q[15]: answer
When chemists say that a chemical reaction follows “first order kinetics”, they mean that the
concentration of the reactant at time t, i.e. c(t), satisfies an equation of the form dc

dt = ´rc where r
is a rate constant, here assumed to be positive. Suppose the reaction mixture initially has
concentration 1M (“1 molar”) and that after 1 hour there is half this amount.

(a) Find the “half life” of the reactant.

(b) Find the value of the rate constant r.

(c) Determine how much is left after 2 hours.

(d) When is only 10% of the initial amount be left?

Q[16]: answer
In a chemical reaction, a substance S is broken down. The concentration of the substance is
observed to change at a rate proportional to the current concentration. It was observed
that 1 Mole/litre of S decreased to 0.5 Moles/litre in 10 minutes.

(a) How long does it take until only 0.25 Moles per litre remain?

(b) How long does it take until only 1% of the original concentration remains?

Q[17]: answer
If 10% of a radioactive substance remains after one year, find its half-life.

Q[18]: answer
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Carbon 14. Carbon 14, or 14C, has a half-life of 5730 years. This means that after 5730 years, a
sample of Carbon 14, which is a radioactive isotope of carbon, has lost one half of its original
radioactivity.

(a) Estimate how long it takes for the sample to fall to roughly 0.001 of its original level of
radioactivity.

(b) Each gram of 14C has an activity given here in units of 12 decays per minute. After some time,
the amount of radioactivity decreases. For example, a sample 5730 years old has only one half
the original activity level, i.e. 6 decays per minute. If a 1 gm sample of material is found to
have 45 decays per hour, approximately how old is it?

Note: 14C is used in radiocarbon dating, a process by which the age of materials containing
carbon can be estimated. W. Libby received the Nobel prize in chemistry in 1960 for
developing this technique.

Q[19]: answer
Strontium-90 is a radioactive isotope with a half-life of 29 years. If you begin with a sample
of 800 units, how long does it take for the amount of radioactivity of the strontium sample to be
reduced to:

(a) 400 units?

(b) 200 units?

(c) 1 unit?

Q[20]: answer
Cobalt 60 is a radioactive substance with half life 5.3 years. It is used in medical applications
(radiology). How long does it take for 80% of a sample of this substance to decay?

Q[21]: hint answer
A barrel initially contains 2 kg of salt dissolved in 20 L of water. If water flows in at the rate of 0.4 L
per minute and the well-mixed salt water solution flows out at the same rate, how much salt is
present after 8 minutes?

Q[22]: answer
Assume the atmospheric pressure y at a height x meters above the sea level satisfies the relation

dy
dx

= ky

for some constant k. If one day at a certain location the atmospheric pressures are 760 and 675 torr
(unit for pressure) at sea level and at 1000 meters above sea level, respectively, find the value of the
atmospheric pressure at 600 meters above sea level.
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SOLVING DIFFERENTIAL EQUATIONS

(FLAVOURS A, B) SOLVING
DIFFERENTIAL EQUATIONS

Chapter 12

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Questions 1 through 19 are from Keshet, Chaper 12, which intentionally omits some answers.

Q[1]: answer
Euler’s method. Solve the decay equation in Example 12.3.2 in the text analytically. That is, find
the formula for the solution to

dy
dt

= ´0.5y, y(0) = 100

in terms of a decaying exponential, and then use a calculator to compare your values to the
approximate solution values y1 and, y2 computed with Euler’s method in Table 12.3 in the text.

Q[2]: answer
Comparing approximate and true solutions. For this question, you may use a calculator.

(a) Use Euler’s method to find an approximate solution to the differential equation

dy
dx

= y

with y(0) = 1. Use a step size h = 0.1 and find the values of y up to x = 0.5. Compare the value
you have calculated for y(0.5) using Euler’s method with the true solution of this differential
equation. What is the error i.e. the difference between the true solution and the approximation?

(b) Now use Euler’s method on the differential equation

dy
dx

= ´y

with y(0) = 1. Use a step size h = 0.1 again and find the values of y up to x = 0.5. Compare
the value you have calculated for y(0.5) using Euler’s method with the true solution of this
differential equation. What is the error this time?
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Q[3]:
Beginning Euler’s method. Give the first 3 steps of Euler’s method for the problem in Exam-
ple 12.3.4 in the text.

Q[4]: answer
Water draining form a container. In Example 12.1.3 in the text, we verified that the
function h(t) =

(?
h0´ k t

2

)2 is a solution to the differential equation

dh
dt

= ´k
?

h.

Based on the meaning of the problem, for how long does this solution remain valid?

Q[5]:
Verifying a solution. Verify that the function y(t) = 1´ (1´ y0)e´t satisfies the initial value
problem (differential equation and initial condition)

dy
dt

= 1´ y, y(0) = y0

(equation 12.2.3 in the text).

Q[6]:
Linear differential equation. Consider the differential equation

dy
dt

= a´by

where a, b are constants.

(a) Show that the function

y(t) =
a
b
´Ce´bt

satisfies the above differential equation for any constant C.

(b) Show that by setting

C =
a
b
´ y0

we also satisfy the initial condition
y(0) = y0.

Remark: you have shown that the function

y(t) =
(

y0´ a
b

)
e´bt +

a
b

is a solution to the initial value problem (i.e differential equation plus initial condition)

dy
dt

= a´by, y(0) = y0.
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Q[7]:
Verifying a solution. Show that the function

y(t) =
1

1´ t

is a solution to the differential equation and initial condition

dy
dt

= y2, y(0) = 1.

Comment on what happens to this solution as t approaches 1.

Q[8]:
Verifying solutions. For each of the following, show the given function y is a solution to the given
differential equation.

(a) t ¨ dy
dt

= 3y, y = 2t3.

(b)
d2y
dt2 + y = 0, y = ´2sin t + 3cos t.

(c)
d2y
dt2 ´2

dy
dt

+ y = 6et , y = 3t2et .

Q[9]:
Verifying a solution. Show the function determined by the equation 2x2 + xy´ y2 =C, where C is

a constant and 2y‰ x, is a solution to the differential equation (x´2y)
dy
dx

= ´4x´ y.

Q[10]: answer
Determining the constant. Find the constants C, C1, and/or C2 that satisfy the given initial
conditions.

(a) 2x2´3y2 =C, y|x=0 = 2.

(b) y =C1e5t +C2te5t , y|t=0 = 1 and dy
dt |t=0 = 0.

(c) y =C1 cos(t´C2), y|t= π

2
= 0 and dy

dt |t= π

2
= 1.

Q[11]:
Checking a solution. Check that the differential equation (12.2.4) has the right sign, so that a hot
object cools off in a colder environment.

That is:
dT
dt

= k(E´T (t)), where k ą 0

describes the change in temperature T of an object over time, where E is the (constant) temperature
of the environment, and k is a constant.

Q[12]: answer
Infant weight gain. During the first year of its life, the weight of a baby is given by

y(t) =
?

3t + 64

where t is measured in some convenient unit.
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(a) Show that y satisfies the differential equation

dy
dt

=
k
y

where k is some positive constant.

(b) What is the value for k?

(c) Suppose we adopt this differential equation as a model for human growth. State concisely (that
is, in one sentence) one feature about this differential equation which makes it a reasonable
model. State one feature which makes it unreasonable.

Q[13]: answer
Lake Fishing. Fish Unlimited is a company that manages the fish population in a private lake. They
restock the lake (that is, they add fish to the lake) at constant rate. N fishers are allowed to fish in
the lake per day. The population of fish in the lake, F(t) is found to satisfy the differential equation

dF
dt

= I´αNF (12.0.1)

where F is measured in individual fish, and t is measured in days.

(a) At what rate are fish added per day according to Eqn. (12.0.1)? Give both value and units.

(b) What is the average number of fish caught by one fisher? Give both the value and units.

(c) What is being assumed about the fish birth and mortality rates in Eqn. (12.0.1)?

(d) If the fish input and number of fishers are constant, what is the steady state level of the fish
population in the lake?

(e) At time t = 0 the company stops restocking the lake with fish. Give the revised form of the
differential equation (12.0.1) that takes this into account, assuming the same level of fishing as
before. How long would it take for the fish to fall to 25% of their initial level?

(f) When the fish population drops to the level Flow, fishing is stopped and the lake is restocked
with fish at the same constant rate (Eqn (12.0.1), with α = 0.) Write down the revised version
of Eqn. (12.0.1) that takes this into account. How long would it take for the fish population to
double?

Q[14]:
Tissue culture. Cells in a tissue culture produce a cytokine (a chemical that controls the growth of
other cells) at a constant rate of 10 nano-Moles per hour (nM/h). The chemical has a half-life of 20
hours.

Give a differential equation (DE) that describes this chemical production and decay. Solve this DE
assuming that at t = 0 there is no cytokine. [1nM=10´9M].

Q[15]: answer
Glucose solution in a tank. A tank that holds 1 liter is initially full of plain water. A concentrated
solution of glucose, containing 0.25 gm/cm3 is pumped into the tank continuously, at the
rate 10 cm3/min and the mixture (which is continuously stirred to keep it uniform) is pumped out at
the same rate.
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Let G(t) be the amount of glucose in the tank after tminutes. Write a differential equation for G,
and give its initial condition.

How much glucose is in the tank after a long time?

Q[16]: answer
Pollutant in a lake. A lake of constant volume V gallons contains Q(t) pounds of pollutant at
time t evenly distributed throughout the lake. Water containing a concentration of k pounds per
gallon of pollutant enters the lake at a rate of r gallons per minute, and the well-mixed solution
leaves at the same rate.

(a) Set up a differential equation that describes the way that the amount of pollutant in the lake
changes.

(b) Determine what happens to the pollutant level after a long time if this process continues.

(c) If k = 0 find the time T for the amount of pollutant to be reduced to one half of its initial value.

Q[17]: answer
A sugar solution. Sugar dissolves in water at a rate proportional to the amount of sugar not yet in
solution. Let Q(t) be the amount of sugar undissolved at time t. The initial amount is 100 kg and
after 4 hours the amount undissolved is 70 kg.

(a) Find a differential equation for Q(t) and solve it.

(b) How long does it take for 50 kg to dissolve?

Q[18]: answer
Leaking water tank. A cylindrical tank with cross-sectional area A has a small hole through which
water drains. The height of the water in the tank y(t) at time t is given by:

y(t) =
(?

y0´ kt
2A

)2

where k,y0 are constants.

(a) Show that the height of the water, y(t), satisfies the differential equation

dy
dt

= ´ k
A
?

y.

(b) What is the initial height of the water in the tank at time t = 0 ?

(c) At what time is the tank be empty ?

(d) At what rate is the volume of the water in the tank changing when t = 0?

Q[19]: answer
Determining constants. Find those constants a,b so that y = ex and y = e´x are both solutions of
the differential equation

y2+ ay1+ by = 0.
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Q[20]: answer
Approximate y(0.5) if y(t) satisfies the differential equation

dy
dt

=
y2´1
y2 + 1

and the initial condition
y(0) = 0

using a (simple) calculator or a spreadsheet, and the following step sizes in Euler’s method.

• Approximate y(0.5) using ∆t = 0.5.

• Approximate y(0.5) using ∆t = 0.25.

• Approximate y(0.5) using ∆t = 0.1.

Q[21]: answer solution
Given the initial-value problem

dy
dt

= y´ t, y(0) = 0

use Euler’s method with three steps to approximate y(0.03).

Q[22]: answer solution
Given the initial-value problem

dy
dt

= y+ t, y(0) = 0

use Euler’s method with three steps to approximate y(0.03). You may use a (simple) calculator or a
spreadsheet.

Q[23]: answer
Given the initial-value problem

dy
dt

=
t
y

, y(0) = 1

use Euler’s method with three steps to approximate y(0.03). You may use a (simple) calculator or a
spreadsheet.

Q[24]: answer solution
Given the initial-value problem

dy
dt

=
?

t, y(0) = 0

use Euler’s method with two steps to approximate y(1).

Q[25]: answer solution
Given the initial-value problem

dy
dt

=
?

y, y(0) = 0

use Euler’s method with two steps to approximate y(1).

Q[26]: answer solution
Given the initial-value problem

dy
dt

=
?

y, y(2) = 1

use Euler’s method with two steps to approximate y(3).
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Q[27]: answer solution
Suppose y(1.1) = 1

7 and
dy
dt

=
y
t

.

Use three steps of Euler’s method to approximate y(1.5). You may use a (simple) calculator or a
spreadsheet.
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QUALITATIVE METHODS FOR DIFFERENTIAL EQUATIONS

(FLAVOURS A, B) QUALITATIVE METH-
ODS FOR DIFFERENTIAL EQUATIONS

Chapter 13

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Q[1]: answer
Slope fields. Consider the differential equations given below. In each case, draw a slope field,
determine the values of y for which no change takes place - such values are called steady states -
and use your slope field to predict what would happen starting from an initial value y(0) = 1.

(a)
dy
dt

= ´0.5y

(b)
dy
dt

= 0.5y(2´ y)

(c)
dy
dt

= y(2´ y)(3´ y)

Q[2]: answer
Drawing slope fields. Draw a slope field for each of the given differential equations:

(a) dy
dt = 2+ 3y

(b) dy
dt = ´y(2´ y)

(c) dy
dt = 2´3y+ y2

(d) dy
dt = ´2(3´ y)2

(e) dy
dt = y2´ y+ 1

(f) dy
dt = y3´ y

(g) dy
dt =

?
y(y´2)(y´3)2, yě 0.
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Q[3]: answer
Using slope fields. For each of the differential equations (a) to (g) in Exercise 2, plot dy

dt as a
function of y, draw the motion along the y-axis, identify the steady state(s) and indicate if the
motions are toward or away from the steady state(s).

Flavour B

Q[4]: answer
Slope field. The slope field shown in the figure below corresponds to which differential equation?

(A)
dy
dt

= ry(y+ 1)

(B)
dy
dt

= r(y´1)(y+ 1)

(C)
dy
dt

= ´r(y´1)(y+ 1)

(D)
dy
dt

= ry(y´1)

(E)
dy
dt

= ´ry(y+ 1)

Q[5]: answer
Differential equation. Given the differential equation and initial condition

dy
dt

= y2(y´a), y(0) = 2a

where aą 0 is a constant, the value of the function y(t) would

(A) approach y = 0;

(B) grow larger with time;

(C) approach y = a;

(D) stay the same;

(E) none of the above.

Q[6]: answer
There’s a hole in the bucket. Water flows into a bucket at constant rate I. There is a hole in the
container. Explain the model

dh
dt

= I´ k
?

h.

Analyze the behaviour predicted. What would the height be after a long time? Is this result always
valid, or is an additional assumption needed? (hint: recall Example 12.1.3 in the text.)
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Q[7]: hint answer
Cubical crystal. A crystal grows inside a medium in a cubical shape with side length x and
volume V . The rate of change of the volume is given by

dV
dt

= kx2(V0´V )

where k and V0 are positive constants.

(a) Rewrite this as a differential equation for dx
dt .

(b) Suppose that the crystal grows from a very small “seed.” Show that its growth rate continually
decreases.

(c) What happens to the size of the crystal after a very long time?

(d) What is its volume when x it is growing at half its initial rate, assuming the initial value of x is
close to 0?

Flavour B

Q[8]:
The Law of Mass Action. The Law of Mass Action in Section 13.1 led to the assumption that the
rate of a reaction involving two types of molecules (A and B) is proportional to the product of their
concentrations, k ¨a ¨b.

Explain why the sum of the concentrations, k ¨ (a+ b), would not make for a sensible assumption
about the rate of the reaction.

Q[9]: answer
Biochemical reaction. A biochemical reaction in which a substance S is both produced and
consumed is investigated. The concentration c(t) of S changes during the reaction, and is seen to
follow the differential equation

dc
dt

= Kmax
c

k+ c
´ rc

where Kmax,k,r are positive constants with certain convenient units. The first term is a
concentration-dependent production term and the second term represents consumption of the
substance.

(a) What is the maximal rate at which the substance is produced? At what concentration is the
production rate 50% of this maximal value?

(b) If the production is turned off, the substance decays. How long would it take for the
concentration to drop by 50%?

(c) At what concentration does the production rate just balance the consumption rate?

Q[10]:
Logistic growth with proportional harvesting. Consider a fish population of density N(t)

Flavour B
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growing at rate g(N), with harvesting, so that the population satisfies the differential equation

dN
dt

= g(N)´h(N).

Now assume that the growth rate is logistic, so g(N) = rN (K´N)
K where r,K ą 0 are constant.

Assume that the rate of harvesting is proportional to the population size, so that

h(N) = qEN

where E, the effort of the fishermen, and q, the catchability of this type of fish, are positive constants.

Use qualitative methods discussed in this chapter to analyze the behaviour of this equation. Under
what conditions does this lead to a sustainable fishery?

Q[11]:
Logistic growth with constant number harvesting. Consider the same fish population as in
Exercise 10, but this time assume that the rate of harvesting is fixed, regardless of the population
size, so that

h(N) = H

where H is a constant number of fish being caught and removed per unit time. Analyze this revised
model and compare it to the previous results.

Q[12]: answer
Scaling time in the logistic equation. Consider the scaled logistic equation 13.1.3

dy
dt

= ry(1´ y).

Recall that r has units of 1/time, so 1/r is a quantity with units of time. Now consider scaling the
time variable in the displayed equation by defining t = s/r. Then s carries no units (s is
“dimensionless”).

Substitute this expression for t in the displayed equation and find the differential equation so obtained
(for dy/ds).

Q[13]:
Spread of infection. In the model for the spread of a disease (starting page 386 in the text), we
used the fact that the total population is constant (S(t)+ I(t) = N =constant) to eliminate S(t) and
analyze a differential equation for I(t) on its own.

Carry out a similar analysis, but eliminate I(t). Then analyze the differential equation you get
for S(t) to find its steady states and behaviour, practicing the qualitative analysis discussed in this
chapter.

Flavour B
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Q[14]: answer
Social media. Sally Sweetstone has invented a new social media App called HeadSpace, which
instantly matches compatible mates according to their changing tastes and styles. Users hear about
the App from one another by word of mouth and sign up for an account. The account expires
randomly, with a half-life of 1 month. Suppose y1(t) are the number of individuals who are not
subscribers and y2(t) are the number of are subscribers at time t. The following model has been
suggested for the evolving subscriber population

dy1

dt
= by2´ay1y2,

dy2

dt
= ay1y2´by2.

(a) Explain the terms in the equation. What is the value of the constant b?

(b) Show that the total population P = y1(t)+ y2(t) is constant.

Note: this is a conservation statement.

(c) Use the conservation statement to eliminate y1. Then analyze the differential equation you
obtain for y2.

(d) Use your model to determine whether this newly launched social media will be successful or
whether it will go extinct.

Flavour B

Q[15]: answer
A bimolecular reaction. Two molecules of A can react to form a new chemical, B. The reaction is
reversible so that B also continually decays back into 2 molecules of A. The differential equation
model proposed for this system is

da
dt

= ´µa2 + 2βb

db
dt

=
µ

2
a2´βb,

where a(t),b(t) ą 0 are the concentrations of the two chemicals.

(a) Explain the factor 2 that appears in the differential equations and the conservation statement.
Show that the total mass M = a(t)+ 2b(t) is constant.

(b) Use the techniques in this chapter to investigate what happens in this chemical reaction, to find
any steady states, and to explain the behaviour of the system

Flavour B
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GEOMETRY IN THREE DIMENSIONS

(FLAVOUR C) GEOMETRY
IN THREE DIMENSIONS

Chapter 14

14.1Ĳ Points and planes

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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§§ Stage 1

Q[1]: hint answer solution
Part of R3 is sketched below, along with a triangle.

z

x y

Identify the following parts of the sketch:
(a) the xy-plane
(b) the yz-plane
(c) the xz-plane
(d) the vertex of the triangle lying on (1,0,0)
(e) the vertex of the triangle lying on (0,1,0)
(f) the vertex of the triangle lying on (0,0,1)

Q[2]: hint answer solution
Describe the set of all points (x,y,z) in R3 that satisfy

(a) x2 + y2 + z2 = 2x´4y+ 4

(b) x2 + y2 + z2 ă 2x´4y+ 4

Q[3]: hint answer solution
Describe and sketch the set of all points (x,y) in R2 that satisfy

(a) x = y

(b) x+ y = 1

(c) x2 + y2 = 4

(d) x2 + y2 = 2y

(e) x2 + y2 ă 2y

Q[4]: hint answer solution
Describe the set of all points (x,y,z) in R3 that satisfy the following conditions. Sketch the part of
the set that is in the first octant. That is, sketch the part of the set with non-negative values of x, y,
and z.

(a) z = x
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(b) x2 + y2 + z2 = 4

(c) x2 + y2 + z2 = 4, z = 1

(d) x2 + y2 = 4

(e) z = x2 + y2

§§ Stage 2

Q[5]: hint answer solution
What is the distance from the point (1,2,3) to the point (4,´5,6)?

Q[6]: hint answer solution
What is the distance from the point (´5,´1,´9) to the xy-plane?

Q[7]: hint answer solution
A bird sets off from its nest. It flies one kilometre due north, then two kilometres due east, gaining
100 metres of altitude. How far is it from its nest?

Q[8]: hint answer solution
A bird sets off from its nest on the ground. It flies two kilometres due north, then two kilometres due
east, ending up at a point that is 3 km away from its nest. How high above the ground is that point?

Q[9]: hint answer solution
A giant straight wall rises from the ground, reaching high in the sky, casting a cold shadow as far as
you can see. You walk straight out from the base of the wall for 2 km, ash floating in the air,
catching in your throat and stinging your eyes. Tired, you sit on the ground to rest, and look around
you. In the hazy distance, you see what at first you think must be an illusion: a single tree. It’s the
only thing standing in this desolate flatness. Curiosity overcomes your fatigue, and you wobble onto
blistered feet. (Not your feet—ew. You kick them out of the way.) You turn at a right angle to your
previous course, walking 1 km parallel to the looming monolith, and reach the tree. Even at this
distance, the wall seems to emit a sinister hum. Except, no — you realize that sound isn’t the wall at
all. Three metres up the tree, a colony of murder hornets is busily expanding their nest. For the first
time today, you smile.

How far are the murder hornets from the wall?

Q[10]: hint answer solution
The pressure p(x,y) at the point (x,y) is determined by x2´ 2px+ y2 = 1. An isobar is a curve
with equation p(x,y) = c for some constant c. Sketch several isobars.

Q[11]: answer solution
Show that the set of all points P that are twice as far from (3,´2,3) as from (3/2,1,0) is a sphere.
Find its centre and radius.

§§ Stage 3
Q[12]: hint answer solution
Consider any triangle. Pick a coordinate system so that one vertex is at the origin and a second
vertex is on the positive x–axis. Call the coordinates of the second vertex (a,0) and those of the
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third vertex (b,c). Find the circumscribing circle (the circle that goes through all three vertices).

Q[13](˚): hint answer solution
Find an equation for the set of all points P = (x,y,z) such that the distance from P to the point
(0,0,1) is equal to the distance from P to the plane z+ 1 = 0.

Sketch the set, and also describe it in words.

14.2Ĳ Functions of two variables

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
Give an example of a function that has all of R2 in its domain, and whose range is a single number.

Q[2]: hint answer solution
Single-variable functions f (x) and g(x) are sketched below. Both have domain [´1,1].

x

y

1

´1

10

´10

x

y

1´1

1

y = f (x) y = g(x)

Based on the sketches, find the following.

(a) The range of f (x),

(b) the range of g(x),

(c) the domain of f (g(x)), and

(d) the range of f (g(x)).

Q[3]: hint answer solution
Is the point (x,y) = (1,1) in the domain of the implicitly defined function

z2y3 + zx3 + xy = 1 ?
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§§ Stage 2
Q[4]: hint answer solution
Find the domain and range of the function

f (x,y) =
a

4x2 + y2

Q[5]: hint answer solution
Find the domain and range of the function

h(x,y) =
x2

1+ y2

Q[6]: hint answer solution
Find the domain and range of the function

k(x,y) = arcsin
(
x2 + y2)

§§ Stage 3
Q[7]: hint answer solution
Find the domain and range of the function

g(x,y) =
1

log(xy)

Q[8]: hint answer solution
Find the domain and range of the two-variable function

f (x,y) =
x2

x2 + 1

Q[9]: hint answer solution
Find the domain and range of the function

f (x,y) =
x

x2 + 1
+ siny

Q[10]: hint answer solution
If a company spends a dollars on advertisements, and sells the advertised product at p dollars each,
then the number of units that will be sold is given as a function D(a, p).

Give a sensible model domain and range.
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Q[11]: hint answer solution
You’re using the function

f (x,y) =
1

x2 + y2

to model some process. In your model, the only values of the range that make sense are

3ď f (x,y) ď 5

What is your model domain?

Q[12]: hint answer solution
You’re using the function

g(x,y) = 72
[
x2´ y

]2´ [x2´ y
]4

to model some process. In your model, the only values of the range that make sense are

272ď g(x,y) ď 1175

What is the corresponding model domain?

14.3Ĳ (optional) Sketching surfaces in 3D

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1](˚): hint answer solution
Match the following equations and expressions with the corresponding pictures.

(A)

-1

-0.5

0

0.5

1

0
-0.5

-1

0.5

-1
-0.5

0.5
0

11

(B)

-2

-1

0

1

2

-1

-2

0

-1
-2

0
1

2

2

1

(C)

-10

0

10

20

30

40

50

-1

-2

0

1 0
1

2

-1
-22
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(a) x2 + y2 = z2 + 1 (b) y= x2 + z2 (c) z= x4 + y4´4xy

Q[2]: hint answer solution
Sketch a few level curves for the function f (x,y) whose graph z = f (x,y) is sketched below.

z

y

x

§§ Stage 2

Q[3]: hint answer solution
Sketch some of the level curves of
(a) f (x,y) = x2 + 2y2

(b) f (x,y) = xy
(c) f (x,y) = xe´y

Q[4](˚): hint answer solution
Sketch the level curves of f (x,y) = 2y

x2+y2 .

Q[5](˚): hint answer solution
A surface is given implicitly by

x2 + y2´ z2 + 2z = 0

(a) Sketch several level curves z =constant.
(b) Draw a rough sketch of the surface.

Q[6](˚): hint answer solution
Sketch the hyperboloid z2 = 4x2 + y2´1.

Q[7]: hint answer solution
Sketch the graphs of

(a) f (x,y) = sinx 0ď xď 2π , 0ď yď 1

(b) f (x,y) =
a

x2 + y2

(c) f (x,y) = |x|+ |y|
Q[8]: answer solution
Sketch and describe the following surfaces.
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(a) 4x2 + y2 = 16

(b) x+ y+ 2z = 4

(c) y2

9 + z2

4 = 1+ x2

16

(d) y2 = x2 + z2

(e) x2

9 + y2

12 +
z2

9 = 1

(f) x2 + y2 + z2 + 4x´by+ 9z´b = 0 where b is a constant.

(g) x
4 = y2

4 + z2

9

(h) z = x2

Q[9]: hint answer solution
Sketch the level curves of the function

f (x,y) = sin(x+ y)

for z = 0, z = 1, and z = 2.

§§ Stage 3

Q[10]: hint answer solution
The surface below has circular level curves, centred along the z-axis. The lines given are the
intersection of the surface with the right half of the yz-plane. Give an equation for the surface.

z

y

x

z = 3(y´1)

z = ´3(y´1)
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PARTIAL DERIVATIVES

(FLAVOUR C) PARTIAL DERIVATIVES

Chapter 15

15.1Ĳ Partial derivatives

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
You are traversing an undulating landscape. Take the z-axis to be straight up towards the sky, the
positive x-axis to be due south, and the positive y-axis to be due east. Then the landscape near you
is described by the equation z = f (x,y), with you at the point (0,0, f (0,0)). The function f (x,y) is
differentiable.
Suppose fy(0,0) ă 0. Is it possible that you are at a summit? Explain.
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Q[2]: hint answer solution
The table below gives approximate value of f (x,y) at different values of x and y. (The row gives the
value of x, and the column gives the value of y.)

1.0

6.6

6.8

7.0

7.1

7.3

7.5

7.6

7.8

8.0

8.2

1.1

7.4

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.1

1.2

8.3

8.5

8.7

8.9

9.1

9.3

9.5

9.7

9.9

10.1

1.3

9.1

9.4

9.6

9.8

10.0

10.3

10.5

10.7

10.9

11.2

1.4

10.0

10.3

10.5

10.8

11.0

11.3

11.5

11.7

12.0

12.2

1.5

11.0

11.2

11.5

11.8

12.0

12.3

12.5

12.8

13.1

13.3

1.6

11.9

12.2

12.5

12.8

13.0

13.3

13.6

13.9

14.2

14.4

1.7

12.9

13.2

13.5

13.8

14.1

14.4

14.7

15.0

15.3

15.6

1.8

13.9

14.2

14.6

14.9

15.2

15.5

15.8

16.1

16.4

16.7

1.9

15.0

15.3

15.6

16.0

16.3

16.6

17.0

17.3

17.6

17.9

y Ó
xÑ

2.4

2.3

2.2

2.1

2.0

1.9

1.8

1.7

1.6

1.5

Use the table to approximate the following partial derivatives.
(a) fy(1.5,2.4)
(b) fx(1.7,1.7)
(c) fy(1.7,1.7)
(d) fx(1.1,2)

§§ Stage 2

Q[3]: answer solution
Find all first partial derivatives of the following functions and evaluate them at the given point.
(a) f (x,y,z) = x3y4z5 (0,´1,´1)
(b) w(x,y,z) = log (1+ exyz) (2,0,´1)
(c) f (x,y) = 1?

x2+y2
(´3,4)

Q[4]: hint answer solution
Show that the function z(x,y) = x+y

x´y obeys

x
Bz
Bx

(x,y)+ y
Bz
By

(x,y) = 0
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PARTIAL DERIVATIVES 15.1 PARTIAL DERIVATIVES

Q[5](˚): hint answer solution
A surface z(x,y) is defined by zy´ y+ x = log(xyz).
(a) Compute Bz

Bx , Bz
By in terms of x, y, z.

(b) Evaluate Bz
Bx and Bz

By at (x,y,z) = (´1,´2,1/2).

Q[6](˚): hint answer solution
Find BU

BT and BT
BV at (1,1,2,4) if (T ,U ,V ,W ) are related by

(TU ´V )2 log(W ´UV ) = log2

Q[7](˚): answer solution
Suppose that u= x2+yz, x= ρr cos(θ ), y= ρr sin(θ ) and z= ρr. Find Bu

Br at the point (ρ0,r0,θ0) =
(2,3,π/2).

Q[8]: answer solution
Use the definition of the derivative to evaluate fx(0,0) and fy(0,0) for

f (x,y) =

#

x2´2y2

x´y if x‰ y

0 if x = y

§§ Stage 3

Q[9]: hint answer solution
Let f be any differentiable function of one variable. Define z(x,y) = f (x2 + y2). Is the equation

y
Bz
Bx

(x,y)´ x
Bz
By

(x,y) = 0

necessarily satisfied?

Q[10]: answer solution
Define the function

f (x,y) =

$

&

%

(x+2y)2

x+y if x+ y‰ 0

0 if x+ y = 0

(a) Evaluate, if possible, B f
Bx (0,0) and B f

By (0,0).

(b) Is f (x,y) continuous at (0,0)?

Q[11]: hint answer solution
Consider the cylinder whose base is the radius-1 circle in the xy-plane centred at (0,0), and which
slopes parallel to the line in the yz-plane given by z = y.
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When you stand at the point (0,´1,0), what is the slope of the surface if you look in the positive y
direction? The positive x direction?

Q[12](˚): hint answer solution
Let

f (x,y) =

$

&

%

x2y
x2+y2 if (x,y) ‰ (0,0)

0 if (x,y) = (0,0)

Compute, directly from the definitions,

(a) B f
Bx (0,0)

(b) B f
By (0,0)

(c) d
dt f (t, t)

ˇ

ˇ

ˇ

t=0

15.2Ĳ Higher order derivatives

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Questions 1 – 3 deal with the notation used for higher-order partial derivatives. Notation is only a convention,
but conventions usually only catch on if they make some amount of sense. Understanding where the conventions
came from makes it easier to remember them.

Q[1]: hint answer solution
If the partial derivative of the function f with respect to x is written fx, then why should the partial
derivative of fx with respect to y be written as fxy, rather than as fyx?

Q[2]: hint answer solution
If the partial derivative of the function f with respect to x is written B

Bx f or B f
Bx , then why should the

partial derivative of B f
Bx with respect to y be written as B2 f

ByBx , rather than as B2 f
BxBy?

Q[3]: hint answer solution
If the first partial derivative of the function f with respect to x is written B

Bx f or B f
Bx , then why should

the partial derivative of B f
Bx with respect to x be written as B

2 f
Bx2 , rather than as B f 2

B2x ?
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Q[4]: hint answer solution

f (x,y) =
tan(xy)

lnx

Verify Clairaut’s theorem by showing fxy = fyx.

§§ Stage 2

Q[5]: hint answer solution
Find the specified partial derivatives.
(a) f (x,y) = x2y3; fxx(x,y), fxyy(x,y), fyxy(x,y)
(b) f (x,y) = exy2

; fxx(x,y), fxy(x,y), fxxy(x,y), fxyy(x,y)

(c) f (u,v,w) =
1

u+ 2v+ 3w
;
B3 f

BwBvBu
(u,v,w) ,

B3 f
BwBvBu

(3,2,1)

Q[6]: hint answer solution
Find all second partial derivatives of f (x,y) =

a

x2 + 5y2.

Q[7]: hint answer solution
Find the specified partial derivatives.
(a) f (x,y,z) = arctan

(
e
?

xy); fxyz(x,y,z)
(b) f (x,y,z) = arctan

(
e
?

xy)+ arctan
(
e
?

xz)+ arctan
(
e
?

yz); fxyz(x,y,z)
(c) f (x,y,z) = arctan

(
e
?

xyz); fxx(1,0,0)

§§ Stage 3

Q[8]: answer solution

Let α ą 0 be a constant. Show that u(x,y,z, t) =
1

t3/2 e´(x
2+y2+z2)/(4αt) satisfies the heat equation

ut = α
(
uxx + uyy + uzz

)
for all t ą 0.

Q[9]: hint answer solution
The table below gives approximate value of f (x,y) at different values of x and y. (The row gives the
value of y, and the column gives the value of x.)
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1.0

6.6

6.8

7.0

7.1

7.3

7.5

7.6

7.8

8.0

8.2

1.1

7.4

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.1

1.2

8.3

8.5

8.7

8.9

9.1

9.3

9.5

9.7

9.9

10.1

1.3

9.1

9.4

9.6

9.8

10.0

10.3

10.5

10.7

10.9

11.2

1.4

10.0

10.3

10.5

10.8

11.0

11.3

11.5

11.7

12.0

12.2

1.5

11.0

11.2

11.5

11.8

12.0

12.3

12.5

12.8

13.1

13.3

1.6

11.9

12.2

12.5

12.8

13.0

13.3

13.6

13.9

14.2

14.4

1.7

12.9

13.2

13.5

13.8

14.1

14.4

14.7

15.0

15.3

15.6

1.8

13.9

14.2

14.6

14.9

15.2

15.5

15.8

16.1

16.4

16.7

1.9

15.0

15.3

15.6

16.0

16.3

16.6

17.0

17.3

17.6

17.9

y Ó
xÑ

2.4

2.3

2.2

2.1

2.0

1.9

1.8

1.7

1.6

1.5

Use the table to approximate fxy(1.8,2.0) .
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OPTIMIZATION OF MULTIVARIABLE FUNCTIONS

(FLAVOUR C) OPTIMIZATION OF
MULTIVARIABLE FUNCTIONS

Chapter 16

16.1Ĳ Local maximum and minimum values

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): answer solution

(a) Some level curves of a function f (x,y) are plotted in the xy–plane below.
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OPTIMIZATION OF MULTIVARIABLE FUNCTIONS 16.1 LOCAL MAXIMUM AND MINIMUM

VALUES

x

y

0

0

´1

1 12 2

´2

3 3

´3

4

´4

R T U

P

Q

S

For each of the four statements below, circle the letters of all points in the diagram where the
situation applies. For example, if the statement were “These points are on the y–axis”, you
would circle both P and U , but none of the other letters. You may assume that a local maximum
occurs at point T .

(i) ∇∇∇ f is zero P R S T U
(ii) f has a saddle point P R S T U

(iii) the partial derivative fy is positive P R S T U

(b) The diagram below shows three “y traces” of a graph z = F(x,y) plotted on xz–axes. (Namely,
the intersections of the surface z = F(x,y) with the three planes y = 1.9, y = 2, and y = 2.1.)
For each statement below, circle the correct word.

(i) the first order partial derivative Fx(1,2) is positive/negative/zero (circle one)
(ii) F has a critical point at (2,2) true/false (circle one)

(iii) the second order partial derivative Fxy(1,2) is positive/negative/zero (circle one)
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VALUES

x

z

1

2

3

1 2 3 4

y “ 1.9

y “ 2.0
y “ 2.1

§§ Stage 2

Q[2](˚): hint answer solution

Let z = f (x,y) = (y2´ x2)
2.

(a) Make a reasonably accurate sketch of the level curves in the xy–plane of z = f (x,y) for z = 0, 1
and 16. Be sure to show the scales on the coordinate axes.

(b) Verify that (0,0) is a critical point for z = f (x,y), and determine from part (a) or directly from
the formula for f (x,y) whether (0,0) is a local minimum, a local maximum or a saddle point.

(c) Can you use the Second Derivative Test to determine whether the critical point (0,0) is a local
minimum, a local maximum or a saddle point? Give reasons for your answer.

Q[3](˚): hint answer solution
Use the Second Derivative Test to find all values of the constant c for which the function z =
x2 + cxy+ y2 has a saddle point at (0,0).

Q[4](˚): hint answer solution
Find and classify all critical points of the function

f (x,y) = x3´ y3´2xy+ 6.

Q[5](˚): hint answer solution
Find all critical points for f (x,y) = x(x2 + xy+ y2´9). Also find out which of these points give
local maximum values for f (x,y), which give local minimum values, and which give saddle points.

Q[6]: hint answer solution
Find and classify all the critical points of f (x,y) = x2 + y2 + x2y+ 4.
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VALUES

Q[7](˚): hint answer solution
Find all saddle points, local minima and local maxima of the function

f (x,y) = x3 + x2´2xy+ y2´ x.

Q[8](˚): hint answer solution
For the surface

z = f (x,y) = x3 + xy2´3x2´4y2 + 4

Find and classify [as local maxima, local minima, or saddle points] all critical points of f (x,y).

Q[9](˚): hint answer solution

(a) For the function z = f (x,y) = x3 +3xy+3y2´6x´3y´6. Find and classify as [local maxima,
local minima, or saddle points] all critical points of f (x,y).

(b) The images below depict level sets f (x,y) = c of the functions in the list at heights
c = 0,0.1,0.2, . . . ,1.9,2. Label the pictures with the corresponding function and mark the
critical points in each picture. (Note that in some cases, the critical points might not be drawn
on the images already. In those cases you should add them to the picture.)

(i) f (x,y) = (x2 + y2´1)(x´ y)+ 1

(ii) f (x,y) = y(x+ y)(x´ y)+ 1

Q[10](˚): answer solution
Define the function

f (x,y) = x3 + 3xy+ 3y2´6x´3y´6

Classify all critical points of f (x,y) as local maxima, local minima, or saddle points.

Q[11](˚): answer solution
Find and classify the critical points of f (x,y) = 3x2y+ y3´3x2´3y2 + 4.

Q[12](˚): answer solution
Find all critical points of the function f (x,y) = x4 + y4´4xy+2, and for each determine whether it
is a local minimum, maximum or saddle point.

Q[13](˚): answer solution
Find all the critical points of the function

f (x,y) = x4 + y4´4xy
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defined in the xy-plane. Classify each critical point as a local minimum, maximum or saddle point.

Q[14](˚): hint answer solution
Find all the critical points of the function

f (x,y) = x3 + xy2´ x

defined in the xy-plane. Classify each critical point as a local minimum, maximum or saddle point.
Explain your reasoning.

Q[15](˚): answer solution
Find and classify all critical points of

f (x,y) = x3´3xy2´3x2´3y2

§§ Stage 3
Q[16](˚): answer solution
Consider the function

f (x,y) = 3kx2y+ y3´3x2´3y2 + 4

where k ą 0 is a constant. Find and classify all critical points of f (x,y) as local minima, local
maxima, saddle points or points of indeterminate type. Carefully distinguish the cases k ă 1

2 , k = 1
2

and k ą 1
2 .

Q[17]: hint answer solution
An experiment yields data points (xi,yi), i = 1,2, ¨ ¨ ¨ ,n. We wish to find the straight line y = mx+b
which “best” fits the data. The definition of “best” is “minimizes the root mean square error”, i.e.
minimizes

řn
i=1(mxi + b´ yi)2. Find m and b.

16.2Ĳ Absolute minima and maxima

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1]: hint answer solution
Suppose you want to find the maximum value of a surface z = f (x,y) on the boundary of the unit
circle, x2 + y2 = 1.

True or false: you should always check the points (0,˘1) and (˘1,0), since these are the endpoints
of the circle.

Q[2]: hint answer solution
Find the high and low points of the surface z =

a

x2 + y2 with (x,y) varying over the square
|x| ď 1, |y| ď 1 . Discuss the values of zx, zy there. Do not evaluate any derivatives in answering
this question.
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§§ Stage 2

Q[3]: hint answer solution
Find the maximum and minimum values of f (x,y) = xy´ x3y2 when (x,y) runs over the square
0ď xď 1, 0ď yď 1.

Q[4](˚): answer solution
Let h(x,y) = y(4´ x2´ y2).
(a) Find and classify the critical points of h(x,y) as local maxima, local minima or saddle points.
(b) Find the maximum and minimum values of h(x,y) on the disk x2 + y2 ď 1.

Q[5](˚): hint answer solution
Find the absolute maximum and minimum values of the function f (x,y) = 5+ 2x´ x2´4y2 on the
rectangular region

R =
 

(x,y)
ˇ

ˇ ´1ď xď 3, ´1ď yď 1
(

Q[6](˚): answer solution
Find the minimum of the function h(x,y) = ´4x´2y+6 on the closed bounded domain defined by
x2 + y2 ď 1.

Q[7](˚): hint answer solution
Let f (x,y) = xy(x+ y´3).
(a) Find all critical points of f , and classify each one as a local maximum, a local minimum, or

saddle point.
(b) Find the location and value of the absolute maximum and minimum of f on the triangular

region xě 0, yě 0, x+ yď 8.

Q[8](˚): answer solution
Consider the function

f (x,y) = 2x3´6xy+ y2 + 4y

(a) Find and classify all of the critical points of f (x,y).

(b) Find the maximum and minimum values of f (x,y) in the triangle with vertices (1,0), (0,1) and
(1,1).

Q[9](˚): hint answer solution
Let

f (x,y) = xy(x+ 2y´6)

(a) Find every critical point of f (x,y) and classify each one.
(b) Let D be the region in the plane between the hyperbola xy = 4 and the line x+2y´6 = 0. Find

the maximum and minimum values of f (x,y) on D.
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Q[10](˚): hint answer solution
A metal plate is in the form of a semi-circular disc bounded by the x-axis and the upper half of
x2 + y2 = 4. The temperature at the point (x,y) is given by

T (x,y) = ln
(
1+ x2 + y2)´ y.

Find the coldest point on the plate, explaining your steps carefully. (Note: ln2« 0.693,
ln5« 1.609)

Q[11](˚): hint answer solution
Consider the function g(x,y) = x2´10y´ y2.

(a) Find and classify all critical points of g.

(b) Find the absolute extrema of g on the bounded region given by

x2 + 4y2 ď 16, yď 0

Q[12]: hint answer solution
Equal-angle bends are made at equal distances from the two ends of a 100 metre long fence, so that
the resulting three-segment fence can be placed along an existing wall to make an enclosure of
trapezoidal shape. What is the largest possible area for such an enclosure?

Q[13]: hint answer solution
Find the most economical shape of a rectangular box that has a fixed volume V and that has no top.

Q[14](˚): answer solution
The temperature T (x,y) at a point of the xy–plane is given by

T (x,y) = 20´4x2´ y2

(a) Find the maximum and minimum values of T (x,y) on the disk D defined by x2 + y2 ď 4.

(b) Suppose the ant is constrained to stay on the curve y = 2´ x2. Where should the ant go if it
wants to be as warm as possible?

§§ Stage 3

Q[15](˚): hint answer solution
Find the largest and smallest values of x2y2z in the part of the plane 2x+ y+ z = 5 where xě 0,
yě 0 and zě 0. Also find all points where those extreme values occur.

Q[16](˚): answer solution

(a) Show that the function f (x,y) = 2x+ 4y+ 1
xy has exactly one critical point in the first quadrant

xą 0, yą 0, and find its value at that point.

(b) Use the second derivative test to classify the critical point in part (a).
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(c) Explain why the inequality 2x+ 4y+ 1
xy ě 6 is valid for all positive real numbers x and y.

Q[17]: hint answer solution
Let a be a constant real number. Find all points on the surface

z = f (x,y) = x2 + y2

that have minimum distance from the point (0,0,a).

Q[18]: hint answer solution
The Scranton branch of a well-known paper company has two sizes of paper for sale - A4 and A3.

Each ream of A4 is sold at $6; each ream of A3 is sold at $8. Assume that every ream produced is
sold.

Suppose x is the quantity of materials that go into making A4 and y is the quantity of materials that
go into making A3. Then the costs involved in turning these materials into paper are $1 ¨ x for A4
and $3 ¨ y for A3.

There are different production procedures to produce each paper size. The production functions
below give the number of reams of paper produced out of a given amount of materials.

f (x) =
5
2

x0.8 (for A4)

g(y) = 10y0.6 (for A3)

(a) Build the (total) profit equation in terms of x and y. That is, find an equation Π(x,y) that gives
the total profit (revenue minus cost) over both paper types.

(b) Find the production quantities of both sizes of paper that maximizes profit.

(c) If the branch stops producing A4, what is the optimal production for A3 to maximize profit?

Q[19]: hint answer solution
Ayan and Pipe each have a lemonade boutique. Making each pitcher of lemonade costs $1. If Ayan
wants to sell qA lemonades, and Pipe want to sell qP lemonades, then each pitcher of lemonade will
be sold for this price:

p(qA,qP) = 121´2(qA + qP)

(a) Build the profit equation in terms of qA and qP for Ayan. Treating qP as a constant, find the
value of qA that maximizes Ayan’s profit. (Your answer will depend on qP.)

(b) Build the profit equation in terms of qA and qP for Pipe. Treating qA as a constant, find the value
of qP that maximizes Pipe’s profit. (Your answer will depend on qA.)

(c) Guess, using your intuition, how many pitchers are Ayan and Pipe are going to produce
proportional to one another so that both of them maximize their respective profit functions.

(d) Verify your answer for (c) mathematically.

(e) Calculate the profit that each seller generates under these assumptions.

(f) What would be their joint profit if they collaborate? Build a new profit equation where Ayan
and Pipe are collaborating and find the optimal joint profit. Compare this to their individual
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profit when they are competing and decide whether it would be better for them to collaborate or
compete.

(g) Is it better for thirsty consumers when the two sellers collaborate, or when they compete?

16.3Ĳ Lagrange multipliers

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1
Q[1](˚): hint answer solution

(a) Does the function f (x,y) = x2 + y2 have a maximum or a minimum on the curve xy = 1?
Explain.

(b) Find all maxima and minima of f (x,y) on the curve xy = 1.

Q[2]: hint answer solution
Give an example of a continuous surface f (x,y) and a constraint function g(x,y) = 0 such that
f (x,y) has both a local max and a local min subject to the constraint, but no global max or min.

Q[3]: hint answer solution
Find all absolute extrema of the function f (x,y) = xsiny subject to the constraint y = x.

§§ Stage 2
Q[4](˚): hint answer solution
Use the method of Lagrange multipliers to find the minimum value of z = x2 + y2 subject to x2y = 1.
At which point or points does the minimum occur?

Q[5](˚): hint answer solution
Use the method of Lagrange multipliers to find the maximum and minimum values of

f (x,y) = xy

subject to the constraint
x2 + 2y2 = 1.

Q[6](˚): hint answer solution
Find the maximum and minimum values of f (x,y) = x2 + y2 subject to the constraint x4 + y4 = 1.

Q[7]: hint answer solution
Find the absolute extrema of the function f (x,y) = x4 + y4 + 2

3y6 given the constraint
g(x,y) = x2 + y2 = 1 using the method of Lagrange multipliers.
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Q[8]: hint answer solution
Find the point(s) on the parabola y = 3

2 ´ x2 closest to the origin using the method of Lagrange
multipliers.

Q[9]: hint answer solution
What are the largest and smallest values of the product xy, for points (x,y) in the region

x2´2xy+ 5y2 ď 1 ?

Q[10](˚): hint answer solution
The temperature in the plane is given by T (x,y) = ey(x2 + y2).
(a) (i) Give the system of equations that must be solved in order to find the warmest and coolest

point on the circle x2 + y2 = 100 by the method of Lagrange multipliers.
(ii) Find the warmest and coolest points on the circle by solving that system.

(b) (i) Give the system of equations that must be solved in order to find the critical points of
T (x,y).

(ii) Find the critical points by solving that system.
(c) Find the coolest point on the solid disc x2 + y2 ď 100.

Q[11]: hint answer solution
Use the method of Lagrange Multipliers to find the maximum and minimum values of the utility
function U = f (x,y) = 9x

1
3 y

2
3 , subject to the constraint g(x,y) = 3200x+ 200y = 80,000, where

xě 0 and yě 0.

§§ Stage 3
Q[12](˚): hint answer solution
Suppose that a and b are both greater than zero and let T be the triangle bounded by the line
ax+ by = 1 and the two axes. Use the method of Lagrange multipliers to find the smallest possible
area of T if the line ax+ by = 1 is required to pass through the point (1,2).

Q[13]: hint answer solution

Find a and b so that the area πab of an ellipse x2

a2 +
y2

b2 = 1 passing through the point (1,2) is as
small as possible.

(We assume a,b are positive.)

Q[14](˚): hint answer solution
Use the method of Lagrange multipliers to find the radius of the base and the height of a right
circular cylinder of maximum volume which can be fit inside the unit sphere x2 + y2 + z2 = 1.

Q[15]: hint answer solution
A rectangular box needs the following properties:

• 72 cubic centimetre volume,
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• width twice its length, and

• minimum surface area.

What are the dimensions of the box?

2x
x

y

Use Lagrange multipliers to solve.

Q[16]: answer solution
Let f (x,y) have continuous partial derivatives. Consider the problem of finding local minima and
maxima of f (x,y) on the curve xy = 1.

• Define g(x,y) = xy´1. According to the method of Lagrange multipliers, if (x,y) is a local
minimum or maximum of f (x,y) on the curve xy = 1, then there is a real number λ such that

fx(x,y) = λgx(x,y), fy(x,y) = λgy(x,y), g(x,y) = 0 (E1)

• On the curve xy = 1, we have y = 1
x and f (x,y) = f

(
x, 1

x

)
. Define F(x) = f

(
x, 1

x

)
. If x‰ 0 is

a local minimum or maximum of F(x), we have that

F 1(x) = 0 (E2)

Show that (E1) is equivalent to (E2), in the sense that

there is a λ such that (x,y,λ ) obeys (E1)
if and only if

x‰ 0 obeys (E2) and y = 1/x.

Q[17]: hint answer solution
Find all absolute extrema of the function

f (x,y) =
a

4x4 + y4´1

subject to the constraint
x3 + y3 = 1

Q[18]: hint answer solution
Find all absolute extrema of the function

f (x,y) = x+ y

subject to the constraint
x2 = 1+ y2
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Q[19]: hint answer solution

f (x,y) =
x

1+(xy)2

(a) Find all absolute extrema of f (x,y).

(b) Does the line y = x describe a closed curve?

(c) Find all absolute extrema of f (x,y) subject to the constraint y = x.
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Hints for Exercises 1. — Jump to TABLE OF CONTENTS.

Hints for Exercises 2.1. — Jump to TABLE OF CONTENTS.

H-2: Consider the difference between a limit and a one-sided limit.

H-3: Pay careful attention to which limits are one-sided and which are not.

H-5: The function doesn’t have to be continuous.

H-6: See Question 5

H-7: See Question 5

H-8: What is the relationship between the limit and the two one-sided limits?

H-9: What is the relationship between the limit and the two one-sided limits?

H-14: What are the one-sided limits?

H-16: Think about what it means that x does not appear in the function f (x) =
1

10
.

H-17: We only care about what happens really, really close to x = 3.

Hints for Exercises 2.1.1. — Jump to TABLE OF CONTENTS.

H-2: Try to make two functions with factors that will cancel.

H-3: Try to make g(x) cancel out.

H-5: See Questions 2, 3, and 4.

H-6: Find the limit of the numerator and denominator separately.

H-7: Break it up into smaller pieces, evaluate the limits of the pieces.

H-8: First find the limit of the “inside” function,
4x´2
x+ 2

.

H-9: Is cos(´3) zero?

H-10: Expand, then simplify.

H-14: Try the simplest method first.

H-15: Factor the denominator.

H-16: Factor the numerator and the denominator.

H-17: Factor the numerator.

H-18: Simplify first by factoring the numerator.

H-19: The function is a polynomial.
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H-20: Multiply both the numerator and the denominator by the conjugate of the numerator,?
x2 + 8+ 3.

H-21: Multiply both the numerator and the denominator by the conjugate of the numerator,?
x+ 2+

?
4´ x.

H-22: Multiply both the numerator and the denominator by the conjugate of the numerator,?
x´2+

?
4´ x.

H-23: Consider the factors x2 and cos
(3

x

)
separately.

H-25: Compare to the previous question.

H-26: Factor the numerator.

H-27: Factor the denominator; pay attention to signs.

H-28: First find the limit of the “inside” function.

H-29: Factor; pay attention to signs.

H-30: Look for perfect squares

H-31: Think about what effect changing d has on the function x5´32x+ 15.

H-32: There’s an easy way.

H-33: What can you do to safely ignore the sine function?

H-34: Factor

H-35: If you’re looking at the hints for this one, it’s probably easier than you think.

H-36: You’ll want to simplify this, since t = 1
2 is not in the domain of the function. One way to

start your simplification is to add the fractions in the numerator by finding a common denominator.

H-37: If you’re not sure how
|x|
x

behaves, try plugging in a few values of x, like x = ˘1 and
x = ˘2.

H-38: Look to Question 37 to see how a function of the form
|X |
X

behaves.

H-39: Is anything weird happening to this function at x = 0?

H-40: Use the limit laws.

H-41: The denominator goes to zero; what must the numerator go to?

H-43: Multiply both the numerator and the denominator by the conjugate of the numerator,?
x+ 7+

?
11´ x.

H-44: Multiply both the numerator and the denominator by the conjugate of the denominator,
2+

?
5´ t.

H-45: Try plotting points. If you can’t divide by f (x), take a limit.

H-46: There is a close relationship between f and g. Fill in the following table:
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x f (x) g(x)
f (x)
g(x)

´3
´2
´1
´0
1
2
3

H-48: When you’re evaluating lim
xÑ0´

f (x), you’re only considering values of x that are less than 0.

H-49: When you’re considering lim
xÑ´4´

f (x), you’re only considering values of x that are less than

´4.

When you’re considering lim
xÑ´4+

f (x), think about the domain of the rational function in the top line.

Hints for Exercises 2.1.2. — Jump to TABLE OF CONTENTS.

H-1: It might not look like a traditional polynomial.

H-2: The degree of the polynomial matters.

H-3: What does a negative exponent do?

H-4: You can think about the behaviour of this function by remembering how you first learned to
describe exponentiation.

H-5: The exponent will be a negative number.

H-6: What single number is the function approaching?

H-7: The highest-order term dominates when x is large.

H-8: Factor the highest power of x out of both the numerator and the denominator. You can factor
through square roots (carefully).

H-9: Multiply and divide by the conjugate,
?

x2 + 5x+
?

x2´ x.

H-10: Divide both the numerator and the denominator by the highest power of x that is in the
denominator.
Remember that ? is defined to be the positive square root. Consequently, if xă 0, then

?
x2, which

is positive, is not the same as x, which is negative.

H-11: Factor out the highest power of the denominator.

H-12: The conjugate of (
?

x2 + x´ x) is (
?

x2 + x+ x).

Multiply by 1 =

?
x2 + x+ x?
x2 + x+ x

to coax your function into a fraction.

H-13: Divide both the numerator and the denominator by the highest power of x that is in the
denominator.
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H-14: Divide both the numerator and the denominator by the highest power of x that is in the
denominator.

H-15: Divide both the numerator and the denominator by the highest power of x that is in the
denominator.

H-16: Divide both the numerator and the denominator by x (which is the largest power of x in the
denominator). In the numerator, move the resulting factor of 1/x inside the two roots. Be careful
about the signs when you do so. Even and odd roots behave differently– see Question 10.

H-17: Divide both the numerator and the denominator by the highest power of x that is in the
denominator.

H-18: Divide both the numerator and the denominator by the highest power of x that is in the
denominator. It is not always true that

?
x2 = x.

H-19: Simplify.

H-20: What is a simpler version of |x| when you know xă 0?

H-22: Divide both the numerator and the denominator by the highest power of x that is in the
denominator. When is

?
x = x, and when is

?
x = ´x?

H-23: Divide both the numerator and the denominator by the highest power of x that is in the
denominator. Pay careful attention to signs.

H-24: Multiply and divide the expression by its conjugate,
(?

n2 + 5n+ n
)
.

H-25: Consider what happens to the function as a becomes very, very small. You shouldn’t need to
do much calculation.

H-26: Since x = 3 is not in the domain of the function, we need to be a little creative. Try
simplifying the function.

H-27: This is a bit of a trick question. Consider what happens to a rational function as xÑ˘8 in
each of these three cases:

• the degree of the numerator is smaller than the degree of the denominator,

• the degree of the numerator is the same as the degree of the denominator, and

• the degree of the numerator is larger than the degree of the denominator.

H-28: We tend to conflate “infinity” with “some really large number.”

Hints for Exercises 2.2. — Jump to TABLE OF CONTENTS.

Hints for Exercises 2.3. — Jump to TABLE OF CONTENTS.

H-1: Try a repeating pattern.

H-2: Compare what is given to you to the definition of continuity.

H-3: Compare what is given to you to the definition of continuity.
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H-4: What if the function is discontinuous?

H-5: What is h(0)?

H-6: Use the definition of continuity.

H-7: Find the domain: when is the denominator zero?

H-8: When is the denominator zero? When is the argument of the square root negative?

H-9: When is the denominator zero? When is the argument of the square root negative?

H-10: There are infinitely many points where it is not continuous.

H-11: x = c is the important point.

H-12: The important place is x = 0.

H-13: The important point is x = c.

H-14: The important point is x = 2c.

No exercises for Section 3.1. — Jump to TABLE OF CONTENTS

Hints for Exercises 3.2. — Jump to TABLE OF CONTENTS.

H-2: You can use (a) to explain (b).

H-3: Your calculations for slope of the secant lines will all have the same denominators; to save
yourself some time, you can focus on the numerators.

H-4: You can do this by calculating several secant lines. You can also do this by getting out a ruler
and trying to draw the tangent line very carefully.

H-5: There are many possible values for Q and R.

H-6: A line with slope 0 is horizontal.

Hints for Exercises 3.3. — Jump to TABLE OF CONTENTS.

H-1: What are the properties of f 1 when f is a line?

H-2: Be very careful not to confuse f and f 1.

H-3: Be very careful not to confuse f and f 1.

H-5: The slope has to look “the same” from the left and the right.

H-6: Use the definition of the derivative, and what you know about limits.

H-7: Consider continuity.

H-8: Look at the definition of the derivative. Your answer will be a fraction.
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H-9: You need a point (given), and a slope (derivative).

H-10: You’ll need to add some fractions.

H-11: You don’t have to take the limit from the left and right separately–things will cancel nicely.

H-12: You might have to add fractions

H-14: Your limit should be easy.

H-15: add fractions

H-16: For f to be differentiable at x = 2, two things must be true: it must be continuous at x = 2,
and the derivative from the right must equal the derivative from the left.

H-17: After you plug in f (x) to the definition of a derivative, you’ll want to multiply and divide by
the conjugate

?
1+ x+ h+

?
1+ x.

H-18: When you’re finding the derivative, you’ll need to cancel a lot on the numerator, which you
can do by expanding the polynomials.

H-19: You’ll need to look at limits from the left and right. The fact that f (0) = 0 is useful for your
computation. Recall that if xă 0 then

?
x2 = |x|= ´x.

H-20: You’ll need to look at limits from the left and right. The fact that f (0) = 0 is useful for your
computation.

H-21: You’ll need to look at limits from the left and right. The fact that f (0) = 0 is useful for your
computation.

H-22: You’ll need to look at limits from the left and right. The fact that f (1) = 0 is useful for your
computation.

H-23: There’s lots of room between 0 and 1
8 ; see what you can do with it.

H-24: Set up your usual limit, then split it into two pieces

H-25: You don’t need the definition of the derivative for a line.

H-26: A generic point on the curve has coordinates (α ,α2). In terms of α , what is the equation of
the tangent line to the curve at the point (α ,α2)? What does it mean for (1,´3) to be on that line?

H-27: Remember for a constant n,

lim
hÑ0

hn =

$

&

%

0 ną 0
1 n = 0
DNE nă 0

Hints for Exercises 3.3. — Jump to TABLE OF CONTENTS.

H-28: Think about units.

H-35: There are 360 degrees in one rotation.
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H-36: P1(t) was discussed in Question 34.

Hints for Exercises 3.4. — Jump to TABLE OF CONTENTS.

H-1: Only one of the curves could possibly represent y = f (x).

Hints for Exercises 3.5. — Jump to TABLE OF CONTENTS.

H-1: Two of the functions are the same.

H-2:

H-3: When can you use the power rule?

H-4: What is the shape of the curve eax, when a is a positive consant?

H-5: If you know the first derivative, this should be easy.

H-6: Simplify

Hints for Exercises 4.1. — Jump to TABLE OF CONTENTS.

H-1: Look at the Sum rule

H-2: Try an example, like f (x) = g(x) = x.

H-3: Simplify

H-4: g(x) = f (x)+ f (x)+ f (x)

H-5: Use linearity and the known derivatives of x2 and x1/2.

H-6: Remember
d
dx
t2xu= 2x log2.

H-7: You have already seen d
dxt
?

xu.
H-8: The equation of a line can be determined using a point, and the slope. The derivative of x3 can
be found by writing x3 = (x)(x2).

H-9: Be careful to distinguish between speed and velocity.

H-11: How do you take care of that power?

H-12: After you differentiate, factor out ex.

H-13: Population growth is rate of change of population.

H-15: Interpret it as a derivative that you know how to compute.

H-16: The answer is not 10 square metres per second.

H-17: You don’t need to know g(0) or g1(0).
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H-19: In order to be differentiable, a function should be continuous. To determine the
differentiability of the function at x = 1, use the definition of the derivative.

H-20: Review Pascal’s Triangle.

Hints for Exercises 4.1. — Jump to TABLE OF CONTENTS.

H-22: Check signs

H-23: Read Lemma 4.1.14 carefully.

H-24: Quotient rule

H-25: e2x = (ex)2

H-26: ea+x = eaex

H-27: Figure out where the derivative is positive.

H-28: The acceleration is given by s2(t).

H-29: Product rule will work nicely here. Alternately, review the result of Question 25.

H-30: To find the sign of a product, compare the signs of each factor. The function et is always
positive.

H-31: Use factorials, as in Example 3.4.2.

H-32: First, factor an x out of the derivative. What’s left over looks like a quadratic equation, if you
take x2 to be your variable, instead of x.

H-33: 1
t = t´1

H-34: First simplify. Don’t be confused by the role reversal of x and y: x is just the name of the
function

(
2y+ 1

y

) ¨y3, which is a function of the variable y. You are to differentiate with respect to y.

H-35:
?

x = x1/2

H-37: You don’t need to multiply through.

H-38: You can use the quotient rule.

H-42: There are two pieces of the given function that could cause problems.

H-43: 3
?

x = x1/3

H-44: Simplify first

H-45: Differentiate a few times until you get zero, remembering that a, b, c, and d are all constants.

H-46: You can re-write this function as a piecewise function, with branches xě 0 and xă 0. To
figure out the derivatives at x = 0, use the definition of a derivative.

H-47: Let m be the slope of such a tangent line, and let P1 and P2 be the points where the tangent
line is tangent to the two curves, respectively. There are three equations m fulfils: it has the same
slope as the curves at the given points, and it is the slope of the line passing through the points P1
and P2.
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H-48: A line has equation y = mx+ b, for some constants m and b. What has to be true for
y = mb+ x to be tangent to the first curve at the point x = α , and to the second at the point x = β?

H-49: Compare this to one of the forms given in the text for the definition of the derivative.

Hints for Exercises 4.2. — Jump to TABLE OF CONTENTS.

H-1: A horizontal tangent line is where the graph appears to “level off.”

H-2: You are going to mark there points on the sine graph where the graph is the steepest, going up.

H-3: h1(t) gives the velocity of the particle, and h2(t) gives its acceleration–the rate the velocity is
changing.

H-4: h1(t) gives the velocity of the particle, and h2(t) gives its acceleration–the rate the velocity is
changing. Be wary of signs–as in legends, they may be misleading.

H-5: To show that two functions are unequal, you can show that one input results in different
outputs.

H-6: You need to memorize the derivatives of sine, cosine, and tangent.

H-7: There are infinitely many values. You need to describe them all.

H-8: Simplify first.

H-9: The identity won’t help you.

H-11: Quotient rule

H-14: Use an identity.

H-15: How can you move the negative signs to a location that you can more easily deal with?

H-16: Apply the quotient rule.

H-17: The only spot to worry about is when x = 0. For f (x) to be differentiable, it must be
continuous, so first find the value of b that makes f continuous at x = 0. Then, find the value of a
that makes the derivatives from the left and right of x = 0 equal to each other.

H-19: Compare this to one of the forms given in the text for the definition of the derivative.

H-20: Compare this to one of the forms given in the text for the definition of the derivative.

H-21: Compare this to one of the forms given in the text for the definition of the derivative.

H-22: tanθ =
sinθ

cosθ

H-23: In order for a derivative to exist, the function must be continuous, and the derivative from the
left must equal the derivative from the right.

H-24: There are infinitely many places where it does not exist.

H-31: Recall |x|=
"

x xě 0
´x xă 0 . To determine whether h(x) is differentiable at x = 0, use the

definition of the derivative.
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H-32: To decide whether the function is differentiable, use the definition of the derivative.

H-33: In this chapter, we learned lim
xÑ0

sinx
x

= 1. If you divide the numerator and denominator by x5,

you can make use of this knowledge.

Hints for Exercises 4.3. — Jump to TABLE OF CONTENTS.

H-1: For parts (a) and (b), remember the definition of a derivative:

dK
dU

= lim
hÑ0

K(U + h)´K(U)

h
.

When h is positive, U + h is an increased urchin population; what is the sign of K(U + h)´K(U)?

For part (c), use the chain rule!

H-2: Remember that Leibniz notation suggests fractional cancellation.

H-3: If g(x) = cosx and h(x) = 5x+ 3, then f (x) = g(h(x)). So we apply the chain rule, with
“outside” function cosx and “inside” function 5x+ 3.

H-4: You can expand this into a polynomial, but it’s easier to use the chain rule. If g(x) = x5, and
h(x) = x2 + 2, then f (x) = g(h(x)).

H-5: You can expand this into a polynomial, but it’s easier to use the chain rule. If g(k) = k17, and
h(k) = 4k4 + 2k2 + 1, then T (k) = g(h(k)).

H-6: If we define g(x) =
?

x and h(x) =
x2 + 1
x2´1

, then f (x) = g(h(x)).

To differentiate the square root function:
d
dx
t?xu= d

dx

!

x1/2
)

=
1
2

x´1/2 =
1

2
?

x
.

H-7: You’ll need to use the chain rule twice.

H-8: Use the chain rule.

H-9: Use the chain rule.

H-10: Use the chain rule.

H-11: Use the chain rule.

H-12: Recall
1
x2 = x´2 and

?
x2´1 = (x2´1)1/2.

H-14: If we let g(x) = secx and h(x) = e2x+7, then f (x) = g(h(x)), so by the chain rule,
f 1(x) = g1(h(x)) ¨h1(x). However, in order to evaluate h1(x), we’ll need to use the chain rule again.

H-15: What trig identity can you use to simplify the first factor in the equation?

H-16: Velocity is the derivative of position with respect to time. In this case, the velocity of the
particle is given by s1(t).

H-17: The slope of the tangent line is the derivative.
You’ll need to use the chain rule twice.
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H-18: Start with the product rule, then use the chain rule to differentiate e4x.

H-19: Start with the quotient rule; you’ll need the chain rule only to differentiate e3x.

H-20: More than one chain rule needed here.

H-21: More than one chain rule application is needed here.

H-22: More than one chain rule application is needed here.

H-23: More than one chain rule application is needed here.

H-24: What rule do you need, besides chain? Also, remember that cos2 x = [cosx]2.

H-27: The product of two functions is zero exactly when at least one of the functions is zero.

H-28: If t ě 1, then 0ă 1
t ď 1.

H-29: The notation cos3(5x´7) means [cos(5x´7)]3. So, if g(x) = x3 and h(x) = cos(5x´7),
then g(h(x)) = [cos(5x+ 7)]3 = cos3(5x+ 7).

H-30: In Example 4.1.11, we generalized the product rule to three factors:

d
dx
t f (x)g(x)h(x)u= f 1(x)g(x)h(x)+ f (x)g1(x)h(x)+ f (x)g(x)h1(x)

This isn’t strictly necessary, but it will simplify your computations.

H-31: At time t, the particle is at the point
(
x(t),y(t)

)
, with x(t) = cos t and y(t) = sin t. Over

time, the particle traces out a curve; let’s call that curve y = f (x). Then y(t) = f
(
x(t)

)
, so the

slope of the curve at the point
(
x(t),y(t)

)
is f 1

(
x(t)

)
. You are to determine the values of t for

which f 1
(
x(t)

)
= ´1.

H-32: Set f (x) = ex+x2
and g(x) = 1+ x. Compare f (0) and g(0), and compare f 1(x) and g1(x).

H-33: If sin2x and 2sinxcosx are the same, then they also have the same derivatives.

H-34: This is a long, nasty problem, but it doesn’t use anything you haven’t seen before. Be
methodical, and break the question into as many parts as you have to. At the end, be proud of
yourself for your problem-solving abilities and tenaciousness!

H-35: To sketch the curve, you can start by plotting points. Alternately, consider x2 + y.

H-36: Use a similar method to Question 32, Section 4.3.

Hints for Exercises 4.4. — Jump to TABLE OF CONTENTS.

H-1: Each speaker produces 3dB of noise, so if P is the power of one speaker,
3 = V (P) = 10log10

(P
S

)
. Use this to find V (10P) and V (100P).

H-2: The question asks you when A(t) = 2000. So, solve 2000 = 1000et/20 for t.

H-3: What happens when cosx is a negative number?

H-4: There are two easy ways: use the chain rule, or simplify first.
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H-5: There are two easy ways: use the chain rule, or simplify first.

H-6: Don’t be fooled by a common mistake: log(x2 + x) is not the same as log(x2)+ logx.

H-7: Use the base-change formula to convert this to natural logarithm (base e).

H-9: Use the chain rule.

H-10: Use the chain rule twice.

H-11: You’ll need to use the chain rule twice.

H-12: Use the chain rule.

H-13: Use the chain rule to differentiate.

H-14: You can differentiate this by using the chain rule several times.

H-15: Using logarithm rules before you differentiate will make this easier.

H-16: Using logarithm rules before you differentiate will make this easier.

H-17: First, differentiate using the chain rule and any other necessary rules. Then, plug in x = 2.

H-18: In the text, you are given the derivative
d
dx

ax, where a is a constant.

H-19: You’ll need to use logarithmic differentiation. Set g(x) = log( f (x)), and find g1(x). Then,

use that to find f 1(x). This is the method used in the text to find
d
dx

ax.

H-20: Use Question 19 and the base-change formula, logb(a) =
loga
logb

.

H-21: To make this easier, use logarithmic differentiation. Set g(x) = log( f (x)), and find g1(x).

Then, use that to find f 1(x). This is the method used in the text to find
d
dx

ax, and again in
Question 19.

H-22: To make this easier, use logarithmic differentiation. Set g(x) = log( f (x)), and find g1(x).

Then, use that to find f 1(x). This is the method used in the text to find
d
dx

ax, and again in
Question 19.

H-23: It’s not going to come out nicely, but there’s a better way than blindly applying quotient and
product rules, or expanding giant polynomials.

H-24: You’ll need to use logarithmic differentiation. Set g(x) = log( f (x)), and find g1(x). Then,

use that to find f 1(x). This is the method used in the text to find
d
dx

ax, and again in Question (19).

H-25: You’ll need to use logarithmic differentiation. Set g(x) = log( f (x)), and find g1(x). Then,

use that to find f 1(x). This is the method used in the text to find
d
dx

ax, and again in Question (19).

H-26: You’ll need to use logarithmic differentiation. Set g(x) = log( f (x)), and find g1(x). Then,

use that to find f 1(x). This is the method used in the text to find
d
dx

ax, and again in Question (19).
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H-27: You’ll need to use logarithmic differentiation. Differentiate log( f (x)), then solve for f 1(x).

This is the method used in the text to find
d
dx

ax.

H-28: Remember to use the chain rule.

H-29: You’ll need to use logarithmic differentiation. Differentiate log( f (x)), then solve for f 1(x).

This is the method used in the text to find
d
dx

ax.

H-30: You’ll need to use logarithmic differentiation. Differentiate log( f (x)), then solve for f 1(x).

This is the method used in the text to find
d
dx

ax.

H-31: Evaluate
d
dx

!

log
(
[ f (x)]g(x)

))
.

H-32: Differentiate y = log( f (x)). When is the derivative equal to zero?

Hints for Exercises 4.5. — Jump to TABLE OF CONTENTS.

H-1: Where did the y1 come from?

H-2: The three points to look at are (0,´4), (0,0), and (0,4). What does the slope of the tangent
line look like there?

H-3: A function must pass the vertical line test: one input cannot result in two different outputs.

H-4: The problem isn’t with any of the algebra.

H-5: Remember that y is a function of x. Use implicit differentiation, then collect all the terms

containing
dy
dx

on one side of the equation to solve for
dy
dx

.

H-6: Differentiate implicitly, then solve for y1.

H-7: Remember that y is a function of x. You can determine explicitly the values of x for which
y(x) = 1.

H-8: You don’t need to solve for y2 in general–only when x = y = 0. To do this, you also need to
find y1 at the point (0,0).

H-10: Plug in y = 0 at a strategic point in your work to simplify your computation.

H-11: Use implicit differentiation.

H-13: Plug in y = 0 at a strategic point in your work to simplify your computation.

H-14: If the tangent line has slope y1, and it is parallel to y = x, then y1 = 1.

H-15: You don’t need to solve for y1 in general: only at a single point.

H-16: After you differentiate implicitly, get all the terms containing y1 onto one side so you can
solve for y1.

H-17: Recall
d
dx

logx =
1
x

.
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H-18: You don’t need to solve for dy
dx for all values of x–only when y = 0.

H-20: For (b), you know a point where the curve and tangent line intersect, and you know what the
tangent line looks like. What do the derivatives tell you about the shape of the curve?

No exercises for Section 4.6. — Jump to TABLE OF CONTENTS

Hints for Exercises 4.7. — Jump to TABLE OF CONTENTS.

H-1: Remember that only certain numbers can come out of sine and cosine, but any numbers can
go in.

H-2: What is the range of the arccosine function?

H-3: A one–to–one function passes the horizontal line test. To graph the inverse of a function,
reflect it across the line y = x.

H-4: Your answer will depend on a. The arcsine function alone won’t give you every value.

H-5: In order for x to be in the domain of f , you must be able to plug x into both arcsine and
arccosecant.

H-6: For the domain of f , remember the domain of arcsine is [´1,1].

H-7: The domain of arccos(t) is [´1,1], but you also have to make sure you aren’t dividing by
zero.

H-8:
d
dx
tarcsecxu= 1

|x|?x2´1
, and the domain of arcsecx is |x| ě 1.

H-9: The domain of arctan(x) is all real numbers.

H-10: The domain of arcsinx is [´1,1], and the domain of
?

x is xě 0.

H-11: This occurs only once.

H-12: The answer is a very simple expression.

H-13: chain rule

H-14: Recall
d
dx
tarctanxu= 1

1+ x2 = (1+ x2)´1.

H-17: You can simplify the expression before you differentiate to remove the trigonometric
functions. If arctanx = θ , then fill in the sides of the triangle below using the definition of
arctangent and the Pythagorean theorem:

θ
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With the sides labeled, you can figure out sin (arctanx) = sin (θ ).

H-18: You can simplify the expression before you differentiate to remove the trigonometric
functions. If arcsinx = θ , then fill in the sides of the triangle below using the definition of
arctangent and the Pythagorean theorem:

θ

With the sides labeled, you can figure out cot (arcsinx) = cot (θ ).

H-19: What is the slope of the line y = 2x+ 9?

H-20: Differentiate using the chain rule.

H-21: If g(y) = f´1(y), then f (g(y)) = f
(

f´1(y)
)
= y. Differentiate this last equality using the

chain rule.

H-22: To simplify notation, let g(y) = f´1(y). Simplify and differentiate g( f (x)).

H-23: To simplify notation, let g(y) = f´1(y). Simplify and differentiate g( f (x)).

H-24: Use logarithmic differentiation.

H-25: Where are those functions defined?

H-26: Compare this to one of the forms given in the text for the definition of the derivative.

H-27: f´1(7) is the number y that satisfies f (y) = 7.

H-28: If f´1(y) = 0, that means f (0) = y. So, we’re looking for the number that we plug into f´1

to get 0.

H-29: As usual, after you differentiate implicitly, get all the terms containing y1 onto one side of the
equation, so you can factor out y1.

Hints for Exercises 5. — Jump to TABLE OF CONTENTS.

H-1: If you know P, you can figure out Q.

H-2: Since the point moves along the unit circle, we know that x2 + y2 = 1, where x and y are
functions of time.

H-3: You’ll need some implicit differentiation: what should your variable be? Example 5.0.3
shows how to work with percentage rate of change.

H-4: For (b), refer to Example 5.0.3 for percentage rate of change.

H-5: Pay attention to direction, and what it means for the sign (plus/minus) of the velocities of the
particles.

165



H-6: You’ll want to think about the difference in the y-coordinates of the two particles.

H-7: Draw a picture, and be careful about signs.

H-8: You’ll want to think about the difference in height of the two snails.

H-9: The length of the ladder is changing.

H-10: If a trapezoid has height h and (parallel) bases b1 and b2, then its area is h
(

b1+b2
2

)
. To

figure out how wide the top of the water is when the water is at height h, you can cut the trapezoid
up into a rectangle and two triangles, and make use of similar triangles.

H-11: Be careful with units. One litre is 1000 cm3, which is not the same as 10 m3.

H-12: You, the rocket, and the rocket’s original position form a right triangle.

H-13: Your picture should be a triangle.

H-14: Let θ be the angle between the two hands. Using the Law of Cosines, you can get an

expression for D in terms of θ . To find
dθ

dt
, use what you know about how fast clock hands move.

H-15: The area in the annulus is the area of the outer circle minus the area of the inner circle.

H-16: The volume of a sphere with radius R is
4
3

πr3.

H-17: The area of a triangle is half its base times its height. To find the base, split the triangle into
two right triangles.

H-18: The easiest way to figure out the area of the sector of an annulus (or a circle) is to figure out
the area of the entire annulus, then multiply by what proportion of the entire annulus the sector is.
For example, if your sector is 1

10 of the entire annulus, then its area is 1
10 of the area of the entire

annulus.

H-19: Think about the ways in which this problem is similar to and different from Example 5.0.6
and Question 18.

H-20: The volume of a cone with height h and radius r is 1
3πr2h. Also, one millilitre is the same as

one cubic centimetre.

H-21: If you were to install the buoy, how would you choose the length of rope? For which values
of θ do sinθ and cosθ have different signs? How would those values of θ look on the diagram?

H-22: At both points of interest, the point is moving along a straight line. From the diagram, you
can figure out the equation of that line.

For the question “How fast is the point moving?” in part (b), remember that the velocity of an object
can be found by differentiating (with respect to time) the equation that gives the position of the
object. The complicating factors in this case are that (1) the position of our object is not given as a
function of time, and (2) the position of our object is given in two dimensions, not one.

H-23: (a) Since the perimeter of the cross section of the bottle does not change, p (the perimeter of
the ellipse) is the same as the perimeter of the circle of radius 5.
(b) The volume of the bottle will be the area of its cross section times its height. This is always the
case when you have some two-dimensional shape, and turn it into a three-dimensional object by
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“pulling” the shape straight up. (For example, you can think of a cylinder as a circle that has been
“pulled” straight up. To understand why this formula works, think about what is means to measure
the area of a shape in square centimetres, and the volume of an object in cubic centimetres.)

(c) You can use what you know about a and the formula from (a) to find b and
db
dt

. Then use the

formula from (b).

H-24: If A = 0, you can figure out C and D from the relationship given.

Hints for Exercises 6. — Jump to TABLE OF CONTENTS.

H-1: Try making one function a multiple of the other.

H-2: Try making one function a multiple of the other, but not a constant multiple.

H-3: Plugging in x = 1 to the numerator and denominator makes both zero. This is exactly one of
the indeterminate forms where l’Hôpital’s rule can be directly applied.

H-4: Is this an indeterminate form?

H-5: First, rearrange the expression to a more natural form (without a negative exponent).

H-6: If at first you don’t succeed, try, try again.

H-7: Keep at it!

H-8: Rather than use l’Hôpital, try factoring out x2 from the numerator and denominator.

H-9: Keep going!

H-11: Try plugging in x = 0. Is this an indeterminate form?

H-12: Simplify the trigonometric part first.

H-13: If it is too difficult to take a derivative for l’Hôpital’s Rule, try splitting up the function into
smaller chunks and evaluating their limits independently.

H-15: Try manipulating the function to get it into a nicer form

H-17: If the denominator tends to zero, and the limit exists, what must be the limit of the
numerator?

H-18: Start with one application of l’Hôpital’s Rule. After that, you need to consider three distinct
cases: k ą 2, k ă 2, and k = 2.

H-19: Percentage error: 100
ˇ

ˇ

ˇ

exact´approx
exact

ˇ

ˇ

ˇ
. Absolute error: |exact´ approx|.

H-20: Try modifying the function from Example 6.3.4.

H-21: lim
xÑ0

x2?
sin2 x = (sin2 x)

1
x2 ; what form is this?

H-22: lim
xÑ0

x2?cosx = lim
xÑ0

(cosx)
1

x2

H-23: logarithms
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H-24: Introduce yet another logarithm.

Hints for Exercises 7.1. — Jump to TABLE OF CONTENTS.

H-1: What happens if g(x) = x+ 3?

H-2: Use domains and intercepts to distinguish between the functions.

H-3: To find p, the equation f (0) = 2 gives you two possible values of p. Consider the domain of
f (x) to decide between them.

H-4: Check for horizontal asymptotes by evaluating lim
xÑ˘8

f (x), and check for vertical asymptotes

by finding any value of x near which f (x) blows up.

H-5: Check for horizontal asymptotes by evaluating lim
xÑ˘8

f (x), and check for vertical asymptotes

by finding any value of x near which f (x) blows up.

Hints for Exercises 7.2. — Jump to TABLE OF CONTENTS.

H-1: For each of the graphs, consider where the derivative is positive, negative, and zero.

H-2: Where is f 1(x) ą 0?

H-3: Consider the signs of the numerator and the denominator of f 1(x).

H-4: Remember
d
dx
tarctanxu= 1

1+ x2 .

Hints for Exercises 7.3. — Jump to TABLE OF CONTENTS.

H-1: There are two intervals where the function is concave up, and two where it is concave down.

H-2: Try allowing your graph to have horizontal asymptotes. For example, let the function get
closer and closer to the x-axis (or another horizontal line) without touching it.

H-3: Consider f (x) = (x´3)4.

Hints for Exercises 7.4. — Jump to TABLE OF CONTENTS.

H-1: This function is symmetric across the y-axis.

H-2: There are two.

H-3: Since the function is even, you only have to reflect the portion shown across the y-axis to
complete the sketch.

H-4: Since the function is odd, to complete the sketch, reflect the portion shown across the y-axis,
then the x-axis.

H-5: A function is even if f (´x) = f (x).
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H-6: Its period is not 2π .

H-7: Simplify f (´x) to see whether it is the same as f (x), ´ f (x), or neither.

H-8: Simplify f (´x) to see whether it is the same as f (x), ´ f (x), or neither.

H-9: Find the smallest value k such that f (x+ k) = f (x) for any x in the domain of f .

You may use the fact that the period of g(X) = tanX is π .

H-10: It is true that f (x) = f (x+ 2π) for every x in the domain of f (x), but the period is not 2π .

No exercises for Section 7.5. — Jump to TABLE OF CONTENTS

Hints for Exercises 7.6. — Jump to TABLE OF CONTENTS.

H-1: You’ll find the intervals of increase and decrease. These will give you a basic outline of the
behaviour of the function. Use concavity to refine your picture.

H-2: The local maximum is also a global maximum.

H-3: The sign of the first derivative is determined entirely by the numerator, but the sign of the
second derivative depends on both the numerator and the denominator.

H-4: The function is odd.

H-5: The function is continuous at x = 0, but its derivative is not.

H-6: Since you aren’t asked to find the intervals of concavity exactly, sketch the intervals of
increase and decrease, and turn them into a smooth curve. You might not get exactly the intervals of
concavity that are given in the solution, but there should be the same number of intervals as the
solution, and they should have the same positions relative to the local extrema.

H-7: Use intervals of increase and decrease, concavity, and asymptotes to sketch the curve.

H-8: Although the function exhibits a certain kind of repeating behaviour, it is not periodic.

H-9: The period of this function is 2π . So, it’s enough to graph the curve y = f (x) over the interval
[´π ,π ], because that figure will simply repeat.

Use trigonometric identities to write f 2(x) = ´4(4sin2 x+ sinx´2). Then you can find where
f 2(x) = 0 by setting y = sinx and solving 0 = 4y2 + y´2.

H-10: There is one point where the curve is continuous but has a vertical tangent line.

H-11: Use lim
xÑ´8

f 1(x) to determine lim
xÑ´8

f (x).

H-12: Once you have the graph of a function, reflect it over the line y = x to graph its inverse. Be
careful of the fact that f (x) is only defined in this problem for xě 0.

H-14: For (a), don’t be intimidated by the new names: we can graph these functions using the
methods learned in this section.
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For (b), remember that to define an inverse of a function, we need to restrict the domain of that
function to an interval where it is one-to-one. Then to graph the inverse, we can simply reflect the
original function over the line y = x.

For (c), set y(x) = cosh´1(x), so cosh(y(x)) = x. The differentiate using the chain rule. To get
your final answer in terms of x (instead of y), use the identity cosh2(y)´ sinh2(y) = 1.

Hints for Exercises 8.1. — Jump to TABLE OF CONTENTS.

H-1: Estimate f 1(0).

H-2: If the graph is discontinuous at a point, it is not differentiable at that point.

H-3: Try making a little bump at x = 2, the letting the function get quite large somewhere else.

H-4: Critical points are those values of x for which f 1(x) = 0.
Singular points are those values of x for which f (x) is not differentiable.

H-5: We’re only after local extrema, not global. Let f (x) be our function. If there is some interval
around x = 2 where nothing is bigger than f (2), then f (2) is a local maximum, whether or not it is
a maximum overall.

H-6: By Theorem 8.1.3, if x = 2 not a critical point, then it must be a singular point.

H-7: You should be able to figure out the global minima of f (x) in your head.

Remember with absolute values, |X |=
"

X X ě 0
´X X ă 0 .

H-8: Review the definitions of critical points and extrema: Definition 8.1.5 and Definition 8.1.2.

Hints for Exercises 8.2. — Jump to TABLE OF CONTENTS.

H-1: One way to avoid a global minimum is to have lim
xÑ8

f (x) = ´8. Since f (x) keeps getting
lower and lower, there is no one value that is the lowest.

H-2: Try allowing the function to approach the x-axis without ever touching it.

H-3: Since the global minimum value occurs at x = 5 and x = ´5, it must be true that
f (5) = f (´5).

H-4: Global extrema will either occur at critical points in the interval (´5,5) or at the endpoints
x = 5, x = ´5.

H-5: You only need to consider critical points that are in the interval (´4,0).

Hints for Exercises 8.3. — Jump to TABLE OF CONTENTS.

H-1: Factor the derivative.

H-2: Remember to test endpoints.

170



H-4: One way to decide whether a critical point x = c is a local extremum is to consider the first
derivative. For example: if f 1(x) is negative for all x just to the left of c, and positive for all x just to
the right of c, then f (x) decreases up till c, then increases after c, so f (x) has a local minimum at c.

H-5: One way to decide whether a critical point x = c is a local extremum is to consider the first
derivative. For example: if f 1(x) is negative for all x just to the left of c, and positive for all x just to
the right of c, then f (x) decreases up till c, then increases after c, so f (x) has a local minimum at c.

H-6: Start with a formula for travel time from P to B. You might want to assign a variable to the
distance from A where your buggy first reaches the road.

H-7: A box has three dimensions; make variables for them, and write the relations given in the
problem in terms of these variables.

H-8: Find a formula for the cost of the base, and another formula for the cost of the other sides.
The total cost is the sum of these two formulas.

H-9: The setup is this:

x

y

X

Y

O

H-10: Put the whole system on xy-axes, so that you can easily describe the pieces using
(x,y)-coordinates.

H-11: The surface area consists of two discs and a strip. Find the areas of these pieces.

The volume of a cylinder with radius r and height h is πr2h.
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h

r

r

h

H-12: If the circle has radius r, and the entire window has perimeter P, what is the height of the
rectangle?

H-14: Use logarithmic differentiation to find f 1(x).

H-15: When you are finding the global extrema of a function, remember to check endpoints as well
as critical points.

Hints for Exercises 8.4. — Jump to TABLE OF CONTENTS.

Hints for Exercises 9.1. — Jump to TABLE OF CONTENTS.

H-1: An approximation should be something you can actually figure out–otherwise it’s no use.

H-2: You’ll need some constant a to approximation log(0.93) « log(a). This a should have two
properties: it should be close to 0.93, and you should be able to easily evaluate log(a).

H-3: You’ll need some constant a to approximate arcsin(0.1) « arcsin(a). This a should have two
properties: it should be close to 0.1, and you should be able to easily evaluate arcsin(a).

H-4: You’ll need some constant a to approximate
?

3tan(1) «?3tan(a). This a should have two
properties: it should be close to 1, and you should be able to easily evaluate

?
3tan(a).

H-5: We could figure out 10.13 exactly, if we wanted, with pen and paper. Since we’re asking for
an approximation, we aren’t after perfect accuracy. Rather, we’re after ease of calculation.

Hints for Exercises 9.2. — Jump to TABLE OF CONTENTS.

H-1: The linear approximation L(x) is chosen so that f (5) = L(5) and f 1(5) = L1(5).
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H-2: The graph of the linear approximation is a line, passing through (2, f (2)), with slope f 1(2).

H-3: It’s an extremely accurate approximation.

H-4: You’ll need to centre your approximation about some x = a, which should have two
properties: you can easily compute log(a), and a is close to 0.93.

H-5: Approximate the function f (x) =
?

x.

H-6: Approximate the function f (x) = 5
?

x.

H-7: Approximate the function f (x) = x3.

H-8: One possible choice of f (x) is f (x) = sinx.

H-9: Compare the derivatives.

Hints for Exercises 9.3. — Jump to TABLE OF CONTENTS.

H-1: If Q(x) is the quadratic approximation of f about 3, then Q(3) = f (3), Q1(3) = f 1(3), and
Q2(3) = f 2(3).

H-2: It is a very good approximation.

H-3: Approximate f (x) = logx.

H-4: You’ll probably want to centre your approximation about x = 0.

H-5: The quadratic approximation of a function f (x) about x = a is

f (x) « f (a)+ f 1(a)(x´a)+
1
2

f 2(a)(x´a)2

H-6: One way to go about this is to approximate the function f (x) = 5 ¨ x1/3 , because then
54/3 = 5 ¨51/3 = f (5).

H-7: For (c), look for cancellations.

H-8: Compare (c) to (b).
Compare (e) and (f) to (d).
To get an alternating sign, consider powers of (´1).

H-9: You can evaluate f (1) exactly.

Recall
d
dx

arcsinx =
1?

1´ x2
.

H-10: Let f (x) = ex, and use the quadratic approximation of f (x) about x = 0 (given in your text,
or you can reproduce it) to approximate f (1).

H-11: Be wary of indices: for example
3
ÿ

n=1

n =
7
ÿ

n=5

(n´4).

Hints for Exercises 9.4. — Jump to TABLE OF CONTENTS.
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H-1: T 23 (x) and f 2(x) agree when x = 1.

H-2: The nth degree Taylor polynomial for f (x) about x = 5 is

Tn(x) =
n
ÿ

k=0

f (k)(5)
k!

(x´5)k

Match up the terms.

H-3: The fourth-degree Maclaurin polynomial for f (x) is

T4(x) = f (0)+ f 1(0)x+
1
2

f 2(0)x2 +
1
3!

f3(0)x3 +
1
4!

f (4)(0)x4

while the third-degree Maclaurin polynomial for f (x) is

T3(x) = f (0)+ f 1(0)x+
1
2

f 2(0)x2 +
1
3!

f3(0)x3

H-4: The third-degree Taylor polynomial for f (x) about x = 1 is

T3(x) = f (1)+ f 1(1)(x´1)+
1
2

f 2(1)(x´1)2 +
1
3!

f3(1)(x´1)3

How can you recover f (1), f 1(1), f 2(1), and f3(1) from T4(x)?

H-5: Compare the given polynomial to the more standard form of the nth degree Taylor polynomial,

n
ÿ

k=0

1
k!

f (k)(5)(x´5)k

and notice that the term you want (containing f (10)(5)) corresponds to k = 10 in the standard form,
but is not the term corresponding to k = 10 in the polynomial given in the question.

H-6: T33 (a) = f3(a)

Hints for Exercises 9.5. — Jump to TABLE OF CONTENTS.

H-1: The derivatives of f (x) repeat themselves.

H-2: You are approximating a polynomial with a polynomial.

H-3: Recall
d
dx
t2xu= 2x log2, where log2 is the constant loge 2.

H-4: Just keep differentiating–it gets easier!

H-5: Start by differentiating, and finding the pattern for f (k)(0). Remember the chain rule!

H-6: You’ll need to differentiate xx. This is accomplished using logarithmic differentiation, covered
in Section 4.4.

H-7: What is 6arctan
(

1?
3

)
?
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H-8: After a few derivatives, this will be very similar to Example 9.5.2.

H-9: Treat the even and odd powers separately.

H-10: Compare this to the Maclaurin polynomial for ex.

H-11: Compare this to the Maclaurin polynomial for cosine.

Hints for Exercises 9.6. — Jump to TABLE OF CONTENTS.

H-1: R(10) = f (10)´F(10) = ´3´5

H-2: Equation 9.6.6 tells us

| f (2)´T3(2)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (4)(c)
4!

(2´0)4

ˇ

ˇ

ˇ

ˇ

ˇ

for some c strictly between 0 and 2.

H-3: You are approximating a third-degree polynomial with a fifth-degree Taylor polynomial. You
should be able to tell how good your approximation will be without a long calculation.

H-4: Draw a picture–it should be clear how the two approximations behave.

H-5: In this case, Equation 9.6.6 tells us that

| f (11.5)´T5(11.5)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (6)(c)
6!

(11.5´11)6

ˇ

ˇ

ˇ

ˇ

ˇ

for some c strictly between 11 and 11.5.

H-6: In this case, Equation 9.6.6 tells us that | f (0.1)´T2(0.1)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (3)(c)
3!

(0.1´0)3

ˇ

ˇ

ˇ

ˇ

ˇ

for some c

strictly between 0 and 0.1.

H-7: In our case, Equation 9.6.6 tells us

ˇ

ˇ

ˇ

ˇ

f
(
´1

4

)
´T5

(
´1

4

)ˇ
ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

f (6)(c)
6!

(
´1

4
´0
)6

ˇ

ˇ

ˇ

ˇ

ˇ

for some c between ´1
4

and 0.

H-8: In this case, Equation 9.6.6 tells us that | f (30)´T3(30)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (4)(c)
4!

(30´32)4

ˇ

ˇ

ˇ

ˇ

ˇ

for some c

strictly between 30 and 32.

H-9: In our case, Equation 9.6.6 tells us

| f (0.01)´T1 (0.01)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (2)(c)
2!

(
0.01´ 1

π

)2

ˇ

ˇ

ˇ

ˇ

ˇ

for some c between 0.01 and
1
π

.
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H-10: Using Equation 9.6.6,
ˇ

ˇ

ˇ

ˇ

f
(

1
2

)
´T2

(
1
2

)ˇ
ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

f (3)(c)
3!

(
1
2
´0
)3

ˇ

ˇ

ˇ

ˇ

ˇ

for some c in
(

0,
1
2

)
.

H-11: It helps to have a formula for f (n)(x). You can figure it out by taking several derivatives and
noticing the pattern, but also this has been given previously in the text.

H-12: You can approximate the function f (x) = x
1
7 .

It’s a good bit of trivia to know 37 = 2187.
A low-degree Taylor approximation will give you a good enough estimation. If you guess a degree,
and take that Taylor polynomial, the error will probably be less than 0.001 (but you still need to
check).

H-13: Use the 6th-degree Maclaurin approximation for f (x) = sinx.

H-14: For part (c), after you plug in the appropriate values to Equation 9.6.6, simplify the upper
and lower bounds for e separately. In particular, for the upper bound, you’ll have to solve for e.

Hints for Exercises 10. — Jump to TABLE OF CONTENTS.

H-9: Note 0.43 = 0.064 and 63 = 216.

Hints for Exercises 11. — Jump to TABLE OF CONTENTS.

H-21: If there are S kg of salt in the entire barrel, then 0.4 litres of barrel water contains S ¨ 0.4
20 kg of

salt.

Hints for Exercises 12. — Jump to TABLE OF CONTENTS.

Hints for Exercises 13. — Jump to TABLE OF CONTENTS.

H-7: Use the formula for the volume of a cube, V = x3, for (a).

Hints for Exercises 14.1. — Jump to TABLE OF CONTENTS.

H-1: The fill patterns are only included to distinguish different parts of the diagram.

H-2: Section 14.1 gives the equation for a sphere.

H-3: This is a review question to get you thinking about R2 in a way that will help you get used to
R3.

H-4: Compare to Question 3. To visualize what’s going on, it can help to consider what shapes
you’d get if z were a constant.

If you’re struggling to visualize R3, section 14.1.1 in the text shows you how to fold a model of its
first octant.
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H-5: From the text, the distance from the point (x,y,z) to the point (x1,y1,z1) is
b

(x´ x1)2 +(y´ y1)2 +(z´ z1)2

H-6: From the text, the distance from the point (x,y,z) to the xy-plane is |z|.
H-7: From the text, the distance from the point (x,y,z) to the point (x1,y1,z1) is

b

(x´ x1)2 +(y´ y1)2 +(z´ z1)2

100 metres is one-tenth of a kilometre.

H-8: From the text, the distance from the point (x,y,z) to the point (x1,y1,z1) is
b

(x´ x1)2 +(y´ y1)2 +(z´ z1)2

Given the distance and the x and y coordinates, you can solve for the z coordinate.

H-9: At which part of the journey are you actually getting farther away from the wall?

H-10: The isobar is a curve of the form x2´2cx+ y2 = 1, where c is a constant. These describe
circles – figure out what their centres and radii are.

H-12: This centre must be equidistant from the three vertices.

H-13: From the text, the distance from the point (x,y,z) to the point (x1,y1,z1) is
b

(x´ x1)2 +(y´ y1)2 +(z´ z1)2

Also from the text, the distance from the point (x,y,z) to the xy-plane is |z|. Use a similar thought
process to find the distance from a point (x,y,z) to the plane z = ´1.

Hints for Exercises 14.2. — Jump to TABLE OF CONTENTS.

H-1: Once you pick the number for the range, you’re basically done....

H-2: This is a review of high-school material, since we have functions of only one variable. We
want you to think about it to get in the right mindset.

H-3: If you set x = y = 1, is there a solution to the equation?

H-4: To find the range, consider all points in the domain with x = 0.

H-5: For the range, consider h(x,0).

H-6: The domain of the function arcsin(x) is [´1,1], and its range is
[´π

2 , π

2

]
.

H-7: One way of thinking of xyą 0 is that x and y must have the same sign (and both be nonzero).

H-8: y doesn’t impact the final value of f (x,y), so think of this as a problem from last semester.
What are the maximum and minimum values of the function f (x) = x2

x2+1? Can you sketch its
graph?
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H-9: Consider the functions f1(x) = x
x2+1 and f2(y) = siny separately.

H-10: Do you see any signs that might point you in the right direction?

H-11: The domain will look like a ring

H-12: First work with the function
h(t) = 72t2´ t4

Then, think about the implications of t = x2´ y.

Hints for Exercises 14.3. — Jump to TABLE OF CONTENTS.

H-1: Consider the traces. That is, if you set one variable equal to a constant, what will the resulting
cross-sections look like?

H-2: Draw in the plane z =C for several values of C.

H-3: Remember when you set f (x,y) equal to a constant, the result is a curve with only x’s and y’s.

H-4: The circle centred at (0,a) with radius r has equation

x2 +(y´a)2 = r2

Rearranged, this is
x2 + y2´ (2a)y = r2 = a2

Use this to describe the level curves of the function given.

H-5: If z is constant, then the entire expression ´z2 + 2z is one big constant.

H-6: For each fixed z, 4x2 + y2 = 1+ z2 is an ellipse. So the surface consists of a stack of ellipses
one on top of the other. The

H-7: Start by determining what convenient traces look like. For (a), the level curves are less
instructive at first than are the traces found by setting y equal to a constant.

H-9: To solve (say) sin(x+ y) = 0, you get lots of solutions: x+ y = 0, x+ y = π , x+ y = 2π , etc.

H-10: Since the level curves are circles centred at the origin (in the xy-plane), the equation will
have the form x2 + y2 = g(z), where g(z) is a function depending only on z.

Hints for Exercises 15.1. — Jump to TABLE OF CONTENTS.

H-1: What happens if you move “backwards,” in the negative y direction?

H-2: Use the definition of the derivative:

fx(x,y) = lim
hÑ0

f (x+ h,y)´ f (x,y)
h

« f (x+ 0.1,y)´ f (x,y)
0.1

H-4: Just evaluate x Bz
Bx(x,y)+ yBz

By(x,y).

H-5: This is an implicit differentiation question. Implicit differentiation, as you’ll recall from
first-semester calculus, is more-or-less just an application of the chain rule.
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H-6: Differentiate implicitly.

H-9: Just evaluate yBz
Bx(x,y) and x Bz

By(x,y).

H-11: You can find an equation for the surface, or just look at the diagram.

H-12: For (a) and (b), remember B f
Bx (x,y) = lim

hÑ0

f (x+h,y)´ f (x,y)
h and B f

By (x,y) = lim
hÑ0

f (x,y+h)´ f (x,y)
h .

For (c), you’re finding the derivative of a function of one variable, say g(t), where

g(t) = f (t, t) =

#

t2t
t2+t2 if t ‰ 0
0 if t = 0

Hints for Exercises 15.2. — Jump to TABLE OF CONTENTS.

H-1: Try writing g = fx, and then writing the partial derivative of g with respect to y.

H-2: Try writing g = B f
Bx , and then writing the partial derivative of g with respect to y.

You aren’t asked about the power of the f ; only the order of x and y.

H-3: Look at the displayed equation in the answer to Question 2.

H-4: d
dx [tanx] = sec2 x, d

dx [secx] = secx tanx

H-5: Save yourself time by using Theorem 15.2.5.

H-6: Remember there are four second partial derivatives: fxx, fxy, fyx, and fyy.

H-7: (a) This higher order partial derivative can be evaluated extremely efficiently by carefully
choosing the order of evaluation of the derivatives.

(b) This higher order partial derivative can be evaluated extremely efficiently by carefully choosing
a different order of evaluation of the derivatives for each of the three terms.

(c) Set g(x) = f (x,0,0). Then fxx(1,0,0) = g2(1).

H-9: A similar method as Question 3 in Section 15.1, but iterated.

Hints for Exercises 16.1. — Jump to TABLE OF CONTENTS.

H-2: Write down the equations of specified level curves.

H-3: Remember a2 ă 1 means |a| ă 1, i.e. ´1ă aă 1.

H-4: Use the Second Derivative Test

H-5: Use the Second Derivative Test

H-6: Use the Second Derivative Test

H-7: Use the second derivative test

H-8: Use the Second Derivative Test

179



H-9: When you’re looking for critical points, remember you need both fx = 0 and fy = 0. So if it’s
hard to solve (say) fx = 0, then first solve fy = 0; then you can narrow your search of fx = 0.

H-14: “Explain your reasoning” is test-speak for “show your work.”

H-17: Check Example 16.1.11 in the text.

Hints for Exercises 16.2. — Jump to TABLE OF CONTENTS.

H-1: What is an endpoint of a circle?

H-2: Interpret the height
a

x2 + y2 geometrically.

H-3: Check the boundary of the square as well as critical points inside the square.

H-5: There are five places to check: the interior and four boundaries.

H-7: Since the region is a triangle, your boundary will have three separate parts to check.

H-9: There are two boundary lines. You’ll want to find their intersections.

H-10: Plugging in the boundaries should be quite easy if you choose your variables wisely

H-11: When you see “classify critical points,” think “second derivative test.”

H-12: Suppose that the bends are made a distance x from the ends of the fence and that the bends
are through an angle θ . Draw a sketch of the enclosure and figure out its area, as a function of x and
θ .

H-13: Suppose that the box has side lengths x, y and z.

H-15: If (x,y,z) is on the plane, then you know z = 5´2x´ y. So, you can write x2y2z as a
function of only x and y by eliminating z.

H-17: The answer will be piecewise, depending on what exactly a is.

H-18: Instead of maximizing the total profit function, maximize the profit functions of each type of
paper.

H-19: Profit is (revenue) minus (costs). If Ayan and Pipe work separately, then each seller only
sees the cost and revenue from the lemonade that they themselves sold.

To find how much each seller will sell when they are working separately, find out which values of
qA and qP end up with both individual profit functions being maximized.

To find out how much they’ll sell when they’re working together, use your assumption from part (c)
to make the solving smoother.

Hints for Exercises 16.3. — Jump to TABLE OF CONTENTS.

H-1: Interpret f (x,y) as a distance squared, and sketch xy = 1 in the xy-plane. You might also want
to review section 16.3.3 in the text.
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H-2: The easiest way out is to find a function z = k(x) with local but not absolute extrema, then
affix that to the plane y = 0.

H-3: Not much calculation is necessary.

H-4: Find all solutions to

fx = λgx

fy = λgy

x2y = 1 (E3)

H-5: This is a straightforward application of the method of Lagrange multipliers, Theorem 16.3.3
in the text.

H-6: This is a straightforward application of the method of Lagrange multipliers, Theorem 16.3.3
in the text.

H-7: When you set your two equations for λ equal to one another, you should get something that
you can easily plug into the constraint function.

H-8: We want to minimize
a

x2 + y2; it’s easier to minimize f (x,y) = x2 + y2. The minima will
occur at the same point (x,y).

Note the system has no maximum, since we can keep travelling along the parabola to end up
arbitrarily far from the origin.

H-9: To find extrema over a region, we check critical points and the boundary.

H-10: You can check your answer from (a) by using a method other than Lagrange multipliers.

H-11: Since xě 0 and yě 0, our constraint function has endpoints (x,y) = (0,400) and
(x,y) = (25,0). Absolute extrema will occur at these endpoints or at points that solve the system of
Lagrange equations.

H-12: The constraint tells you a+ 2b = 1. So, your variables are a and b.

H-13: The ellipse x2

a2 +
y2

b2 = 1 passes through the point (1,2) if and only if 1
a2 +

4
b2 = 1.

H-14: You may choose your coordinate system so the cylinder is oriented vertically along the
z-axis. Then you can write the volume of the cylinder as a function of two variables.

H-15: The volume is your constraint function.

H-17: The surface z = f (x,y) is similar to the quadric surface from Example 14.3.2.

H-18: No great amount of computation is needed

H-19: Although f (x,y) is unbounded, and x = y is not a closed curve, there are indeed absolute
extrema of f (x,y) subject to x = y. To find them, remember last semester’s methods for finding
extrema of functions of a single variable.
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ANSWERS TO PROBLEMS

Part III
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Answers to Exercises 1 — Jump to TABLE OF CONTENTS

A-1:

(a) y = xn

(b) y = x´n

(c) y = x1/n, n even

(d) xn ă x1/n ă x´n

(e) y = x´n

A-3:

(a) Stretched in y direction by factor A

(b) Shifted up by a

(c) Shifted in positive x direction by b

A-8:

(a) x = 0,
(3

2

)1/3

(b) x = 0,x = ˘1
2

A-9: if m´n even: x = ˘(A
B

)1/(m´n)
,x = 0;

if m´n odd: x =
(A

B

)1/(m´n)
,x = 0

A-10:

(a) (0,0) and (1,1)

(b) (0,0)

(c) (
?

7
2 , 3

4) (´
?

7
2 , 3

4), and (0,´1)

A-11: mą´1

A-12: x =
(

B
A

) 1
b´a

A-13:

(a) x = 0, ´1, 3

(b) x = 1

(c) x = ´2, 1/3

A-14: x = 1

A-15: x =
(R

A

) 1
r´a .

A-16: Sketches are not provided.
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(a) V

(b)
V
S
=

1
6

a, aą 0

(c) (i) a = V
1
3

(ii) a = (1
6S)

1
2

(iii) a = 10 cm

(iv) a =
?

15
3 cm

A-17: Sketches not provided.

(a) V

(b)
r
3

(c) (i) r =
( 3

4π

)1/3
V 1/3

(ii) r =
( 1

4π

)1/2
S1/2

(iii) r = 3
b

750
π

cm

(iv) r =
b

10
4π

cm

(v) S = 36
3?π

A-18:

(a) x = I/γ

(b) When γ2 ą 4Iε , roots are x =
γ˘a

γ2´4Iε

2ε
; when γ2 = 4Iε , root is x =

γ

2ε
; otherwise, no

roots.

(c) When γ2 ą 4Iε , both roots are positive. When γ2 = 4Iε , root is positive.

A-19:

(a) One way of expressing this relationship is: P =C
(R

A

)d/b.

(b) One way of expressing this relationship is: S = 4π
(3V

4π

)2/3
.

A-21: K = 0.5, a = 2

Answers to Exercises 2.1 — Jump to TABLE OF CONTENTS

A-1:

(a) lim
xÑ´2

f (x) = 1

(b) lim
xÑ0

f (x) = 0
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(c) lim
xÑ2

f (x) = 2

A-2: DNE

A-3:

(a) lim
xÑ´1´

f (x) = 2

(b) lim
xÑ´1+

f (x) = ´2

(c) lim
xÑ´1

f (x) = DNE

(d) lim
xÑ´2+

f (x) = 0

(e) lim
xÑ2´

f (x) = 0

A-4: Many answers are possible; here is one.

x

y
y = f (x)

3

10

A-5: Many answers are possible; here is one.

x

y
y = f (x)

3

10

A-6: In general, this is false.
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A-7: False

A-8: lim
xÑ´2´

f (x) = 16

A-9: Not enough information to say.

A-10: lim
tÑ0

sin t = 0

A-11: lim
xÑ0+

logx = ´8

A-12: lim
yÑ3

y2 = 9

A-13: lim
xÑ0´

1
x
= ´8

A-14: lim
xÑ0

1
x
= DNE

A-15: lim
xÑ0

1
x2 =8

A-16: lim
xÑ3

1
10

=
1

10

A-17: 9

Answers to Exercises 2.1.1 — Jump to TABLE OF CONTENTS

A-1: (a) and (d)

A-2: There are many possible answers; one is f (x) = 10(x´3), g(x) = x´3.

A-3: There are many possible answers; one is f (x) = (x´3)2 and g(x) = x´3. Another is
f (x) = 0 and g(x) = x´3.

A-4: There are many possible answers; one is f (x) = x´3, g(x) = (x´3)3.

A-5: Any real number; positive infinity; negative infinity; does not exist.

A-6: 0

A-7: 6

A-8: 16

A-9: 4/cos(3)

A-10: 2

A-11: ´7/2

A-12: 3

A-13: ´3
2

A-14: log(2)´1

188



A-15: 1
4

A-16:
1
2

A-17: 5

A-18: ´6

A-19: ´14

A-20: ´1
3

A-21: 1?
3

A-22: 1

A-23: 0

A-25: 0

A-26: 5

A-27: ´8

A-28:

c

2
3

A-29: DNE

A-30: 8
A-31: x5´32x+ 15

A-32: 0

A-33: 0

A-34: 2

A-35: 0

A-36: ´32
9

A-37: DNE

A-38: DNE

A-39: ´9
2

A-40: ´4

A-41: a =
7
2

A-42:

(a) lim
xÑ0

f (x) = 0

(b) lim
xÑ0

g(x) = DNE
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(c) lim
xÑ0

f (x)g(x) = 2

(d) lim
xÑ0

f (x)
g(x)

= 0

(e) lim
xÑ2

f (x)+ g(x) =
9
2

(f) lim
xÑ0

f (x)+ 1
g(x+ 1)

= 1

A-43: 1
6

A-44: 12

A-45:

x

y

1

1

Pictures may vary somewhat; the important points are the values of the function at integer values of
x, and the vertical asymptotes.

A-46:

x

y

1

1

y =
f (x)
g(x)

A-47: (a) DNE , DNE (b) 0 (c) No: it is only true when both lim
xÑa

f (x) and lim
xÑa

g(x) exist.
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A-48: (a) lim
xÑ0´

f (x) = ´3 (b) lim
xÑ0+

f (x) = 3 (c) lim
xÑ0

f (x) = DNE

A-49: (a) lim
xÑ´4´

f (x) = 0 (b) lim
xÑ´4+

f (x) = 0 (c) lim
xÑ´4

f (x) = 0

Answers to Exercises 2.1.2 — Jump to TABLE OF CONTENTS

A-1: There are many answers: any constant polynomial has this property. One answer is f (x) = 1.

A-2: There are many answers: any odd-degree polynomial has this property. One answer is
f (x) = x.

A-3: 0

A-4: 8
A-5: 0

A-6: DNE

A-7: ´8
A-8:

?
3

A-9: 3

A-10: ´3
4

A-11: ´1
2

A-12: 1
2

A-13: 5
3

A-14: 0

A-15: 4
7

A-16: 1

A-17: 0

A-18: ´1

A-19: 1

A-20: ´1

A-21: ´3
2

A-22: ´5
3

A-23: ´8
A-24:

5
2
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A-25: lim
aÑ0+

a2´ 1
a

a´1
=8

A-26: lim
xÑ3

2x+ 8
1

x´3 +
1

x2´9

= 0

A-27: No such rational function exists.

A-28: This is the amount of the substance that will linger long-term. Since it’s nonzero, the
substance would be something that would stay in your body. Something like “tattoo ink” is a
reasonable answer, while “penicillin” is not.

Answers to Exercises 2.2 — Jump to TABLE OF CONTENTS

A-1:

(a) v« K

(b) v = K/2 – half the maximum rate

A-2:

(a) x = 0,1

(b) Both have horizontal asymptotes at y = 1.

(c) y1

(d) y2 (reasoning not provided)

Answers to Exercises 2.3 — Jump to TABLE OF CONTENTS

A-1: Many answers are possible; the tangent function behaves like this.

A-2: True.

A-3: True.

A-4: In general, false.

A-5: lim
xÑ0+

h(x) = 0

A-6: k = 0

A-7: (´8,´1)Y (´1,1)Y (1,+8)

A-8: (´8,´1)Y (1,+8)

A-9: The function is continuous except at x = ˘π ,˘3π ,˘5π , . . . .

A-10: x‰ nπ , where n is any integer

A-11: ˘2

A-12: c = 1
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A-13: ´1, 4

A-14: c = 1, c = ´1

No exercises for Section 3.1. — Jump to TABLE OF CONTENTS

Answers to Exercises 3.2 — Jump to TABLE OF CONTENTS

A-1: If Q is to the left of the y axis, the secant line has positive slope; if Q is to the right of the y
axis, the secant line has negative slope.

A-2: (a) closer (b) the tangent line has the larger slope

A-3: {(a), (c), (e)}, {(b),(f)}, {(d)}
A-4: Something like 1.5. A reasonable answer would be between 1 and 2.

A-5: There is only one tangent line to f (x) at P (shown in blue), but there are infinitely many
choices of Q and R (one possibility shown in red).

x

y

y = f (x)

P
Q

R

A-6:

x

y

y = f (x)
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Answers to Exercises 3.3 — Jump to TABLE OF CONTENTS

A-1: (a), (d)

A-2: (e)

A-3: (b)

A-4: By definition, f (x) = x3 is differentiable at x = 0 if the limit

lim
hÑ0

f (h)´ f (0)
h

= lim
hÑ0

h3´0
h

exists.

A-5: x = ´1 and x = 3

A-6: True. (Contrast to Question 7.)

A-7: In general, false. (Contrast to Question 6.)

A-8: metres per second

A-9: y´6 = 3(x´1), or y = 3x+ 3

A-10:
´1
x2

A-11: By definition

f 1(0) = lim
hÑ0

f (h)´ f (0)
h

= lim
hÑ0

h|h|
h

= lim
hÑ0

|h|= 0

In particular, the limit exists, so the derivative exists (and is equal to zero).

A-12:
´2

(x+ 1)2

A-13:
´2x

[x2 + 3]2

A-14: 1

A-15: f 1(x) = ´ 2
x3

A-16: a = 4, b = ´4

A-17: f 1(x) =
1

2
?

1+ x
when xą´1; f 1(x) does not exist when xď´1.

A-18: v(t) = 4t3´2t

A-19: No, it does not.

A-20: No, it does not.

A-21: Yes, it is.
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A-22: Yes, it is.

A-23: Many answers are possible; here is one.

x

y

1

1

A-24:

p1(x) = lim
hÑ0

p(x+ h)´ p(x)
h

= lim
hÑ0

f (x+ h)+ g(x+ h)´ f (x)´g(x)
h

= lim
hÑ0

f (x+ h)´ f (x)+ g(x+ h)´g(x)
h

= lim
hÑ0

[
f (x+ h)´ f (x)

h
+

g(x+ h)´g(x)
h

]
(˚) =

[
lim
hÑ0

f (x+ h)´ f (x)
h

]
+

[
lim
hÑ0

g(x+ h)´g(x)
h

]
= f 1(x)+ g1(x)

At step (˚), we use the limit law that lim
xÑa

[F(x)+G(x)] = lim
xÑa

F(x)+ lim
xÑa

G(x), as long as

lim
xÑa

F(x) and lim
xÑa

G(x) exist. Because the problem states that f 1(x) and g1(x) exist, we know that

lim
hÑ0

f (x+ h)´ f (x)
h

and lim
hÑ0

g(x+ h)´g(x)
h

exist, so our work is valid.

A-25: (a) f 1(x) = 2 and g1(x) = 1 (b) p1(x) = 4x (c) no

A-26: y = 6x´9 and y = ´2x´1

A-27: aą 1

Answers to Exercises 3.3 — Jump to TABLE OF CONTENTS
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A-28: (a) The average rate of change of the height of the water over the single day starting at t = 0,
measured in m

hr .

(b) The instantaneous rate of change of the height of the water at the time t = 0.

A-29: Profit per additional widget sold, when t widgets are being sold. This is called the marginal
profit per widget, when t widgets are being sold.

A-30: T 1(d) measures how quickly the temperature is changing per unit change of depth, measured
in degrees per metre. |T 1(d)| will probably be largest when d is near zero, unless there are hot
springs or other underwater heat sources.

A-31: Calories per additional gram, when there are w grams.

A-32: The acceleration of the object.

A-33: Degrees Celsius temperature change per joule of heat added. (This is closely related to heat
capacity and to specific heat — there’s a nice explanation of this on Wikipedia.)

A-34: Number of bacteria added per degree. That is: the number of extra bacteria (possibly
negative) that will exist in the population by raising the temperature by one degree.

A-35: 360R1(t)

A-36: If P1(t) is positive, your sample is below the ideal temperature, and if P1(t) is negative, your
sample is above the ideal temperature. If P1(t) = 0, you don’t know whether the sample is exactly
at the ideal temperature, or way above or below it with no living bacteria.

Answers to Exercises 3.4 — Jump to TABLE OF CONTENTS

A-1: (ii)

Answers to Exercises 3.5 — Jump to TABLE OF CONTENTS

A-1: A-(a) and (d), B-(e), C-(c), D-(b)

A-2: (b), (d), (e)

A-3: False

A-4: increasing

A-5: ex

A-6: (b) and (d)

Answers to Exercises 4.1 — Jump to TABLE OF CONTENTS

A-1: True

A-2: False, in general
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A-3: True

A-4: If you’re creative, you can find lots of ways to differentiate!
Constant multiple: g1(x) = 3 f 1(x).
Product rule: g1(x) = d

dxt3u f (x)+ 3 f 1(x) = 0 f (x)+ 3 f 1(x) = 3 f 1(x).
Sum rule: g1(x) = d

dxt f (x)+ f (x)+ f (x)u= f 1(x)+ f 1(x)+ f 1(x) = 3 f 1(x).

Quotient rule: g1(x) = d
dx

"

f (x)
1
3

*

=
1
3 f 1(x)´ f (x)(0)

1
9

=
1
3 f 1(x)

1
9

= 9
(1

3

)
f 1(x) = 3 f 1(x).

All rules give g1(x) = 3 f 1(x).

A-5: f 1(x) = 6x+ 2?
x

A-6: f (n) = 2x(log2)n

A-7: ´36x+ 24
?

x+ 20?
x ´45

A-8: y´ 1
8 = 3

4 ¨
(
x´ 1

2

)
, or y = 3

4x´ 1
4

A-9: (a) 4 (b) left (c) decreasing

A-10:
1

(x+ 1/2)2 , or
4

(2x+ 1)2

A-11: ´72

A-12: g1(x) = [ f (x)+ f 1(x)]ex

A-13: b1(t)´d1(t)

A-14: (1,3), (3,27)

A-15:
1

2
?

100180

A-16: 20t + 7 square metres per second.

A-17: 0

A-18:

First expression, f (x) =
g(x)
h(x)

:

f 1(x) =
h(x)g1(x)´g(x)h1(x)

h2(x)
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Second expresson, f (x) =
g(x)
k(x)

¨ k(x)
h(x)

:

f 1(x) =
(

k(x)g1(x)´g(x)k1(x)
k2(x)

)(
k(x)
h(x)

)
+

(
g(x)
k(x)

)(
h(x)k1(x)´ k(x)h1(x)

h2(x)

)
=

k(x)g1(x)´g(x)k1(x)
k(x)h(x)

+
g(x)h(x)k1(x)´g(x)k(x)h1(x)

k(x)h2(x)

=
h(x)k(x)g1(x)´h(x)g(x)k1(x)

k(x)h2(x)
+

g(x)h(x)k1(x)´g(x)k(x)h1(x)
k(x)h2(x)

=
h(x)k(x)g1(x)´h(x)g(x)k1(x)+ g(x)h(x)k1(x)´g(x)k(x)h1(x)

k(x)h2(x)

=
h(x)k(x)g1(x)´g(x)k(x)h1(x)

k(x)h2(x)

=
h(x)g1(x)´g(x)h1(x)

h2(x)

and this is exactly what we got from differentiating the first expression.

A-19: a = b =
e
2

A-20: (a) g2(x) = [ f (x)+ 2 f 1(x)+ f 2(x)]ex

(b) g3(x) = [ f (x)+ 3 f 1(x)+ 3 f 2(x)+ f3(x)]ex

(c) g(4)(x) = [ f (x)+ 4 f 1(x)+ 6 f 2(x)+ 4 f3(x)+ f (4)(x)]ex

Answers to Exercises 4.1 — Jump to TABLE OF CONTENTS

A-22: In the quotient rule, there is a minus, not a plus. Also, 2(x+ 1)+ 2x is not the same as
2(x+ 1).

The correct version is:

f (x) =
2x

x+ 1

f 1(x) =
2(x+ 1)´2x
(x+ 1)2

=
2

(x+ 1)2

A-23: False

A-24:
(x´1)ex

2x2

A-25: 2e2x

A-26: ea+x
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A-27: xą´1

A-28: 0

A-29: 2e2x

A-30: When t is in the interval (´2,0).

A-31:
3

15!

A-32: 4x(x2 + 2)(x2 + 3)

A-33: 12t3 + 15t2 + 1
t2

A-34: x1(y) = 8y3 + 2y

A-35: T 1(x) =
(x2 + 3)

(
1

2
?

x

)
´ (
?

x+ 1)(2x)

(x2 + 3)2

A-36:
21´4x´7x2

(x2 + 3)2

A-37: 7

A-38:
3x4 + 30x3´2x´5

(x2 + 5x)2

A-39:
´3x2 + 12x+ 5

(2´ x)2

A-40:
´22x

(3x2 + 5)2

A-41:
4x3 + 12x2´1

(x+ 2)2

A-42: The derivative of the function is

(1´ x2) ¨ 1
2
?

x ´
?

x ¨ (´2x)

(1´ x2)2 =
(1´ x2)´2x ¨ (´2x)

2
?

x(1´ x2)2

The derivative is undefined if either xă 0 or x = 0,˘1 (since the square-root is undefined for xă 0
and the denominator is zero when x = 0,1,´1. Putting this together — the derivative exists for
xą 0,x‰ 1.

A-43:
(

3
5x
´4
5 + 5x

´2
3

)(
3x2 + 8x´5

)
+(3 5

?
x+ 15 3

?
x+ 8) (6x+ 8)

A-44: f 1(x) = (2x+ 5)(x´1/2 + x´2/3)+ (x2 + 5x+ 1)
(
´1
2 x´3/2´ 2

3x´5/3)
A-45: n = 4

A-46: (a) In order to make f (x) a little more tractable, let’s change the format. Since
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|x|=
"

x xě 0
´x xă 0 , then:

f (x) =
" ´x2 xă 0

x2 xě 0.

Now, we turn to the definition of the derivative to figure out whether f 1(0) exists.

f 1(0) = lim
hÑ0

f (0+ h)´ f (0)
h

= lim
hÑ0

f (h)´0
h

= lim
hÑ0

f (h)
h

if it exists.

Since f looks different to the left and right of 0, in order to evaluate this limit, we look at the
corresponding one-sided limits. Note that when h approaches 0 from the right, hą 0 so f (h) = h2.
By contrast, when h approaches 0 from the left, hă 0 so f (h) = ´h2.

lim
hÑ0+

f (h)
h

= lim
hÑ0+

h2

h
= lim

hÑ0+
h = 0

lim
hÑ0´

f (h)
h

= lim
hÑ0´

´h2

h
= lim

hÑ0´
´h = 0

Since both one-sided limits exist and are equal to 0,

lim
hÑ0

f (0+ h)´ f (0)
h

= 0

and so f is differentiable at x = 0 and f 1(0) = 0.

(b) From (a), f 1(0) = 0 and

f (x) =
" ´x2 xă 0

x2 xě 0.

So,

f 1(x) =
" ´2x xă 0

2x xě 0.

Then, we know the second derivative of f everywhere except at x = 0:

f 2(x) =

$

&

%

´2 xă 0
? x = 0
2 xą 0.

So, whenever x‰ 0, f 2(x) exists. To investigate the differentiability of f 1(x) when x = 0, again we
turn to the definition of a derivative. If

lim
hÑ0

f 1(0+ h)´ f 1(0)
h

exists, then f 2(0) exists.

lim
hÑ0

f 1(0+ h)´ f 1(0)
h

= lim
hÑ0

f 1(h)´0
h

= lim
hÑ0

f 1(h)
h
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Since f (h) behaves differently when h is greater than or less than zero, we look at the one-sided
limits.

lim
hÑ0+

f 1(h)
h

= lim
hÑ0+

2h
h

= 2

lim
hÑ0´

f 1(h)
h

= lim
hÑ0´

´2h
h

= ´2

Since the one-sided limits do not agree,

lim
hÑ0

f 1(0+ h)´ f 1(0)
h

= DNE

So, f 2(0) does not exist. Now we have a complete picture of f 2(x):

f 2(x) =

$

&

%

´2 xă 0
DNE x = 0
2 xą 0.

A-47: y = x´ 1
4

A-48:

−1 2
x

y

y = 4x´4 and y = ´2x´1

A-49: 2015 ¨22014

Answers to Exercises 4.2 — Jump to TABLE OF CONTENTS

A-1:

x

y

π´π

y = sinx

y = cosx

The graph f (x) = sinx has horizontal tangent lines precisely at those points where cosx = 0.
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A-2:

x

y

π´π

y = sinx

y = cosx

The graph f (x) = sinx has maximum slope at those points where cosx has a maximum. That is,
where cosx = 1.

A-3: speeding up

A-4: slower

A-5: (a) true (b) true (c) false

A-6: f 1(x) = cosx´ sinx+ sec2 x

A-7: x = π

4 +πn, for any integer n.

A-8: 0

A-9: f 1(x) = 2(cos2 x´ sin2 x)

A-10: f 1(x) = ex(cotx´ csc2 x)

A-11: f 1(x) =
2+ 3secx+ 2sinx´2tanxsecx+ 3sinx tanx

(cosx+ tanx)2

A-12: f 1(x) =
5secx tanx´5secx´1

ex

A-13: f 1(x) = (ex + cotx)(30x5 + cscxcotx)+ (ex´ csc2 x)(5x6´ cscx)

A-14: ´sin(θ )

A-15: f 1(x) = ´cosx´ sinx

A-16:
(

cosθ + sinθ

cosθ ´ sinθ

)2

+ 1

A-17: a = 0, b = 1.

A-18: y´π = 1 ¨ (x´π/2)

A-19: ´sin(2015)

A-20: ´?3/2

A-21: ´1

A-22:

tanθ =
sinθ

cosθ
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So, using the quotient rule,

d
dθ
ttanθu= cosθ cosθ ´ sinθ (´sinθ )

cos2 θ
=

cos2 θ + sin2
θ

cos2 θ

=

(
1

cosθ

)2

= sec2
θ

A-23: a = ´2
3 , b = 2

A-24: All values of x except x = π

2 + nπ , for any integer n.

A-25: The function is differentiable whenever x2 + x´6‰ 0 since the derivative equals

10cos(x) ¨ (x2 + x´6)´10sin(x) ¨ (2x+ 1)
(x2 + x´6)2 ,

which is well-defined unless x2 + x´6 = 0. We solve x2 + x´6 = (x´2)(x+ 3) = 0, and get
x = 2 and x = ´3. So, the function is differentiable for all real values x except for x = 2 and for
x = ´3.

A-26: The function is differentiable whenever sin(x) ‰ 0 since the derivative equals

sin(x) ¨ (2x+ 6)´ cos(x) ¨ (x2 + 6x+ 5)
(sinx)2 ,

which is well-defined unless sinx = 0. This happens when x is an integer multiple of π . So, the
function is differentiable for all real values x except x = nπ ,, where n is any integer.

A-27: y´1 = 2 ¨ (x´π/4)

A-28: y = 2x+ 2

A-29: x = 3π

4 + nπ for any integer n.

A-31: h1(x) =
"

cosx xą 0
´cosx xă 0 It exists for all x‰ 0.

A-32: iii

A-33: 2

Answers to Exercises 4.3 — Jump to TABLE OF CONTENTS

A-1: (a) dK
dU is negative (b) dU

dO is negative (c) dK
dO is positive

A-2: negative

A-3: ´5sin(5x+ 3)

A-4: 10x(x2 + 2)4

A-5: 17(4k4 + 2k2 + 1)16 ¨ (16k3 + 4k)

A-6: ´2x
(x2´1)

?
x4´1
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A-7: ´ecos(x2) ¨ sin(x2) ¨2x

A-8: ´4

A-9: [cosx´ xsinx]excos(x)

A-10: [2x´ sinx]ex2+cos(x)

A-11: 3
2
?

x´1
?

x+23

A-12: f 1(x) = ´ 2
x3 +

x?
x2´1

is defined for x in (´8,1)Y (1,8).

A-13: f 1(x) =
(1+ x2)(5cos5x)´ (sin5x)(2x)

(1+ x2)2

A-14: 2e2x+7 sec(e2x+7) tan(e2x+7)

A-15: y = 1

A-16: t = 2
3 and t = 4

A-17: 2esec2(e)

A-18: y1 = 4e4x tanx+ e4x sec2 x

A-19:
3

(1+ e3)2

A-20: 2sin(x) ¨ cos(x) ¨ esin2(x)

A-21: cos
(
e5x) ¨ e5x ¨5

A-22: ´ecos(x2) ¨ sin(x2) ¨2x

A-23: y1 = ´sin
(
x2 +

?
x2 + 1

)(
2x+

x?
x2 + 1

)
A-24: y1 = 2xcos2 x´2(1+ x2) sinxcosx

A-25: y1 =
e3x(3x2´2x+ 3)

(1+ x2)2

A-26: ´40

A-27: (1,1) and (´1,´1).

A-28: Always

A-29: ex sec3(5x´7)(1+ 15tan(5x´7))

A-30: e2x cos4x+ 2xe2x cos4x´4xe2x sin4x

A-31: t =
π

4

A-32: Let f (x) = ex+x2
and g(x) = 1+ x. Then f (0) = g(0) = 1.
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f 1(x) = (1+ 2x)ex+x2
and g1(x) = 1. When xą 0,

f 1(x) = (1+ 2x)ex+x2 ą 1 ¨ ex+x2
= ex+x2 ą e0+02

= 1 = g1(x).

Since f (0) = g(0), and f 1(x)ą g1(x) for all xą 0, that means f and g start at the same place, but f
always grows faster. Therefore, f (x) ą g(x) for all xą 0.

A-33: cos(2x) = cos2 x´ sin2 x

A-34:

f 1(x) =
1
3

(?
x3´9tanx

ecscx2

) 2
3

¨?x3´9tanx(´2x)ecscx2
csc(x2)cot(x2)´ ecscx2

(
3x2 tanx
2
?

x3´9
+
?

x3´9sec2 x
)

(tan2 x)(x3´9)


A-35: (a)

x

y

(1,0)
t=π/2

(´1,0)
t=3π/2

(0,1)
t=0,π ,2π

(
´ 1?

2
, 1
2

)
t=5π/4,7π/4

(
1?
2

, 1
2

)
t=π/4,3π/4

The particle traces the curve y = 1´ x2 restricted to domain [´1,1]. At t = 0, the particle is at the
top of the curve, (1,0). Then it moves to the right, and goes back and forth along the curve,
repeating its path every 2π units of time.
(b)
?

3

A-36: (a) f 1(x) = (1+ 2x)ex+x2
f 2(x) = (4x2 + 4x+ 3)ex+x2

h1(x) = 1+ 3x h2(x) = 3
(b) f (0) = h(0) = 1; f 1(0) = h1(0) = 1; f 2(0) = h2(0) = 3
(c) f and h “start at the same place,” since f (0) = h(0). Also f 1(0) = h1(0), and
f 2(x) = (4x2 + 4x+ 3)ex+x2 ą 3ex+x2 ą 3 = h2(x) when xą 0. Since f 1(0) = h1(0), and since f 1

grows faster than h1 for positive x, we conclude f 1(x) ą h1(x) for all positive x. Now we can
conclude that (since f (0) = h(0) and f grows faster than h when xą 0) also f (x) ą h(x) for all
positive x.

Answers to Exercises 4.4 — Jump to TABLE OF CONTENTS

A-1: Ten speakers: 13 dB. One hundred speakers: 23 dB.
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A-2: 20log2« 14 years

A-3: (b)

A-4: f 1(x) =
1
x

A-5: f 1(x) =
2
x

A-6: f 1(x) =
2x+ 1
x2 + x

A-7: f 1(x) =
1

x log10

A-8: y1 =
1´3logx

x4

A-9:
d
dθ

log(secθ ) = tanθ

A-10: f 1(x) =
´ecos(logx) sin(logx)

x

A-11: y1 =
2x+ 4x3

2
?

x4+1

x2 +
?

x4 + 1

A-12:
tanx

2
a´ log(cosx)

A-13:

?
x2 + 4+ x

x
?

x2 + 4+ x2 + 4
=

1?
x2 + 4

A-14: g1(x) =
2xex2?

1+ x4 + 2x3

ex2
?

1+ x4 + 1+ x4

A-15:
4
3

A-16: f 1(x) =
3x

x2 + 5
´ 2x3

x4 + 10

A-17:
40
3

A-18: g1(x) = πx logπ +πxπ´1

A-19: f 1(x) = xx(logx+ 1)

A-20: xx(logx+ 1)+
1

x log10

A-21: f 1(x) =
1
4

(
4

c

(x4 + 12)(x4´ x2 + 2)
x3

)(
4x3

x4 + 12
+

4x3´2x
x4´ x2 + 2

´ 3
x

)
A-22: f 1(x) = (x+ 1)(x2 + 1)2(x3 + 1)3(x4 + 1)4(x5 + 1)5

[
1

x+1 +
4x

x2+1 +
9x2

x3+1 +
16x3

x4+1 +
25x4

x5+1

]
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A-23:
(

x2 + 2x+ 3
3x4 + 4x3 + 5

)(
1

x2 + 2x+ 3
´ 6x2

3x4 + 4x3 + 5
´ 1

2(x+ 1)2

)
A-24: f 1(x) = (cosx)sinx [(cosx) log(cosx)´ sinx tanx]

A-25:
d
dx
t(tanx)xu= (tanx)x

(
log(tanx)+

x
sinxcosx

)
A-26: 2x(x2 + 1)x2+1(1+ log(x2 + 1))

A-27: f 1(x) = (x2 + 1)sin(x) ¨
(

cosx ¨ log(x2 + 1)+ 2xsinx
x2+1

)
A-28:

d3

dx3 tlog(5x2´12)u= 100x(5x2 + 36)
(5x2´12)3

A-29: xcos3(x) ¨
(
´3cos2(x) sin(x) log(x)+

cos3(x)
x

)
A-30: (3+ sin(x))x2´3 ¨

[
2x log(3+ sin(x))+

(x2´3)cos(x)
3+ sin(x)

]
A-31:

d
dx

!

[ f (x)]g(x)
)

= [ f (x)]g(x)
[

g1(x) log( f (x))+
g(x) f 1(x)

f (x)

]
A-32: Let g(x) := log( f (x)). Notice g1(x) = f 1(x)

f (x) .
In order to show that the two curves have horizontal tangent lines at the same values of x, we will
show two things: first, that if f (x) has a horizontal tangent line at some value of x, then also g(x)
has a horizontal tangent line at that value of x. Second, we will show that if g(x) has a horizontal
tangent line at some value of x, then also f (x) has a horizontal tangent line at that value of x.

Suppose f (x) has a horizontal tangent line where x = x0 for some point x0. This means f 1(x0) = 0.
Then g1(x0) =

f 1(x0)
f (x0)

. Since f (x0) ‰ 0, f 1(x0)
f (x0)

= 0
f (x0)

= 0, so g(x) also has a horizontal tangent line
when x = x0. This shows that whenever f has a horizontal tangent line, g has one too.

Now suppose g(x) has a horizontal tangent line where x = x0 for some point x0. This means
g1(x0) = 0. Then g1(x0) =

f 1(x0)
f (x0)

= 0, so f 1(x0) exists and is equal to zero. Therefore, f (x) also has
a horizontal tangent line when x = x0. This shows that whenever g has a horizontal tangent line, f
has one too.

Answers to Exercises 4.5 — Jump to TABLE OF CONTENTS

A-1: (a) and (b)

A-2: At (0,4) and (0,´4),
dy
dx

is 0; at (0,0),
dy
dx

does not exist.

A-3: (a) no (b) no
dy
dx

= ´x
y

. It is not possible to write
dy
dx

as a function of x, because (as stated in (b)) one value of x

may give two values of
dy
dx

. For instance, when x = π/4, at the point
(

π

4
,

1?
2

)
the circle has slope
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dy
dx

= ´1, while at the point
(

π

4
,
´1?

2

)
the circle has slope

dy
dx

= 1.

A-4: The derivative
dy
dx

is
11
4

only at the point (1,3): it is not constantly
11
4

, so it is wrong to

differentiate the constant
11
4

to find
d2y
dx2 . Below is a correct solution.

´28x+ 2y+ 2xy1+ 2yy1 = 0

Plugging in x = 1, y = 3:

´28+ 6+ 2y1+ 6y1 = 0

y1 =
11
4

at the point (1,3)

Differentiating the equation ´28x+ 2y+ 2xy1+ 2yy1 = 0:

´28+ 2y1+ 2y1+ 2xy2+ 2y1y1+ 2yy2 = 0

4y1+ 2(y1)2 + 2xy2+ 2yy2 = 28

At the point (1,3), y1 =
11
4

. Plugging in:

4
(

11
4

)
+ 2
(

11
4

)2

+ 2(1)y2+ 2(3)y2 = 28

y2 =
15
64

A-5:
dy
dx

= ´ex + y
ey + x

A-6:
dy
dx

=
y2 + 1

ey´2xy

A-7: At (x,y) = (4,1), y1 = ´ 1
π + 1

. At (x,y) = (´4,1), y1 =
1

π´1
.

A-8: ´4

A-9: ´2xsin(x2 + y)+ 3x2

4y3 + sin(x2 + y)

A-10: At (x,y) = (1,0), y1 = ´6, and at (x,y) = (´5,0), y1 = 6
25 .

A-11:
d2y
dx2 =

´1
y3

A-12: dy
dx =

cos(x+ y)´2x
2y´ cos(x+ y)

A-13: At (x,y) = (2,0) we have y1 = ´3
2 , and at (x,y) = (´4,0) we have y1 = ´3

4 .

A-14:
(?

3
2

,
´1

2
?

3

)
,
(´?3

2
,

1
2
?

3

)
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A-15: ´28
3

A-16:
dy
dx

= ´ 2xy2 + siny
2x2y+ xcosy

A-17: f 2(x) =
1
x

A-18: At (x,y) = (2,0), y1 = ´2. At (x,y) = (´2,0), y1 = 2.

A-19: x = 0, x = 1, x = ´1

A-20:

(a) y1(1) =
4

13
(b)

1

2
tangent

curve

x

y

No exercises for Section 4.6. — Jump to TABLE OF CONTENTS

Answers to Exercises 4.7 — Jump to TABLE OF CONTENTS

A-1: (a) (´8,8) (b) all integer multiples of π (c) [´1,1]

A-2: False

A-3:

x

y

y = f´1(x)

1

A-4:
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• If |a| ą 1, there is no point where the curve has horizontal tangent line.

• If |a|= 1, the curve has a horizontal tangent line where x = 2πn+
aπ

2
for any integer n.

• If |a| ă 1, the curve has a horizontal tangent line where x = 2πn+ arcsin(a) or
x = (2n+ 1)π´ arcsin(a) for any integer n.

A-5: Domain: x = ˘1. Not differentiable anywhere.

A-6: f 1(x) =
1?

9´ x2
; domain of f is [´3,3].

A-7: f 1(t) =
´ t2´1?

1´t2 ´2t arccos t

(t2´1)2 , and the domain of f (t) is (´1,1).

A-8: The domain of f (x) is all real numbers, and f 1(x) =
´2x

(x2 + 2)
?

x4 + 4x2 + 3
.

A-9: f 1(x) =
1

a2 + x2 and the domain of f (x) is all real numbers.

A-10: f 1(x) = arcsinx, and the domain of f (x) is [´1,1].

A-11: x = 0

A-12:
d
dx
tarcsinx+ arccosxu= 0

A-13: y1 =
´1

x2
b

1´ 1
x2

A-14:
d2

dx2 tarctanxu= ´2x
(1+ x2)2

A-15: y1 =
´1

1+ x2

A-16: 2xarctanx+ 1

A-17: Let θ = arctanx. Then θ is the angle of a right triangle that gives tanθ = x. In particular,
the ratio of the opposite side to the adjacent side is x. So, we have a triangle that looks like this:

θ

x

1

?
x2 + 1

where the length of the hypotenuse came from the Pythagorean Theorem. Now,

sin (arctanx) = sinθ =
opp
hyp

=
x?

x2 + 1
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From here, we differentiate using the quotient rule:

d
dx

"

x?
x2 + 1

*

=

?
x2 + 1´ x 2x

2
?

x2+1

x2 + 1

=

?x2 + 1´ x2
?

x2+1

x2 + 1

 ¨ ?x2 + 1?
x2 + 1

=
(x2 + 1)´ x2

(x2 + 1)3/2

=
1

(x2 + 1)3/2 = (x2 + 1)´3/2

A-18: Let θ = arcsinx. Then θ is the angle of a right triangle that gives sinθ = x. In particular, the
ratio of the opposite side to the hypotenuse is x. So, we have a triangle that looks like this:

θ

x

?
1´ x2

1

where the length of the adjacent side came from the Pythagorean Theorem. Now,

cot (arcsinx) = cotθ =
adj
opp

=

?
1´ x2

x

From here, we differentiate using the quotient rule:

d
dx

#?
1´ x2

x

+

=
x ´2x

2
?

1´x2 ´
?

1´ x2

x2

=
´x2´ (1´ x2)

x2
?

1´ x2

=
´1

x2
?

1´ x2

A-19: (x,y) = ˘(?3
2 , π

3

)
A-20: x =

(2n+ 1)π
2

for any integer n

A-21: g1(y) =
1

1´ sing(y)

A-22:
1
2

A-23:
1

e+ 1
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A-24: f 1(x) = [sinx+ 2]arcsecx
(

log[sinx+ 2]
|x|?x2´1

+
arcsecx ¨ cosx

sinx+ 2

)
. The domain of f (x) is |x| ě 1.

A-25: The function
1?

x2´1
exists only for those values of x with x2´1ą 0: that is, the domain of

1?
x2´1

is |x| ą 1. However, the domain of arcsine is |x| ď 1. So, there is not one single value of x

where arcsinx and
1?

x2´1
are both defined.

If the derivative of arcsin(x) were given by
1?

x2´1
, then the derivative of arcsin(x) would not

exist anywhere, so we would probably just write “derivative does not exist,” instead of making up a
function with a mismatched domain. Also, the function f (x) = arcsin(x) is a smooth curve–its
derivative exists at every point strictly inside its domain. (Remember not all curves are like this: for
instance, g(x) = |x| does not have a derivative at x = 0, but x = 0 is strictly inside its domain.) So,

it’s a pretty good bet that the derivative of arcsine is not
1?

x2´1
.

A-26:
1
2

A-27: f´1(7) = ´25
4

A-28: f (0) = ´7

A-29: y1 =
2x
a

1´ (x+ 2y)2´1

2´2y
a

1´ (x+ 2y)2
, or equivalently, y1 =

2xcos(x2 + y2)´1
2´2ycos(x2 + y2)

Answers to Exercises 5 — Jump to TABLE OF CONTENTS

A-1: ii and iv

A-2: ´3
2

A-3: 6%

A-4: (a) 0 (b) 100
F 1

F
= 15%, or F 1 = 0.15F

A-5: ´17
5

units per second

A-6:
4
5

units per second

A-7: increasing at 7 mph

A-8: 8 cm per minute

A-9: ´13
6

metres per second

A-10: The height of the water is decreasing at
3

16
= 0.1875 cm

min .
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A-11:
1

29200
metres per second (or about 1 centimetre every five minutes)

A-12:

(
2(1235

72

)2
+ 4

)(
6175

3

)
« 13.8 rad

hour « 0.0038 rad
sec

A-13: (a)
24
13
« 1.85 km/min (b) about .592 radians/min

A-14:
55
?

21π

42
« 19 centimetres per hour.

A-15:
dA
dt

= ´2π
cm2

s

A-16: 288π cubic units per unit time

A-17: 0 square centimetres per minute

A-18: ´7π

12
«´1.8

cm3

sec2

A-19: The flow is decreasing at a rate of

?
7

1000
m3

sec2 .

A-20:
´15
49π

«´0.097 cm per minute

A-21: (a)
dD
dt

=
1

2
?

2
metres per hour

(b) The river is higher than 2 metres.
(c) The river’s flow has reversed direction. (This can happen near an ocean at high tide.)

A-22: (a) 2 units per second (b) Its y-coordinate is decreasing at
1
2

unit per second.

The point is moving at

?
5

2
units per second.

A-23: (a) 10π = π

[
3(a+ b)´a

(a+ 3b)(3a+ b)
]

or equivalently,

10 = 3(a+ b)´a

(a+ 3b)(3a+ b)
(b) 20πab
(c) The water is spilling out at about 375.4 cubic centimetres per second. The exact amount is

´ 200π

9´?35

(
1´2

(
3
?

35´11
3
?

35´13

))
cm3

sec
.

A-24: B(10) = 0

Answers to Exercises 6 — Jump to TABLE OF CONTENTS

A-1: There are many possible answers. Here is one: f (x) = 5x, g(x) = 2x.

A-2: There are many possible answers. Here is one: f (x) = x, g(x) = x2.
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A-3: ´ 2
π

A-4: ´8
A-5: 0

A-6: 0

A-7: 3

A-8: 2

A-9: 0

A-10: 1
2

A-11: 0

A-12: 5

A-13: 3

A-14: 3
2

A-15: 0

A-16: 1
3

A-17: c = 0

A-18: lim
xÑ0

ek sin(x2)´ (1+ 2x2)

x4 =

$

&

%

´8 k ă 2
2 k = 2
8 k ą 2

A-19:

• We want to find the limit as n goes to infinity of the percentage error, lim
nÑ8

100
|S(n)´A(n)|
|S(n)| .

Since A(n) is a nicer function than S(n), let’s simplify:

lim
nÑ8

100
|S(n)´A(n)|
|S(n)| = 100

ˇ

ˇ

ˇ

ˇ

1´ lim
nÑ8

A(n)
S(n)

ˇ

ˇ

ˇ

ˇ

.

We figure out this limit the natural way:

100
ˇ

ˇ

ˇ

ˇ

1´ lim
nÑ8

A(n)
S(n)

ˇ

ˇ

ˇ

ˇ

= 100

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1´ lim
nÑ8

5n4

5n4´13n3´4n+ log(n)
loooooooooooooomoooooooooooooon

numÑ8
denÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= 100

ˇ

ˇ

ˇ

ˇ

ˇ

1´ lim
nÑ8

20n3

20n3´39n2´4+ 1
n

ˇ

ˇ

ˇ

ˇ

ˇ

= 100

ˇ

ˇ

ˇ

ˇ

ˇ

1´ lim
nÑ8

n3

n3 ¨
20

20´ 39
n ´ 4

n3 +
1
n4

ˇ

ˇ

ˇ

ˇ

ˇ

= 100|1´1|= 0
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So, as n gets larger and larger, the relative error in the approximation gets closer and closer to
0.

• Now, let’s look at the absolute error.

lim
nÑ8

|S(n)´A(n)|= lim
nÑ8

|´13n3´4n+ logn|=8

So although the error gets small relative to the giant numbers we’re talking about, the
absolute error grows without bound.

A-20: There are many possible answers. Here is one: f (x) = 1+ 1
x , g(x) = x log5 (recall we use

log to mean logarithm base e).

A-21: 0

A-22: 1?
e

A-23: 1

A-24: 1

Answers to Exercises 7.1 — Jump to TABLE OF CONTENTS

A-1: In general, false.

A-2: f (x) = A(x) g(x) =C(x) h(x) = B(x) k(x) = D(x)

A-3: (a) p = e2 (b) b = ´e2 1´ e2

A-4: vertical asymptote at x = 3; horizontal asymptotes lim
xÑ˘8

f (x) =
2
3

A-5: horizontal asymptote y = 0 as xÑ´8; no other asymptotes

Answers to Exercises 7.2 — Jump to TABLE OF CONTENTS

A-1: A1(x) = l(x) B1(x) = p(x) C1(x) = n(x) D1(x) = o(x) E 1(x) = m(x)

A-2: (´2,8)

A-3: (1,4)

A-4: (´8,1)

Answers to Exercises 7.3 — Jump to TABLE OF CONTENTS

A-1:
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x

y

concave up concave down concave up

concave down

A-2:

x

y

´5 5

A-3: In general, false.

A-4: x = 1, y = 11

Answers to Exercises 7.4 — Jump to TABLE OF CONTENTS

A-1: even

A-2: odd, periodic

A-3:
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x

y

A-4:

x

y

A-5: A function is even if f (´x) = f (x).

f (´x) =
(´x)4´ (´x)6

e(´x)2

=
x4´ x6

ex2

= f (x)

So, f (x) is even.
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A-6: For any real number x, we will show that f (x) = f (x+ 4π).

f (x+ 4π) = sin(x+ 4π)+ cos
(

x+ 4π

2

)
= sin(x+ 4π)+ cos

(x
2
+ 2π

)
= sin(x)+ cos

(x
2

)
= f (x)

So, f (x) is periodic.

A-7: even

A-8: none

A-9: 1

A-10: π

No exercises for Section 7.5. — Jump to TABLE OF CONTENTS

Answers to Exercises 7.6 — Jump to TABLE OF CONTENTS

A-1: (a) (´8,3]
(b) f (x) in increasing on (´8,2) and decreasing on (2,3). There is a local maximum at x = 2 and
a local minimum at the endpoint x = 3.
(c) f (x) is always concave down and has no inflection points.
(d) (3,0)
(e)

x

y

(3,0)

(2.2)

A-2: The square mark is the inflection point, and the closed dot is the local and global maximum.
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x

y
(
2, 3

8

)

2 3
?

203
?

2

A-3: The square mark marks the inflection point.

x

y

´1´ 3
?

4 3
?

2

A-4:
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x

y

´1 1´?3
?

3

3
?

3
2

´3
?

3
2

A-5: (a) One branch of the function, the exponential function ex, is continuous everywhere. So

f (x) is continuous for xă 0. When xě 0, f (x) =
x2 + 3

3(x+ 1)
, which is continuous whenever x‰´1

(so it’s continuous for all xą 0). So, f (x) is continuous for xą 0. To see that f (x) is continuous at
x = 0, we see:

lim
xÑ0´

f (x) = lim
xÑ0´

ex = 1

lim
xÑ0+

f (x) = lim
xÑ0+

x2 + 3
3(x+ 1)

= 1

So, lim
xÑ0

f (x) = 1 = f (0)

Hence f (x) is continuous at x = 0, so f (x) is continuous everywhere.
(b) i.
f (x) is increasing for xă 0 and xą 1, decreasing for 0ă xă 1, has a local max at (0,1), and has a
local min at

(
1, 2

3

)
.

ii.
f (x) is concave upwards for all x‰ 0.
iii.
The x–axis is a horizontal asymptote as xÑ´8.

(c)

x

y

(0,1)
(1, 2

3)

A-6:
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0.5−1
x

y

A-7: (a) Increasing: (´1,1) decreasing: (´8,´1)Y (1,8)
concave up: (´?3,0)Y (

?
3,8) concave down: (´8,´?3)Y (0,

?
3)

inflection points: x = ˘?3,0

(b) The local and global minimum of f (x) is at (´1, ´1?
e), and the local and global maximum of

f (x) is at (1, 1?
e).

(c) In the graph below, square marks are inflection points, and solid dots are extrema.

x

y

´1 1´?3 ?
3

´1?
e

1?
e

A-8: Local maxima occur at x = 2π

3 + 2πn for all integers n, and local minima occur at
x = ´2π

3 + 2πn for all integers n. Inflection points occur at every integer multiple of π .
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x

y

2π

3
´2π

3
4π

3
´4π

3
8π

3
´8π

3
10π

3
´10π

3
14π

3
´14π

3

A-9: Below is the graph y = f (x) over the interval [´π ,π ]. The sketch of the curve over a larger
domain is simply a repetition of this figure.

x

y

π´π π

2´π

2 ´π

6´5π

6

ab π´a´π´b

6

´3

´2
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On the interval [0,π ], the maximum value of f (x) is 6 and the minimum value is ´2.

Let a = sin´1
(´1+

?
33

8

)
« 0.635« 0.2π and b = sin´1

(´1´?33
8

)
«´1.003«´0.3π .

The points ´π´b, b, a, and π´a are inflection points.

A-10: The closed dot is the local minimum, and the square marks are inflection points at x = ´1
and x = ´2˘?1.5. The graph has horizontal asymptotes y = 0 as x goes to ˘8.

x

y

´1´2

´1

1

A-11: (a) decreasing for xă 0 and xą 2, increasing for 0ă xă 2, minimum at (0,0), maximum at
(2,2).
(b) concave up for xă 2´?2 and xą 2+

?
2, concave down for 2´?2ă xă 2+

?
2, inflection

points at x = 2˘?2.
(c)8
(d) Square marks indicate inflection points, and closed dots indicate local extrema.

x

y

22´?2 2+
?

2

A-12: (a)
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x

y

y = f (x)
1

1

There are no inflection points or extrema, except the endpoint (0,1).

(b)

x

y

y = g(x)1

1

There are no inflection points or extrema, except the endpoint (1,0).

(c) The domain of g is (0,1]. The range of g is [0,8).

(d) g1(1
2) = ´2

A-13: (a)
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x

y

´1
4?5

1
4?5

4
5 4?5

´4
5 4?5

Local maximum at x = ´ 1
4?5

; local minimum at x = 1
4?5

; inflection point at the origin; concave
down for xă 0 ; concave up for xą 0.

(b) The number of distinct real roots of x5´ x+ k is:

• 1 when |k| ą 4
5 4
?

5

• 2 when |k|= 4
5 4
?

5

• 3 when |k| ă 4
5 4
?

5

A-14: (a)

x

y
y = sinhx

x

y
y = coshx

1

(b) For any real x, define sinh´1(x) to be the unique solution of sinh(y) = x. For every x P [1,8),
define cosh´1(x) to be the unique y P [0,8) that obeys cosh(y) = x.
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x

y

y = sinh´1 x

x

y

y = cosh´1 x

(c)
d
dx
tcosh´1(x)u= 1?

x2´1

Answers to Exercises 8.1 — Jump to TABLE OF CONTENTS

A-1:

x

y

y = f (x)

There is a critical point at x = 0. The x-value of the red dot is a singular point, and a local maximum
occurs there.

A-2:
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x

y

y = f (x)

a b

The x-coordinate corresponding to the blue dot (let’s call it a) is a critical point, and f (x) has a local
and global minimum at x = a. The x-coordinate corresponding to the discontinuity (let’s call it b) is
a singular point, but there is not a global or local extremum at x = b.

A-3: One possible answer is shown below.

x

y

2

A-4: The critical points are x = 3 and x = ´1. These two points are the only places where local
extrema might exist. There are no singular points.

A-5:
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x

y

2

local max

x

y

2

neither

x

y

2

neither

x

y

2

local max

A-6: There are many possible answers. Every answer must have x = 2 as a singular point strictly
inside the domain of f (x). Two possibilities are shown below.

x

y

2
x

y

2

A-7: x = ´7, x = ´1, and x = 5

A-8: Every real number c is a critical point of f (x), and f (x) has a local and global maximum and
minimum at x = c. There are no singular points.

Answers to Exercises 8.2 — Jump to TABLE OF CONTENTS

A-1: Two examples are given below, but many are possible.

x

y

y = f (x)

x

y

y = f (x)

A-2: Two examples are given below, but many are possible.
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x

y

y = ex

x

y

y = arctanx+ 2

A-3: One possible answer:

x

y

y = f (x)

´5 5

A-4: The global maximum is 45 at x = 5 and the global minimum is ´19 at x = ´3.

A-5: The global maximum over the interval is 61 at x = ´3, and the global minimum is 7 at x = 0.

Answers to Exercises 8.3 — Jump to TABLE OF CONTENTS
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A-1: The global maximum is f (´1) = 6, the global minimum is f (´2) = ´20.

A-2: Global maximum is f (2) = 12, global minimum is f (1) = ´14.

A-3: Global maximum is f (4) = 30, global minimum is f (2) = ´10.

A-4: Local max at (´2,20), local min at (2,´12).

A-5: (´2,33) max, and (2,´31) min

A-6: Q should be 4
?

3 kilometres from A

A-7: 10ˆ30ˆ15

A-8: 2ˆ2ˆ6

A-9: X = Y =
?

2

A-10: The largest possible perimeter is 2
?

5R and the smallest possible perimeter is 2R.

A-11:
A3/2

3
?

6π

A-12:
P2

2(π + 4)

A-13: (a) x =
c

A
3p

, y =

c

Ap
3

, and z =
?

Ap?
3(1+ p)

(b) p = 1

(The dimensions of the resulting baking pan are x = y =

c

A
3

and z =
1
2

c

A
3

.)

A-14: (a) xx(1+ logx) (b) x =
1
e

(c) local minimum

A-15: Maximum area: do not cut, make a circle and no square.

Minimum area: make a square out of a piece that is
4

4+π
of the total length of the wire.

Answers to Exercises 8.4 — Jump to TABLE OF CONTENTS

Answers to Exercises 9.1 — Jump to TABLE OF CONTENTS

A-1: Since f (0) is closer to g(0) than it is to h(0), you would probably want to estimate
f (0) « g(0) = 1+ 2sin(1) if you had the means to efficiently figure out what sin(1) is, and if you
were concerned with accuracy. If you had a calculator, you could use this estimation. Also, later in
this chapter we will learn methods of approximating sin(1) that do not require a calculator, but they
do require time.

Without a calculator, or without a lot of time, using f (0) « h(0) = 0.7 probably makes the most
sense. It isn’t as accurate as f (0) « g(0), but you get an estimate very quickly, without worrying
about figuring out what sin(1) is.
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A-2: log(0.93) « log(1) = 0

x

y

y = f (x)

y = 0

0.93

1

A-3: arcsin(0.1) « 0

A-4:
?

3tan(1) « 3

A-5: 10.13 « 103 = 1000

Answers to Exercises 9.2 — Jump to TABLE OF CONTENTS

A-1: (a) f (5) = 6 (b) f 1(5) = 3 (c) not enough information to know

A-2:

x

y

y = f (x)

2

The linear approximation is shown in red.

A-3: f (x) = 2x+ 5

A-4: log(0.93) «´0.07

x

y

y = f (x)

y = x´1

1

A-5:
?

5« 9
4
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A-6: 5
?

30« 79
40

A-7: 10.13 « 1030, 10.13 = 1030.301

A-8: There are many possible answers. One is f (x) = sinx, a = 0, and b = π .

A-9: a =
?

3

Answers to Exercises 9.3 — Jump to TABLE OF CONTENTS

A-1: f (3) = 9, f 1(3) = 0, f 2(3) = ´2; there is not enough information to know f3(3).

A-2: f (x) « 2x+ 5

A-3: log(0.93) «´0.07245

A-4: cos
(

1
15

)
« 449

450

A-5: e2x « 1+ 2x+ 2x2

A-6: One approximation: e
4
3 « 275

32

A-7: (a) 26 (b) 16 (c)
10
11

(d)
75
64

A-8: For each of these, there are many solutions. We provide some below.

(a) 1+ 2+ 3+ 4+ 5 =
5
ÿ

n=1

n

(b) 2+ 4+ 6+ 8 =
4
ÿ

n=1

2n

(c) 3+ 5+ 7+ 9+ 11 =
5
ÿ

n=1

(2n+ 1)

(d) 9+ 16+ 25+ 36+ 49 =
7
ÿ

n=3

n2

(e) 9+ 4+ 16+ 5+ 25+ 6+ 36+ 7+ 49+ 8 =
7
ÿ

n=3

(n2 + n+ 1)

(f) 8+ 15+ 24+ 35+ 48 =
7
ÿ

n=3

(n2´1)

(g) 3´6+ 9´12+ 15´18 =
6
ÿ

n=1

(´1)n+13n

A-9: f (1) « 2, f (1) = π
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A-10: e« 2.5

A-11: t(a), (d), (e)u, t(b), (g)u, t(c), (f)u

Answers to Exercises 9.4 — Jump to TABLE OF CONTENTS

A-1: f 2(1) = ´4

A-2: f (10)(5) = 10!

A-3: T3(x) = ´x3 + x2´ x+ 1

A-4: T3(x) =´7+7(x´1)+9(x´1)2 +5(x´1)3, or equivalently, T3(x) = 5x3´6x2 +4x´10

A-5: f (10)(5) =
11 ¨10!

6

A-6: a =
?

e

Answers to Exercises 9.5 — Jump to TABLE OF CONTENTS

A-1:

T16(x) = 1+x´1
2

x2´ 1
3!

x3+
1
4!

x4+
1
5!

x5´ 1
6!

x6´ 1
7!

x7+
1
8!

x8+
1
9!

x9´ 1
10!

x10´ 1
11!

x11

+
1

12!
x12+

1
13!

x13´ 1
14!

x14´ 1
15!

x15+
1

16!
x16

A-2: T100(t) = 127.5+ 48(t´5)+ 4.9(t´5)2 = 4.9t2´ t + 10

A-3: Tn(x) =
n
ÿ

k=0

2(log2)k

k!
(x´1)k

A-4: T6(x) = 7+ 5(x´1)+ 7
2(x´1)2 + 1

3(x´1)3´ 1
12(x´1)4 + 1

30(x´1)5´ 1
60(x´1)6

A-5: Tn(x) =
n
ÿ

k=0

xk

A-6: T3(x) = 1+(x´1)+ (x´1)2 + 1
2(x´1)3

A-7: π = 6arctan
(

1?
3

)
« 82

45

?
3« 3.156

A-8: T100(x) = ´1+
100
ÿ

k=2

(´1)k

k(k´1)
(x´1)k

A-9: T2n(x) =
řn

`=0
(´1)`

(2`)!
?

2

(
x´ π

4

)2`
+
řn´1

`=0
(´1)`

(2`+1)!
?

2

(
x´ π

4

)2`+1

A-10:

1+
1
2
+

1
3!

+
1
4!

+ ¨ ¨ ¨+ 1
157!

« e´1
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A-11: We estimate that the sum is close to ´ 1?
2

.

Answers to Exercises 9.6 — Jump to TABLE OF CONTENTS

A-1: (a) False (b) True (c) True (d) True

A-2: Equation 9.6.6 gives us the bound | f (2)´T3(2)| ă 6. A calculator tells us actually
| f (2)´T3(2)| « 1.056.

A-3: | f (37)´T (37)|= 0

A-4: You do, you clever goose!

A-5: | f (11.5)´T5(11.5)| ă 9
7 ¨26 ă 0.02

A-6: | f (0.1)´T2(0.1)| ă 1
1125

A-7:
ˇ

ˇ

ˇ

ˇ

f
(
´1

4

)
´T5

(
´1

4

)ˇ
ˇ

ˇ

ˇ

ă 1
6 ¨46 ă 0.00004

A-8: Your answer may vary. One reasonable answer is

| f (30)´T3(30)| ă 14
57 ¨9 ¨15

ă 0.000002. Another reasonable answer is

| f (30)´T3(30)| ă 14
57 ¨9 ă 0.00002.

A-9: Equation 9.6.6 gives the bound | f (0.01)´Tn(0.01)| ď 1002 (100
π
´1
)2

.

A more reasonable bound on the error is that it is less than 5.

A-10: Using Equation 9.6.6,
ˇ

ˇ

ˇ

ˇ

f
(

1
2

)
´T2

(
1
2

)ˇ
ˇ

ˇ

ˇ

ă 1
10

.

The actual error is
ˇ

ˇ

ˇ

ˇ

f
(

1
2

)
´T2

(
1
2

)ˇ
ˇ

ˇ

ˇ

=
π

6
´ 1

2

which is about 0.02.

A-11: Any n greater than or equal to 3.

A-12: 7
?

2200« 3+
13

7 ¨36 « 3.00255

A-13: If we’re going to use Equation 9.6.6, then we’ll probably be taking a Taylor polynomial.
Using Example 9.5.5, the 6th-degree Maclaurin polynomial for sinx is

T6(x) = T5(x) = x´ x3

3!
+

x5

5!
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so let’s play with this a bit. Equation 9.6.6 tells us that the error will depend on the seventh
derivative of f (x), which is ´cosx:

f (1)´T6(1) = f (7)(c)
17

7!

sin(1)´
(

1´ 1
3!

+
1
5!

)
=
´cosc

7!

sin(1)´ 101
5!

=
´cosc

7!

sin(1) =
4242´ cosc

7!

for some c between 0 and 1. Since ´1ď coscď 1,

4242´1
7!

ď sin(1) ď 4242+ 1
7!

4241
7!

ď sin(1) ď 4243
7!

4241
5040

ď sin(1) ď 4243
5040

Remark: there are lots of ways to play with this idea to get better estimates. One way is to take a
higher-degree Maclaurin polynomial. Another is to note that, since 0ă că 1ă π

3
, then

1
2
ă coscă 1, so

4242´1
7!

ă sin(1) ă 4242´ 1
2

7!
4241
5040

ă sin(1) ă 8483
10080

ă 4243
5040

If you got tighter bounds than asked for in the problem, congratulations!

A-14: (a) T4(x) =
ř4

n=0
xn

n! (b) T4(1) = 65
24 (c) See the solution.

Answers to Exercises 10 — Jump to TABLE OF CONTENTS

A-1: The root is approximately 3+ 1
6 ´

(3+ 1
6)

2
´10

6+ 1
3

.

A-2: The root is approximately 28
9 .

A calculator tells us
(28

9

)« 30.11. This is pretty close to 30, which is the cube of the real root, so
our approximation seems reasonable.

A-3: If we start with x = 1, we find the critical point is approximately 2
5 = 0.4.

A-4: Two reasonable answers are below.
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• Starting with x0 = 11 would give us an approximate intersection point of

x1 = 11+
122(arctan11´1)

121
.

• Starting with x0 = 10 would give us an approximate intersection point of

x1 = 10+
101(arctan10)

100
.

A-5:

• Starting with x = 1:

x0 = 1

x1 = 1´ 1
3
¨ 1´12+ 15

1´4
=

13
9

x2 =
13
9
´ 1

3
¨
(13

9

)3´12
(13

9

)
+ 15(13

9

)2´4

• Starting with x = 3:

x0 = 3

x1 = 3´ 1
3
¨ 27´36+ 15

9´4
=

13
5

x2 =
13
5
´ 1

3
¨
(13

5

)3´12 ¨ 13
5 + 15(13

5

)2´4

A-6: Using the most obvious choices (that is: f (x) = x2´8 and x0 = 3), we approximate?
8« 3´ 1

6 .

A-7: « 1
3 ´ 1

90

A-8: « 5
6

A-9: 3
?

0.065« 0.4+ 1
480

3
?

215« 6´ 1
108

Answers to Exercises 11 — Jump to TABLE OF CONTENTS

A-1: It takes 2 log2« 1.39 hours for half of the bacteria to die, and 2log100« 9.2 hours for 99%
of them to die.

A-3:

(a) C any value, k = ´5

(b) C any value, k = 3
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A-5:

(a) y(t) =Ce´t ;

(b) c(x) = 20e´0.1x;

(c) z(t) = 5e3t .

A-6:

(a)
dN
dt

= 0.05N

(b) N(0) = 250

(c) N(t) = 250e0.05t

(d) 2.1ˆ1010 rodents

A-7: The population y(t) after t hours satisfies

dy
dt

= ky , y(0) = 1 , y
(

1
3

)
= 2y(0)

for some constant k.

The solution to this initial value problem is

y(t) = e(3log2)t = 23t .

A-9:

(a) P(5) = 1000e0.35 « 1419

(b) t = log2
0.07 « 9.9 years

A-10:

(a) dy
dt =

(
log2
0.27

)
y

(b) dy
dt =

(
´ log2

0.1

)
y

A-11:

(a) 7500
?

3« 12990

(b) 160,000
31.5 « 30792 bacteria

A-12:

(a) y1 growing, y2 declining

(b) y1 has doubling time log2
0.2 « 3.5 years; y2 has half-life log2

0.3 « 2.3 years

(c) y1(t) = 100e0.2t , y2(t) = 10000e´0.3t

(d) 2 log100« 9.2 years

A-13:
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(a) 6246400000000 people (6.2464ˆ1012)

(b) 3904π « 12265 people per square km

A-14: 10
3 log8« 6.93 years

A-15:

(a) 1 hour

(b) r = log(2)

(c) 0.25 M

(d) t = log2(10) « 3.322 hours

A-16:

(a) 20 min

(b) 20log2(10) « 66.44 min

A-17: τ =
log(2)

log(10)

A-18:

(a) 5730log(10000
log(2) « 57100 years

(b) 22920 years

A-19:

(a) 29 years

(b) 58 years

(c) 29log(800)
log(2) « 279.7 years

A-20: 5.3 log5
log2 « 12.3 years

A-21: 2e´8/50 « 1.7043 kg

A-22: y = 760
(675

760

)3/5 « 707.8 torr

Answers to Exercises 12 — Jump to TABLE OF CONTENTS

A-1:

kkk tttk yyyk actual value of yyy(tttkkk)
0 0 100.00 100
1 0.1 95.00 100e´0.05 « 95.12
2 0.2 90.25 100e´0.1 « 90.48

A-2:

(a) y5 = 1.61051; y(0.5) = 1.6487213; error = 0.03821

(b) y5 = 0.59049; y(0.5) = 0.60653; error = 0.01604
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A-4: Until t =
2
?

h0

k
.

A-10:

(a) C = ´12

(b) C1 = 1, C2 = ´5

(c) For any integer n, we can have C2 = πn, and C1 =

#

1 if n odd
´1 if n even

. So for example, one

option is C1 = ´1, C2 = 0; another option is C1 = 1 and C2 = π .

A-12: (b) k = 3/2.

A-13:

(a) Input rate is I fish per day

(b) αF fish caught per fisher per day.

(c) Birth and mortality are neglected, or assumed to exactly cancel out.

(d) Steady state level F = I/αN

(e) New differential equation is dF
dt = ´αNF ; it would take 2log(2)/αN days for the population

to fall to 25% of its initial level.

(f) New differential equation is dF
dt = I; it would take t = Flow/I days to double.

A-15: The initial value problem is dG
dt = 5

2 ´ G
100 , G(0) = 0. After a long time, there is 250 gm of

glucose in the tank.

A-16:

(a) Q1(t) = kr´ Q
V

r = ´ r
V
[Q´ kV ];

(b) Q = kV ;

(c) T = V ln2/r.

A-17:

(a)
dQ
dt

= kQ; Q(t) = 100 ¨0.7t/4

(b) ´4log2
log(0.7) « 7.77 hr. Note you should be able to get the exact value without the use of a calculator.

A-18:

(a) not provided

(b) y0

(c) t =
2A
?

y0

k
(d) ´k

?
y0

A-19: a = 0, b = ´1
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A-20:

• Using ∆t = 0.5, y(0.5) «´0.5.

• Using ∆t = 0.25, y(0.5) «´0.4705882353.

• Using ∆t = 0.1, y(0.5) «´0.450264102.

A-21: y(0.03) «´0.000301

A-22: y(0.03) « 0.000301

A-23: y(0.03) « 1.00029998

A-24: y(1) « 1
2
?

2

A-25: y(1) « 0 (actually: y(1) = 0)

A-26: y(3) « 3
2 +

1
2 ¨
b

3
2

A-27: y(1.5) « 15
77 « 0.1948051948 (actually, the value is exact)

Answers to Exercises 13 — Jump to TABLE OF CONTENTS

A-1:

(a)

x

y

´´

´́
´́
´́
´́
´´

´

´´

´́
´́
´́
´́
´´

´

´´

´́
´́
´́
´́
´´

´

´´

´́
´́
´́
´́
´´

´

´´

´́
´́
´́
´́
´´

´

´´

´́
´́
´́
´́
´´

´

´´

´́
´́
´́
´́
´´

´

´´

´́
´́
´́
´́
´´

´

´´

´́
´́
´́
´́
´´

´

´´

´́
´́
´́
´́
´´

´

´´

´́
´́
´́
´́
´´

´

´´

´́
´́
´́
´́
´´

´

´´

´́
´́
´́
´́
´´

´

Steady state: y = 0. If y(0) = 1, yÑ 0.
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(b)

x

y

´́
´́

´´́́
´́
´́

´
´́

´́
´´́́

´́
´́

´
´́

´́
´´́́

´́
´́

´
´́

´́
´´́́

´́
´́

´
´́

´́
´´́́

´́
´́

´
´́

´́
´´́́

´́
´́

´
´́

´́
´´́́
´́
´́

´
´́

´́
´´́́
´́
´́

´
´́

´́
´´́́
´́
´́

´
´́

´́
´´́́
´́
´́

´
´́

´́
´´́́

´́
´́

´
´́

´́
´´́́

´́
´́

´
´́

´́
´´́́

´́
´́

´

2

Steady states: y = 0, 2. If y(0) = 1, yÑ 2.

(c)

x

y

´́´

´´́

´́
´´

´

´́´

´´́

´́
´´

´

´́´

´´́

´́
´´

´

´́´

´´́

´́
´´

´

´́´

´´́

´́
´´

´

´́´

´´́

´́
´´

´

´́´

´´́

´́
´´

´

´́´

´´́

´́
´´

´

´́´

´´́

´́
´´

´

´́´

´´́

´́
´´

´

´́´

´´́

´́
´´

´

´́´

´´́

´́
´´

´

´́´

´´́

´́
´´

´

2

3

Steady states: y = 0, 2, 3. If y(0) = 1, yÑ 2.

A-2:

(a) dy
dt = 2+ 3y:

x

y

´´
´´´

´´
´´

´´
´´´

´´
´´

´´
´´´

´´
´´

´´
´´´

´´
´´

´´
´´´

´´
´´

´´
´´´

´´
´´

´´
´´´

´´
´´

´´
´´´

´´
´´

´´
´´´

´´
´´

´´
´´´

´´
´´

´´
´´´

´´
´´

´´
´´´

´´
´´

´´
´´´

´´
´´

´2
3
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(b) dy
dt = ´y(2´ y):

x

y

´́
´́
´́

´́
´́́

´´
´́
´́
´́

´́
´́́

´´
´́
´́
´́

´́
´́́

´´
´́
´́
´́

´́
´́́

´´
´́
´́
´́

´́
´́́

´´
´́
´́
´́

´́
´́́

´´
´́
´́
´́

´́
´́́

´´
´́
´́
´́

´́
´́́

´´
´́
´́
´́

´́
´́́

´´
´́
´́
´́

´́
´́́

´´
´́
´́
´́

´́
´́́

´´
´́
´́
´́

´́
´́́

´´
´́
´́
´́

´́
´́́

´´2

(c) dy
dt = 2´3y+ y2:

x

y

´́
´́
´́
´´́

´́́

´
´́
´́
´́
´´́

´́́

´
´́
´́
´́
´´́

´́́

´
´́
´́
´́
´´́

´́́

´
´́
´́
´́
´´́

´́́

´
´́
´́
´́
´´́

´́́

´
´́
´́
´́
´´́

´́́

´
´́
´́
´́
´´́

´́́

´
´́
´́
´́
´´́

´́́

´
´́
´́
´́
´´́

´́́
´

´́
´́
´́
´´́

´́́
´

´́
´́
´́
´´́

´́́
´

´́
´́
´́
´´́
´́́

´
2

1

(d) dy
dt = ´2(3´ y)2:

x

y

´́
´́

´́
´́

´´́
´´

´́
´́

´́
´́

´´́
´´

´́
´́

´́
´́

´´́
´´

´́
´́

´́
´́

´´́
´´

´́
´́

´́
´́

´´́
´´

´́
´́

´́
´́

´´́
´´

´́
´́

´́
´́

´´́
´´

´́
´́

´́
´́

´´́
´´

´́
´́

´́
´́

´´́
´´

´́
´́

´́
´́

´´́
´´

´́
´́

´́
´́

´´́
´´

´́
´́

´́
´́

´´́
´´

´́
´́

´́
´́

´´́
´´

3
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(e) dy
dt = y2´ y+ 1:

x

y

´́
´́
´́

´́
´´

´́
´

´́
´́
´́

´́
´´

´́
´

´́
´́
´́

´́
´´

´́
´

´́
´́
´́

´́
´´

´́
´

´́
´́
´́

´́
´´

´́
´

´́
´́
´́

´́
´´

´́
´

´́
´́
´́

´́
´´

´́
´

´́
´́
´́

´́
´´

´́
´

´́
´́
´́

´́
´´

´́
´

´́
´́
´́

´́
´´

´́
´

´́
´́
´́

´́
´´

´́
´

´́
´́
´́

´́
´´

´́
´

´́
´́
´́

´́
´´

´́
´

(f) dy
dt = y3´ y:

x

y

´́
´́´́

´́
´´

´́
´

´́
´́´́

´́
´´

´́
´

´́
´́´́

´́
´´

´́
´

´́
´́´́

´́
´´

´́
´

´́
´́´́

´́
´´

´́
´

´́
´́´́

´́
´´

´́
´

´́
´́´́

´́
´´

´́
´

´́
´́´́

´́
´´

´́
´

´́
´́´́

´́
´´

´́
´
´́

´́´́
´́
´´

´́
´́́́

´´́
´́
´´

´́
´
´́

´́´́
´́
´´

´́
´
´́

´́´́
´́
´´

´́
´

1

´1

(g) dy
dt =

?
y(y´2)(y´3)2, yě 0:

x

y

´

´́
´´́

´́

´́
´

´

´́
´´́

´́

´́
´

´

´́
´´́

´́

´́
´

´

´́
´´́

´́

´́
´

´

´́
´´́

´́

´́
´

´

´́
´´́

´́

´́
´

´

´́
´´́

´́

´́
´

´

´́
´´́

´́

´́
´

´

´́
´´́

´́

´́
´

´

´́
´´́

´́

´́
´

´

´́
´´́

´́

´́
´

´

´́
´´́

´́

´́
´

´

´́
´´́

´́

´́
´

2

3

A-3:

(a) dy
dt = 2+ 3y:
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y

dy
dx

´2
3

y

´2
3

steady state

ÝÑÐÝ

(b) dy
dt = ´y(2´ y):

y

dy
dx

2
y

0 2

steady state steady state

ÝÑÝÑ ÐÝ

(c) dy
dt = 2´3y+ y2:

y

dy
dx

1 2
y

1 2

steady state steady state

ÝÑÝÑ ÐÝ

(d) dy
dt = ´2(3´ y)2:
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y
dy
dx

3
y

3

steady state

ÐÝÐÝ

(e) dy
dt = y2´ y+ 1:

y

dy
dx

y
ÝÑ

(f) dy
dt = y3´ y:

y

dy
dx

´2
3

y
0 1´1

steady state steady state steady state

ÐÝ ÝÑ ÐÝ ÝÑ

(g) dy
dt =

?
y(y´2)(y´3)2, yě 0:
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y

dy
dx

2 3
y

0 2 3

steady state steady state steady state

ÐÝ ÝÑ ÝÑ

A-4: (B)

A-5: (B)

A-6: h(t)Ñ (I/K)2

A-7: (a)
dx
dt

=
k
3
(V0´ x3); (d) V =

1
2

V0.

A-9:

(a) Kmax, c = k

(b) ln(2)/r

(c) c = 0, c =
Kmax

r
´ k

A-12: dy
ds = y(1´ y)

A-14: (c) Steady states at at y2 = 0 and y2 = P´b/a. (d) Social media persists if Pa/bą 1.

A-15: (b) Stable steady state at a =
β

2µ

(
´1+

a

1+ 4µM/β

)

Answers to Exercises 14.1 — Jump to TABLE OF CONTENTS

A-1:

The xz plane is filled with vertical lines; the yz plane is crosshatched; and the xy plane is solid.
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The left bottom triangle vertex is (1,0,0); the right bottom triangle vertex is (0,1,0); the top
triangle vertex is (0,0,1).

A-2: (a) The sphere of radius 3 centered on (1,´2,0).

(b) The interior of the sphere of radius 3 centered on (1,´2,0).

A-3: (a) x = y is the straight line through the origin that makes an angle 45˝ with the x– and y–axes.
It is sketched in the figure on the left below.

x

y

y “ x

x

y

p1, 0q

p0, 1q
x ` y “ 1

(b) x+ y = 1 is the straight line through the points (1,0) and (0,1). It is sketched in the figure on
the right above.

(c) x2 + y2 = 4 is the circle with centre (0,0) and radius 2. It is sketched in the figure on the left
below.

x

y

p2, 0q

x2 ` y2 “ 4

x

y

p0, 1q

x2 ` y2 “ 2y

(d) x2 + y2 = 2y is the circle with centre (0,1) and radius 1. It is sketched in the figure on the right
above.

(e) x2 + y2 ă 2y is the set of points that are strictly inside the circle with centre (0,1) and radius 1.
It is the shaded region (not including the dashed circle) in the sketch below.

x

y

p0, 1q

x2 ` y2 “ 2y

A-4: (a) The set z = x is the plane which contains the y–axis and which makes an angle 45˝ with
the xy–plane. Here is a sketch of the part of the plane that is in the first octant.
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y

z

x

(b) x2 + y2 + z2 = 4 is the sphere with centre (0,0,0) and radius 2. Here is a sketch of the part of
the sphere that is in the first octant.

z

y

x

(c) x2 + y2 + z2 = 4, z = 1 is the circle in the plane z = 1 that has centre (0,0,1) and radius
?

3.
The part of the circle in the first octant is the heavy quarter circle in the sketch

z

y

x

(d) x2 + y2 = 4 is the cylinder of radius 2 centered on the z–axis. Here is a sketch of the part of the
cylinder that is in the first octant.

z

y

x

(e) z = x2 + y2 is a paraboloid consisting of a vertical stack of horizontal circles. The intersection of
the surface with the yz–plane is the parabola z = y2. Here is a sketch of the part of the paraboloid
that is in the first octant.
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z

y

x

z“y2

x“0z“x2

y“0

A-5:
?

67

A-6: 9

A-7:
?

5.01 km

A-8: 1 km

A-9: 2 km

A-10:

x

y

p“1
p“2

p“3

A-11: The sphere has radius 3 and is centered on (1,2,´1).

A-12: The circumscribing circle has centre (x̄, ȳ) and radius r with x̄ = a
2 , ȳ = b2+c2´ab

2c and

r =
b(a

2

)2
+
(b2+c2´ab

2c

)2.

A-13: x2 + y2 = 4z The surface is a paraboloid consisting of a stack of horizontal circles, starting
with a point at the origin and with radius increasing vertically. The circle in the plane z = z0 has
radius 2

?
z0.

Answers to Exercises 14.2 — Jump to TABLE OF CONTENTS

A-1: Any constant function, for example f (x,y) = 0.

A-2:

(a) [´10,10]

(b) [0,1]

(c) [´1,1]
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(d) [0,10]

A-3: yes

A-4: Domain: all of R2. Range: [0,8)

A-5: Domain: all of R2. Range: [0,8).

A-6: Domain: interior of the unit circle. Range: [0,π/2].

A-7: Domain: all points (x,y) such that x and y have the same sign; x and y are nonzero; and y‰ 1
x .

x

y

Range: (´8,0)Y (0,8).

A-8: Domain: all of R2. Range: [0,1).

A-9: Domain: all of R2. Range:
[´3

2 , 3
2

]
.

A-10: For example: domain should be all (a, p) where aě 0 and pą 0; range should be [0,8).

A-11: 1
5 ď x2 + y2 ď 1

3 : that is, the points (x,y) that are inside or on the circle centred at the origin
with radius 1?

3
, but not inside the circle centred at the origin with radius 1?

5
.

x

y

1?
5

1?
3

A-12:
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The point (x,y) must be in one of the following regions:

• x2´?68ď yď x2´?47

• x2´5ď yď x2´2

• x2 + 2ď yď x2 + 5

• x2 +
?

47ď yď x2 +
?

68

x

y

?
68?

47

´?68
´?47

5

2

´5

´2

Answers to Exercises 14.3 — Jump to TABLE OF CONTENTS

A-1: (a)Ø (B) (b)Ø (A) (c)Ø (C)

A-2:

x

y
f“0.25

f“0.5

f“1

f“2

f“3

A-3: (a)
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x

y

f“1

f“2

f“0

(b)

x

y

f“2

f“1

f“2 f“´2

f“´2

f“0

(c)

x

y
f“1f“´1

f“2f“´2

f“0

A-4:
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x

y

f = 2

f = 1

f = ´2

f = ´1

f = 0

A-5: (a)

x

y

z“0,2

z“´1,3

z“´2,4

(b)

z

y

x

A-6:
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z

y

x

A-7: (a)

z

y

x

(b)

z

y

x

(c)

z

y

x

A-8: (a) This is an elliptic cylinder parallel to the z-axis. Here is a sketch of the part of the surface
above the xy–plane.
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y

z

x
p0, 4, 0qp2, 0, 0q

(b) This is a plane through (4,0,0), (0,4,0) and (0,0,2). Here is a sketch of the part of the plane in
the first octant.

p4, 0, 0q

p0, 4, 0q

p0, 0, 2q

y

x

z

(c) This is a hyperboloid of one sheet with axis the x-axis.

z

y
x

(d) This is a circular cone centred on the y-axis.

y

z

(e) This is an ellipsoid centered on the origin with semiaxes 3,
?

12 = 2
?

3 and 3 along the x, y and
z-axes, respectively.
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z

y
x p3, 0, 0q p0,?

12, 0q

p0, 0, 3q

p0,?
12, 0q

p0, 0, 3q

p3, 0, 0q

(f) This is a sphere of radius rb =
1
2

?
b2 + 4b+ 97 centered on 1

2(´4,b,´9).

1
2
p´4, b ` 2rb,´9q

1
2
p´4, b,´9 ` 2rbq

1
2
p´4, b,´9q

1
2
p´4 ` 2rb, b,´9q

(g) This is an elliptic paraboloid with axis the x-axis.

z

y

x

(h) This is an upward openning parabolic cylinder.
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z

y

x

A-9: z = 0:

x

y

π

π

π

2

π

2

z = 1:

x

y

π

π

π

2

π

2
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z = 2:

x

y

π

π

π

2

π

2

A-10: x2 + y2 =

( |z|
3
+ 1
)2

Answers to Exercises 15.1 — Jump to TABLE OF CONTENTS

A-1: No: you can go higher by moving in the negative y direction.

A-2:

(a) fy(1.5,2.4) «´2

(b) fx(1.7,1.7) « 11

(c) fy(1.7,1.7) «´3

(d) fx(1.1,2) « 9

A-3: (a)

fx(x,y,z) = 3x2y4z5 fx(0,´1,´1) = 0

fy(x,y,z) = 4x3y3z5 fy(0,´1,´1) = 0

fz(x,y,z) = 5x3y4z4 fz(0,´1,´1) = 0

(b)

wx(x,y,z) =
yzexyz

1+ exyz wx(2,0,´1) = 0

wy(x,y,z) =
xzexyz

1+ exyz wy(2,0,´1) = ´1

wz(x,y,z) =
xyexyz

1+ exyz wz(2,0,´1) = 0
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(c)

fx(x,y) = ´ x
(x2 + y2)3/2 fx(´3,4) =

3
125

fy(x,y) = ´ y
(x2 + y2)3/2 fy(´3,4) = ´ 4

125

A-4: By the quotient rule

Bz
Bx

(x,y) =
(1)(x´ y)´ (x+ y)(1)

(x´ y)2 =
´2y

(x´ y)2

Bz
By

(x,y) =
(1)(x´ y)´ (x+ y)(´1)

(x´ y)2 =
2x

(x´ y)2

Hence

x
Bz
Bx

(x,y)+ y
Bz
By

(x,y) =
´2xy+ 2yx
(x´ y)2 = 0

A-5: (a) Bz
Bx =

z(1´x)
x(yz´1) , Bz

By =
z(1+y´yz)

y(yz´1)

(b) Bz
Bx(´1,´2) = 1

2 , Bz
By(´1,´2) = 0.

A-6: BU
BT (1,2,4) = ´ 2log(2)

1+2log(2)
BT
BV (1,2,4) = 1´ 1

4log(2)

A-7: 24

A-8: fx(0,0) = 1, fy(0,0) = 2

A-9: Yes.

A-10: (a) B f
Bx (0,0) = 1, B f

By (0,0) = 4 (b) Nope.

A-11: 1 resp. 0

A-12: (a) 0 (b) 0 (c) 1
2

Answers to Exercises 15.2 — Jump to TABLE OF CONTENTS

A-1: From the example that “ fx” is the partial derivative of f with respect to x, we infer that the
notation for “take the partial derivative with respect to (variable)” is “write (variable) on the bottom
right.” Continuing this practice, to take the partial derivative with respect to y of fx, we should write
the y on the bottom right – that is, to the right of the x:

( fx)y

Since x is to the left of y, we write the above as fxy, not fyx.

A-2: From the example that “ B
Bx f ” is the partial derivative of f with respect to x, we infer that the

notation for “take the partial derivative of a function with respect to (variable)” is “put the partial
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derivative operator B

B(variable) to the left of the function.” Continuing this practice, to take the partial

derivative with respect to y of B f
Bx , we should write the operator B

By on the left.

B
By

[ B
Bx

f
]

In the above expression, By is to the left of the Bx. So we write B2 f
ByBx rather than B2 f

BxBy .

A-3: As in Question 2, if we want to differentiate B f
Bx with respect to x, we write:

B
Bx

[ B
Bx

f
]

or
B
Bx

[B f
Bx

]
In both cases:

• f shows up only once, so we don’t add an exponent to it.

• B shows up twice in the numerator, so we write B2 as shorthand for B[B].
• Bx shows up twice in the denominator, so we write Bx2 as shorthand for Bx[Bx].

A-4: see solution

A-5: (a) fxx(x,y) = 2y3 fyxy(x,y) = fxyy(x,y) = 12xy

(b) fxx(x,y) = y4exy2
fxy(x,y) =

(
2y+ 2xy3)exy2

fxxy(x,y) =
(
4y3 + 2xy5)exy2

fxyy(x,y) =
(
2+ 10xy2 + 4x2y4)exy2

(c)
B3 f

BwBvBu
(u,v,w) = ´ 36

(u+ 2v+ 3w)4
B3 f

BwBvBu
(3,2,1) = ´0.0036 = ´ 9

2500

A-6: fxx =
5y2

(x2+5y2)3/2 fxy = fyx = ´ 5xy
(x2+5y2)3/2 fyy =

5x2

(x2+5y2)3/2

A-7: (a) fxyz(x,y,z) = 0 (b) fxyz(x,y,z) = 0 (c) fxx(1,0,0) = 0

A-8: See the solution.

A-9:

fxy(1.8,2.0) « 0

Answers to Exercises 16.1 — Jump to TABLE OF CONTENTS

A-1: (a) (i) T , U

(a) (ii) U

(a) (iii) S

(b) (i) Fx(1,2) ą 0

(b) (ii) F does not have a critical point at (2,2).

(b) (iii) Fxy(1,2) ă 0
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A-2: (a)

x

y

f“0
f“1f“1

f“1

f“1

f“16f“16

f“16

f“16

3´3

3

´3

(b) (0,0) is a local (and also absolute) minimum.

(c) No. See the solutions.

A-3: |c| ą 2

A-4:

critical
point type

(0,0) saddle point(´2
3 , 2

3

)
local max

A-5:

critical
point type

(0,3) saddle point

(0,´3) saddle point

(´2,1) local max

(2,´1) local min

A-6:

critical
point type

(0,0) local min

(
?

2,´1) saddle point

(´?2,´1) saddle point

A-7:

critical
point type( 1?
3
, 1?

3

)
local min

´( 1?
3
, 1?

3

)
saddle point

A-8:

critical
point type

(0,0) local max

(2,0) saddle point
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A-9: (a)

critical
point type

(3
2 ,´1

4) local min

(´1,1) saddle point

(b)

(i) (ii)

A-10:
critical
point type(3

2 ,´1
4

)
local min

(´1,1) saddle point

A-11: (0,0) is a local max

(0,2) is a local min

(1,1) and (-1,1) are saddle points

A-12: (0,0) is a saddle point and ˘(1,1) are local mins

A-13: (0,0) is a saddle point and ˘(1,1) are local mins

A-14: (0,˘1) are saddle points,
( 1?

3
,0
)

is a local min and
(´ 1?

3
,0
)

is a local max

A-15: (´1,˘?3) and (2,0) are saddle points and (0,0) is a local max.

A-16: Case k ă 1
2 :

critical
point type

(0,0) local max

(0,2) saddle point

Case k = 1
2 :

critical
point type

(0,0) local max

(0,2) unknown

Case k ą 1
2 :

262



critical
point type

(0,0) local max

(0,2) local min(b
1
k3 (2k´1) , 1

k

)
saddle point(

´
b

1
k3 (2k´1) , 1

k

)
saddle point

A-17: m =
nSxy´SxSy
nSx2´S2

x
and b =

SySx2´SxSxy

nSx2´S2
x

where Sy =
n
ř

i=1
yi, Sx2 =

n
ř

i=1
x2

i and Sxy =
n
ř

i=1
xiyi.

Answers to Exercises 16.2 — Jump to TABLE OF CONTENTS

A-1: false

A-2: The minimum height is zero at (0,0,0). The derivatives zx and zy do not exist there. The
maximum height is

?
2 at (˘1,˘1,

?
2). There zx and zy exist but are not zero — those points

would not be the highest points if it were not for the restriction |x|, |y| ď 1.

A-3: min = 0 max = 2
3
?

3
« 0.385

A-4: (a)

critical
point type(

0, 2?
3

)
local max(

0,´ 2?
3

)
local min

(2,0) saddle point

(´2,0) saddle point

(b) The maximum and minimum values of h(x,y) in x2 + y2 ď 1 are 3 (at (0,1)) and ´3 (at
(0,´1)), respectively.

A-5: The minimum is ´2 and the maximum is 6.

A-6: 6´2
?

5

A-7: (a) (0,0) and (3,0) and (0,3) are saddle points
(1,1) is a local min

(b) The minimum is ´1 at (1,1) and the maximum is 80 at (4,4).

A-8: (a) (1,1) is a saddle point and (2,4) is a local min

(b) The min and max are 19
27 and 5, respectively.

A-9: (a) (0,0), (6,0), (0,3) are saddle points and (2,1) is a local min

(b) The maximum value is 0 and the minimum value is 4(4
?

2´6) «´1.37.

A-10: The coldest temperture is ´0.391 and the coldest point is (0,2).

A-11: (a) (0,´5) is a saddle point
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(b) The smallest value of g is 0 at (0,0) and the largest value is 21 at (˘2
?

3,´1).

A-12: 2500?
3

A-13: The box has dimensions (2V )1/3ˆ (2V )1/3ˆ2´2/3V 1/3.

A-14: (a) The maximum and minimum values of T (x,y) in x2 + y2 ď 4 are 20 (at (0,0)) and 4 (at
(˘2,0)), respectively.

(b) (0,2)

A-15: The minimum value is 0 on
 

(x,y,z)
ˇ

ˇ xě 0, yě 0, zě 0, 2x+ y+ z = 5, at least one of x,y,z zero
(

The maximum value is 4 at (1,2,1).

A-16: (a) x = 1, y = 1
2 , f
(
1, 1

2

)
= 6 (b) local minimum

(c) As x or y tends to infinity (with the other at least zero), 2x+ 4y tends to +8. As (x,y) tends to
any point on the first quadrant part of the x- and y–axes, 1

xy tends to +8. Hence as x or y tends to
the boundary of the first quadrant (counting infinity as part of the boundary), f (x,y) tends to +8.
As a result

(
1, 1

2

)
is a global (and not just local) minimum for f in the first quadrant. Hence

f (x,y) ě f
(
1, 1

2

)
= 6 for all x,yą 0.

A-17: If aă 1
2 , then the closest point is the origin. If aě 1

2 , then the closest points are the level
curve where z = a´ 1

2 .

A-18:

(a) The total profit is given by

Π(x,y) = (15x0.8´ x)+ (80y0.6´3y)

(b) The optimal production: x = 248,832 leading to 51840 reams of A4 and y = 1,024 leading to
640 reams of A3

(c) In this case, the optimal production is still 640 reams of A3

A-19:

(a) ΠA(qA) = ´2q2
A + 120qA´2qAqP; maximum profit when qA = 30´ 1

2qP

(b) ΠP(qP) = ´2q2
P + 120qP´2qPqA; maximum profit when qP = 30´ 1

2qA

(c) Their businesses are identical, so we predict they will sell the same amounts of lemonade.

(d) If Ayan and Pipe sell 20 pitchers they will maximize their respective profit functions.

(e) They would each make 800 dollars in profit.

(f) Their optimal joint profit will be 1,800 dollars. But, they need to share this profit among the
two of them. So if they collaborate, they will each earn 900 dollars. This is more than their
individual optimal profit in the scenario where they are competing found in part (e) (we found
this to be $800). So it is better for them to collaborate!
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(g) Collaborating sellers lead to higher prices and fewer goods, so it’s better for consumers with the
sellers compete

Answers to Exercises 16.3 — Jump to TABLE OF CONTENTS

A-1: (a) f does not have a maximum. It does have a minimum.

(b) The minima are at ˘(1,1), where f takes the value 2.

A-2: One possible answer: g(x,y) = y, f (x,y) = x3´ x.

A-3: There are none

A-4: The minimum value is 2
1
3 + 2´

2
3 = 3

2
3
?

2 = 3
3?4

at
(˘2

1
6 , 2´

1
3
)
.

A-5: The maximum and minimum values of f are 1
2
?

2
and ´ 1

2
?

2
, respectively.

A-6: min= 1, max=
?

2.

A-7: absolute min 13´8
?

2
3 , absolute max 5

3

A-8: (˘1,1/2)

A-9: Largest
?

5
10´2

?
5
, smallest ´

?
5

10´2
?

5

A-10: (a) (i)

2xey = λ (2x)

ey(x2 + y2 + 2y
)
= λ (2y)

x2 + y2 = 100

(a) (ii) The warmest point is (0,10) and the coolest point is (0,´10).

(b) (i)

2xey = 0

ey(x2 + y2 + 2y
)
= 0

(b) (ii) (0,0) and (0,´2)

(c) (0,0)

A-11: Min 0; max 75 ¨210/3

A-12: 4

A-13: a = b =
?

5

A-14: radius =
b

2
3 and height = 2?

3
.

A-15: 3ˆ6ˆ4

A-16: See the solution.
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A-17: Absolute minimum is 0, achieved at (0,1). There is no absolute maximum.

A-18: There are none.

A-19:

(a) There are none

(b) No

(c) The absolute maximum of f (x,y) constrained to x = y is 33/4

4 and the absolute minimum is

´33/4

4 .

266



SOLUTIONS TO PROBLEMS

Part IV
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Solutions to Exercises 1 — Jump to TABLE OF CONTENTS

Solutions to Exercises 2.1 — Jump to TABLE OF CONTENTS

S-1:

(a) lim
xÑ´2

f (x) = 1: as x gets very close to ´2, y gets very close to 1.

(b) lim
xÑ0

f (x) = 0: as x gets very close to 0, y also gets very close to 0.

(c) lim
xÑ2

f (x) = 2: as x gets very close to 2, y gets very close to 2. We ignore the value of the

function where x is exactly 2.

S-2: The limit does not exist. As x approaches 0 from the left, y approaches -1; as x approaches 0
from the right, y approaches 1. This tells us lim

xÑ0´
f (x) = ´1 and lim

xÑ0+
f (x) = 1, but neither of

these are what the question asked. Since the limits from left and right do not agree, the limit does
not exist. Put another way, there is no single number y approaches as x approaches 0, so the limit
lim
xÑ0

f (x) does not exist.

S-3:

(a) lim
xÑ´1´

f (x) = 2: as x approaches ´1 from the left, y approaches 2. It doesn’t matter that the

function isn’t defined at x = ´1, and it doesn’t matter what happens to the right of x = ´1.

(b) lim
xÑ´1+

f (x) = ´2: as x approaches ´1 from the right, y approaches -2. It doesn’t matter that

the function isn’t defined at ´1, and it doesn’t matter what happens to the left of ´1.

(c) lim
xÑ´1

f (x) = DNE: since the limits from the left and right don’t agree, the limit does not exist.

(d) lim
xÑ´2+

f (x) = 0: as x approaches ´2 from the right, y approaches 0. It doesn’t matter that the

function isn’t defined at 2, or to the left of 2.

(e) lim
xÑ2´

f (x) = 0: as x approaches 2 from the left, y approaches 0. It doesn’t matter that the

function isn’t defined at 2, or to the right of 2.

S-4: Many answers are possible; here is one.
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x

y
y = f (x)

3

10

As x gets closer and closer to 3, y gets closer and closer to 10: this shows lim
xÑ3

f (x) = 10. Also, at 3

itself, the function takes the value 10; this shows f (3) = 10.

S-5: Many answers are possible; here is one.

x

y
y = f (x)

3

10

Note that, as x gets closer and closer to 3 except at 3 itself, y gets closer and closer to 10: this shows
lim
xÑ3

f (x) = 10. Then, when x = 3, the function has value 0: this shows f (3) = 0.

S-6: In general, this is false. The limit as x goes to 3 does not take into account the value of the
function at 3: f (3) can be anything.

S-7: False. The limit as x goes to 3 does not take into account the value of the function at 3: f (3)
tells us nothing about lim

xÑ3
f (x).

S-8: lim
xÑ´2´

f (x) = 16: in order for the limit lim
xÑ2

f (x) to exist and be equal to 16, both one sided

limits must exist and be equal to 16.
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S-9: Not enough information to say. If lim
xÑ´2+

f (x) = 16, then lim
xÑ´2

f (x) = 16. If

lim
xÑ´2+

f (x) ‰ 16, then lim
xÑ´2

f (x) does not exist.

S-10: lim
tÑ0

sin t = 0: as t approaches 0, sin t approaches 0 as well.

S-11: lim
xÑ0+

logx = ´8: as x approaches 0 from the right, logx is negative and increasingly large,

growing without bound.

S-12: lim
yÑ3

y2 = 9: as y gets closer and closer to 3, y2 gets closer and closer to 32.

S-13: lim
xÑ0´

1
x
= ´8: as x gets closer and closer to 0 from the left,

1
x

becomes a larger and larger

negative number.

S-14: lim
xÑ0

1
x
= DNE: as x gets closer and closer to 0 from the left,

1
x

becomes a larger and larger

negative number; but as x gets closer and closer to 0 from the right,
1
x

becomes a larger and larger
positive number. So the limit from the left is not the same as the limit from the right, and so

lim
xÑ0

1
x
= DNE. Contrast this with Question 15.

S-15: lim
xÑ0

1
x2 =8: as x gets closer and closer to 0 from the either side,

1
x2 becomes a larger and

larger positive number, growing without bound. Contrast this with Question 14.

S-16: lim
xÑ3

1
10

=
1

10
: no matter what x is,

1
10

is always
1

10
. In particular, as x approaches 3,

1
10

stays put at
1

10
.

S-17: When x is very close to 3, f (x) looks like the function x2. So: lim
xÑ3

f (x) = lim
xÑ3

x2 = 9

Solutions to Exercises 2.1.1 — Jump to TABLE OF CONTENTS

S-1: Zeroes cause a problem when they show up in the denominator, so we can only compute (a)
and (d). (Both these limits are zero.) Be careful: there is no such rule as “zero divided by zero is
one,” or “zero divided by zero is zero.”

S-2: The statement lim
xÑ3

f (x)
g(x)

= 10 tells us that, as x gets very close to 3, f (x) is 10 times as large

as g(x). We notice that if f (x) = 10g(x), then
f (x)
g(x)

= 10, so lim
xÑ

f (x)
g(x)

= 10 wherever f and g
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exist. So it’s enough to find a function g(x) that has limit 0 at 3. Such a function is (for example)
g(x) = x´3. So, we take f (x) = 10(x´3) and g(x) = x´3. It is easy now to check that

lim
xÑ3

f (x) = lim
xÑ3

g(x) = 0 and lim
xÑ3

f (x)
g(x)

= lim
xÑ3

10(x´3)
x´3

= lim
xÑ3

10 = 10.

S-3:

• As we saw in Question 2, x´3 is a function with limit 0 at x = 3. So one way of thinking
about this question is to try choosing f (x) so that f (x)

g(x) = g(x) = x´3 too, which leads us to

the solution f (x) = (x´3)2 and g(x) = x´3. This is one of many, many possible answers.

• Another way of thinking about this problem is that f (x) should go to 0 “more strongly” than
g(x) when x approaches 3. One way of a function going to 0 really strongly is to make that

function identically zero. So we can set f (x) = 0 and g(x) = x´3. Now
f (x)
g(x)

is equal to 0

whenever x‰ 3, and is undefined at x = 3. Since the limit as x goes to three does not take into

account the value of the function at 3, we have lim
xÑ3

f (x)
g(x)

= 0.

There are many more possible answers.

S-4: One way to start this problem is to remember lim
xÑ0

1
x2 =8. (Using

1
x2 as opposed to

1
x

is

important, since lim
xÑ0

1
x

does not exist.) Then by “shifting” by three, we find lim
xÑ3

1
(x´3)2 =8. So it

is enough to arrange that
f (x)
g(x)

=
1

(x´3)2 . We can achieve this with f (x) = x´3 and

g(x) = (x´3)3, and maintain lim
xÑ3

f (x) = lim
xÑ3

g(x) = 0. Again, this is one of many possible

solutions.

S-5: Any real number; positive infinity; negative infinity; does not exist.

This is an important thing to remember: often, people see limits that look like
0
0

and think that the
limit must be 1, or 0, or infinite. In fact, this limit could be anything–it depends on the relationship
between f and g.

Questions 2 and 3 show us examples where the limit is 10 and 0; they can easily be modified to
make the limit any real number.

Question 4 show us an example where the limit is8; it can easily be modified to make the limit
´8 or DNE.

S-6: Since we’re not trying to divide by 0, or multiply by infinity: lim
tÑ10

2(t´10)2

t
=

2 ¨0
10

= 0

S-7: Since we’re not doing anything dodgy like putting 0 in the denominator,
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lim
yÑ0

(y+ 1)(y+ 2)(y+ 3)
cosy

=
(0+ 1)(0+ 2)(0+ 3)

cos0
=

6
1
= 6.

S-8: Since the limits of the numerator and denominator exist, and since the limit of the

denominator is nonzero: lim
xÑ3

(
4x´2
x+ 2

)4

=

(
4(3)´2

3+ 2

)4

= 16

S-9:

lim
tÑ´3

(
1´ t

cos(t)

)
=

lim
tÑ´3

(1´ t)

lim
tÑ´3

cos(t)
= 4/cos(´3) = 4/cos(3)

S-10: If try naively then we get 0/0, so we expand and then simplify:

(2+ h)2´4
2h

=
h2 + 4h+ 4´4

2h
=

h
2
+ 2

Hence the limit is lim
hÑ0

(
h
2
+ 2
)
= 2.

S-11:

lim
tÑ´2

(
t´5
t + 4

)
=

limtÑ´2(t´5)
limtÑ´2(t + 4)

= ´7/2.

S-12:
lim
tÑ1

a

5x3 + 4 =

c

lim
tÑ1

(
5x3 + 4

)
=
b

5 lim
tÑ1

(x3)+ 4 =
?

9 = 3.

S-13:

lim
tÑ´1

(
t´2
t + 3

)
=

lim
tÑ´1

(t´2)

lim
tÑ´1

(t + 3)
= ´3/2.

S-14: We simply plug in x = 1: lim
xÑ1

[
log(1+ x)´ x

x2

]
= log(2)´1.

S-15: If we try naively then we get 0/0, so we simplify first:

x´2
x2´4

=
x´2

(x´2)(x+ 2)
=

1
x+ 2

Hence the limit is lim
xÑ2

1
x+ 2

= 1/4.
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S-16: If we try to plug in x = 4, we find the denominator is zero. So to get a better idea of what’s
happening, we factor the numerator and denominator:

lim
xÑ4

x2´4x
x2´16

= lim
xÑ4

x(x´4)
(x+ 4)(x´4)

= lim
xÑ4

x
x+ 4

=
4
8
=

1
2

S-17: If we try to plug in x = 2, we find the denominator is zero. So to get a better idea of what’s
happening, we factor the numerator:

lim
xÑ2

x2 + x´6
x´2

= lim
xÑ2

(x+ 3)(x´2)
x´2

= lim
xÑ2

(x+ 3) = 5

S-18: If we try naively then we get 0/0, so we simplify first:

x2´9
x+ 3

=
(x´3)(x+ 3)

(x+ 3)
= x´3

Hence the limit is lim
xÑ´3

(x´3) = ´6.

S-19: To calculate the limit of a polynomial, we simply evaluate the polynomial:

lim
tÑ2

1
2

t4´3t3 + t =
1
2
¨24´3 ¨23 + 2 = ´14
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S-20:

?
x2 + 8´3

x+ 1
=

?
x2 + 8´3

x+ 1
¨
?

x2 + 8+ 3?
x2 + 8+ 3

=
(x2 + 8)´32

(x+ 1)(
?

x2 + 8+ 3)

=
x2´1

(x+ 1)(
?

x2 + 8+ 3)

=
(x´1)(x+ 1)

(x+ 1)(
?

x2 + 8+ 3)

=
(x´1)?
x2 + 8+ 3

lim
xÑ´1

?
x2 + 8´3

x+ 1
= lim

xÑ´1

(x´1)?
x2 + 8+ 3

=
´2?
9+ 3

= ´2
6
= ´1

3
.

S-21: If we try to do the limit naively we get 0/0. Hence we must simplify.

?
x+ 2´?4´ x

x´1
=

?
x+ 2´?4´ x

x´1
¨
?

x+ 2+
?

4´ x?
x+ 2+

?
4´ x

=
(x+ 2)´ (4´ x)

(x´1)(
?

x+ 2+
?

4´ x)

=
2x´2

(x´1)(
?

x+ 2+
?

4´ x)

=
2?

x+ 2+
?

4´ x

So the limit is

lim
xÑ1

?
x+ 2´?4´ x

x´1
= lim

xÑ1

2?
x+ 2+

?
4´ x

=
2?

3+
?

3

=
1?
3
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S-22: If we try to do the limit naively we get 0/0. Hence we must simplify.

?
x´2´?4´ x

x´3
=

?
x´2´?4´ x

x´3
¨
?

x´2+
?

4´ x?
x´2+

?
4´ x

=
(x´2)´ (4´ x)

(x´3)(
?

x´2+
?

4´ x)

=
2x´6

(x´3)(
?

x´2+
?

4´ x)

=
2?

x´2+
?

4´ x

So, lim
xÑ3

?
x´2´?4´ x

x´3
= lim

xÑ3

2?
x´2+

?
4´ x

=
2

1+ 1
= 1.

S-23: First, let’s think of some general principles.

• If you multiply any real number by 0, you get 0.

• We’re multiplying cos
(3

x

)
by a number that approaches 0 (but since we’re taking a limit, we

don’t actually consider what happens when x = 0).

For any nonzero value of x (whether or not it’s close to 0),
ˇ

ˇcos
(3

x

)ˇ
ˇď 1. So, its magnitude never

gets very large. Since it’s multiplied by something going to 0, the entire function will go to 0.

We can also see this by graphing the function. Note that cos
(3

x

)
keeps cycling from 1, to 0, to -1,

back to 0, etc, as x approaches 0.

• When cos
(3

x

)
= 1, ´x2 cos 3

x = ´x2;

• when cos
(3

x

)
= 0, ´x2 cos 3

x = 0; and

• when cos
(3

x

)
= ´1, ´x2 cos 3

x = x2.

So, we imagine the function x2 cos
(3

x

)
wiggling back and forth between x2 and ´x2:
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x

y

y = x2

y = ´x2

y = ´x2 cos
(3

x

)

For x very close to 0, then, also ´x2 cos
(3

x

)
is very close to 0. That is, lim

xÑ0
´x2 cos

(
3
x

)
= 0.

S-25: For any (nonzero) value of x, 0ď 1sin2
(

1
x

)
ď 1. So when we multiply it by a number, that

number either stays the same or gets closer to 0.

In particular, when we multiply x by sin2
(

1
x

)
, the result is either x itself, or something even closer

to 0 than x was originally. Since x is approaching 0, xsin2
(

1
x

)
is approaching 0 as well. That is,

lim
xÑ0

xsin2
(

1
x

)
= 0.

Another way to see this is by graphing. The factor sin2
(

1
x

)
ď 1 cycles between 0 and 1, so the

function xsin2
(

1
x

)
cycles between 0 and x:

x

y

y = x

y = xsin2 (1
x

)

Again, we see lim
xÑ0

xsin2
(

1
x

)
= 0.

S-26: When we plug w = 5 in to the numerator and denominator, we find that each becomes zero.
Since we can’t divide by zero, we have to dig a little deeper. When a polynomial has a root, that also
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means it has a factor: we can factor (w´5) out of the top. That lets us cancel:

lim
wÑ5

2w2´50
(w´5)(w´1)

= lim
wÑ5

2(w´5)(w+ 5)
(w´5)(w´1)

= lim
wÑ5

2(w+ 5)
(w´1)

.

Note that the function
2w2´50

(w´5)(w´1)
is NOT defined at w = 5, while the function

2(w+ 5)
(w´1)

IS

defined at w = 5; so strictly speaking, these two functions are not equal. However, for every value
of w that is not 5, the functions are the same, so their limits are equal. Furthermore, the limit of the
second function is quite easy to calculate, since we’ve eliminated the zero in the denominator:

lim
wÑ5

2(w+ 5)
(w´1)

=
2(5+ 5)

5´1
= 5.

So lim
wÑ5

2w2´50
(w´5)(w´1)

= lim
wÑ5

2(w+ 5)
(w´1)

= 5.

S-27: When we plug in r = ´5 to the denominator, we find that it becomes 0, so we need to dig
deeper. The numerator is not zero, so cancelling is out. Notice that the denominator is factorable:
r2 + 10r+ 25 = (r+ 5)2. As r approaches ´5 from either side, the denominator gets very close to
zero, but stays positive. The numerator gets very close to ´5. So, as r gets closer to ´5, we have
something close to ´5 divided by a very small, positive number. Since the denominator is small, the
fraction will have a large magnitude; since the numerator is negative and the denominator is positive,
the fraction will be negative. So, lim

rÑ´5

r
r2 + 10r+ 25

= ´8

S-28: First, we find lim
xÑ´1

x3 + x2 + x+ 1
3x+ 3

. When we plug in x =´1 to the top and the bottom, both

become zero. In a polynomial, where there is a root, there is a factor, so this tells us we can factor
out (x+ 1) from both the top and the bottom. It’s pretty easy to see how to do this in the bottom.
For the top, if you’re having a hard time, one factoring method (of many) to try is long division of
polynomials; another is to factor out (x+ 1) from the first two terms and the last two terms.
(Detailed examples of long division are given in Appendix A.16 and Examples 1.10.2 and 1.10.3 of
CLP–2.)

lim
xÑ´1

x3 + x2 + x+ 1
3x+ 3

= lim
xÑ´1

x2(x+ 1)+ (x+ 1)
3x+ 3

= lim
xÑ´1

(x+ 1)(x2 + 1)
3(x+ 1)

= lim
xÑ´1

x2 + 1
3

=
(´1)2 + 1

3
=

2
3

.

One thing to note here is that the function
x3 + x2 + x+ 1

3x+ 3
is not defined at x = ´1 (because we

can’t divide by zero). So we replaced it with the function
x2 + 1

3
, which IS defined at x = ´1.

These functions only differ at x = ´1; they are the same at every other point. That is why we can
use the second function to find the limit of the first function.
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Now we’re ready to find the actual limit asked in the problem:

lim
xÑ´1

d

x3 + x2 + x+ 1
3x+ 3

=

c

2
3

.

S-29: When we plug x = 0 into the denominator, we get 0, which means we need to look harder.
The numerator is not zero, so we won’t be able to cancel our problems away. Let’s factor to make
things clearer.

x2 + 2x+ 1
3x5´5x3 =

(x+ 1)2

x3(3x2´5)

As x gets close to 0, the numerator is close to 1; the term (3x2´5) is negative; and the sign of x3

depends on the direction we’re approaching 0 from. Since we’re dividing a numerator that is very
close to 1 by something that’s getting very close to 0, the magnitude of the fraction is getting bigger
and bigger without bound. Since the sign of the fraction flips depending on whether we are using
numbers slightly bigger than 0, or slightly smaller than 0, that means the one-sided limits are8 and

´8, respectively. (In particular, lim
xÑ0´

x2 + 2x+ 1
3x5´5x3 =8 and lim

xÑ0+

x2 + 2x+ 1
3x5´5x3 = ´8.) Since the

one-sided limits don’t agree, the limit does not exist.

S-30: As usual, we first try plugging in t = 7, but the denominator is 0, so we need to think harder.

The top and bottom are both squares, so let’s go ahead and factor:
t2x2 + 2tx+ 1
t2´14t + 49

=
(tx+ 1)2

(t´7)2 .

Since x is positive, the numerator is nonzero. Also, the numerator is positive near t = 7. So, we
have something positive and nonzero on the top, and we divide it by the bottom, which is positive
and getting closer and closer to zero. The quotient is always positive near t = 7, and it is growing in

magnitude without bound, so lim
tÑ7

t2x2 + 2tx+ 1
t2´14t + 49

=8.

Remark: there is an important reason we specified that x must be a positive constant. Suppose x
were ´1

7 (which is negative and so was not allowed in the question posed). In this case, we would
have

lim
tÑ7

t2x2 + 2tx+ 1
t2´14t + 49

= lim
tÑ7

(tx+ 1)2

(t´7)2

= lim
tÑ7

(´t/7+ 1)2

(t´7)2

= lim
tÑ7

(´1/7)2(t´7)2

(t´7)2

= lim
tÑ7

(´1/7)2

=
1

49
‰8
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S-31: The function whose limit we are taking does not depend on d. Since x is a constant,
x5´32x+ 15 is also a constant–it’s just some number, that doesn’t change, regardless of what d
does. So lim

dÑ0
x5´32x+ 15 = x5´32x+ 15.

S-32: There’s a lot going on inside that sine function... and we don’t have to care about any of it.
No matter what horrible thing we put inside a sine function, the sine function will spit out a number
between ´1 and 1. So that means the entire function is somewhere between (x´1)2 and ´(x´1)2.
Since (x´1)2 is approaching 0, the entire function is approaching 0.

That is, lim
xÑ1

(x´1)2 sin

[(
x2´3x+ 2
x2´2x+ 1

)2

+ 15

]
= 0.

S-33: Since ´1ď sinxď 1 for all values of x, when we multiply a number by this function, it
causes the magnitude (absolute value) of that number to either be the same, or closer to 0.

Since lim
xÑ0

x1/101 is already 0, the limit doesn’t change when we multiply it by the sine part.

S-34:

lim
xÑ2

x2´4
x2´2x

= lim
xÑ2

(x´2)(x+ 2)
x(x´2)

= lim
xÑ2

x+ 2
x

= 2

S-35: When we plug in x = 5 to the top and the bottom, both limits exist, and the bottom is

nonzero. So lim
xÑ5

(x´5)2

x+ 5
=

0
10

= 0.

S-36: Since we can’t plug in t = 1
2 , we’ll simplify. One way to start is to add the fractions in the

numerator. We’ll need a common demoninator, such as 3t2(t2´1).

lim
tÑ 1

2

1
3t2 +

1
t2´1

2t´1
= lim

tÑ 1
2

t2´1
3t2(t2´1) +

3t2

3t2(t2´1)

2t´1

= lim
tÑ 1

2

4t2´1
3t2(t2´1)

2t´1

= lim
tÑ 1

2

4t2´1
3t2(t2´1)(2t´1)

= lim
tÑ 1

2

(2t + 1)(2t´1)
3t2(t2´1)(2t´1)

= lim
tÑ 1

2

2t + 1
3t2(t2´1)
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Since we cancelled out the term that was causing the numerator and denominator to be zero when
t = 1

2 , now t = 1
2 is in the domain of our function, so we simply plug it in:

=
1+ 1

3
4

(1
4 ´1

)
=

2
3
4

(´3
4

)
= ´32

9

S-37: We recall that

|x|=
#

x , xě 0

´x , xă 0

So,

|x|
x

=

#

x
x , xą 0

´x
x , xă 0

=

#

1 , xą 0

´1 , xă 0

Therefore,

3+
|x|
x

=

#

4 , xą 0

2 , xă 0

Since our function gives a value of 4 when x is to the right of zero, and a value of 2 when x is to the

left of zero, lim
xÑ0

(
3+

|x|
x

)
does not exist.

To further clarify the situation, the graph of y = f (x) is sketched below:

x

y

4

2

S-38: If we factor out 3 from the numerator, our function becomes 3
|d + 4|
d + 4

. We recall that

|X |=
#

X , X ě 0

´X , X ă 0
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So, with X = d + 4,

3
|d + 4|
d + 4

=

$

’

’

&

’

’

%

3d+4
d+4 , d + 4ą 0

3´(d+4)
d+4 , d + 4ă 0

=

#

3 , d ą´4

´3 , d ă´4

Since our function gives a value of 3 when d ą´4, and a value of ´3 when d ă´4,

lim
dÑ´4

|3d + 12|
d + 4

does not exist.

To further clarify the situation, the graph of y = f (x) is sketched below:

x

y

´3

´4

S-39: Note that x = 0 is in the domain of our function, and nothing “weird” is happening there: we
aren’t dividing by zero, or taking the square root of a negative number, or joining two pieces of a

piecewise-defined function. So, as x gets extremely close to zero,
5x´9
|x|+ 2

is getting extremely close

to
0´9
0+ 2

=
´9
2

.

That is, lim
xÑ0

5x´9
|x|+ 2

= ´9
2

.

S-40: Since we aren’t dividing by zero, and all these limits exist:

lim
xÑ´1

x f (x)+ 3
2 f (x)+ 1

=
(´1)(´1)+ 3

2(´1)+ 1
= ´4.

S-41: As xÑ´2, the denominator goes to 0, and the numerator goes to ´2a+ 7. For the ratio to
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have a limit, the numerator must also converge to 0, so we need a =
7
2

. Then,

lim
xÑ´2

x2 + ax+ 3
x2 + x´2

= lim
xÑ´2

x2 + 7
2x+ 3

(x+ 2)(x´1)

= lim
xÑ´2

(x+ 2)(x+ 3
2)

(x+ 2)(x´1)

= lim
xÑ´2

x+ 3
2

x´1

=
1
6

so the limit exists when a =
7
2

.

S-42:

(a) lim
xÑ0

f (x) = 0: as x approaches 0, so does 2x.

(b) lim
xÑ0

g(x) = DNE: the left and right limits do not agree, so the limit does not exist. In particular:

lim
xÑ0´

g(x) = ´8 and lim
xÑ0+

g(x) =8.

(c) lim
xÑ0

f (x)g(x) = lim
xÑ0

2x ¨ 1
x
= lim

xÑ0
2 = 2.

Remark: although the limit of g(x) does not exist here, the limit of f (x)g(x) does.

(d) lim
xÑ0

f (x)
g(x)

= lim
xÑ0

2x
1
x

= lim
xÑ0

2x2 = 0

(e) lim
xÑ2

f (x)+ g(x) = lim
xÑ2

2x+
1
x
= 4+

1
2
=

9
2

(f) lim
xÑ0

f (x)+ 1
g(x+ 1)

= lim
xÑ0

2x+ 1
1

x+1

=
1
1
= 1
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S-43: If we try to do the limit naively we get 0/0. Hence we must simplify.

?
x+ 7´?11´ x

2x´4
=

?
x+ 7´?11´ x

2x´4
¨
(?

x+ 7+
?

11´ x?
x+ 7+

?
11´ x

)
=

(x+ 7)´ (11´ x)
(2x´4)(

?
x+ 7+

?
11´ x)

=
2x´4

(2x´4)(
?

x+ 7+
?

11´ x)

=
1?

x+ 7+
?

11´ x

So, lim
xÑ2

?
x+ 7´?11´ x

2x´4
= lim

xÑ2

1?
x+ 7+

?
11´ x

=
1?

9+
?

9

=
1
6

S-44: Here we get 0/0 if we try the naive approach. Hence we must simplify.

3t´3
2´?5´ t

=
3t´3

2´?5´ t
ˆ 2+

?
5´ t

2+
?

5´ t

=
(
2+

?
5´ t

) 3t´3
22´ (5´ t)

=
(
2+

?
5´ t

) 3t´3
t´1

=
(
2+

?
5´ t

) 3(t´1)
t´1

So there is a cancelation. Hence the limit is

lim
tÑ1

3t´3
2´?5´ t

= lim
tÑ1

(
2+

?
5´ t

) ¨3
= 12

284



S-45: We can begin by plotting the points that are easy to read off the diagram.

x f (x) 1
f (x)

´3 ´3 ´1
3

´2 0 UND

´1 3 1
3

0 3 1
3

1 3
2

2
3

2 0 UND

3 1 1

Note that 1
f (x) is undefined when f (x) = 0. So 1

f (x) is undefined at x =´2 and x = 2. We shall look

more closely at the behaviour of 1
f (x) for x near ˘2 shortly.

Plotting the above points, we get the following picture:

x

y

1

1

Since f (x) is constant when x is between -1 and 0, then also 1
f (x) is constant between -1 and 0, so

we update our picture:

x

y

1

1
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The big question that remains is the behaviour of 1
f (x) when x is near -2 and 2. We can answer this

question with limits. As x approaches ´2 from the left, f (x) gets closer to zero, and is negative. So
1

f (x) will be negative, and will increase in magnitude without bound; that is, lim
xÑ´2´

1
f (x)

= ´8.

Similarly, as x approaches ´2 from the right, f (x) gets closer to zero, and is positive. So 1
f (x) will

be positive, and will increase in magnitude without bound; that is, lim
xÑ´2+

1
f (x)

=8. We add this

behaviour to our graph:

x

y

1

1

Now, we consider the behaviour at x = 2. Since f (x) gets closer and closer to 0 AND is positive as

x approaches 2, we conclude lim
xÑ2

1
f (x)

=8. Adding to our picture:

x

y

1

1

Now the only remaining blank space is between x = 0 and x = 1. Since f (x) is a smooth curve that
stays away from 0, we can draw some kind of smooth curve here, and call it good enough. (Later on
we’ll go into more details about drawing graphs. The purpose of this exercise was to utilize what
we’ve learned about limits.)
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x

y

1

1

S-46: We can start by examining points.

x f (x) g(x)
f (x)
g(x)

´3 ´3 ´1.5 2

´2 0 0 UND

´1 3 1.5 2

´0 3 1.5 2

1 1.5 .75 2

2 0 0 UND

3 1 .5 2

We cannot divide by zero, so
f (x)
g(x)

is not defined when x = ˘2. But for every other value of x that

we plotted, f (x) is twice as large as g(x),
f (x)
g(x)

= 2. With this in mind, we see that the graph of

f (x) is exactly the graph of 2g(x).

This gives us the graph below.
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x

y

1

1

y =
f (x)
g(x)

Remark: f (2) = g(2) = 0, so
f (2)
g(2)

does not exist, but lim
xÑ2

f (x)
g(x)

= 2. Although we are trying to

“divide by zero” at x = ˘2, it would be a mistake here to interpret this as a vertical asymptote.

S-47: (a) Neither limit exists. When x gets close to 0, these limits go to positive infinity from one
side, and negative infinity from the other.

(b) lim
xÑ0

[ f (x)+ g(x)] = lim
xÑ0

[
1
x
´ 1

x

]
= lim

xÑ0
0 = 0.

(c) No: this is an example of a time when the two individual functions have limits that don’t exist,
but the limit of their sum does exist. This “sum rule” is only true when both lim

xÑa
f (x) and lim

xÑa
g(x)

exist.

S-48: (a) When we evaluate the limit from the left, we only consider values of x that are less than
zero. For these values of x, our function is x2´3. So, lim

xÑ0´
f (x) = lim

xÑ0´
(x2´3) = ´3.

(b) When we evaluate the limit from the right, we only consider values of x that are greater than
zero. For these values of x, our function is x2 + 3. So, lim

xÑ0+
f (x) = lim

xÑ0+
(x2 + 3) = 3.

(c) Since the limits from the left and right do not agree, lim
xÑ0

f (x) = DNE.

To further clarify the situation, the graph of y = f (x) is sketched below:

x

y

3

´3
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S-49: (a) When we evaluate lim
xÑ´4´

f (x), we only consider values of x that are less than ´4. For

these values, f (x) = x3 + 8x2 + 16x. So,

lim
xÑ´4´

f (x) = lim
xÑ´4´

(x3 + 8x2 + 16x) = (´4)3 + 8(´4)2 + 16(´4) = 0

Note that, because x3 + 8x2 + 16x is a polynomial, we can evaluate the limit by directly substituting
in x = ´4.
(b) When we evaluate lim

xÑ´4+
f (x), we only consider values of x that are greater than ´4. For these

values,

f (x) =
x2 + 8x+ 16
x2 + 30x´4

So,

lim
xÑ´4+

f (x) = lim
xÑ´4+

x2 + 8x+ 16
x2 + 30x´4

This is a rational function, and x = ´4 is in its domain (we aren’t doing anything suspect, like
dividing by 0), so again we can directly substitute x = ´4 to evaluate the limit:

=
(´4)2 + 8(´4)+ 16
(´4)2 + 30(´4)´4

=
0

´108
= 0

(c) Since lim
xÑ´4´

f (x) = lim
xÑ´4+

f (x) = 0, we conclude lim
xÑ´4

f (x) = 0.

Solutions to Exercises 2.1.2 — Jump to TABLE OF CONTENTS

S-1: Any polynomial of degree one or higher will go to8 or ´8 as x goes to8. So, we need a
polynomial of degree 0–that is, f (x) is a constant. One possible answer is f (x) = 1.

S-2: This will be the case for any polynomial of odd degree. For instance, f (x) = x.

Many answers are possible: also f (x) = x15´32x2 + 9 satisfies lim
xÑ8

f (x) =8 and

lim
xÑ´8

f (x) = ´8.

S-3: lim
xÑ8

2´x = lim
xÑ8

1
2x = 0

S-4: As x gets larger and larger, 2x grows without bound. (For integer values of x, you can imagine
multiplying 2 by itself more and more times.) So, lim

xÑ8
2x =8.
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S-5: Write X = ´x. As x becomes more and more negative, X becomes more and more positive.
From Question 4, we know that 2X grows without bound as X gets larger and larger. Since
2x = 2´(´x) = 2´X = 1

2X , as we let x become a huge negative number, we are in effect dividing by
a huge positive number; hence lim

xÑ´8
2x = 0.

A more formulaic way to describe the above is this: lim
xÑ´8

2x = lim
XÑ8

2´X = lim
XÑ8

1
2X = 0.

S-6: There is no single number that cosx approaches as x becomes more and more strongly
negative: as x grows in the negative direction, the function oscillates between ´1 and +1, never
settling close to one particular number. So, this limit does not exist.

S-7: The highest-order term in this polynomial is ´3x5, so this dominates the function’s behaviour
as x goes to infinity. More formally:

lim
xÑ8

(
x´3x5 + 100x2)= lim

xÑ8
´3x5

(
1´ 1

3x4 ´
100
3x3

)
= lim

xÑ8
´3x5 = ´8

because

lim
xÑ8

(
1´ 1

3x4 ´
100
3x3

)
= 1´0´0 = 1.

S-8: Our standard trick is to factor out the highest power of x in the denominator: x4. We just have
to be a little careful with the square root. Since we are taking the limit as x goes to positive infinity,
we have positive x-values, so

?
x2 = x and

?
x8 = x4.

lim
xÑ8

?
3x8 + 7x4 + 10
x4´2x2 + 1

= lim
xÑ8

b

x8(3+ 7
x4 )+ 10

x4(1´ 2
x2 +

1
x4 )

= lim
xÑ8

?
x8
b

3+ 7
x4 + 10

x4(1´ 2
x2 +

1
x4 )

= lim
xÑ8

x4
b

3+ 7
x4 + 10

x4(1´ 2
x2 +

1
x4 )

= lim
xÑ8

x4
(b

3+ 7
x4 +

10
x4

)
x4(1´ 2

x2 +
1
x4 )

= lim
xÑ8

b

3+ 7
x4 +

10
x4

1´ 2
x2 +

1
x4

=

?
3+ 0+ 0

1´0+ 0
=
?

3
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S-9: We have two terms, each getting extremely large. It’s unclear at first what happens when we
subtract them. To get this equation into another form, we multiply and divide by the conjugate,?

x2 + 5x+
?

x2´ x.

lim
xÑ8

[
a

x2 + 5x´
a

x2´ x
]
= lim

xÑ8

[
(
?

x2 + 5x´?x2´ x)(
?

x2 + 5x+
?

x2´ x)?
x2 + 5x+

?
x2´ x

]

= lim
xÑ8

(x2 + 5x)´ (x2´ x)?
x2 + 5x+

?
x2´ x

= lim
xÑ8

6x?
x2 + 5x+

?
x2´ x

Now we divide the numerator and denominator by x. In the case of the denominator, since xą 0,
x =

?
x2.

= lim
xÑ8

6(x)
?

x2
b

1+ 5
x +

?
x2
b

1´ 1
x

= lim
xÑ8

6(x)

(x)
b

1+ 5
x +(x)

b

1´ 1
x

= lim
xÑ8

6
b

1+ 5
x +

b

1´ 1
x

=
6?

1+ 0+
?

1´0
= 3

S-10: Note that for large negative x, the first term in the denominator?
4x2 + x«

?
4x2 = |2x|= ´2x not +2x. A good way to avoid incorrectly computing

?
x2 when x

is negative is to define y = ´x and express everything in terms of y. That’s what we’ll do.

lim
xÑ´8

3x?
4x2 + x´2x

= lim
yÑ+8

´3y
a

4y2´ y+ 2y

= lim
yÑ+8

´3y

y
b

4´ 1
y + 2y

= lim
yÑ+8

´3
b

4´ 1
y + 2

=
´3?

4´0+ 2
since 1/yÑ 0 as yÑ+8

= ´3
4

S-11: The highest power of x in the denominator is x2, so we divide the numerator and denominator

291



by x2:

lim
xÑ´8

1´ x´ x2

2x2´7
= lim

xÑ´8

1/x2´1/x´1
2´7/x2

=
0´0´1

2´0
= ´1

2

S-12:

lim
xÑ8

(a
x2 + x´ x

)
= lim

xÑ8

(?
x2 + x´ x

)(?
x2 + x+ x

)
?

x2 + x+ x
= lim

xÑ8

(x2 + x)´ x2
?

x2 + x+ x

= lim
xÑ8

x?
x2 + x+ x

= lim
xÑ8

1
b

1+ 1
x + 1

=
1
2

S-13: We have, after dividing both numerator and denominator by x2 (which is the highest power
of the denominator) that

5x2´3x+ 1
3x2 + x+ 7

=
5´ 3

x +
1
x2

3+ 1
x +

7
x2

.

Since 1/xÑ 0 and also 1/x2 Ñ 0 as xÑ+8, we conclude that

lim
xÑ+8

5x2´3x+ 1
3x2 + x+ 7

=
5
3

.

S-14: We have, after dividing both numerator and denominator by x (which is the highest power of
the denominator) that

?
4x+ 2

3x+ 4
=

b

4
x +

2
x2

3+ 4
x

.

Since 1/xÑ 0 and also 1/x2 Ñ 0 as xÑ+8, we conclude that

lim
xÑ+8

?
4x+ 2

3x+ 4
=

0
3
= 0.

S-15: The dominant terms in the numerator and denominator have order x3. Taking out that
common factor we get

4x3 + x
7x3 + x2´2

=
4+ 1

x2

7+ 1
x ´ 2

x3

.

Since 1/xa Ñ 0 as xÑ+8 (for aą 0), we conclude that

lim
xÑ+8

4x3 + x
7x3 + x2´2

=
4
7

.
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S-16:

• Solution 1
We want to factor out x, the highest power in the denominator. Since our limit only sees
negative values of x, we must remember that 4

?
x4 = |x|= ´x, although 3

?
x3 = x.

lim
xÑ´8

3
?

x2 + x´ 4
?

x4 + 5
x+ 1

= lim
xÑ´8

3
b

x3(1
x +

1
x2 )´ 4

b

x4(1+ 5
x4 )

x(1+ 1
x )

= lim
xÑ´8

3
?

x3 3
b

1
x +

1
x2 ´ 4

?
x4 4
b

1+ 5
x4

x(1+ 1
x )

= lim
xÑ´8

x 3
b

1
x +

1
x2 ´ (´x) 4

b

1+ 5
x4

x(1+ 1
x )

= lim
xÑ´8

3
b

1
x +

1
x2 +

4
b

1+ 5
x4

1+ 1
x

=
3
?

0+ 0+ 4
?

1+ 0
1+ 0

= 1

• Solution 2
Alternately, we can use the transformation lim

xÑ´8
f (x) = lim

xÑ8
f (´x). Then we only look at

positive values of x, so roots behave nicely: 4
?

x4 = |x|= x.

lim
xÑ´8

3
?

x2 + x´ 4
?

x4 + 5
x+ 1

= lim
xÑ8

3
a

(´x)2´ x´ 4
a

(´x)4 + 5
´x+ 1

= lim
xÑ8

3
?

x2´ x´ 4
?

x4 + 5
´x+ 1

= lim
xÑ8

3
?

x3 3
b

1
x ´ 1

x2 ´ 4
?

x4 4
b

1+ 5
x4

x(´1+ 1
x )

= lim
xÑ8

x 3
b

1
x ´ 1

x2 ´ x 4
b

1+ 5
x4

x(´1+ 1
x )

= lim
xÑ8

3
b

1
x ´ 1

x2 ´ 4
b

1+ 5
x4

´1+ 1
x

=
3
?

0´0´ 4
?

1+ 0
´1+ 0

=
´1
´1

= 1

S-17: We have, after dividing both numerator and denominator by x3 (which is the highest power
of the denominator) that:

lim
xÑ8

5x2 + 10
3x3 + 2x2 + x

= lim
xÑ8

5
x +

10
x3

3+ 2
x +

1
x2

=
0
3
= 0.
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S-18: Since we only consider negative values of x,
?

x2 = |x|= ´x.

lim
xÑ´8

x+ 1?
x2

= lim
xÑ´8

x+ 1
´x

= lim
xÑ´8

x
´x

+
1
´x

= lim
xÑ´8

´1´ 1
x

= ´1

S-19: Since we only consider positive values of x,
?

x2 = |x|= x.

lim
xÑ8

x+ 1?
x2

= lim
xÑ8

x+ 1
x

= lim
xÑ8

1+
1
x
= 1+ 0 = 1

S-20: When xă 0, |x|= ´x and so lim
xÑ8

sin
(

π

2
¨ |x|

x

)
+

1
x
= sin(´π/2) = ´1.

S-21: We divide both the numerator and the denominator by the highest power of x in the
denominator, which is x. Since xă 0, we have

?
x2 = |x|= ´x, so that

?
x2 + 5

x
= ´

c

x2 + 5
x2 = ´

c

1+
5
x2 .

Since 1/xÑ 0 and also 1/x2 Ñ 0 as xÑ´8, we conclude that

lim
xÑ´8

3x+ 5?
x2 + 5´ x

= lim
xÑ´8

3+ 5
x

´
b

1+ 5
x2 ´1

=
3

´1´1
= ´3

2
.

S-22: We divide both the numerator and the denominator by the highest power of x in the
denominator, which is x. Since xă 0, we have

?
x2 = |x|= ´x, so that

?
4x2 + 15

x
=

?
4x2 + 15

´
?

x2
= ´

c

4x2 + 15
x2 = ´

c

4+
15
x2 .

Since 1/xÑ 0 and also 1/x2 Ñ 0 as xÑ´8, we conclude that

lim
xÑ´8

5x+ 7?
4x2 + 15´ x

= lim
xÑ´8

5+ 7
x

´
b

4+ 15
x2 ´1

=
5

´2´1
= ´5

3
.
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S-23:

lim
xÑ´8

3x7 + x5´15
4x2 + 32x

= lim
xÑ´8

x2(3x5 + x3´ 15
x2 )

x2(4+ 32
x )

= lim
xÑ´8

3x5 + x3´ 15
x2

4+ 32
x

= lim
xÑ+8

3(´x)5 +(´x)3´ 15
(´x)2

4+ 32
´x

= lim
xÑ+8

´3x5´ x3´ 15
x2

4´ 32
x

= ´8

S-24: We multiply and divide the expression by its conjugate,
(?

n2 + 5n+ n
)
.

lim
nÑ8

(a
n2 + 5n´n

)
= lim

nÑ8

(a
n2 + 5n´n

)(?n2 + 5n+ n?
n2 + 5n+ n

)

= lim
nÑ8

(n2 + 5n)´n2
?

n2 + 5n+ n

= lim
nÑ8

5n?
n2 + 5n+ n

= lim
nÑ8

5 ¨n
?

n2
b

1+ 5
n + n

Since ną 0, we can simplify
?

n2 = n.

= lim
nÑ8

5 ¨n
n
b

1+ 5
n + n

= lim
nÑ8

5
b

1+ 5
n + 1

=
5?

1+ 0+ 1
=

5
2

S-25:

• Solution 1:
When a approaches 0 from the right, the numerator approaches negative infinity, and the

denominator approaches ´1. So, lim
aÑ0+

a2´ 1
a

a´1
=8.
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More precisely, using Theorem 2.1.35:

lim
aÑ0+

1
a
= +8

Also, lim
aÑ0+

a2 = 0

So, using Theorem 2.1.35, lim
aÑ0+

a2´ 1
a
= ´8

Furthermore, lim
aÑ0+

a´1 = ´1

So, using our theorem, lim
aÑ0+

a2´ 1
a

a´1
=8

• Solution 2:
Since a = 0 is not in the domain of our function, a reasonable impulse is to simplify.

a2´ 1
a

a´1

(a
a

)
=

a3´1
a(a´1)

=
(a´1)(a2 + a+ 1)

a(a´1)

So,

lim
aÑ0+

a2´ 1
a

a´1
= lim

aÑ0+

(a´1)(a2 + a+ 1)
a(a´1)

= lim
aÑ0+

a2 + a+ 1
a

= lim
aÑ0+

a+ 1+
1
a
=8

S-26:

Since x = 3 is not in the domain of the function, we simplify, hoping we can cancel a problematic
term.

lim
xÑ3

2x+ 8
1

x´3 +
1

x2´9

= lim
xÑ3

2x+ 8
x+3
x2´9 +

1
x2´9

= lim
xÑ3

2x+ 8
x+4
x2´9

= lim
xÑ3

(2x+ 8)(x2´9)
x+ 4

= 0

S-27: First, we need a rational function whose limit at infinity is a real number. This means that the
degree of the bottom is greater than or equal to the degree of the top. There are two cases: the
denominator has higher degree than the numerator, or the denominator has the same degree as the
numerator.

If the denominator has higher degree than the numerator, then lim
xÑ8

f (x) = lim
xÑ´8

f (x) = 0, so the

limits are equal–not what we’re looking for.
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If the denominator has the same degree as the numerator, then the limit as x goes to ˘8 is the ratio
of the leading terms: again, the limits are equal. So no rational function exists as described.

S-28: The amount of the substance that will linger long-term is some positive number–the
substance will stick around. One example of a substance that does this is the ink in a tattoo. (If the
injection was of medicine, probably it will be metabolized, and lim

tÑ8
c(t) = 0.)

Remark: it actually doesn’t make much sense to let t go to infinity: after a few million hours, you
won’t even have a body, so what is c(t) measuring? Often when we use formulas in the real world,
there is an understanding that they are only good for some fixed range. We often use the limit as t
goes to infinity as a stand-in for the function’s long-term behaviour.

Solutions to Exercises 2.2 — Jump to TABLE OF CONTENTS

Solutions to Exercises 2.3 — Jump to TABLE OF CONTENTS

S-1: Many answers are possible; the tangent function behaves like this.

S-2: True. Since f (t) is continuous at t = 5, that means lim
tÑ5

f (t) = f (5). For that to be true, f (5)

must exist — that is, 5 is in the domain of f (x).

S-3: True. Using the definition of continuity, lim
tÑ5

f (t) = f (5) = 17.

S-4: In general, false. If f (t) is continuous at t = 5, then f (5) = 17; if f (t) is discontinuous at
t = 5, then f (5) either does not exist, or is a number other than 17.

An example of a function with lim
tÑ5

f (t) = 17‰ f (5) is f (t) =

#

17 , t ‰ 5

0 , t = 5
, shown below.

x

y

5

S-5: Since f (x) and g(x) are continuous at zero, and since g2(x)+ 1 must be nonzero, then h(x) is
continuous at 0 as well. According to the definition of continuity, then lim

xÑ0
h(x) exists and is equal

to h(0) = 0 f (0)
g2(0)+1 = 0.
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Since the limit lim
xÑ0

h(x) exists and is equal to zero, also the one-sided limit lim
xÑ0+

h(x) exists and is

equal to zero.

S-6: Using the definition of continuity, we need k = lim
xÑ0

f (x). Since the limit is blind to what

actually happens to f (x) at x = 0, this is equivalent to k = lim
xÑ0

xsin
(

1
x

)
. So if we find the limit,

we solve the problem.

For any nonzero value of x, ´1ď sin
(1

x

)ď 1. So if we multiply x by sin
(1

x

)
, the magnitude

(absolute value) of x either stays the same or gets closer to 0. Since x is already approaching 0,

lim
xÑ0

xsin
(

1
x

)
= 0.

So, when k = 0, the function is continuous at x = 0.

S-7: f (x) is a rational function and so is continuous except when its denominator is zero. That is,
except when x = 1 and x = ´1.

S-8: The function is continuous when x2´1ą 0, i.e. (x´1)(x+1)ą 0, which yields the intervals
(´8,´1)Y (1,+8).

S-9: The function 1/
?

x is continuous on (0,+8) and the function cos(x)+ 1 is continuous
everywhere.

So 1/
a

cos(x)+ 1 is continuous except when cosx = ´1. This happens when x is an odd multiple
of π . Hence the function is continuous except at x = ˘π ,˘3π ,˘5π , . . . .

S-10: The function is continuous when sin(x) ‰ 0. That is, when x is not an integer multiple of π .

S-11: The function is continuous for x‰ c since each of those two branches are polynomials. So,
the only question is whether the function is continuous at x = c; for this we need

lim
xÑc´

f (x) = f (c) = lim
xÑc+

f (x).

We compute

lim
xÑc´

f (x) = lim
xÑc´

8´ cx = 8´ c2;

f (c) = 8´ c ¨ c = 8´ c2 and

lim
xÑc+

f (x) = lim
xÑc+

x2 = c2.

So, we need 8´ c2 = c2, which yields c2 = 4, i.e. c = ´2 or c = 2.
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S-12: The function is continuous for x‰ 0 since x2 + c and coscx are continuous everywhere. It
remains to check continuity at x = 0. To do this we must check that the following three are equal.

lim
xÑ0+

f (x) = lim
xÑ0+

x2 + c = c

f (0) = c
lim

xÑ0´
f (x) = lim

xÑ0´
coscx = cos0 = 1

Hence when c = 1 we have the limits agree.

S-13: The function is continuous for x‰ c since each of those two branches are defined by
polynomials. Thus, the only question is whether the function is continuous at x = c. Furthermore,

lim
xÑc´

f (x) = c2´4

and
lim

xÑc+
f (x) = f (c) = 3c .

For continunity we need both limits and the value to agree, so f is continuous if and only if
c2´4 = 3c, that is if and only if

c2´3c´4 = 0.

Factoring this as (c´4)(c+ 1) = 0 yields c = ´1 or c = +4.

S-14: The function is continuous for x‰ c since each of those two branches are polynomials. So,
the only question is whether the function is continuous at x = c; for this we need

lim
xÑ2c´

f (x) = f (2c) = lim
xÑ2c+

f (x).

We compute
lim

xÑ2c´
f (x) = lim

xÑ2c´
6´ cx = 6´2c2;

f (2c) = 6´ c ¨2c = 6´2c2 and

lim
xÑ2c+

f (x) = lim
xÑ2c+

x2 = 4c2.

So, we need 6´2c2 = 4c2, which yields c2 = 1, i.e. c = ´1 or c = 1.

No exercises for Section 3.1. — Jump to TABLE OF CONTENTS

Solutions to Exercises 3.2 — Jump to TABLE OF CONTENTS

S-1: If Q is to the left of the y axis, the line through Q and P is increasing, so the secant line has
positive slope. If Q is to the right of the y axis, the line through Q and P is decreasing, so the secant
line has negative slope.
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S-2: (a) By drawing a few pictures, it’s easy to see that sliding Q closer to P, the slope of the secant
line increases.

(b) Since the slope of the secant line increases the closer Q gets to P, that means the tangent line
(which is the limit as Q approaches P) has a larger slope than the secant line between Q and P
(using the location where Q is right now).

Alternately, by simply sketching the tangent line at P, we can see that has a steeper slope than the
secant line between P and Q.

S-3: The slope of the secant line will be
f (2)´ f (´2)

2´ (´2)
=

f (2)´ f (´2)
4

, in every part. So, if two

lines have the same slope, that means their differences f (2)´ f (´2) will be the same.

The graphs in (a),(c), and (e) all have f (2)´ f (´2) = 1, so they all have the same secant line slope.
The graphs in (b) and (f) both have f (2)´ f (´2) = ´1, so they both have the same secant line
slope. The graph in (d) has f (2)´ f (´2) = 0, and it is the only graph with this property, so it does
not share its secant line slope with any of the other graphs.

S-4: A good approximation from the graph is f (5) = 0.5. We want to find a secant line whose
endpoints are both very close to x = 5, but that also give us clear y-values. It looks like f (5.25) « 1,
and f (4.75) « 1

8 . The secant line from x = 5 to x = 5.25 has approximate slope
f (5.25)´ f (5)

5.25´5
« 1´ .5

.25
= 2. The secant line from x = 5 to x = 4.75 has approximate slope

0.5´ 1
8

5´4.75
=

3
2

.

The graph increases more and more quickly (gets steeper and steeper), so it makes sense that the
secant line to the left of x = 5 has a smaller slope than the secant line to the right of x = 5. Also, if
you’re taking secant lines that have endpoints farther out from x = 5, you’ll notice that the slopes of
the secant lines change quite dramatically. You have to be very, very close to x = 5 to get any kind
of accuracy.

If we split the difference, we might approximate the slope of the secant line to be the average of 3
2

and 2, which is 7
4 .

Another way to try to figure out the tangent line is by carefully drawing it in with a ruler. This is
shown here in blue:
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x

y

1 5

1

It’s much easier to take the slope of a line than a curve, and this one looks like it has slope about 1.5.
However, we drew this with a computer: by hand it’s much harder to draw an accurate tangent line.
(That’s why we need calculus!)

The actual slope of the tangent line to the function at x = 5 is about 1.484. This is extremely hard to
figure out just from the graph–by hand, a guess between 1.25 and 1.75 would be very accurate.

S-5: There is only one tangent line to f (x) at P (shown in blue), but there are infinitely many
choices of Q and R (one possibility shown in red). One easy way to sketch the secant line on paper
is to draw any line parallel to the tangent line, and choose two intercepts with y = f (x).

x

y

y = f (x)

P
Q

R

S-6: Any place the graph looks flat (if you imagine zooming in) is where the tangent line has slope
0. This occurs three times.
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x

y

y = f (x)

Notice that two of the indicated points are at a low point and a high point, respectively. Later, we’ll
use these places where the tangent line has slope zero to find where a graph achieves its biggest and
smallest values.

Solutions to Exercises 3.3 — Jump to TABLE OF CONTENTS

S-1: The function shown is a line, so it has a constant slope–(a) . Since the function is always
increasing, f 1 is always positive, so also (d) holds. Remark: it does not matter that the function itself
is sometimes negative; the slope is always positive because the function is always increasing. Also,
since the slope is constant, f 1 is neither increasing nor decreasing: it is the function that is
increasing, not its derivative.

S-2: The function is always decreasing, so f 1 is always negative, option (e). However, the function
alternates between being more and less steep, so f 1 alternates between increasing and decreasing
several times, and no other options hold.

Remark: f is always positive, but (d) does not hold!

S-3: At the left end of the graph, f is decreasing rapidly, so f 1 is a strongly negative number. Then
as we move towards x = 0, f decreases less rapidly, so f 1 is a less strongly negative number. As we
pass 0, f increases, so f 1 is a positive number. As we move to the right, f increases more and more
rapidly, so f 1 is an increasing positive number. This description tells us that f 1 increases for the
entire range shown. So (b) holds, but not (a) or (c). Since f 1 is negative to the left of the y axis, and
positive to the right of it, also (d) and (e) do not hold.

S-4: By definition, f (x) = x3 is differentiable at x = 0 if the limit

lim
hÑ0

f (h)´ f (0)
h

= lim
hÑ0

h3´0
h

exists.
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S-5: f 1(´1) does not exist, because to the left of x = ´1 the slope is a pretty big positive number
(looks like around +1) and to the right the slope is ´1/4. Since the derivative involves a limit, that
limit needs to match the limit from the left and the limit from the right. The sharp angle made by the
graph at x = ´1 indicates that the left and right limits do not match, so the derivative does not exist.

f 1(3) also does not exist. One way to see this is to notice that the function is discontinuous here.
More viscerally, note that f (3) = 1, so as we take secant lines with one endpoint (3,1), and the
other endpoint just to the right of x = 3, we get slopes that are more and more strongly negative, as
shown in the picture below. If we take the limit of the slopes of these secant lines as x goes to 3
from the right, we get ´8. (This certainly doesn’t match the slope from the left, which is ´1

4 .)

x

y

1

1

At x = ´3, there is some kind of “change” in the graph; however, it is a smooth curve, so the
derivative exists here.

S-6: True. The definition of the derivative tells us that

f 1(a) = lim
hÑ0

f (a+ h)´ f (a)
h

,

if it exists. We know from our work with limits that if both one-sided limits

lim
hÑ0´

f (a+ h)´ f (a)
h

and lim
hÑ0+

f (a+ h)´ f (a)
h

exist and are equal to each other, then

lim
hÑ0

f (a+ h)´ f (a)
h

exists and has the same value as the one-sided limits. So, since the one-sided

limits exist and are equal to one, we conclude f 1(a) exists and is equal to one.

S-7: In general, this is false. The key problem that can arise is that f (x) might not be continuous at
x = 1. One example is the function

f (x) =

#

x xă 0

x´1 xě 0

where f 1(x) = 1 whenever x‰ 0 (so in particular, lim
xÑ0´

f 1(x) = lim
xÑ0+

f 1(x) = 1) but f 1(0) does not

exist.

There are two ways to see that f 1(0) does not exist. One is to notice that f is not continuous at
x = 0.
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x

y

y = f (x)

Another way to see that f 1(0) does not exist is to use the definition of the derivative. Remember, in
order for a limit to exist, both one-sided limits must exist. Let’s consider the limit from the left. If
hÑ 0´, then hă 0, so f (h) is equal to h (not h´1).

lim
hÑ0´

f (0+ h)´ f (0)
h

= lim
hÑ0´

(h)´ (´1)
h

= lim
hÑ0´

h+ 1
h

= lim
hÑ0´

1+
1
h

= ´8

In particular, this limit does not exist. Since the one-sided limit does not exist,

lim
hÑ0

f (0+ h)´ f (0)
h

= DNE

and so f 1(0) does not exist.

S-8: Using the definition of the derivative,

s1(t) = lim
hÑ0

s(t + h)´ s(t)
h

The units of the numerator are meters, and the units of the denominator are seconds (since the
denominator comes from the change in the input of the function). So, the units of s1(t) are metres
per second.

Remark: we learned that the derivative of a position function gives velocity. In this example, the
position is given in metres, and the velocity is measured in metres per second.

S-9: We can use point-slope form to get the equation of the line, if we have a point and its slope.
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The point is given: (1,6). The slope is the derivative:

y1(1) = lim
hÑ0

y(1+ h)´ y(1)
h

= lim
hÑ0

[(1+ h)3 + 5]´ [13 + 5]
h

= lim
hÑ0

[1+ 3h+ 3h2 + h3 + 5]´ [1+ 5]
h

= lim
hÑ0

3h+ 3h2 + h3

h
= lim

hÑ0
3+ 3h+ h2

= 3

So our slope is 3, which gives a line of equation y´6 = 3(x´1).

S-10: We set up the definition of the derivative.

f 1(x) = lim
hÑ0

f (x+ h)´ f (x)
h

= lim
hÑ0

1
x+h ´ 1

x

h

= lim
hÑ0

x
x(x+h) ´ x+h

x(x+h)

h

= lim
hÑ0

x´(x+h)
x(x+h)

h

= lim
hÑ0

´h
x(x+h)

h

= lim
hÑ0

´1
x(x+ h)

=
´1
x2

S-11: By definition

f 1(0) = lim
hÑ0

f (h)´ f (0)
h

= lim
hÑ0

h|h|
h

= lim
hÑ0

|h|= 0

In particular, the limit exists, so the derivative exists (and is equal to zero).

S-12: We set up the definition of the derivative.

f 1(x) = lim
hÑ0

f (x+ h)´ f (x)
h

= lim
hÑ0

1
h

( 2
x+ h+ 1

´ 2
x+ 1

)
= lim

hÑ0

2
h
(x+ 1)´ (x+ h+ 1)
(x+ h+ 1)(x+ 1)

= lim
hÑ0

2
h

´h
(x+ h+ 1)(x+ 1)

= lim
hÑ0

´2
(x+ h+ 1)(x+ 1)

=
´2

(x+ 1)2
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S-13:

f 1(x) = lim
hÑ0

f (x+ h)´ f (x)
h

= lim
hÑ0

1
h

( 1
(x+ h)2 + 3

´ 1
x2 + 3

)
= lim

hÑ0

1
h

x2´ (x+ h)2

[(x+ h)2 + 3][x2 + 3]

= lim
hÑ0

1
h

´2xh´h2

[(x+ h)2 + 3][x2 + 3]
= lim

hÑ0

´2x´h
[(x+ h)2 + 3][x2 + 3]

=
´2x

[x2 + 3]2

S-14: The slope of the tangent line is the derivative. We set this up using the same definition of the
derivative that we always do. This limit is hard to take for general x, but easy when x = 0.

f 1(0) = lim
hÑ0

f (0+ h)´ f (0)
h

= lim
hÑ0

h log10(2h+ 10)´0
h

= lim
hÑ0

log10(2h+ 10) = log10(10) = 1

So, the slope of the tangent line is 1.

S-15:

f 1(x) = lim
hÑ0

f (x+ h)´ f (x)
h

= lim
hÑ0

1
(x+h)2 ´ 1

x2

h
= lim

hÑ0

x2´ (x+ h)2

(x+ h)2x2h
= lim

hÑ0

´2xh´h2

(x+ h)2x2h

= lim
hÑ0

´2x´h
(x+ h)2x2 =

´2x
x4 = ´ 2

x3

S-16: When x is not equal to 2, then the function is differentiable– the only place we have to worry
about is when x is exactly 2.

In order for f to be differentiable at x = 2, it must also be continuous at x = 2. This forces
x2
ˇ

ˇ

x=2 =
[
ax+ b

]
x=2 or

2a+ b = 4.

In order for a limit to exist, the left- and right-hand limits must exist and be equal to each other.
Since a derivative is a limit, in order for f to be differentiable at x = 2, the left hand derivative of
ax+ b at x = 2 must be the same as the right hand derivative of x2 at x = 2. Since ax+ b is a line,
its derivative is a everywhere. We’ve already seen the derivative of x2 is 2x, so we need

a = 2x
ˇ

ˇ

x=2 = 4.

So, the values of a and b that makes f differentiable everywhere are a = 4 and b = ´4.
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S-17: We plug in f (x) to the definition of a derivative. To evaluate the limit, we multiply and
divide by the conjugate of the numerator, then simplify.

f 1(x) = lim
hÑ0

f (x+ h)´ f (x)
h

= lim
hÑ0

?
1+ x+ h´?1+ x

h

= lim
hÑ0

?
1+ x+ h´?1+ x

h

(?
1+ x+ h+

?
1+ x?

1+ x+ h+
?

1+ x

)
= lim

hÑ0

(1+ x+ h)´ (1+ x)
h(
?

1+ x+ h+
?

1+ x)

= lim
hÑ0

h
h(
?

1+ x+ h+
?

1+ x)

= lim
hÑ0

1?
1+ x+ h+

?
1+ x

=
1?

1+ x+ 0+
?

1+ x
=

1
2
?

1+ x

The domain of the function is [´1,8). In particular, f (x) is defined when x = ´1. However, f 1(x)
is not defined when x = ´1, so f 1(x) only exists over (´1,8).

Remark: lim
xÑ´1+

f 1(x) =8, so the tangent line to f (x) at the point x = ´1 has a vertical slope.

S-18: Recall the velocity is exactly the derivative.

v(t) = lim
hÑ0

s(t + h)´ s(t)
h

= lim
hÑ0

(t + h)4´ (t + h)2´ t4 + t2

h

= lim
hÑ0

(t4 + 4t3h+ 6t2h2 + 4th3 + h4)´ (t2 + 2th+ h2)´ t4 + t2

h

= lim
hÑ0

4t3h+ 6t2h2 + 4th3 + h4´2th´h2

h
= lim

hÑ0
4t3 + 6t2h+ 4th2 + h3´2t´h

= 4t3´2t

So, the velocity is given by v(t) = 4t3´2t.

S-19: The function is differentiable at x = 0 if the following limit:

lim
xÑ0

f (x)´ f (0)
x´0

= lim
xÑ0

f (x)´0
x

= lim
xÑ0

f (x)
x

exists (note that we used the fact that f (0) = 0 as per the definition of the first branch which
includes the point x = 0). We start by computing the left limit. For this computation, recall that if
xă 0 then

?
x2 = |x|= ´x.

lim
xÑ0´

f (x)
x

= lim
xÑ0´

?
x2 + x4

x
= lim

xÑ0´

?
x2
?

1+ x2

x
= lim

xÑ0

´x
?

1+ x2

x
= ´1
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Now, from the right:
lim

xÑ0+

xcosx
x

= lim
xÑ0+

cosx = 1.

Since the limit from the left does not equal the limit from the right, the derivative does not exist at
x = 0.

S-20: The function is differentiable at x = 0 if the following limit:

lim
xÑ0

f (x)´ f (0)
x´0

= lim
xÑ0

f (x)´0
x

= lim
xÑ0

f (x)
x

exists (note that we used the fact that f (0) = 0 as per the definition of the first branch which
includes the point x = 0).

We start by computing the left limit.

lim
xÑ0´

f (x)
x

= lim
xÑ0´

xcosx
x

= lim
xÑ0´

cosx = 1.

Now, from the right:

lim
xÑ0+

?
1+ x´1

x
= lim

xÑ0+

?
1+ x´1

x
¨
?

1+ x+ 1?
1+ x+ 1

= lim
xÑ0+

1+ x´1
x(
?

1+ x+ 1)
= lim

xÑ0+

1?
1+ x+ 1

=
1
2

Since the limit from the left does not equal the limit from the right, the derivative does not exist at
x = 0.

S-21: The function is differentiable at x = 0 if the following limit:

lim
xÑ0

f (x)´ f (0)
x´0

= lim
xÑ0

f (x)´0
x

= lim
xÑ0

f (x)
x

exists (note that we used the fact that f (0) = 0 as per the definition of the first branch which
includes the point x = 0). We compute left and right limits; so

lim
xÑ0´

f (x)
x

= lim
xÑ0´

x3´7x2

x
= lim

xÑ0´
x2´7x = 0

and

lim
xÑ0+

x3 cos
(1

x

)
x

= lim
xÑ0+

x2 ¨ cos
(

1
x

)
.

This last limit equals 0 (see Question 23 in 2.1.1 for a similar example).

Since the left and right limits match (they’re both equal to 0), we conclude that indeed f (x) is
differentiable at x = 0 (and its derivative at x = 0 is actually equal to 0).

308



S-22: The function is differentiable at x = 1 if the following limit:

lim
xÑ1

f (x)´ f (1)
x´1

= lim
xÑ1

f (x)´0
x´1

= lim
xÑ1

f (x)
x´1

exists (note that we used the fact that f (1) = 0 as per the definition of the first branch which
includes the point x = 0). We compute left and right limits; so

lim
xÑ1´

f (x)
x´1

= lim
xÑ1´

4x2´8x+ 4
x´1

= lim
xÑ1´

4(x´1)2

x´1
= lim

xÑ1´
4(x´1) = 0

and

lim
xÑ1+

(x´1)2 sin
( 1

x´1

)
x´1

= lim
xÑ1+

(x´1) ¨ sin
(

1
x´1

)
.

For this last limit, note that
ˇ

ˇsin
( 1

x´1

)ˇ
ˇď 1, so

ˇ

ˇ(x´1) ¨ sin
( 1

x´1

)ˇ
ˇď |x´1|. That is, the ‘sine’ part

of the product can only make the (x´1) part closer to 0, not farther from 0. Since lim
xÑ1+

(x´1) = 0,

then also lim
xÑ1+

(x´1) ¨ sin
( 1

x´1

)
= 0.

Since the left and right limits match (they’re both equal to 0), we conclude that indeed f (x) is
differentiable at x = 1 (and its derivative at x = 1 is actually equal to 0).

S-23: Many answers are possible; here is one.

x

y

1

1

The key is to realize that the few points you’re given suggest a pattern, but don’t guarantee it. You
only know nine points; anything can happen in between.
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S-24:

p1(x) = lim
hÑ0

p(x+ h)´ p(x)
h

= lim
hÑ0

f (x+ h)+ g(x+ h)´ f (x)´g(x)
h

= lim
hÑ0

f (x+ h)´ f (x)+ g(x+ h)´g(x)
h

= lim
hÑ0

[
f (x+ h)´ f (x)

h
+

g(x+ h)´g(x)
h

]
(˚) =

[
lim
hÑ0

f (x+ h)´ f (x)
h

]
+

[
lim
hÑ0

g(x+ h)´g(x)
h

]
= f 1(x)+ g1(x)

At step (˚), we use the limit law that lim
xÑa

[F(x)+G(x)] = lim
xÑa

F(x)+ lim
xÑa

G(x), as long as

lim
xÑa

F(x) and lim
xÑa

G(x) exist. Because the problem states that f 1(x) and g1(x) exist, we know that

lim
hÑ0

f (x+ h)´ f (x)
h

and lim
hÑ0

g(x+ h)´g(x)
h

exist, so our work is valid.

S-25: (a) Since y = f (x) = 2x and y = g(x) = x are straight lines, we don’t need the definition of
the derivative (although you can use it if you like). f 1(x) = 2 and g1(x) = 1.

(b) p(x) = 2x2, so p(x) is not a line: we use the definition of a derivative to find p1(x).

p1(x) = lim
hÑ0

p(x+ h)´ p(x)
h

= lim
hÑ0

2(x+ h)2´2x2

h

= lim
hÑ0

2x2 + 4xh+ 2h2´2x2

h

= lim
hÑ0

4xh+ 2h2

h
= lim

hÑ0
4x+ 2h

= 4x

(c) No, p1(x) = 4x‰ 2 ¨1 = f 1(x) ¨g1(x). In general, the derivative of a product is not the same as
the derivative of the functions being multiplied.

S-26: We know that y1 = 2x. So, if we choose a point (α ,α2) on the curve y = x2, then the tangent
line to the curve at that point has slope 2α . That is, the tangent line has equation

(y´α
2) = 2α(x´α)

simplified, y = (2α)x´α
2
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So, if (1,´3) is on the tangent line, then

´3 = (2α)(1)´α
2

ðñ 0 = α
2´2α´3

ðñ 0 = (α´3)(α + 1)
ðñ α = 3, or α = ´1.

So, the tangent lines y = (2α)x´α2 are

y = 6x´9 and y = ´2x´1.

S-27: Using the definition of the derivative, f is differentiable at 0 if and only if

lim
hÑ0

f (h)´ f (0)
h

exists. In particular, this means f is differentiable at 0 if and only if both one-sided limits exist and
are equal to each other.

When hă 0, f (h) = 0, so

lim
hÑ0´

f (h)´ f (0)
h

= lim
hÑ0´

0´0
h

= 0

So, f is differentiable at x = 0 if and only if

lim
hÑ0+

f (h)´ f (0)
h

= 0.

To evaluate the limit above, we note f (0) = 0 and, when hą 0, f (h) = ha sin
(1

h

)
, so

lim
hÑ0+

f (h)´ f (0)
h

= lim
hÑ0+

ha sin
(1

h

)
h

= lim
hÑ0+

ha´1 sin
(

1
h

)
We will spend the rest of this solution evaluating the limit above for different values of a, to find
when it is equal to zero and when it is not. Let’s consider the different values that could be taken by
ha´1.

• If a = 1, then a´1 = 0, so ha´1 = h0 = 1 for all values of h. Then

lim
hÑ0+

ha´1 sin
(

1
h

)
= lim

hÑ0+
sin
(

1
h

)
= DNE

(Recall that the function sin
(1

x

)
oscillates faster and faster as x goes to 0. We first saw this

behaviour in Example 2.1.5 in the text.)
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• If aă 1, then a´1ă 0, so lim
hÑ0+

ha´1 =8. (Since we have a negative exponent, we are in

effect dividing by a smaller and smaller positive number. For example, if a = 1
2 , then

lim
hÑ0+

ha´1 = lim
hÑ0+

h´
1
2 = lim

hÑ0+

1?
h
=8.) Since sin

(1
x

)
goes back and forth between one

and negative one,

lim
hÑ0+

ha´1 sin
(

1
x

)
= DNE

since as h goes to 0, the function oscillates between positive and negative numbers of
ever-increasing magnitude.

• If aą 1, then a´1ą 0, so lim
hÑ0+

ha´1 = 0. Although sin
(1

x

)
oscillates wildly near x = 0, it is

bounded by ´1 and 1. So, it can’t stop the ‘going to zero’ behaviour of ha´1. (Indeed,
ha´1 sin

(1
x

)
is either equal to ha´1, or even closer to 0 than ha´1 alone.) So,

lim
hÑ0+

ha´1 sin
(

1
h

)
= 0.

In the above cases, we learned

lim
hÑ0+

f (h)´ f (0)
h

= lim
hÑ0+

ha´1 sin
(

1
x

)
= 0 when aą 1, and

lim
hÑ0+

f (h)´ f (0)
h

= lim
hÑ0+

ha´1 sin
(

1
x

)
‰ 0 when aď 1.

So, f is differentiable at x = 0 if and only if aą 1.

Solutions to Exercises 3.3 — Jump to TABLE OF CONTENTS

S-28: (a) The slope of the secant line is
h(24)´h(0)

24´0
m
hr

; this is the change in height over the

first day divided by the number of hours in the first day. So, it is the average rate of change of the
height over the first day, measured in meters per hour.

(b) Consider (a). The secant line gives the average rate of change of the height of the dam; as we let
the second point of the secant line get closer and closer to (0,h(0)), its slope approximates the
instantaneous rate of change of the height of the water. So the slope of the tangent line is the
instantaneous rate of change of the height of the water at the time t = 0, measured in m

hr .

S-29: p1(t) = lim
hÑ0

p(t + h)´ p(t)
h

« p(t + 1)´ p(t)
1

= p(t +1)´ p(t), or the difference in profit

caused by the sale of the (t + 1)st widget. So, p1(t) is the profit from the (t + 1)st widget. That is,
p1(t) is the profit per additional widget sold, when t widgets are being sold. This is called the
marginal profit per widget, when t widgets are being sold.

S-30: How quickly the temperature is changing per unit change of depth, measured in degrees per
metre. In an ordinary body of water, the temperature near the surface (d = 0) is pretty variable,
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depending on the sun, but deep down it is more stable (unless there are heat sources). So, one might
reasonably expect that |T 1(d)| is larger when d is near 0.

S-31: C1(w) = lim
hÑ0

C(w+ h)´C(w)
h

« C(w+ 1)´C(w)
1

=C(w+ 1)´C(w), which is the

number of calories in C(w+ 1) grams minus the number of calories in C(w) grams. This is the
number of calories per additional gram, when there are w grams.

S-32: The rate of change of velocity is acceleration. (If your velocity is increasing, you’re
accelerating; if your velocity is decreasing, you have negative acceleration.)

S-33: The rate of change in this case will be the relationship between the heat added and the

temperature change. lim
hÑ0

T ( j+ h)´T ( j)
h

« T ( j+ 1)´T ( j)
1

= T ( j+ 1)´T ( j), or the change

in temperature after the application of one joule. (This is closely related to heat capacity and to
specific heat — there’s a nice explanation of this on Wikipedia.)

S-34: As usual, it is instructive to think about the definition of the derivative:

P1(T ) = lim
hÑ0

P(T + h) = P(T )
h

« P(T + 1)´P(t)
1

= P(T + 1)´P(T ).

This is the difference in population between two hypothetical populations, raised one degree in
temperature apart. So, it is the number of extra individuals that exist in the hotter experiment (with
the understanding that this number could be negative, as one would expect in conditions that are
hotter than the bacteria prefer). So P1(T ) is the number of bacteria added to the colony per degree.

S-35: R1(t) is the rate at which the wheel is rotating measured in rotations per second. To convert
to degrees, we multiply by 360: 360R1(t) .

S-36: If P1(t) is positive, your sample is below the ideal temperature, because adding heat
increases the population. If P1(t) is negative, your sample is above the ideal temperature, because
adding heat decreases the population. If P1(t) = 0, then adding a little bit of heat doesn’t change the
population, but it’s unclear why this is. Perhaps your sample is deeply frozen, and adding heat
doesn’t change the fact that your population is 0. Perhaps your sample is boiling, and again,
changing the heat a little will keep the population constant at “none.” But also, at the ideal
temperature, you would expect P1(t) = 0. This is best seen by noting in the curve below, the tangent
line is horizontal at the peak.
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x

y

frozen, P1(t) = 0 boiled, P1(t) = 0ideal, P1(t) = 0

too
co

ld,
P
1 (t)
ą 0 too hot, P 1(t) ă

0

Solutions to Exercises 3.4 — Jump to TABLE OF CONTENTS

S-1: Since f 1(x) ă 0, we need a decreasing function. This only applies to (ii), (iii), and (v). Since
f 2(x) ą 0, that means f 1(x) is increasing, so the slope of the function must be increasing. In (v),
the slope is constant, so f 2(x) = 0–therefore, it’s not (v). In (iii), the slope is decreasing, because
near a the curve is quite flat ( f 1(x) near zero) but near b the curve is very steeply decreasing ( f 1(x)
is a large negative number), so (iii) has a negative second derivative. By contrast, in (ii), the line
starts out as steeply decreasing ( f 1(x) is a strongly negative number) and becomes flatter and flatter
( f 1(x) nears 0), so f 1(x) is increasing–in other words, f 2(x) ą 0. So, (ii) is the only curve that has
f 1(x) ă 0 and f 2(x) ą 0.

Solutions to Exercises 3.5 — Jump to TABLE OF CONTENTS

S-1: Since 1x = 1 for any x, we see that (b) is just the constant function y = 1, so D matches to (b).

Since 2´x = 1
2x =

(1
2

)x
, functions (a) and (d) are the same. This is the only function out of the lot

that grows as xÑ´8 and shrinks as xÑ8, so A matches to (a) and (d).

This leaves B and C to match to (c) and (e). Since 3ą 2, when xą 0, 3x ą 2x. So, (e) matches to
the function that grows more quickly to the right of the x-axis: B matches to (e), and C matches to
(c).

S-2: First, let’s consider the behaviour of exponential functions ax based on whether a is greater or

less than 1. As we know, lim
xÑ8

ax =

#

8 aą 1

0 aă 1
and lim

xÑ´8
ax =

#

0 aą 1

8 aă 1
. Our function has

lim
xÑ8

f (x) =8 and lim
xÑ´8

f (x) = 0, so we conclude aą 1: thus (d) and also (b) hold. (We could

have also seen that (b) holds because ax is defined for all real numbers.)

It remains to decide whether a is greater or less than e. (If a were equal to e, then f 1(x) would be

the same as f (x).) We saw in the text that d
dxtaxu=C(a)ax for the function C(a) = lim

hÑ0

ah´1
h

.
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We know that C(e) = 1. (Actually, we chose e to be the number that has this property.) From our

graph, we see that f 1(x) ă f (x), so C(a) ă 1 =C(e). In other words, lim
hÑ0

ah´1
h

ă lim
hÑ0

eh´1
h

; so,

aă e. Thus (e) holds.

S-3: The power rule tells us that d
dxtxnu= nxn´1. In this equation, the variable is the base, and the

exponent is a constant. In the function ex, it’s reversed: the variable is the exponent, and the base it a
constant. So, the power rule does not apply.

S-4: P(t) is an increasing function over its domain, so the population is increasing.

There are a few ways to see that P(t) is increasing.

What we really care about is whether e0.2t is increasing or decreasing, since an increasing function
multiplied by 100 is still an increasing function, and a decreasing function multiplied by 100 is still
a decreasing function. Since f (t) = et is an increasing function, we can use what we know about
graphing functions to see that f (0.2t) = e0.2t is also increasing.

S-5: The derivative of ex is ex: taking derivatives leaves the function unchanged, even if we do it
180 times. So f (180) = ex.

S-6: We simplify the functions to get a better idea of what’s going on.

(a): y = e3logx + 1 =
(
elogx)3

+ 1 = x3 + 1. This is not a line.

(b): 2y+ 5 = e3+logx = e3elogx = e3x. Since e3 is a constant, 2y+ 5 = e3x is a line.

(c): There isn’t a fancy simplification here–this isn’t a line. If that isn’t a satisfactory answer, we can
check: a line is a function with a constant slope. For our function,
y1 = d

dxte2x + 4u= d
dxte2xu= d

dx

 

(ex)2
(

= 2exex = 2e2x. Since the derivative isn’t constant, the
function isn’t a line.

(d): y = elogx3e + log2 = 3e x+ log2. Since 3e and log2 are constants, this is a line.

Solutions to Exercises 4.1 — Jump to TABLE OF CONTENTS

S-1: True: this is exactly what the Sum Rule states.

S-2: False, in general. The product rule tells us d
dxt f (x)g(x)u= f 1(x)g(x)+ f (x)g1(x). An easy

example of why we can’t do it the other way is to take f (x) = g(x) = x. Then the equation
becomes d

dxtx2u= (1)(1), which is false.

S-3: True: the quotient rule tells us

d
dx

"

f (x)
g(x)

*

=
g(x) f 1(x)´ f (x)g1(x)

g2(x)
=

g(x) f 1(x)
g2(x)

´ f (x)g1(x)
g2(x)

=
f 1(x)
g(x)

´ f (x)g1(x)
g2(x)

.
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S-4: If you’re creative, you can find lots of ways to differentiate!
Constant multiple: g1(x) = 3 f 1(x).
Product rule: g1(x) = d

dxt3u f (x)+ 3 f 1(x) = 0 f (x)+ 3 f 1(x) = 3 f 1(x).
Sum rule: g1(x) = d

dxt f (x)+ f (x)+ f (x)u= f 1(x)+ f 1(x)+ f 1(x) = 3 f 1(x).

Quotient rule: g1(x) = d
dx

"

f (x)
1
3

*

=
1
3 f 1(x)´ f (x)(0)

1
9

=
1
3 f 1(x)

1
9

= 9
(1

3

)
f 1(x) = 3 f 1(x).

All rules give g1(x) = 3 f 1(x).

S-5: We know, from Examples 3.3.10 and 3.3.14 in the text, that d
dxx2 = 2x and d

dxx1/2 = 1
2
?

x . So,
by linearity,

f 1(x) = 3 ¨2x+ 4 ¨ 1
2
?

x
= 6x+

2?
x

S-6: We differentiate a few time to find the pattern.

d
dx
t2xu= 2x log2

d2

dx2 t2xu= 2x log2 ¨ log2 = 2x(log2)2

d3

dx3 t2xu= 2x(log2)2 ¨ log2 = 2x(log2)3

Every time we differentiate, we multiply the original function by another factor of log2. So, the nth
derivative is given by:

dn

dxn t2xu= 2x(log2)n

S-7: We have already seen d
dxt
?

xu= 1
2
?

x in Example 3.3.14 of the text. Now:

f 1(x) = (2)(8
?

x´9x)+ (2x+ 5)
(

8
2
?

x
´9
)

= 16
?

x´18x+(2x+ 5)
(

4?
x
´9
)

= ´36x+ 24
?

x+
20?

x
´45

S-8: We already know that d
dxx = 1 and d

dxx2 = 2x, so we can compute the derivative of x3 by
writing x3 = (x)(x2),

d
dx

x3 =
d
dx

(x)(x2) = (1)(x2)+ (x)(2x) = 3x2

316



When this is evaluated at x = 1
2 we get 3

4 . Since we also compute
(1

2

)3
= 1

8 , the equation of the
tangent line is

y´ 1
8
=

3
4
¨
(

x´ 1
2

)
.

S-9: Let f (t) = t3´4t2 + 1. We saw in Question 8 that d
dt t

3 = 3t2. So

f 1(t) = 3t2´8t f 1(2) = 3ˆ4´8ˆ2 = ´4
f 2(t) = 6t´8 f 2(2) = 6ˆ2´8 = 4

Hence at t = 2, (a) the particle has speed of magnitude 4, and (b) is moving towards the left. At
t = 2, f 2(2) ą 0, so f 1 is increasing, i.e. becoming less negative. Since f 1 is getting closer to zero,
(c) the magnitude of the speed is decreasing.

S-10: We can use the quotient rule here.

d
dx

"

2x´1
2x+ 1

*

=
(2x+ 1)(2)´ (2x´1)(2)

(2x+ 1)2 =
4

(2x+ 1)2 =
1

(x+ 1/2)2

S-11: First, we find the y1 for general x. Using the corollary to Theorem 4.1.3 and the quotient rule:

y1 = 2
(

3x+ 1
3x´2

)
¨ d

dx

"

3x+ 1
3x´2

*

= 2
(

3x+ 1
3x´2

)(
(3x´2)(3)´ (3x+ 1)(3)

(3x´2)2

)
= 2

(
3x+ 1
3x´2

)( ´9
(3x´2)2

)
=
´18(3x+ 1)
(3x´2)3

So, plugging in x = 1:

y1(1) =
´18(3+ 1)
(3´2)3 = ´72

S-12: Using the product rule, g1(x) = f 1(x)ex + f (x)ex = [ f (x)+ f 1(x)]ex

S-13: Population growth is rate of change of population. Population in year 2000+ t is given by
P(t) = P0 + b(t)´d(t), where P0 is the initial population of the town. Then P1(t) is the expression
we’re looking for, and P1(t) = b1(t)´d1(t).
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It is interesting to note that the initial population does not obviously show up in this calculation. It
would probably affect b(t) and d(t), but if we know these we do not need to know P0 to answer our
question.

S-14: We already know that d
dxx2 = 2x. So the slope of y = 3x2 at x = a is 6a. The tangent line to

y = 3x2 at x = a,y = 3a2 is y´3a2 = 6a(x´a). This tangent line passes through (2,9) if

9´3a2 = 6a(2´a)

3a2´12a+ 9 = 0

a2´4a+ 3 = 0
(a´3)(a´1) = 0

ùñ a = 1,3

The points are (1,3), (3,27).

S-15: This limit represents the derivative computed at x = 100180 of the function f (x) =
?

x.

Since the derivative of f (x) is
1

2
?

x
, then its value at x = 100180 is exactly

1
2
?

100180
.

S-16: Let w(t) and l(t) be the width and length of the rectangle. Given in the problem is that
w1(t) = 2 and l1(t) = 5. Since both functions have constant slopes, both must be lines. Their slopes
are given, and their intercepts are w(0) = l(0) = 1. So, w(t) = 2t + 1 and l(t) = 5t + 1.

The area of the rectangle is A(t) = w(t) ¨ l(t), so using the product rule, the rate at which the area is
increasing is A1(t) = w1(t)l(t)+w(t)l1(t) = 2(5t + 1)+ 5(2t + 1) = 20t + 7 square metres per
second.

S-17: Using the product rule, f 1(x) = (2x)g(x)+ x2g1(x), so f 1(0) = 0 ¨g(x)+ 0 ¨g1(x) = 0.
(Since g is differentiable, g1 exists.)

S-18:

First expression, f (x) =
g(x)
h(x)

:

f 1(x) =
h(x)g1(x)´g(x)h1(x)

h2(x)
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Second expresson, f (x) =
g(x)
k(x)

¨ k(x)
h(x)

:

f 1(x) =
(

k(x)g1(x)´g(x)k1(x)
k2(x)

)(
k(x)
h(x)

)
+

(
g(x)
k(x)

)(
h(x)k1(x)´ k(x)h1(x)

h2(x)

)
=

k(x)g1(x)´g(x)k1(x)
k(x)h(x)

+
g(x)h(x)k1(x)´g(x)k(x)h1(x)

k(x)h2(x)

=
h(x)k(x)g1(x)´h(x)g(x)k1(x)

k(x)h2(x)
+

g(x)h(x)k1(x)´g(x)k(x)h1(x)
k(x)h2(x)

=
h(x)k(x)g1(x)´h(x)g(x)k1(x)+ g(x)h(x)k1(x)´g(x)k(x)h1(x)

k(x)h2(x)

=
h(x)k(x)g1(x)´g(x)k(x)h1(x)

k(x)h2(x)

=
h(x)g1(x)´g(x)h1(x)

h2(x)
and this is exactly what we got from differentiating the first expression.

S-19: When we say a function is differentiable without specifying a range, we mean that it is
differentiable over its domain. The function f (x) is differentiable when x‰ 1 for any values of a
and b; it is up to us to figure out which constants make it differentiable when x = 1.

In order to be differentiable, a function must be continuous. The definition of continuity tells us that,
for f to be continuous at x = 1, we need lim

xÑ1
f (x) = f (1). From the definition of f , we see

f (1) = a+ b = lim
xÑ1´

f (x), so we need lim
xÑ1+

f (x) = a+ b. Since lim
xÑ1+

f (x) = e1 = e, we

specifically need
e = a+ b.

Now, let’s consider differentiability of f at x = 1. We need the following limit to exist:

lim
hÑ0

f (1+ h)´ f (1)
h

In particular, we need the one-sided limits to exist and be equal:

lim
hÑ0´

f (1+ h)´ f (1)
h

= lim
hÑ0+

f (1+ h)´ f (1)
h

If hă 0, then 1+hă 1, so f (1+h) = a(1+h)2 +b. If hą 0, then 1+hą 1, so f (1+h) = e1+h.
With this in mind, we begin to evaluate the one-sided limits:

lim
hÑ0´

f (1+ h)´ f (1)
h

= lim
hÑ0´

[a(1+ h)2 + b]´ [a+ b]
h

= lim
hÑ0´

ah2 + 2ah
h

= 2a

lim
hÑ0+

f (1+ h)´ f (1)
h

= lim
hÑ0+

e1+h´ (a+ b)
h
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Since we take a+ b to be equal to e (to ensure continuity):

= lim
hÑ0+

e1+h´ e1

h

=
d
dx
texu

ˇ

ˇ

ˇ

ˇ

x=1
= e1 = e

So, we also need
2a = e

Therefore, the values of a and b that make f differentiable are a = b =
e
2

.

S-20: (a) Using the product rule,

g2(x) = [ f 1(x)+ f 2(x)]ex +[ f (x)+ f 1(x)]ex = [ f (x)+ 2 f 1(x)+ f 2(x)]ex

(b) Using the product rule and our answer from (a),

g3(x) = [ f 1(x)+ 2 f 2(x)+ f3(x)]ex +[ f (x)+ 2 f 1(x)+ f 2(x)]ex

= [ f (x)+ 3 f 1(x)+ 3 f 2(x)+ f3(x)]ex

(c) We notice that the coefficients of the derivatives of f correspond to the entries in the rows of
Pascal’s Triangle.

1
1 1

1 12
1 13 3

1 14 46

Pascal’s Triangle

• In the first derivative of g, the coefficients of f and f 1 correspond to the entries in the second
row of Pascal’s Triangle.

• In the second derivative of g, the coefficients of f , f 1, and f 2 correspond to the entries in the
third row of Pascal’s Triangle.

• In the third derivative of g, the coefficients of f , f 1, f 2, and f3 correspond to the entries in
the fourth row of Pascal’s Triangle.

• We guess that, in the fourth derivative of g, the coefficients of f , f 1, f 2, f3, and f (4) will
correspond to the entries in the fifth row of Pascal’s Triangle.

That is, we guess

g(4)(x) = [ f (x)+ 4 f 1(x)+ 6 f 2(x)+ 4 f3(x)+ f (4)(x)]ex
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This is verified by differentiating our answer from (a) using the product rule:

g3(x) = [ f (x)+ 3 f 1(x)+ 3 f 2(x)+ f3(x)]ex

g(4)(x) = [ f 1(x)+ 3 f 2(x)+ 3 f3(x)+ f (4)(x)]ex +[ f (x)+ 3 f 1(x)+ 3 f 2(x)+ f3(x)]ex

= [ f (x)+ 4 f 1(x)+ 6 f 2(x)+ 4 f3(x)+ f (4)(x)]ex.

Solutions to Exercises 4.1 — Jump to TABLE OF CONTENTS

S-22: In the quotient rule, there is a minus, not a plus. Also, 2(x+ 1)+ 2x is not the same as
2(x+ 1).

The correct version is:

f (x) =
2x

x+ 1

f 1(x) =
2(x+ 1)´2x
(x+ 1)2

=
2

(x+ 1)2

S-23: False: Lemma 4.1.14 tells us that, for a constant n,
d
dx
txnu= nxn´1. Note that the base x is

the variable and the exponent n is a constant. In the equation given in the question, the base 2 is a
constant, and the exponent x is the variable: this is the opposite of the situation where
Lemma 4.1.14 applies.

We do not yet know how to differentiate 2x. We’ll learn about it in Section 3.5.

S-24: Using the quotient rule,

f 1(x) =
2xex´2ex

4x2 =
ex(2x´2)

4x2 =
(x´1)ex

2x2

S-25:

f 1(x) =
d
dx
te2xu= d

dx
t(ex)2u= 2

d
dx
texuex = 2exex = 2(ex)2 = 2e2x

S-26:

ea+x = eaex
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Since ea is just a constant,

d
dx
teaexu= ea d

dx
texu= eaex = ea+x

So, f 1(x) = f (x) = ea+x.

S-27: If the derivative is positive, the function is increasing, so let’s start by finding the derivative.
We use the product rule (although Question 12 gives a shortcut).

f 1(x) = 1 ¨ ex + xex = (1+ x)ex

Since ex is always positive, f 1(x) ą 0 when 1+ xą 0. So, f (x) is increasing when xą´1.

S-28: The question asks for s2(1). We start our differentiation using the quotient rule:

s1(t) =
et(t2 + 1)´ et(2t)

(t2 + 1)2

=
et(t2´2t + 1)

(t2 + 1)2

Using the quotient rule again,

s2(t) =
(t2 + 1)2 d

dt tet(t2´2t + 1)u´ et(t2´2t + 1) d
dt t(t2 + 1)2u

(t2 + 1)4

=
(t2 + 1)2 ¨ [et(2t´2)+ et(t2´2t + 1)

]´ et(t2´2t + 1) ¨2(t2 + 1)(2t)
(t2 + 1)4

=
et(t2 + 1)2(t2´1)´4tet(t´1)2(t2 + 1)

(t2 + 1)4

s2(1) = 0

S-29: Using the product rule,

f 1(x) = (ex)(ex´1)+ (ex + 1)(ex) = ex(ex´1+ ex + 1) = 2(ex)2 = 2e2x

Alternate solution: using Question 25:

f (x) = e2x´1 ùñ f 1(x) = 2e2x.

S-30: The question asks when s1(t) is negative. So, we start by differentiating. Using the product
rule:

s1(t) = et(t2 + 2t)
= et ¨ t(t + 2)

et is always positive, so s1(t) is negative when t and 2+ t have opposite signs. This occurs when
´2ă t ă 0.
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S-31: Every time we differentiate f (x), the constant out front gets multiplied by an ever-decreasing

constant, while the power decreases by one. As in Example 3.4.2,
d15

dx15 ax15 = a ¨15!. So, if

a ¨15! = 3, then a =
3

15!
.

S-32: f (x) = 2
3x6 + 5x4 + 12x2 + 9 is a polynomial:

f 1(x) = 4x5 + 20x3 + 24x

= 4x(x4 + 5x2 + 6)

= 4x((x2)2 + 5(x2)+ 6)

= 4x(x2 + 2)(x2 + 3)

S-33: We can rewrite slightly to make every term into a power of t:

s(t) = 3t4 + 5t3´ t´1

s1(t) = 4 ¨3t3 + 3 ¨5t2´ (´1) ¨ t´2

= 12t3 + 15t2 +
1
t2

S-34: We could use the product rule here, but it’s easier to simplify first. Don’t be confused by the
role reversal of x and y: x is the name of the function, and y is the variable.

x(y) =
(

2y+
1
y

)
¨ y3

= 2y4 + y2

x1(y) = 8y3 + 2y

S-35: We’ve already seen that d
dxt
?

xu= 1
2
?

x , but if you forget this formula it is easy to figure out:?
x = x1/2, so d

dxt
?

xu= 1
2x´1/2 = 1

2
?

x .

Using the quotient rule:

T (x) =
?

x+ 1
x2 + 3

T 1(x) =
(x2 + 3)

(
1

2
?

x

)
´ (
?

x+ 1)(2x)

(x2 + 3)2
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S-36: We use quotient rule:

(x2 + 3) ¨7´2x ¨ (7x+ 2)
(x2 + 3)2 =

21´4x´7x2

(x2 + 3)2

S-37: Instead of multiplying to get our usual form of this polynomial, we can use the product rule.
If f1(x) = 3x3 + 4x2 + x+ 1 and f2(x) = 2x+ 5, then
f 11(x) = 9x2 + 8x+ 1 and f 12(x) = 2. Then

f 1(0) = f 11(0) f2(0)+ f1(0) f 12(0)
= (1)(5)+ (1)(2) = 7

S-38: Using the quotient rule,

f 1(x) =
(x2 + 5x)(9x2)´ (3x3 + 1)(2x+ 5)

(x2 + 5x)2 =
3x4 + 30x3´2x´5

(x2 + 5x)2

S-39: We use quotient rule:

(2´ x)(6x)´ (3x2 + 5)(´1)
(2´ x)2 =

´3x2 + 12x+ 5
(x´2)2

S-40: We use quotient rule:

(3x2 + 5)(´2x)´ (2´ x2)(6x)
(3x2 + 5)2 =

´22x
(3x2 + 5)2

S-41: We use quotient rule:

6x2 ¨ (x+ 2)´ (2x3 + 1) ¨1
(x+ 2)2 =

4x3 + 12x2´1
(x+ 2)2

S-42: The derivative of the function is

(1´ x2) ¨ 1
2
?

x ´
?

x ¨ (´2x)

(1´ x2)2 =
(1´ x2)´2x ¨ (´2x)

2
?

x(1´ x2)2

The derivative is undefined if either xă 0 or x = 0,˘1 (since the square-root is undefined for xă 0
and the denominator is zero when x = 0,1,´1. Putting this together — the derivative exists for
xą 0,x‰ 1.
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S-43: Using the product rule seems faster than expanding.

f 1(x) =
d
dx

 

3 5
?

x+ 15 3
?

x+ 8
((

3x2 + 8x´5
)
+(3 5

?
x+ 15 3

?
x+ 8)

d
dx

 

3x2 + 8x´5
(

=
d
dx

!

3x
1
5 + 15x

1
3 + 8

)(
3x2 + 8x´5

)
+(3 5

?
x+ 15 3

?
x+ 8)

d
dx

 

3x2 + 8x´5
(

=

(
3
5

x
´4
5 + 5x

´2
3

)(
3x2 + 8x´5

)
+(3 5

?
x+ 15 3

?
x+ 8) (6x+ 8)

S-44: To avoid the quotient rule, we can divide through the denominator:

f (x) =
(x2 + 5x+ 1)(

?
x+ 3

?
x)

x
= (x2 + 5x+ 1)

(
?

x+ 3
?

x)
x

= (x2 + 5x+ 1)(x´1/2 + x´2/3)

Now, product rule:

f 1(x) = (2x+ 5)(x´1/2 + x´2/3)+ (x2 + 5x+ 1)
(´1

2
x´3/2´ 2

3
x´5/3

)
(If you simplified differently, or used the quotient rule, you probably came up with a
different-looking answer. There is only one derivative, though, so all correct answers will look the
same after sufficient algebraic manipulation.)

S-45: We differentiate using the power rule.

d f
dx

= 3ax2 + 2bx+ c

d2 f
dx2 = 6ax+ 2b

d3 f
dx3 = 6a

d4 f
dx4 = 0

In the above work, remember that a, b, c, and d are all constants. Since they are nonzero constants,
d3 f
dx3 = 6a‰ 0. So, the fourth derivative is the first derivative to be identically zero: n = 4.

S-46: (a) In order to make f (x) a little more tractable, let’s change the format. Since

|x|=
#

x xě 0

´x xă 0
, then:

f (x) =

#

´x2 xă 0

x2 xě 0.
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Now, we turn to the definition of the derivative to figure out whether f 1(0) exists.

f 1(0) = lim
hÑ0

f (0+ h)´ f (0)
h

= lim
hÑ0

f (h)´0
h

= lim
hÑ0

f (h)
h

if it exists.

Since f looks different to the left and right of 0, in order to evaluate this limit, we look at the
corresponding one-sided limits. Note that when h approaches 0 from the right, hą 0 so f (h) = h2.
By contrast, when h approaches 0 from the left, hă 0 so f (h) = ´h2.

lim
hÑ0+

f (h)
h

= lim
hÑ0+

h2

h
= lim

hÑ0+
h = 0

lim
hÑ0´

f (h)
h

= lim
hÑ0´

´h2

h
= lim

hÑ0´
´h = 0

Since both one-sided limits exist and are equal to 0,

lim
hÑ0

f (0+ h)´ f (0)
h

= 0

and so f is differentiable at x = 0 and f 1(0) = 0.

(b) From (a), f 1(0) = 0 and

f (x) =

#

´x2 xă 0

x2 xě 0.

So,

f 1(x) =

#

´2x xă 0

2x xě 0.

Then, we know the second derivative of f everywhere except at x = 0:

f 2(x) =

$

’

’

&

’

’

%

´2 xă 0

? x = 0

2 xą 0.

So, whenever x‰ 0, f 2(x) exists. To investigate the differentiability of f 1(x) when x = 0, again we
turn to the definition of a derivative. If

lim
hÑ0

f 1(0+ h)´ f 1(0)
h

exists, then f 2(0) exists.

lim
hÑ0

f 1(0+ h)´ f 1(0)
h

= lim
hÑ0

f 1(h)´0
h

= lim
hÑ0

f 1(h)
h

Since f (h) behaves differently when h is greater than or less than zero, we look at the one-sided
limits.

lim
hÑ0+

f 1(h)
h

= lim
hÑ0+

2h
h

= 2

lim
hÑ0´

f 1(h)
h

= lim
hÑ0´

´2h
h

= ´2
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Since the one-sided limits do not agree,

lim
hÑ0

f 1(0+ h)´ f 1(0)
h

= DNE

So, f 2(0) does not exist. Now we have a complete picture of f 2(x):

f 2(x) =

$

’

’

&

’

’

%

´2 xă 0

DNE x = 0

2 xą 0.

S-47: Denote by m the slope of the common tangent, by (x1,y1) the point of tangency with y = x2,
and by (x2,y2) the point of tangency with y = x2´2x+ 2. Then we must have

y1 = x2
1 y2 = x2

2´2x2 + 2 m = 2x1 = 2x2´2 =
y2´ y1

x2´ x1

From the “m” equations we get x1 =
m
2 , x2 =

m
2 + 1 and

m =
y2´ y1

x2´ x1

= y2´ y1

= x2
2´2x2 + 2´ x2

1

= (x2´ x1)(x2 + x1)´2(x2´1)

=
(m

2
+ 1´ m

2

)(m
2
+ 1+

m
2

)
´2
(m

2
+ 1´1

)
= (1)(m+ 1)´2

m
2

= 1

So, m = 1, x1 =
1
2 , y1 =

1
4

, x2 =
3
2

, y2 =
9
4
´3+ 2 =

5
4

An equation of the common tangent is y = x´ 1
4 .

S-48: The line y = mx+ b is tangent to y = x2 at x = α if

2α = m and α
2 = mα + b ðñ m = 2α and b = ´α

2

The same line y = mx+ b is tangent to y = ´x2 + 2x´5 at x = β if

´2β + 2 = m and ´β
2 + 2β ´5 = mβ + b

ðñ m = 2´2β and b = ´β
2 + 2β ´5´ (2´2β )β = β

2´5

For the line to be simultaneously tangent to the two parabolas we need

m = 2α = 2´2β and b = ´α
2 = β

2´5

Substituting α = 1´β into ´α2 = β 2´5 gives ´(1´β )2 = β 2´5 or 2β 2´2β ´4 = 0 or
β = ´1,2. The corresponding values of the other parameters are α = 2,´1, m = 4,´2 and
b = ´4,´1. The two lines are y = 4x´4 and y = ´2x´1.
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−1 2
x

y

S-49: This limit represents the derivative computed at x = 2 of the function f (x) = x2015. To see
this, simply use the definition of the derivative at a = 2 with f (x) = x2015:

d
dx
t f (x)u

ˇ

ˇ

ˇ

ˇ

a
= lim

xÑa

f (x)´ f (a)
x´a

d
dx
tx2015u

ˇ

ˇ

ˇ

ˇ

2
= lim

xÑ2

x2015´22015

x´2

Since the derivative of f (x) is 2015 ¨ x2014, then its value at x = 2 is exactly 2015 ¨22014.

Solutions to Exercises 4.2 — Jump to TABLE OF CONTENTS

S-1:

x

y

π´π

y = sinx

y = cosx

The graph f (x) = sinx has horizontal tangent lines precisely at those points where cosx = 0. This
must be true, since d

dxtsinxu= cosx: where the derivative of sine is zero, cosine itself is zero.

S-2:

x

y

π´π

y = sinx

y = cosx

The graph f (x) = sinx has maximum slope at those points where cosx has a maximum. This makes
sense, because f 1(x) = cosx: the maximum values of the slope of sine correspond to the maximum
values of cosine.
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S-3: The velocity of the particle is given by h1(t) = sin t. Note 0ă 1ă π , so h1(1)ą 0–the particle
is rising (moving in the positive direction, in this case “up”). The acceleration of the particle is
h2(t) = cos t. Since 0ă 1ă π

2 , h2(t) ą 0, so h1(t) is increasing: the particle is moving up, and it’s
doing so at an increasing rate. So, the particle is speeding up.

S-4: For this problem, remember that velocity has a sign indicating direction, while speed does not.

The velocity of the particle is given by h1(t) = 3t2´2t´5. At t = 1, the velocity of the particle is
´4, so the particle is moving downwards with a speed of 4 units per second. The acceleration of the
particle is h2(t) = 6t´2, so when t = 1, the acceleration is (positive) 4 units per second per second.
That means the velocity (currently ´4 units per second) is becoming a bigger number–since the
velocity is negative, a bigger number is closer to zero, so the speed of the particle is getting smaller.
(For instance, a velocity of ´3 represents a slower motion than a velocity of ´4.) So, the particle is
slowing down at t = 1.

S-5: For (a) and (b), notice the following:

d
dx

sinx = cosx

d
dx

cosx = ´sinx

d
dx
t´sinxu= ´cosx

d
dx
t´cosxu= sinx

d
dx

sinx = cosx

The fourth derivative is sinx is sinx, and the fourth derivative of cosx is cosx, so (a) and (b) are true.

d
dx

tanx = sec2 x

d
dx

sec2 x = 2secx(secx tanx) = 2sec2 x tanx

d
dx
t2sec2 x tanxu= (4secx ¨ secx tanx) tanx+ 2sec2 xsec2 x

= 4sec2 x tan2 x+ 2sec4 x
d
dx
t4sec2 x tan2 x+ 2sec4 xu= (8secx ¨ secx tanx) tan2 x+ 4sec2 x(2tanx ¨ sec2 x)

+ 8sec3 x ¨ secx tanx

= 8sec2 x tan3 x+ 16sec4 x tanx

So,
d4

dx4 tanx = 8sec2 x tan3 x+ 16sec4 x tanx. It certainly seems like this is not the same as tanx,

but remember that sometimes trig identities can fool you: tan2 x+ 1 = sec2 x, and so on. So, to be
absolutely sure that these are not equal, we need to find a value of x so that the output of one is not
the same as the output of the other. When x = π

4 :

8sec2 x tan3 x+ 16sec4 x tanx = 8
(?

2
)2

(1)3 + 16
(?

2
)4

(1) = 80‰ 1 = tanx.
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So, (c) is false.

S-6: You should memorize the derivatives of sine, cosine, and tangent.
f 1(x) = cosx´ sinx+ sec2 x

S-7: f 1(x) = cosx´ sinx, so f 1(x) = 0 precisely when sinx = cosx. This happens at π/4, but it
also happens at 5π/4. By looking at the unit circle, it is clear that sinx = cosx whenever
x = π

4 +πn for some integer n.

x

y

sin(π/4) = cos(π/4)

sin(5π/4) = cos(5π/4)

S-8:

• Solution 1: f (x) = sin2 x+ cos2 x = 1, so f 1(x) = d
dxt1u= 0.

• Solution 2: Using the formula for the derivative of a squared function,

f 1(x) = 2sinxcosx+ 2cosx(´sinx) = 2sinxcosx´2sinxcosx = 0.

S-9: It is true that 2sinxcosx = sin(2x), but we don’t know the derivative of sin(2x). So, we use
the product rule:

f 1(x) = 2cosxcosx+ 2sinx(´sinx) = 2(cos2 x´ sin2 x).

S-10:

• Solution 1: using the product rule,

f 1(x) = ex cotx+ ex(´csc2 x) = ex(cotx´ csc2 x).

• Solution 2: using the formula from Question 12, Section 3.5,

f 1(x) = ex(cotx´ csc2 x).
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S-11: We use the quotient rule.

f 1(x) =
(cosx+ tanx)(2cosx+ 3sec2 x)´ (2sinx+ 3tanx)(´sinx+ sec2 x)

(cosx+ tanx)2

=
2cos2 x+ 3cosxsec2 x+ 2cosx tanx+ 3tanxsec2 x

(cosx+ tanx)2

+
2sin2 x´2sinxsec2 x+ 3sinx tanx´3tanxsec2 x

(cosx+ tanx)2

=
2+ 3secx+ 2sinx´2tanxsecx+ 3sinx tanx

(cosx+ tanx)2

S-12: We use the quotient rule.

f 1(x) =
ex(5secx tanx)´ (5secx+ 1)ex

(ex)2

=
5secx tanx´5secx´1

ex

S-13: We use the product rule:

f 1(x) = (ex + cotx)(30x5 + cscxcotx)+ (ex´ csc2 x)(5x6´ cscx)

S-14: We don’t know how to differentiate this function as it is written, but an identity helps us.
Since sin

(
π

2 ´θ
)
= cosθ , we see f 1(θ ) = d

dθ
tcosθu= ´sin(θ ).

S-15: We know the derivative of sinx, but not of sin(´x). So we re-write f (x) using identities:

f (x) = sin(´x)+ cos(´x)
= ´sinx+ cosx

f 1(x) = ´cosx´ sinx

S-16: We apply the quotient rule.

s1(θ ) =
(cosθ ´ sinθ )(´sinθ + cosθ )´ (cosθ + sinθ )(´sinθ ´ cosθ )

(cosθ ´ sinθ )2

=
(cosθ ´ sinθ )2 +(cosθ + sinθ )2

(cosθ ´ sinθ )2

= 1+
(

cosθ + sinθ

cosθ ´ sinθ

)2
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S-17: In order for f to be differentiable at x = 0, it must also be continuous at x = 0. This forces

lim
xÑ0´

f (x) = lim
xÑ0+

f (x) = f (0) or lim
xÑ0´

cos(x) = lim
xÑ0+

(ax+ b) = 1

or b = 1. In order for f to be differentiable at x = 0, we need the limit

lim
hÑ0

f (0+ h)´ f (0)
h

to exist. This is the case if and only if the two one–sided limits

lim
hÑ0´

f (0+ h)´ f (0)
h

= lim
hÑ0´

cos(h)´ cos(0)
h

and

lim
hÑ0+

f (0+ h)´ f (0)
h

= lim
hÑ0+

(ah+ b)´ cos(0)
h

= a since b = 1

exist and are equal. Because cos(x) is differentiable at x = 0 we have

lim
hÑ0´

cos(h)´ cos(0)
h

=
d
dx

cos(x)
ˇ

ˇ

ˇ

ˇ

x=0
= ´sin(x)

ˇ

ˇ

ˇ

x=0
= 0

So, we need a = 0 and b = 1.

S-18: We compute the derivative of cos(x)+ 2x as being ´sin(x)+ 2, which evaluated at x = π

2
yields ´1+ 2 = 1. Since we also compute cos(π/2)+ 2(π/2) = 0+π , then the equation of the
tangent line is

y´π = 1 ¨ (x´π/2).

S-19: This limit represents the derivative computed at x = 2015 of the function f (x) = cos(x). To
see this, simply use the definition of the derivative at a = 2015 with f (x) = cosx:

d
dx
t f (x)u

ˇ

ˇ

ˇ

ˇ

a
= lim

xÑa

f (x)´ f (a)
x´a

d
dx
tcosxu

ˇ

ˇ

ˇ

ˇ

2015
= lim

xÑ2015

cos(x)´ cos(2015)
x´2015

Since the derivative of f (x) is ´sin(x), its value at x = 2015 is exactly ´sin(2015).

S-20: This limit represents the derivative computed at x = π/3 of the function f (x) = cosx. To
see this, simply use the definition of the derivative at a = π/3 with f (x) = cosx:

d
dx
t f (x)u

ˇ

ˇ

ˇ

ˇ

a
= lim

xÑa

f (x)´ f (a)
x´a

d
dx
tcosxu

ˇ

ˇ

ˇ

ˇ

π/3
= lim

xÑπ/3

cos(x)´ cos(π/3)
x´π/3

= lim
xÑπ/3

cos(x)´1/2
x´π/3
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Since the derivative of f (x) is ´sinx, then its value at x = π/3 is exactly
´sin(π/3) = ´?3/2.

S-21: This limit represents the derivative computed at x = π of the function f (x) = sin(x). To see
this, simply use the definition of the derivative at a = π with f (x) = sinx:

d
dx
t f (x)u

ˇ

ˇ

ˇ

ˇ

a
= lim

xÑa

f (x)´ f (a)
x´a

d
dx
tsinxu

ˇ

ˇ

ˇ

ˇ

π

= lim
xÑπ

sin(x)´ sin(π)
x´π

= lim
xÑπ

sin(x)
x´π

Since the derivative of f (x) is cos(x), then its value at x = π is exactly
cos(π) = ´1.

S-22:

tanθ =
sinθ

cosθ

So, using the quotient rule,

d
dθ
ttanθu= cosθ cosθ ´ sinθ (´sinθ )

cos2 θ
=

cos2 θ + sin2
θ

cos2 θ

=

(
1

cosθ

)2

= sec2
θ

S-23: In order for the function f (x) to be continuous at x = 0, the left half formula ax+ b and the

right half formula
6cosx

2+ sinx+ cosx
must match up at x = 0. This forces

aˆ0+ b =
6cos0

2+ sin0+ cos0
=

6
3
ùñ b = 2

In order for the derivative f 1(x) to exist at x = 0, the limit lim
hÑ0

f (h)´ f (0)
h

must exist. In particular,

the limits lim
hÑ0´

f (h)´ f (0)
h

and lim
hÑ0+

f (h)´ f (0)
h

must exist and be equal to each other.

When hÑ 0´, this means hă 0, so f (h) = ah+ b = ah+ 2. So:

lim
hÑ0´

f (h)´ f (0)
h

= lim
hÑ0´

(ah+ 2)´2
h

=
d
dx
tax+ 2u

ˇ

ˇ

ˇ

ˇ

x=0
= a.
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Similarly, when hÑ 0+, then hą 0, so f (h) =
6cosh

1+ sinh+ cosh
and

lim
hÑ0+

f (h)´ f (0)
h

=
d
dx

"

6cosx
2+ sinx+ cosx

*ˇ

ˇ

ˇ

ˇ

x=0

=
´6sinx(2+ sinx+ cosx)´6cosx(cosx´ sinx)

(2+ sinx+ cosx)2

ˇ

ˇ

ˇ

ˇ

x=0
.

Since the limits from the left and right must be equal, this forces

a =
´6sin0(2+ sin0+ cos0)´6cos0(cos0´ sin0)

(2+ sin0+ cos0)2 =
´6

(2+ 1)2 ùñ a = ´2
3

S-24: In order for f 1(x) to exist, f (x) has to exist. We already know that tanx does not exist
whenever x = π

2 + nπ for any integer n. If we look a little deeper, since tanx = sinx
cosx , the points

where tangent does not exist correspond exactly to the points where cosine is zero.

From its graph, tangent looks like a smooth curve over its domain, so we might guess that
everywhere tangent is defined, its derivative is defined. We can check this: f 1(x) = sec2 x =

( 1
cosx

)2
.

Indeed, wherever cosx is nonzero, f 1 exists.

So, f 1(x) exists for all values of x except when x = π

2 + nπ for some integer n.

S-25: The function is differentiable whenever x2 + x´6‰ 0 since the derivative equals

10cos(x) ¨ (x2 + x´6)´10sin(x) ¨ (2x+ 1)
(x2 + x´6)2 ,

which is well-defined unless x2 + x´6 = 0. We solve x2 + x´6 = (x´2)(x+ 3) = 0, and get
x = 2 and x = ´3. So, the function is differentiable for all real values x except for x = 2 and for
x = ´3.

S-26: The function is differentiable whenever sin(x) ‰ 0 since the derivative equals

sin(x) ¨ (2x+ 6)´ cos(x) ¨ (x2 + 6x+ 5)
(sinx)2 ,

which is well-defined unless sinx = 0. This happens when x is an integer multiple of π . So, the
function is differentiable for all real values x except x = nπ ,, where n is any integer.

S-27: We compute the derivative of tan(x) as being sec2(x), which evaluated at x = π

4 yields 2.
Since we also compute tan(π/4) = 1, then the equation of the tangent line is

y´1 = 2 ¨ (x´π/4).
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S-28: We compute the derivative y1 = cos(x)´ sin(x)+ ex, which evaluated at x = 0 yields
1´0+ 1 = 2. Since we also compute y(0) = 0+ 1+ 1 = 2, the equation of the tangent line is

y´2 = 2(x´0)

ie y = 2x+ 2.

S-29: We are asked to solve f 1(x) = 0. That is, ex[sinx+ cosx] = 0. Since ex is always positive,
that means we need to find all points where sinx+ cosx = 0. That is, we need to find all values of x
where sinx = ´cosx. Looking at the unit circle, we see this happens whenever x = 3π

4 +nπ for any
integer n.

x

y

sin(´π/4) = ´cos(´π/4)

sin(3π/4) = ´cos(3π/4)

S-31: As usual, when dealing with the absolute value function, we can make things a little clearer
by splitting it up into two pieces.

|x|=
#

x xě 0

´x xă 0

So,

sin |x|=
#

sinx xě 0

sin(´x) xă 0
=

#

sinx xě 0

´sinx xă 0

where we used the identity sin(´x) = ´sinx. From here, it’s easy to see h1(x) when x is anything
other than zero.

d
dx
tsin |x|u=

$

’

’

&

’

’

%

cosx xą 0

? x = 0

´cosx xă 0

To decide whether h(x) is differentiable at x = 0, we use the definition of the derivative. One word
of explanation: usually in the definition of the derivative, h is the tiny “change in x” that is going to
zero. Since h is the name of our function, we need another letter to stand for the tiny change in x,
the size of which is tending to zero. We chose t.

lim
tÑ0

h(t + 0)´h(0)
t

= lim
tÑ0

sin |t|
t
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We consider the behaviour of this function to the left and right of t = 0:

sin |t|
t

=

#

sin t
t t ě 0

sin(´t)
t t ă 0

=

#

sin t
t t ě 0

´ sin t
t t ă 0

Since we’re evaluating the limit as t goes to zero, we need the fact that lim
tÑ0

sin t
t

= 1. We saw this in

Section 3.5, but also we know enough now to evaluate it another way. Using the definition of the
derivative:

lim
tÑ0

sin t
t

= lim
tÑ0

sin(t + 0)´ sin(0)
t

=
d
dx
tsinxu

ˇ

ˇ

ˇ

ˇ

t=0
= cos0 = 1

At any rate, since we know lim
tÑ0

sin t
t

= 1, then:

lim
tÑ0+

h(t + 0)´h(0)
t

= lim
tÑ0+

sin t
t

= 1 lim
tÑ0´

h(t + 0)´h(0)
t

= lim
tÑ0´

´sin t
t

= ´1

So, since the one-sided limits disagree,

lim
tÑ0

h(t + 0)´h(0)
t

= DNE

so h(x) is not differentiable at x = 0. Therefore,

h1(x) =

#

cosx xą 0

´cosx xă 0

S-32: Statement i is false, since f (0) = 0. Statement iv cannot hold, since a function that is
differentiable is also continuous.

Since lim
xÑ0+

sinx
x

= 1 (we saw this in Section 4.2),

lim
xÑ0+

f (x) = lim
xÑ0+

sinx?
x

= lim
xÑ0+

?
x

sinx
x

= 0 ¨1 = 0

So f is continuous at x = 0, and so Statement ii does not hold. Now, let’s consider f 1(x).

lim
xÑ0+

f (x)´ f (0)
x

= lim
xÑ0+

sinx?
x ´0

x

= lim
xÑ0+

1?
x

sinx
x

= +8
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Therefore, using the definition of the derivative,

f 1(0) = lim
xÑ0

f (x)´ f (0)
x

if it exists, but

lim
xÑ0

f (x)´ f (0)
x

= DNE

since one of the one-sided limits does not exist. So f is continuous but not differentiable at x = 0.
The correct statement is iii.

S-33: Recall that lim
xÑ0

sinx
x

= 1. In order to take advantage of this knowledge, we divide the

numerator and denominator by x5 (because 5 is the power of sine in the denominator, and a
denominator that goes to zero generally makes a limit harder).

lim
xÑ0

sinx27 + 2x5ex99

sin5 x
= lim

xÑ0

sinx27

x5 + 2ex99

(
sinx

x

)5

Now the denominator goes to 1, which is nice, but we need to take care of the fraction
sinx27

x5 in the

numerator. This fraction isn’t very familiar, but we know that, as x goes to zero, x27 also goes to

zero, so that
sinx27

x27 goes to 1. Consequently,

lim
xÑ0

sinx27 + 2x5ex99

sin5 x
= lim

xÑ0

x22 sinx27

x27 + 2ex99

(
sinx

x

)5 =
0ˆ1+ 2ˆ e0

15 = 2

Solutions to Exercises 4.3 — Jump to TABLE OF CONTENTS

S-1: (a) More urchins means less kelp, and fewer urchins means more kelp. This means kelp and
urchins are negatively correlated, so dK

dU ă 0.

If you aren’t sure why that is, we give a more detailed explanation here, using the definition of the
derivative. When h is a positive number, U + h is greater than U , so K(U + h) is less than U , hence
K(U + h)´K(U) ă 0. Therefore:

lim
hÑ0+

K(U + h)´K(U)

h
=

negative
positive

ă 0.

Similarly, when h is negative, U + h is less than U , so K(U + h)´K(U) ą 0, and

lim
hÑ0´

K(U + h)´K(U)

h
=

positive
negative

ă 0.
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Therefore:
dK
dU

= lim
hÑ0

K(U + h)´K(U)

h
ă 0.

(b) More otters means fewer urchins, and fewer otters means more urchins. So, otters and urchins
are negatively correlated: dU

dO ă 0.
(c) Using the chain rule, dK

dO = dK
dU ¨ dU

dO . Parts (a) and (b) tell us both these derivatives are negative,
so their product is positive: dK

dO ą 0.

We can also see that dK
dO ą 0 by thinking about the relationships as described. When the otter

population increases, the urchin population decreases, so the kelp population increases. That means
when the otter population increases, the kelp population also increases, so kelp and otters are
positively correlated. The chain rule is a formal version of this kind of reasoning.

S-2:
dA
dE

=
dA
dB
¨ dB

dC
¨ dC

dD
¨ dD

dE
ă 0

since we multiply three positive quantities and one negative.

S-3: Applying the chain rule:

d
dx
tcos(5x+ 3)u= ´sin(5x+ 3) ¨ d

dx
t5x+ 3u

= ´sin(5x+ 3) ¨5

S-4: Using the chain rule,

f 1(x) =
d
dx

!(
x2 + 2

)5
)

= 5
(
x2 + 2

)4 ¨ d
dx
tx2 + 2u

= 5(x2 + 2)4 ¨2x

= 10x(x2 + 2)4

S-5: Using the chain rule,

T 1(k) =
d
dk

!(
4k4 + 2k2 + 1

)17
)

= 17(4k4 + 2k2 + 1)16 ¨ d
dk
t4k4 + 2k2 + 1u

= 17(4k4 + 2k2 + 1)16 ¨ (16k3 + 4k)
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S-6: Using the chain rule:

d
dx

$

&

%

d

x2 + 1
x2´1

,

.

-

=
1

2
b

x2+1
x2´1

¨ d
dx

"

x2 + 1
x2´1

*

=
1
2

d

x2´1
x2 + 1

¨ d
dx

"

x2 + 1
x2´1

*

And now, the quotient rule:

=
1
2

d

x2´1
x2 + 1

¨
(
(x2´1)(2x)´ (x2 + 1)2x

(x2´1)2

)

=
1
2

d

x2´1
x2 + 1

¨
( ´4x
(x2´1)2

)

=

d

x2´1
x2 + 1

¨
( ´2x
(x2´1)2

)
=

´2x
(x2´1)

?
x4´1

S-7: If we let g(x) = ex and h(x) = cos(x2), then f (x) = g(h(x)), so f 1(x) = g1(h(x)) ¨h1(x).

f 1(x) = ecos(x2) ¨ d
dx
tcos(x2)u

In order to evaluate d
dxtcos(x2)u, we’ll need the chain rule again.

= ecos(x2) ¨ [´sin(x2)] ¨ d
dx
tx2u

= ´ecos(x2) ¨ sin(x2) ¨2x

S-8: We use the chain rule, followed by the quotient rule:

f 1(x) = g1
(

x
h(x)

)
¨ d

dx

"

x
h(x)

*

= g1
(

x
h(x)

)
¨ h(x)´ xh1(x)

h(x)2

When x = 2:

f 1(2) = g1
(

2
h(2)

)
h(2)´2h1(2)

h(2)2

= 4
2´2ˆ3

22 = ´4
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S-9: Using the chain rule, followed by the product rule:

d
dx

!

excos(x)
)

= excosx d
dx
txcosxu

= [cosx´ xsinx]excos(x)

S-10: Using the chain rule:

d
dx

!

ex2+cos(x)
)

= ex2+cosx d
dx

 

x2 + cosx
(

= [2x´ sinx]ex2+cos(x)

S-11: Using the chain rule, followed by the quotient rule:

d
dx

#

c

x´1
x+ 2

+

=
1

2
c

x´1
x+ 2

d
dx

"

x´1
x+ 2

*

=

?
x+ 2

2
?

x´1
¨ (x+ 2)´ (x´1)

(x+ 2)2

=
3

2
?

x´1
?

x+ 23

S-12: First, we manipulate our function to make it easier to differentiate:

f (x) = x´2 +(x2´1)1/2

Now, we can use the power rule to differentiate
1
x2 . This will be easier than differentiating

1
x2 using

quotient rule, but if you prefer, quotient rule will also work.

f 1(x) = ´2x´3 +
1
2
(x2´1)´1/2 ¨ d

dx
tx2´1u

= ´2x´3 +
1
2
(x2´1)´1/2(2x)

=
´2
x3 +

x?
x2´1

The function f (x) is only defined when x‰ 0 and when x2´1ě 0. That is, when x is in
(´8,´1]Y [1,8). We have an added restriction on the domain of f 1(x): x2´1 must not be zero.
So, the domain of f 1(x) is (´8,´1)Y (1,8).
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S-13: We use the quotient rule, noting that
d
dx
tsin5xu= 5cos5x:

f 1(x) =
(1+ x2)(5cos5x)´ (sin5x)(2x)

(1+ x2)2

S-14: If we let g(x) = secx and h(x) = e2x+7, then f (x) = g(h(x)), so by the chain rule,
f 1(x) = g1(h(x)) ¨h1(x). Since g1(x) = secx tanx:

f 1(x) = g1(h(x)) ¨h1(x)
= sec(h(x)) tan(h(x)) ¨h1(x)
= sec(e2x+7) tan(e2x+7) ¨ d

dx

 

e2x+7(

Here, we need the chain rule again:

= sec(e2x+7) tan(e2x+7) ¨
[

e2x+7 ¨ d
dx
t2x+ 7u

]
= sec(e2x+7) tan(e2x+7) ¨ [e2x+7 ¨2]
= 2e2x+7 sec(e2x+7) tan(e2x+7)

S-15: It is possible to start in on this problem with the product rule and then the chain rule, but it’s
easier if we simplify first. Since tan2 x+ 1 = sec2 x = 1

cos2 x , we see

f (x) =
cos2 x
cos2 x

= 1

for all values of x for which cosx is nonzero. That is, f (x) = 1 for every x that is not an integer
multiple of π/2 (and f (x) is not defined when x is an integer multiple of π/2). Therefore,
f 1(x) = 0 for every x on which f exists, and in particular f 1(π/4) = 0. Also, f (π/4) = 1, so the
tangent line to f at x = π/4 is the line with slope 0, passing through the point (π/4,1):

y = 1

S-16: Velocity is the derivative of position with respect to time. So, the velocity of the particle is
given by s1(t). We need to find s1(t), and determine when it is zero.

To differentiate, we us the chain rule.

s1(t) = et3´7t2+8t ¨ d
dt
tt3´7t2 + 8tu

= et3´7t2+8t ¨ (3t2´14t + 8)
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To determine where this function is zero, we factor:

= et3´7t2+8t ¨ (3t´2)(t´4)

So, the velocity is zero when et3´7t2+8t = 0, when 3t´2 = 0, and when t´4 = 0. Since et3´7t2+8t

is never zero, this tells us that the velocity is zero precisely when t = 2
3 or t = 4.

S-17: The slope of the tangent line is the derivative. If we let f (x) = tanx and g(x) = ex2
, then

f (g(x)) = tan(ex2
), so y1 = f 1(g(x)) ¨g1(x):

y1 = sec2(ex2
) ¨ d

dx
tex2u

We find ourselves once more in need of the chain rule:

= sec2(ex2
) ¨ ex2 d

dx
tx2u

= sec2(ex2
) ¨ ex2 ¨2x

Finally, we evaluate this derivative at the point x = 1:

y1(1) = sec2(e) ¨ e ¨2
= 2esec2 e

S-18: Using the Product rule,

y1 =
d
dx
te4xu tanx+ e4x sec2 x

and the chain rule:

= e4x ¨ d
dx
t4xu ¨ tanx+ e4x sec2 x

= 4e4x tanx+ e4x sec2 x

S-19: Using the quotient rule,

f 1(x) =
(3x2)(1+ e3x)´ (x3) ¨ d

dxt1+ e3xu
(1+ e3x)2

Now, the chain rule:

=
(3x2)(1+ e3x)´ (x3)(3e3x)

(1+ e3x)2

So, when x = 1:

f 1(1) =
3(1+ e3)´3e3

(1+ e3)2 =
3

(1+ e3)2
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S-20: This requires us to apply the chain rule twice.

d
dx

!

esin2(x)
)

= esin2(x) ¨ d
dx

 

sin2(x)
(

= esin2(x)(2sin(x)) ¨ d
dx

sin(x)

= esin2(x)(2sin(x)) ¨ cos(x)

S-21: This requires us to apply the chain rule twice.

d
dx

!

sin(e5x)
)

= cos
(

e5x
)
¨ d

dx

!

e5x
)

= cos(e5x)(e5x) ¨ d
dx
t5xu

= cos(e5x)(e5x) ¨5

S-22: We’ll use the chain rule twice.

d
dx

!

ecos(x2)
)

= ecos(x2) ¨ d
dx
tcos(x2)u

= ecos(x2) ¨ (´sin(x2)) ¨ d
dx
tx2u

= ´ecos(x2) ¨ sin(x2) ¨2x

S-23: We start with the chain rule:

y1 = ´sin
(
x2 +

a

x2 + 1
) ¨ d

dx

!

x2 +
a

x2 + 1
)

= ´sin
(
x2 +

a

x2 + 1
) ¨(2x+

d
dx

!

a

x2 + 1
)

)
and find ourselves in need of chain rule a second time:

= ´sin
(
x2 +

a

x2 + 1
) ¨(2x+

1
2
?

x2 + 1
¨ d

dx

 

x2 + 1
(

)
= ´sin

(
x2 +

a

x2 + 1
) ¨(2x+

2x
2
?

x2 + 1

)

S-24:

y = (1+ x2)cos2 x
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Using the product rule,

y1 = (2x)cos2 x+(1+ x2)
d
dx
tcos2 xu

Here, we’ll need to use the chain rule. Remember cos2 x = [cosx]2.

= 2xcos2 x+(1+ x2)2cosx ¨ d
dx
tcosxu

= 2xcos2 x+(1+ x2)2cosx ¨ (´sinx)

= 2xcos2 x´2(1+ x2) sinxcosx

S-25: We use the quotient rule, noting by the chain rule that d
dxte3xu= 3e3x:

y1 =
(1+ x2) ¨3e3x´ e3x(2x)

(1+ x2)2

=
e3x(3x2´2x+ 3)

(1+ x2)2

S-26: By the chain rule,

d
dx

 

h
(
x2)(= h1(x2) ¨2x

Using the product rules and the result above,

g1(x) = 3x2h(x2)+ x3h1(x2)2x

Plugging in x = 2:

g1(2) = 3(22)h(22)+ 23h1(22)2ˆ2
= 12h(4)+ 32h1(4) = 12ˆ2´32ˆ2
= ´40

S-27: Let f (x) = xe´(x
2´1)/2 = xe(1´x2)/2. Then, using the product rule,

f 1(x) = e(1´x2)/2 + x ¨ d
dx

!

e(1´x2)/2
)

Here, we need the chain rule:

= e(1´x2)/2 + x ¨ e(1´x2)/2 d
dx

"

1
2
(1´ x2)

*

= e(1´x2)/2 + x ¨ e(1´x2)/2 ¨ (´x)

= (1´ x2)e(1´x2)/2
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There is no power of e that is equal to zero; so if the product above is zero, it must be that
1´ x2 = 0. This happens for x = ˘1. On the curve, when x = 1, y = 1, and when x = ´1, y = ´1.
So the points are (1,1) and (´1,´1).

S-28: The question asks when s1(t) is negative. So, we start by differentiating. Using the chain rule:

s1(t) = cos
(

1
t

)
¨ d

dt

"

1
t

*

= cos
(

1
t

)
¨ ´1

t2

When t ě 1, 1
t is between 0 and 1. Since cosθ is positive for 0ď θ ă π/2, and π/2ą 1, we see

that cos
(1

t

)
is positive for the entire domain of s(t). Also, ´1

t2 is negative for the entire domain of
the function. We conclude that s1(t) is negative for the entire domain of s(t), so the particle is
always moving in the negative direction.

S-29: We present two solutions: one where we dive right in and use the quotient rule, and another
where we simplify first and use the product rule.

• Solution 1: We begin with the quotient rule:

f 1(x) =
cos3(5x´7) d

dxtexu´ ex d
dxtcos3(5x´7)u

cos6(5x´7)

=
cos3(5x´7)ex´ ex d

dxtcos3(5x´7)u
cos6(5x´7)

Now, we use the chain rule. Since cos3(5x´7) = [cos(5x´7)]3, our “outside” function is
g(x) = x3, and our “inside” function is h(x) = cos(5x´1).

=
cos3(5x´7)ex´ ex ¨3cos2(5x´7) ¨ d

dxtcos(5x´7)u
cos6(5x´7)

We need the chain rule again!

=
cos3(5x´7)ex´ ex ¨3cos2(5x´7) ¨ [´sin(5x´7) ¨ d

dxt5x´7u]
cos6(5x´7)

=
cos3(5x´7)ex´ ex ¨3cos2(5x´7) ¨ [´sin(5x´7) ¨5]

cos6(5x´7)

We finish by simplifying:

=
ex cos2(5x´7) (cos(5x´7)+ 15sin(5x´7))

cos6(5x´7)

= ex cos(5x´7)+ 15sin(5x´7)
cos4(5x´7)

= ex(sec3(5x´7)+ 15tan(5x´7) sec3(5x´7))

= ex sec3(5x´7)(1+ 15tan(5x´7))
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• Solution 2: We simplify to avoid the quotient rule:

f (x) =
ex

cos3(5x´7)

= ex sec3(5x´7)

Now we use the product rule to differentiate:

f 1(x) = ex sec3(5x´7)+ ex d
dx
tsec3(5x´7)u

Here, we’ll need the chain rule. Since sec3(5x´7) = [sec(5x´7)]3, our “outside” function
is g(x) = x3 and our “inside” function is h(x) = sec(5x´7), so that
g(h(x)) = [sec(5x´7)]3 = sec3(5x´7).

= ex sec3(5x´7)+ ex ¨3 sec2(5x´7) ¨ d
dx
tsec(5x´7)u

We need the chain rule again! Recall d
dxtsecxu= secx tanx.

= ex sec3(5x´7)+ ex ¨3 sec2(5x´7) ¨ sec(5x´7) tan(5x´7) ¨ d
dx
t5x´7u

= ex sec3(5x´7)+ ex ¨3 sec2(5x´7) ¨ sec(5x´7) tan(5x´7) ¨5
We finish by simplifying:

= ex sec3(5x´7)(1+ 15tan(5x´7))

S-30:

• Solution 1: In Example 4.1.11, we generalized the product rule to three factors:

d
dx
t f (x)g(x)h(x)u= f 1(x)g(x)h(x)+ f (x)g1(x)h(x)+ f (x)g(x)h1(x)

Using this rule:

d
dx

 

(x)
(
e2x) (cos4x)

(

=
d
dx
txu ¨ e2x cos4x+ x ¨ d

dx

 

e2x( ¨ cos4x+ xe2x ¨ d
dx
tcos4xu

= e2x cos4x+ x
(
2e2x)cos4x+ xe2x(´4sin4x)

= e2x cos4x+ 2xe2x cos4x´4xe2x sin4x

• Solution 2: We can use the product rule twice. In the first step, we split the function
xe2x cos4x into the product of two functions.

d
dx

 (
xe2x) (cos4x)

(

=
d
dx

 

xe2x( ¨ cos4x+ xe2x ¨ d
dx
tcos4xu

=

(
d
dx
txu ¨ e2x + x ¨ d

dx

 

e2x(
)
¨ cos4x+ xe2x ¨ d

dx
tcos4xu

=
(
e2x + x

(
2e2x)) ¨ cos4x+ xe2x(´4sin4x)

= e2x cos4x+ 2xe2x cos4x´4xe2x sin4x
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S-31: At time t, the particle is at the point
(
x(t),y(t)

)
, with x(t) = cos t and y(t) = sin t. Over

time, the particle traces out a curve; let’s call that curve y = f (x). Then y(t) = f
(
x(t)

)
, so the

slope of the curve at the point
(
x(t),y(t)

)
is f 1

(
x(t)

)
. You are to determine the values of t for

which f 1
(
x(t)

)
= ´1.

By the chain rule

y1(t) = f 1
(
x(t)

) ¨ x1(t)
Substituting in x(t) = cos t and y(t) = sin t gives

cos t = f 1
(
x(t)

) ¨ (´ sin t
)

so that

f 1
(
x(t)

)
= ´cos t

sin t
is ´1 precisely when sin t = cos t. This happens whenever t = π

4 .

Remark: the path traced by the particle is a semicircle. You can think about the point on the unit
circle with angle t, or you can notice that x2 + y2 = sin2 t + cos2 t = 1.

S-32: Let f (x) = ex+x2
and g(x) = 1+ x. Then f (0) = g(0) = 1.

f 1(x) = (1+ 2x)ex+x2
and g1(x) = 1. When xą 0,

f 1(x) = (1+ 2x)ex+x2 ą 1 ¨ ex+x2
= ex+x2 ą e0+02

= 1 = g1(x).

Since f (0) = g(0), and f 1(x)ą g1(x) for all xą 0, that means f and g start at the same place, but f
always grows faster. Therefore, f (x) ą g(x) for all xą 0.

S-33: Since sin2x and 2sinxcosx are the same function, they have the same derivative.

sin2x = 2sinxcosx

ñ d
dx
tsin2xu= d

dx
t2sinxcosxu

2cos2x = 2[cos2 x´ sin2 x]

cos2x = cos2 x´ sin2 x

We conclude cos2x = cos2 x´ sin2 x, which is another common trig identity.

Remark: if we differentiate both sides of this equation, we get the original identity back.

S-34:

f (x) =
3

d

ecscx2

?
x3´9tanx

=

(
ecscx2

?
x3´9tanx

) 1
3
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To begin the differentiation, we can choose our “outside” function to be g(x) = x
1
3 , and our “inside”

function to be h(x) =
ecscx2

?
x3´9tanx

. Then f (x) = g(h(x)), so

f 1(x) = g1(h(x)) ¨h1(x) = 1
3(h(x))

´ 2
3 h1(x):

f 1(x) =
1
3

(
ecscx2

?
x3´9tanx

)´2
3

¨ d
dx

#

ecscx2

?
x3´9tanx

+

=
1
3

(?
x3´9tanx

ecscx2

) 2
3

¨ d
dx

#

ecscx2

?
x3´9tanx

+

This leads us to use the quotient rule:

=
1
3

(?
x3´9tanx

ecscx2

) 2
3
?x3´9tanx d

dx

!

ecscx2
)

´ ecscx2 d
dx

!?
x3´9tanx

)

(tan2 x)(x3´9)


Let’s figure out those two derivatives on their own, then plug them in. Using the chain rule twice:

d
dx

!

ecscx2
)

= ecscx2 d
dx

 

cscx2(= ecscx2 ¨ (´csc(x2)cot(x2)) ¨ d
dx
tx2u

= ´2xecscx2
csc(x2)cot(x2)

For the other derivative, we start with the product rule, then chain:

d
dx

!

a

x3´9tanx
)

=
d
dx

!

a

x3´9
)

¨ tanx+
a

x3´9sec2 x

=
1

2
?

x3´9
d
dx

 

x3´9
( ¨ tanx+

a

x3´9sec2 x

=
3x2 tanx
2
?

x3´9
+
a

x3´9sec2 x

Now, we plug these into our equation for f 1(x):

f 1(x) =
1
3

(?
x3´9tanx

ecscx2

) 2
3
?x3´9tanx d

dx

!

ecscx2
)

´ ecscx2 d
dx

!?
x3´9tanx

)

(tan2 x)(x3´9)


=

1
3

(?
x3´9tanx

ecscx2

) 2
3

¨?x3´9tanx(´2x)ecscx2
csc(x2)cot(x2)´ ecscx2

(
3x2 tanx
2
?

x3´9
+
?

x3´9sec2 x
)

(tan2 x)(x3´9)



S-35:

(a) The table below gives us a number of points on our graph, and the times they occur.

348



t (sin t, cos2 t)

0 (0,1)

π/4 ( 1?
2
, 1

2)

π/2 (1,0)

3π/4 ( 1?
2
, 1

2)

π (0,1)

5π/4 (´ 1?
2
, 1

2)

3π/2 (´1,0)

7π/4 (´ 1?
2
, 1

2)

2π (0,1)

These points will repeat with a period of 2π . With this information, we have a pretty good idea of
the particle’s motion:

x

y

(1,0)
t=π/2

(´1,0)
t=3π/2

(0,1)
t=0,π ,2π

(
´ 1?

2
, 1
2

)
t=5π/4,7π/4

(
1?
2

, 1
2

)
t=π/4,3π/4

The particle traces out an arc, pointing down. It starts at t = 0 at the top part of the graph at (1,0),
then is moves to the right until it hits (1,0) at time t = π/2. From there it reverses direction and
moves along the curve to the left, hitting the top at time t = π and reaching (´1,0) at time
t = 3π/2. Then it returns to the top at t = 2π and starts again.

So, it starts at the top of the curve, then moves back for forth along the length of the curve. If goes
right first, and repeats its cycle every 2π units of time.

(b) Let y = f (x) be the curve the particle traces in the xy-plane. Since x is a function of t,

y(t) = f (x(t)). What we want to find is
d f
dx

when t =
(

10π

3

)
. Since

d f
dx

is a function of x, we

note that when t =
(

10π

3

)
, x = sin

(
10π

3

)
= sin

(
4π

3

)
= ´

?
3

2
. So, the quantity we want to

find (the slope of the tangent line to the curve y = f (x) traced by the particle at the time

t =
(

10π

3

)
is given by

d f
dx

(
´
?

3
2

)
.

349



Using the chain rule:

y(t) = f (x(t))
dy
dt

=
d
dt
t f (x(t))u= d f

dx
¨ dx

dt

so,
d f
dx

=
dy
dt
˜ dx

dt

Using y(t) = cos2 t and x(t) = sin t:

d f
dx

= (´2cos t sin t)˜ (cos t) = ´2sin t = ´2x

So, when t =
10π

3
and x = ´

?
3

2
,

d f
dx

(´?3
2

)
= ´2 ¨ ´

?
3

2
=
?

3.

Remark: The standard way to write this problem is to omit the notation f (x), and let the variable y
stand for two functions. When t is the variable, y(t) = cos2 t gives the y-coordinate of the particle at
time t. When x is the variable, y(x) gives the y-coordinate of the particle given its position along the
x-axis. This is an abuse of notation, because if we write y(1), it is not clear whether we are referring
to the y-coordinate of the particle when t = 1 (in this case, y = cos2(1) « 0.3), or the y-coordinate
of the particle when x = 1 (in this case, looking at our table of values, y = 0). Although this notation
is not strictly “correct,” it is very commonly used. So, you might see a solution that looks like this:

The slope of the curve is
dy
dx

. To find
dy
dx

, we use the chain rule:

dy
dt

=
dy
dx
¨ dx

dt
d
dt

 

cos2 t
(

=
dy
dx
¨ d

dt
tsin tu

´2cos t sin t =
dy
dx
¨ cos t

dy
dx

= ´2sin t

So, when t =
10π

3
,

dy
dx

= ´2sin
(

10π

3

)
= ´2

(
´
?

3
2

)
=
?

3.

In this case, it is up to the reader to understand when y is used as a function of t, and when it is used
as a function of x. This notation (using y to be two functions, y(t) and y(x)) is actually the accepted
standard, so you should be able to understand it.
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S-36: (a) Using the chain rule for f (x):

f 1(x) = (1+ 2x)ex+x2

f 2(x) = (1+ 2x)(1+ 2x)ex+x2
+(2)ex+x2

= (4x2 + 4x+ 3)ex+x2

h1(x) = 1+ 3x
h2(x) = 3

(b) f (0) = h(0) = 1; f 1(0) = h1(0) = 1; f 2(0) = h2(0) = 3
(c) f and h “start at the same place,” since f (0) = h(0). If it were clear that f 1(x) were greater than
h1(x) for xą 0, then we would know that f grows faster than h, so we could conclude that
f (x) ą h(x), as desired. Unfortunately, it is not obvious whether (1+ 2x)ex+x2

is always greater
than 1+ 3x for positive x. So, we look to the second derivative. f 1(0) = h1(0), and
f 2(x) = (4x2 + 4x+ 3)ex+x2 ą 3ex+x2 ą 3 = h2(x) when xą 0. Since f 1(0) = h1(0), and since f 1

grows faster than h1 for positive x, we conclude f 1(x) ą h1(x) for all positive x. Now we can
conclude that (since f (0) = h(0) and f grows faster than h when xą 0) also f (x) ą h(x) for all
positive x.

Solutions to Exercises 4.4 — Jump to TABLE OF CONTENTS

S-1: We are given that one speaker produces 3dB. So if P is the power of one speaker,

3 = V (P) = 10log10

(
P
S

)
.

So, for ten speakers:

V (10P) = 10log10

(
10P

S

)
= 10log10

(
P
S

)
+ 10log10 (10)

= 3+ 10(1) = 13dB

and for one hundred speakers:

V (100P) = 10log10

(
100P

S

)
= 10log10

(
P
S

)
+ 10log10 (100)

= 3+ 10(2) = 23dB

S-2: The investment doubles when it hits $2000. So, we find the value of t that gives A(t) = 2000:

2000 = A(t)

2000 = 1000et/20

2 = et/20

log2 =
t

20
20log2 = t
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S-3: From our logarithm rules, we know that when y is positive, log(y2) = 2logy. However, the
expression cosx does not always take on positive values, so (a) is not correct. (For instance, when
x = π , log(cos2 x) = log(cos2 π) = log

(
(´1)2)= log(1) = 0, while 2 log(cosπ) = 2log(´1),

which does not exist.)

Because cos2 x is never negative, we notice that cos2 x = |cosx|2. When cosx is nonzero, |cosx| is
positive, so our logarithm rules tell us log

(|cosx|2)= 2log |cosx|. When cosx is exactly zero, then
both log(cos2 x) and 2log |cosx| do not exist. So, log(cos2 x) = 2log |cosx|.

S-4:

• Solution 1: Using the chain rule,
d
dx
tlog(10x)u= 1

10x
¨10 =

1
x

.

• Solution 2: Simplifying,
d
dx
tlog(10x)u= d

dx
tlog(10)+ logxu= 0+

1
x
=

1
x

.

S-5:

• Solution 1: Using the chain rule,
d
dx

 

log(x2)
(

=
1
x2 ¨2x =

2
x

.

• Solution 2: Simplifying,
d
dx

 

log(x2)
(

=
d
dx
t2log(x)u= 2

x
.

S-6: Don’t be fooled by a common mistake: log(x2 + x) is not the same as log(x2)+ logx.

We differentiate using the chain rule:
d
dx

 

log(x2 + x)
(

=
1

x2 + x
¨ (2x+ 1) =

2x+ 1
x2 + x

.

S-7: We know the derivative of the natural logarithm (base e), so we use the base-change formula:

f (x) = log10 x =
logx

log10

Since log10 is a constant:

f 1(x) =
1

x log10
.

S-8:

• Solution 1: Using the quotient rule,

y1 =
x3 1

x ´ (logx) ¨3x2

x6 =
x2´3x2 logx

x6 =
1´3logx

x4 .

• Solution 2: Using the product rule with y = logx ¨ x´3,

y1 =
1
x

x´3 + logx ¨ (´3)x´4 = x´4(1´3logx)
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S-9: Using the chain rule,

d
dθ

log(secθ ) =
1

secθ
¨ (secθ ¨ tanθ )

= tanθ

Remark: the domain of the function log(secθ ) is those values of θ for which secθ is positive: so,
the intervals

((
2n´ 1

2

)
π ,
(
2n+ 1

2

)
π
)

where n is any integer. Certainly the tangent function has a
larger domain than this, but outside the domain of log(secθ ), tanθ is not the derivative of
log(secθ ).

S-10: Let’s start in with the chain rule.

f 1(x) = ecos(logx) ¨ d
dx
tcos (logx)u

We’ll need the chain rule again:

= ecos(logx)(´sin(logx)) ¨ d
dx
tlogxu

= ecos(logx)(´sin(logx)) ¨ 1
x

=
´ecos(logx) sin(logx)

x

Remark: Although we have a logarithm in the exponent, we can’t cancel. The expression ecos(logx)

is not the same as the expression xcosx, or cosx.

S-11:

y = log(x2 +
a

x4 + 1)

So, we’ll need the chain rule:

y1 =
d
dx

 

x2 +
?

x4 + 1
(

x2 +
?

x4 + 1

=
2x+ d

dx

 
?

x4 + 1
(

x2 +
?

x4 + 1

We need the chain rule again:

=
2x+

d
dxtx4+1u
2
?

x4+1

x2 +
?

x4 + 1

=
2x+ 4x3

2
?

x4+1

x2 +
?

x4 + 1
.
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S-12: This requires us to apply the chain rule twice.

d
dx

"

b

´ log(cosx)
*

=
1

2
a´ log(cosx)

¨ d
dx
t´ log (cosx)u

= ´ 1
2
a´ log(cosx)

¨ 1
cosx

d
dx
tcosxu

= ´ 1
2
a´ log(cosx)

¨ 1
cosx

¨ (´sinx)

=
tanx

2
a´ log(cosx)

Remark: it looks strange to see a negative sign in the argument of a square root. Since the cosine
function always gives values that are at most 1, log(cosx) is always negative or zero over its
domain. So,

a

log(cosx) is only defined for the points where cosx = 1 (and so log(cosx) = 0–this
isn’t a very interesting function! In contrast, ´ log(cosx) is always positive or zero over its domain –
and therefore we can always take its square root.

S-13: Under the chain rule, d
dx log f (x) = 1

f (x) f 1(x). So

d
dx

!

log
(
x+

a

x2 + 4
))

=
1

x+
?

x2 + 4
¨ d

dx

!

x+
a

x2 + 4
)

=
1

x+
?

x2 + 4
¨
(

1+
2x

2
?

x2 + 4

)
=

1
x+

?
x2 + 4

¨
(

2
?

x2 + 4+ 2x
2
?

x2 + 4

)
=

1?
x2 + 4

S-14: Using the chain rule,

g1(x) =
d
dxtex2

+
?

1+ x4u
ex2 +

?
1+ x4

=
2xex2

+ 4x3

2
?

1+x4

ex2 +
?

1+ x4

(?
1+ x4

?
1+ x4

)

=
2xex2?

1+ x4 + 2x3

ex2
?

1+ x4 + 1+ x4
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S-15: Using logarithm rules makes this an easier problem:

g(x) = log(2x´1)´ log(2x+ 1)

So, g1(x) =
2

2x´1
´ 2

2x+ 1

and g1(1) =
2
1
´ 2

3
=

4
3

S-16: We begin by simplifying:

f (x) = log

d

(x2 + 5)3

x4 + 10


= log

((
(x2 + 5)3

x4 + 10

)1/2
)

=
1
2

log
(
(x2 + 5)3

x4 + 10

)
=

1
2
[
log
(
(x2 + 5)3)´ log(x4 + 10)

]
=

1
2
[
3log

(
(x2 + 5)

)´ log(x4 + 10)
]

Now, we differentiate using the chain rule:

f 1(x) =
1
2

[
3

2x
x2 + 5

´ 4x3

x4 + 10

]
=

3x
x2 + 5

´ 2x3

x4 + 10

Remark: it is a common mistake to write log(x2 + 4) as log(x2)+ log(4). These expressions are
not equivalent!

S-17: We use the chain rule twice, followed by the product rule:

f 1(x) =
1

g(xh(x))
¨ d

dx
tg(xh(x))u

=
1

g(xh(x))
¨g1(xh(x)) ¨ d

dx
txh(x)u

=
1

g
(
xh(x)

) ¨g1(xh(x)
) ¨ [h(x)+ xh1(x)

]
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In particular, when x = 2:

f 1(2) =
1

g
(
2h(2)

) ¨g1(2h(2)
) ¨ [h(2)+ 2h1(2)

]
=

g1(4)
g(4)

[
2+ 2ˆ3

]
=

5
3
[
2+ 2ˆ3

]
=

40
3

S-18: In the text, we saw that
d
dx
taxu= ax loga for any constant a. So,

d
dx
tπxu= π

x logπ .

By the power rule,
d
dx
txπu= πxπ´1.

Therefore, g1(x) = πx logπ +πxπ´1.

Remark: we had to use two different rules for the two different terms in g(x). Although the
functions πx and xπ look superficially the same, they behave differently, as do their derivatives. A
function of the form (constant)x is an exponential function and not eligible for the power rule,
while a function of the form xconstant is exactly the class of function the power rule applies to.

S-19: We have the power rule to tell us the derivative of functions of the form xn, where n is a
constant. However, here our exponent is not a constant. Similarly, in this section we learned the
derivative of functions of the form ax, where a is a constant, but again, our base is not a constant!

Although the result
d
dx

ax = ax loga is not what we need, the method used to differentiate ax will tell
us the derivative of xx.

We’ll set g(x) = log(xx), because now we can use logarithm rules to simplify:

g(x) = log( f (x)) = x logx

Now, we can use the product rule to differentiate the right side, and the chain rule to differentiate
log( f (x)):

g1(x) =
f 1(x)
f (x)

= logx+ x
1
x
= logx+ 1

Finally, we solve for f 1(x):

f 1(x) = f (x)(logx+ 1) = xx(logx+ 1)

S-20: In Question 19, we saw
d
dx
txxu= xx(logx+ 1). Using the base-change formula,
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log10(x) =
logx

log10
. Since log10 is a constant,

f 1(x) =
d
dx

"

xx +
logx

log10

*

= xx(logx+ 1)+
1

x log10

S-21: Rather than set in with a terrible chain rule problem, we’ll use logarithmic differentiation.
Instead of differentiating f (x), we differentiate a new function log( f (x)), after simplifying.

log( f (x)) = log
4

d

(x4 + 12)(x4´ x2 + 2)
x3

=
1
4

log
(
(x4 + 12)(x4´ x2 + 2)

x3

)
=

1
4
(
log(x4 + 12)+ log(x4´ x2 + 2)´3logx

)
Now that we’ve simplified, we can efficiently differentiate both sides. It is important to remember
that we aren’t differentiating f (x) directly–we’re differentiating log( f (x)).

f 1(x)
f (x)

=
1
4

(
4x3

x4 + 12
+

4x3´2x
x4´ x2 + 2

´ 3
x

)
Our final step is to solve for f 1(x):

f 1(x) = f (x)
1
4

(
4x3

x4 + 12
+

4x3´2x
x4´ x2 + 2

´ 3
x

)

=
1
4

 4

d

(x4 + 12)(x4´ x2 + 2)
x3

( 4x3

x4 + 12
+

4x3´2x
x4´ x2 + 2

´ 3
x

)

It was possible to differentiate this function without logarithms, but the logarithms make it more
efficient.

S-22: It’s possible to do this using the product rule a number of times, but it’s easier to use
logarithmic differentiation. Set

g(x) = log( f (x)) = log
[
(x+ 1)(x2 + 1)2(x3 + 1)3(x4 + 1)4(x5 + 1)5

]
Now we can use logarithm rules to change g(x) into a form that is friendlier to differentiate:

= log(x+ 1)+ log(x2 + 1)2 + log(x3 + 1)3 + log(x4 + 1)4 + log(x5 + 1)5

= log(x+ 1)+ 2log(x2 + 1)+ 3log(x3 + 1)+ 4log(x4 + 1)+ 5log(x5 + 1)
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Now, we differentiate g(x) using the chain rule:

g1(x) =
f 1(x)
f (x)

=
1

x+ 1
+

4x
x2 + 1

+
9x2

x3 + 1
+

16x3

x4 + 1
+

25x4

x5 + 1

Finally, we solve for f 1(x):

f 1(x) = f (x)
[

1
x+ 1

+
4x

x2 + 1
+

9x2

x3 + 1
+

16x3

x4 + 1
+

25x4

x5 + 1

]
= (x+ 1)(x2 + 1)2(x3 + 1)3(x4 + 1)4(x5 + 1)5

¨
[

1
x+ 1

+
4x

x2 + 1
+

9x2

x3 + 1
+

16x3

x4 + 1
+

25x4

x5 + 1

]

S-23: We could do this with quotient and product rules, but it would be pretty painful. Insteady,
let’s use a logarithm.

f (x) =
(

5x2 + 10x+ 15
3x4 + 4x3 + 5

)(
1

10(x+ 1)

)
=

(
x2 + 2x+ 3

3x4 + 4x3 + 5

)(
1

2(x+ 1)

)
log( f (x)) = log

[(
x2 + 2x+ 3

3x4 + 4x3 + 5

)(
1

2(x+ 1)

)]
= log

(
x2 + 2x+ 3

3x4 + 4x3 + 5

)
+ log

(
1

2(x+ 1)

)
= log

(
x2 + 2x+ 3

)´ log
(
3x4 + 4x3 + 5

)´ log(x+ 1)´ log(2)

Now we have a function that we can differentiate more cleanly than our original function.

d
dx
tlog( f (x))u= d

dx

 

log
(
x2 + 2x+ 3

)´ log
(
3x4 + 4x3 + 5

)´ log (x+ 1)´ log (2)
(

f 1(x)
f (x)

=
2x+ 2

x2 + 2x+ 3
´ 12x3 + 12x2

3x4 + 4x3 + 5
´ 1

x+ 1

=
2(x+ 1)

x2 + 2x+ 3
´ 12x2(x+ 1)

3x4 + 4x3 + 5
´ 1

x+ 1

Finally, we solve for f (x):

f 1(x) = f (x)
(

2(x+ 1)
x2 + 2x+ 3

´ 12x2(x+ 1)
3x4 + 4x3 + 5

´ 1
x+ 1

)
=

(
x2 + 2x+ 3

3x4 + 4x3 + 5

)(
1

2(x+ 1)

)(
2(x+ 1)

x2 + 2x+ 3
´ 12x2(x+ 1)

3x4 + 4x3 + 5
´ 1

x+ 1

)
=

(
x2 + 2x+ 3

3x4 + 4x3 + 5

)(
1

x2 + 2x+ 3
´ 6x2

3x4 + 4x3 + 5
´ 1

2(x+ 1)2

)
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S-24: Since f (x) has the form of a function raised to a functional power, we will use logarithmic
differentiation.

log( f (x)) = log
(
(cosx)sinx

)
= sinx ¨ log(cosx)

Logarithm rules allowed us to simplify. Now, we differentiate both sides of this equation:

f 1(x)
f (x)

= (cosx) log(cosx)+ sinx ¨ ´sinx
cosx

= (cosx) log(cosx)´ sinx tanx

Finally, we solve for f 1(x):

f 1(x) = f (x) [(cosx) log(cosx)´ sinx tanx]

= (cosx)sinx [(cosx) log(cosx)´ sinx tanx]

Remark: negative numbers behave in a complicated manner when they are the base of an
exponential expression. For example, the expression (´1)x is defined when x is the reciprocal of an
odd number (like x = 1

5 or x = 1
7 ), but not when x is the reciprocal of an even number (like x = 1

2 ).
Since the domain of f (x) was restricted to (0, π

2 ), cosx is always positive, and we avoid these
complications.

S-25: Since f (x) has the form of a function raised to a functional power, we will use logarithmic
differentiation. We take the logarithm of the function, and make use of logarithm rules:

log ((tanx)x) = x log(tanx)

Now, we can differentiate:

d
dx t(tanx)xu
(tanx)x = log(tanx)+ x ¨ sec2 x

tanx

= log(tanx)+
x

sinxcosx

Finally, we solve for the derivative we want,
d
dx
t(tanx)xu:

d
dx
t(tanx)xu= (tanx)x

(
log(tanx)+

x
sinxcosx

)
Remark: the restricted domain (0,π/2) ensures that tanx is a positive number, so we avoid the
problems that arise by raising a negative number to a variety of powers.

S-26: We use logarithmic differentiation.

log f (x) = log(x2 + 1) ¨ (x2 + 1)
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We differentiate both sides to obtain:

f 1(x)
f (x)

=
d
dx

 

log(x2 + 1) ¨ (x2 + 1)
(

=
2x

x2 + 1
(x2 + 1)+ 2x log(x2 + 1)

= 2x(1+ log(x2 + 1))

Now, we solve for f 1(x):

f 1(x) = f (x) ¨2x(1+ log(x2 + 1))

= (x2 + 1)x2+1 ¨2x(1+ log(x2 + 1))

S-27: We use logarithmic differentiation: we modify our function to consider

log f (x) = log(x2 + 1) ¨ sinx

We differentiate using the product and chain rules:

f 1(x)
f (x)

=
d
dx

 

log(x2 + 1) ¨ sinx
(

= cosx ¨ log(x2 + 1)+
2xsinx
x2 + 1

Finally, we solve for f 1(x)

f 1(x) = f (x) ¨
(

cosx ¨ log(x2 + 1)+
2xsinx
x2 + 1

)
= (x2 + 1)sin(x) ¨

(
cosx ¨ log(x2 + 1)+

2xsinx
x2 + 1

)

S-28: We differentiate using the chain rule.

d
dx
tlog(5x2´12)u= 10x

5x2´12

Using the quotient rule:

d2

dx2 tlog(5x2´12)u= d
dx

"

10x
5x2´12

*

=
(5x2´12)(10)´10x(10x)

(5x2´12)2

=
´10(5x2 + 12)
(5x2´12)2

360



Using the quotient rule one last time:

d3

dx3 tlog(5x2´12)u= d
dx

"´10(5x2 + 12)
(5x2´12)2

*

=
(5x2´12)2(´10)(10x)+ 10(5x2 + 12)(2)(5x2´12)(10x)

(5x2´12)4

=
(5x2´12)(´100x)+ (200x)(5x2 + 12)

(5x2´12)3

=
100x(´5x2 + 12+ 10x2 + 24)

(5x2´12)3

=
100x(5x2 + 36)
(5x2´12)3

S-29: We use logarithmic differentiation; so we modify our function to consider

log f (x) = log(x) ¨ cos3(x)

Differentiating, we find:

f 1(x)
f (x)

=
d
dx

 

log(x) ¨ cos3(x)
(

= 3cos2(x) ¨ (´sin(x)) ¨ log(x)+
cos3(x)

x

Finally, we solve for f 1(x):

f 1(x) = f (x) ¨
(
´3cos2(x) sin(x) log(x)+

cos3(x)
x

)
= xcos3(x) ¨

(
´3cos2(x) sin(x) log(x)+

cos3(x)
x

)

Remark: negative numbers behave in a complicated manner when they are the base of an
exponential expression. For example, the expression (´1)x is defined when x is the reciprocal of an
odd number (like x = 1

5 or x = 1
7 ), but not when x is the reciprocal of an even number (like x = 1

2 ).
Since the domain of f (x) was restricted so that x is always positive, we avoid these complications.

S-30: We use logarithmic differentiation. So, we modify our function and consider

log f (x) = (x2´3) ¨ log(3+ sin(x)) .

We differentiate:

f 1(x)
f (x)

=
d
dx

 

(x2´3) ¨ log(3+ sin(x))
(

= 2x log(3+ sin(x))+ (x2´3)
cos(x)

3+ sin(x)
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Finally, we solve for f 1(x):

f 1(x) = f (x) ¨
[

2x log(3+ sin(x))+
(x2´3)cos(x)

3+ sin(x)

]
= (3+ sin(x))x2´3 ¨

[
2x log(3+ sin(x))+

(x2´3)cos(x)
3+ sin(x)

]

S-31: We will use logarithmic differentiation. First, we take the logarithm of our function, so we
can use logarithm rules.

log
(
[ f (x)]g(x)

)
= g(x) log( f (x))

Now, we differentiate. On the left side we use the chain rule, and on the right side we use product
and chain rules.

d
dx

!

log
(
[ f (x)]g(x)

))
=

d
dx
tg(x) log( f (x))u

d
dxt[ f (x)]g(x)u
[ f (x)]g(x)

= g1(x) log( f (x))+ g(x) ¨ f 1(x)
f (x)

Finally, we solve for the derivative of our original function.

d
dx
t[ f (x)]g(x)u= [ f (x)]g(x)

(
g1(x) log( f (x))+ g(x) ¨ f 1(x)

f (x)

)
Remark: in this section, we have differentiated problems of this type several times–for example,
Questions 24 through 30.

S-32: Let g(x) := log( f (x)). Notice g1(x) = f 1(x)
f (x) .

In order to show that the two curves have horizontal tangent lines at the same values of x, we will
show two things: first, that if f (x) has a horizontal tangent line at some value of x, then also g(x)
has a horizontal tangent line at that value of x. Second, we will show that if g(x) has a horizontal
tangent line at some value of x, then also f (x) has a horizontal tangent line at that value of x.

Suppose f (x) has a horizontal tangent line where x = x0 for some point x0. This means f 1(x0) = 0.
Then g1(x0) =

f 1(x0)
f (x0)

. Since f (x0) ‰ 0, f 1(x0)
f (x0)

= 0
f (x0)

= 0, so g(x) also has a horizontal tangent line
when x = x0. This shows that whenever f has a horizontal tangent line, g has one too.

Now suppose g(x) has a horizontal tangent line where x = x0 for some point x0. This means
g1(x0) = 0. Then g1(x0) =

f 1(x0)
f (x0)

= 0, so f 1(x0) exists and is equal to zero. Therefore, f (x) also has
a horizontal tangent line when x = x0. This shows that whenever g has a horizontal tangent line, f
has one too.

Remark: if we were not told that f (x) gives only positive numbers, it would not necessarily be true
that f (x) and log( f (x)) have horizontal tangent lines at the same values of x. If f (x) had a
horizontal tangent line at an x-value where f (x) were negative, then log( f (x)) would not exist
there, let alone have a horizontal tangent line.
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Solutions to Exercises 4.5 — Jump to TABLE OF CONTENTS

S-1: We use the power rule (a) and the chain rule (b): the power rule tells us to “bring down the 2”,
and the chain rule tells us to multiply by y1.

There is no need for the quotient rule here, as there are no quotients. Exponential functions have the
form (constant)function, but our function has the form (function)constant, so we did not use (d).

S-2: At (0,4) and (0,´4), the curve looks to be horizontal, if you zoom in: a tangent line here

would have derivative zero. At the origin, the curve looks like its tangent line is vertical, so
dy
dx

does
not exist.

x

y

S-3: (a) No. A function must pass the vertical line test: one input cannot result in two (or more)
outputs. Since one value of x sometimes corresponds to two values of y (for example, when
x = π/4, y is ˘1/

?
2), there is no function f (x) so that y = f (x) captures every point on the circle.

Remark: y = ˘?1´ x2 does capture every point on the unit circle. However, since one input x
sometimes results in two outputs y, this expression is not a function.

(b) No, for the same reasons as (a). If f 1(x) is a function, then it can give at most one slope
corresponding to one value of x. Since one value of x can correspond to two points on the circle
with different slopes, f 1(x) cannot give the slope of every point on the circle. For example, fix any
0ă aă 1. There are two points on the circle with x-coordinate equal to a. At the upper one, the
slope is strictly negative. At the lower one, the slope is strictly positive.
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(c) We differentiate:

2x+ 2y
dy
dx

= 0

and solve for
dy
dx

dy
dx

= ´x
y

But there is a y in the right-hand side of this equation, and it’s not clear how to get it out. Our
answer in (b) tells us that, actually, we can’t get it out, if we want the right-hand side to be a
function of x. The derivative cannot be expressed as a function of x, because one value of x
corresponds to multiple points on the circle.

Remark: since y = ˘?1´ x2, we could try writing

dy
dx

= ´x
y
= ˘ x?

1´ x2

but this is not a function of x. Again, in a function, one input leads to at most one output, but here
one value of x will usually lead to two values of dy

dx .

S-4: The derivative
dy
dx

is
11
4

only at the point (1,3): it is not constantly
11
4

, so it is wrong to

differentiate the constant
11
4

to find
d2y
dx2 . Below is a correct solution.

´28x+ 2y+ 2xy1+ 2yy1 = 0

Plugging in x = 1, y = 3:

´28+ 6+ 2y1+ 6y1 = 0

y1 =
11
4

at the point (1,3)

Differentiating the equation ´28x+ 2y+ 2xy1+ 2yy1 = 0:

´28+ 2y1+ 2y1+ 2xy2+ 2y1y1+ 2yy2 = 0

4y1+ 2(y1)2 + 2xy2+ 2yy2 = 28

At the point (1,3), y1 =
11
4

. Plugging in:

4
(

11
4

)
+ 2
(

11
4

)2

+ 2(1)y2+ 2(3)y2 = 28

y2 =
15
64
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S-5: Remember that y is a function of x. We begin with implicit differentiation.

xy+ ex + ey = 1

y+ x
dy
dx

+ ex + ey dy
dx

= 0

Now, we solve for
dy
dx

.

x
dy
dx

+ ey dy
dx

= ´(ex + y)

(x+ ey)
dy
dx

= ´(ex + y)

dy
dx

= ´ex + y
ey + x

S-6: Differentiate both sides of the equation with respect to x:

ey dy
dx

= x ¨2y
dy
dx

+ y2 + 1

Now, get the derivative on one side and solve

ey dy
dx
´2xy

dy
dx

= y2 + 1

dy
dx

(ey´2xy) = y2 + 1

dy
dx

=
y2 + 1

ey´2xy

S-7:

• First we find the x-coordinates where y = 1.

x2 tan
(

π

4

)
+ 2x log(1) = 16

x2 ¨1+ 2x ¨0 = 16

x2 = 16

So x = ˘4.

• Now we use implicit differentiation to get y1 in terms of x,y:

x2 tan(πy/4)+ 2x log(y) = 16

2x tan(πy/4)+ x2 π

4
sec2(πy/4) ¨ y1+ 2log(y)+

2x
y
¨ y1 = 0.
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• Now set y = 1 and use tan(π/4) = 1,sec(π/4) =
?

2 to get

2x tan(π/4)+ x2 π

4
sec2(π/4)y1+ 2log(1)+ 2x ¨ y1 = 0

2x+
π

2
x2y1+ 2xy1 = 0

y1 = ´ 2x
x2π/2+ 2x

= ´ 4
πx+ 4

• So at (x,y) = (4,1) we have y1 = ´ 4
4π + 4

= ´ 1
π + 1

• and at (x,y) = (´4,1) we have y1 =
1

π´1

S-8:

x2 + x+ y = sin(xy)

We differentiate implicitly. For ease of notation, we write y1 for
dy
dx

.

2x+ 1+ y1 = cos(xy)(y+ xy1)

We’re interested in y2, so we implicitly differentiate again.

2+ y2 = ´sin(xy)(y+ xy1)2 + cos(xy)(2y1+ xy2)

We want to know what y2 is when x = y = 0. Plugging these in yields the following:

2+ y2 = 2y1

So, we need to know what y1 is when x = y = 0. We can get this from the equation
2x+ 1+ y1 = cos(xy)(y+ xy1), which becomes 1+ y1 = 0 when x = y = 0. So, at the origin,
y1 = ´1, and

2+ y2 = 2(´1)
y2 = ´4

Remark: a common mistake is to stop at the equation 2x+ 1+ y1 = cos(xy)(y+ xy1), plug in

x = y = 0, find y1 = ´1, and decide y2 =
d
dx
t´1u= 0. This is due to a slight sloppiness in the

usual notation. When we wrote y1 = 1, what we meant is that at the point (0,0),
dy
dx

= ´1. More

properly written:
dy
dx

ˇ

ˇ

ˇ

ˇ

x=0, y=0
= ´1. This is not the same as saying y1 = 1 everywhere (in which

case, indeed, y2 would be 0 everywhere).
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S-9: Differentiate the equation and solve:

3x2 + 4y3 dy
dx

= ´sin(x2 + y) ¨
(

2x+
dy
dx

)
dy
dx

= ´2xsin(x2 + y)+ 3x2

4y3 + sin(x2 + y)

S-10:

• First we find the x-coordinates where y = 0.

x2e0 + 4xcos(0) = 5

x2 + 4x´5 = 0
(x+ 5)(x´1) = 0

So x = 1,´5.

• Now we use implicit differentiation to get y1 in terms of x,y:

x2ey + 4xcos(y) = 5 differentiate both sides

x2 ¨ ey ¨ y1+ 2xey + 4x(´sin(y)) ¨ y1+ 4cos(y) = 0

• Now set y = 0 to get

x2 ¨ e0 ¨ y1+ 2xe0 + 4x(´sin(0)) ¨ y1+ 4cos(0) = 0

x2y1+ 2x+ 4 = 0

y1 = ´4+ 2x
x2 .

• So at (x,y) = (1,0) we have y1 = ´6,

• and at (x,y) = (´5,0) we have y1 = 6
25 .

S-11: We use implicit differentiation, twice.

2x+ 2yy1 = 0
2+(2y)y2+(2y1)y1 = 0

y2 = ´(y1)2 + 1
y
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So, we need an expression for y1. We use the equation 2x+ 2yy1 = 0 to conclude y1 = ´x
y

:

y2 = ´
(
´ x

y

)2
+ 1

y

= ´
x2

y2 + 1

y

= ´x2 + y2

y3

= ´ 1
y3

S-12: Differentiate the equation and solve:

2x+ 2y
dy
dx

= cos(x+ y) ¨
(

1+
dy
dx

)
dy
dx

=
cos(x+ y)´2x
2y´ cos(x+ y)

S-13:

• First we find the x-coordinates where y = 0.

x2 cos(0)+ 2xe0 = 8

x2 + 2x´8 = 0
(x+ 4)(x´2) = 0

So x = 2,´4.

• Now we use implicit differentiation to get y1 in terms of x,y:

x2 cos(y)+ 2xey = 8 differentiate both sides

x2 ¨ (´siny) ¨ y1+ 2xcosy+ 2xey ¨ y1+ 2ey = 0

• Now set y = 0 to get

x2 ¨ (´sin0) ¨ y1+ 2xcos0+ 2xe0 ¨ y1+ 2e0 = 0
0+ 2x+ 2xy1+ 2 = 0

y1 = ´2+ 2x
2x

= ´1+ x
x

• So at (x,y) = (2,0) we have y1 = ´3
2 ,

• and at (x,y) = (´4,0) we have y1 = ´3
4 .
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S-14: The question asks at which points on the ellipse
dy
dx

= 1. So, we begin by differentiating,
implicitly:

2x+ 6y
dy
dx

= 0

We could solve for
dy
dx

at this point, but it’s not necessary. We want to know when
dy
dx

is equal to one:

2x+ 6y(1) = 0
x = ´3y

That is,
dy
dx

= 1 at those points along the ellipse where x = ´3y. We plug this into the equation of
the ellipse to find the coordinates of these points.

(´3y)2 + 3y2 = 1

12y2 = 1

y = ˘ 1?
12

= ˘ 1
2
?

3

So, the points along the ellipse where the tangent line is parallel to the line y = x occur when

y =
1

2
?

3
and x = ´3y, and when y =

´1
2
?

3
and x = ´3y. That is, the points

(´?3
2

,
1

2
?

3

)
and(?

3
2

,
´1

2
?

3

)
.

S-15: First, we differentiate implicitly with respect to x.

?
xy = x2y´2

1
2
?

xy
¨ d

dx
txyu= (2x)y+ x2 dy

dx

y+ xdy
dx

2
?

xy
= 2xy+ x2 dy

dx

Now, we plug in x = 1, y = 4, and solve for
dy
dx

:

4+ dy
dx

4
= 8+

dy
dx

dy
dx

= ´28
3
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S-16: Implicitly differentiating x2y(x)2 + xsin(y(x)) = 4 with respect to x gives

2xy2 + 2x2yy1+ siny+ xy1 cosy = 0

Then we gather the terms containing y1 on one side, so we can solve for y1:

2x2yy1+ xy1 cosy = ´2xy2´ siny

y1(2x2y+ xcosy) = ´2xy2´ siny

y1 = ´ 2xy2 + siny
2x2y+ xcosy

S-17:

f (x) = x logx´ x

f 1(x) = logx+ x ¨ 1
x
´1

= logx

f 2(x) =
1
x

S-18:

• First we find the x-ordinates where y = 0.

x2 +(1)e0 = 5

x2 + 1 = 5

x2 = 4

So x = 2,´2.

• Now we use implicit differentiation to get y1 in terms of x,y:

2x+(y+ 1)ey dy
dx

+ ey dy
dx

= 0

• Now set y = 0 to get

2x+(0+ 1)e0 dy
dx

+ e0 dy
dx

= 0

2x+
dy
dx

+
dy
dx

= 0

2x = ´2
dy
dx

x = ´dy
dx
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• So at (x,y) = (2,0) we have y1 = ´2,

• and at (x,y) = (´2,0) we have y1 = 2.

S-19: The slope of the tangent line is, of course, given by the derivative, so let’s start by finding dy
dx

of both shapes.

For the circle, we differentiate implicitly

2x+ 2y
dy
dx

= 0

and solve for
dy
dx

dy
dx

= ´x
y

For the ellipse, we also differentiate implicitly:

2x+ 6y
dy
dx

= 0

and solve for
dy
dx

dy
dx

= ´ x
3y

What we want is a value of x where both derivatives are equal. However, they might have different
values of y, so let’s let y1 be the y-values associated with x on the circle, and let y2 be the y-values
associated with x on the ellipse. That is, x2 + y2

1 = 1 and x2 + 3y2
2 = 1. For the slopes at (x,y1) on

the circle and (x,y2) on the ellipse to be equal, we need:

´ x
y1

= ´ x
3y2

x
(

1
y1
´ 1

3y2

)
= 0

So x = 0 or y1 = 3y2. Let’s think about which x-values will have a y-coordinate of the circle be
three times as large as a y-coordinate of the ellipse. If y1 = 3y2, (x,y1) is on the circle, and (x,y2) is
on the ellipse, then x2 + y2

1 = x2 +(3y2)2 = 1 and x2 + 3y2
2 = 1. In this case:

x2 + 9y2
2 = x2 + 3y2

2

9y2
2 = 3y2

2

y2 = 0
x = ˘1

We need to be a tiny bit careful here: when y = 0, y1 is not defined for either curve. For both curves,
when y = 0, the tangent lines are vertical (and so have no real-valued slope!). Two vertical lines are
indeed parallel.

So, for x = 0 and for x = ˘1, the two curves have parallel tangent lines.
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x

y

x2 + y2 = 1

x2 + 3y2 = 1

S-20:

(a) We differentiate implicitly.

x3y(x)+ y(x)3 = 10x

3x2y(x)+ x3y1(x)+ 3y(x)2y1(x) = 10

Subbing in x = 1 and y(1) = 2 gives

(3)(1)(2)+ (1)y1(1)+ (3)(4)y1(1) = 10
13y1(1) = 4

y1(1) =
4
13

(b) From part (a), the slope of the curve at x = 1, y = 2 is
4
13

, so the curve is increasing, but fairly

slowly. The angle of the tangent line is tan´1 ( 4
13

)« 17˝. We are also told that y2(1) ă 0. So
the slope of the curve is decreasing as x passes through 1. That is, the line is more steeply
increasing to the left of x = 1, and its slope is decreasing (getting less sleep, then possibly the
slope even becomes negative) as we move past x = 1.

1

2
tangent

curve

x

y

No exercises for Section 4.6. — Jump to TABLE OF CONTENTS
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Solutions to Exercises 4.7 — Jump to TABLE OF CONTENTS

S-1: (a) We can plug any number into the cosine function, and it will return a number in [´1,1].
The domain of arcsinx is [´1,1], so any number we plug into cosine will give us a valid number to
plug into arcsine. So, the domain of f (x) is all real numbers.

(b) We can plug any number into the cosine function, and it will return a number in [´1,1]. The
domain of arccscx is (´8,´1]Y [1,8), so in order to have a valid number to plug into arccosecant,
we need cosx = ˘1. That is, the domain of g(x) is all values x = nπ for some integer n.

(c) The domain of arccosine is [´1,1]. The domain of sine is all real numbers, so no matter what
number arccosine spits out, we can safely plug it into sine. So, the domain of h(x) is [´1,1].

S-2: False: cos t = 1 for infinitely many values of t; arccosine gives only the single value t = 0 for
which cos t = 1 and 0ď t ď π . The particle does not start moving until t = 10, so t = 0 is not in the
domain of the function describing its motion.

The particle will have height 1 at time 2πn, for any integer ně 2.

S-3: First, we restrict the domain of f to force it to be one–to–one. There are many intervals we
could choose over which f is one–to–one, but the question asks us to contain x = 0 and be as large
as possible; this leaves us with the following restricted function:

x

y

1

The inverse of a function swaps the role of the input and output; so if the graph of y = f (x) contains
the point (a,b), then the graph of Y = f´1(X) contains the point (b,a). That is, the graph of
Y = f´1(X) is the graph of y = f (x) with the x-coordinates and y-coordinates swapped. (So, since
y = f (x) crosses the y-axis at y = 1, then Y = f´1(X) crosses the X-axis at X = 1.) This swapping
is equivalent to reflecting the curve y = f (x) over the line y = x.
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x

y

1

1

y = f (x)

y = f´1(x)

y = x

Remark: while you’re getting accustomed to inverse functions, it is sometimes clearer to consider
y = f (x) and Y = f´1(X): using slightly different notations for x (the input of f , hence the output
of f´1) and X (the input of f´1, which comes from the output of f ). However, the convention is to
use x for the inputs of both functions, and y as the outputs of both functions, as is written on the
graph above.

S-4: The tangent line is horizontal when 0 = y1 = a´ sinx. That is, when a = sinx.

• If |a| ą 1, then there is no value of x for which a = sinx, so the curve has no horizontal
tangent lines.

• If |a|= 1, then there are infinitely many solutions to a = sinx, but only one solution in the
interval [´π ,π ]: x = arcsin(a) = arcsin(˘1) = ˘π

2 . Then the values of x for which
a = sinx are x = 2πn+ aπ

2 for any integer n.

• If |a| ă 1, then there are infinitely many solutions to a = sinx. The solution in the interval(´π

2 , π

2

)
is given by x = arcsin(a). The other solution in the interval (´π ,π) is given by

x = π´ arcsin(a), as shown in the unit circles below.

x

y

a

arcsin(a
)

x

y

a

arcsin(a)

π
´ a

rc
si

n(
a)
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So, the values of x for which x = sina are x = 2πn+ arcsin(a) and x = 2πn+π´ arcsin(a)
for any integer n.

Remark: when a = 1, then

2πn+ arcsin(a) = 2πn+
π

2
= 2πn+π´

(
π

2

)
= 2πn+π´ arcsin(a).

Similarly, when a = ´1,

2πn+ arcsin(a) = 2πn´ π

2
= 2π(n´1)+π´

(
´π

2

)
= 2π(n´1)+π´ arcsin(a).

So, if we try to use the descriptions in the third bullet point to describe points where the tangent line
is horizontal when |a|= 1, we get the correct points but each point is listed twice. This is why we
separated the case |a|= 1 from the case |a| ă 1.

S-5: The function arcsinx is only defined for |x| ď 1, and the function arccscx is only defined for
|x| ě 1, so f (x) has domain |x|= 1. That is, x = ˘1.

In order for f (x) to be differentiable at a point, it must exist in an open interval around that point.
(See Definition 3.3.3.) Since our function does not exist over any open interval, f (x) is not
differentiable anywhere.

So, actually, f (x) is a pretty boring function, which we can entirely describe as: f (´1) = ´π and
f (1) = π .

S-6: Using the chain rule,

d
dx

!

arcsin
(x

3

))
=

1
b

1´ ( x
3

)2
¨ 1

3

=
1

3
b

1´ x2

9

=
1?

9´ x2

Since the domain of arcsine is [´1,1], and we are plugging in
x
3

to arcsine, the values of x that we

can plug in are those that satisfy ´1ď x
3
ď 1, or ´3ď xď 3. So the domain of f is [´3,3].

S-7: Using the quotient rule,

d
dt

"

arccos t
t2´1

*

=
(t2´1)

(
´1?
1´t2

)
´ (arccos t)(2t)

(t2´1)2

The domain of arccosine is [´1,1], and since t2´1 is in the denominator, the domain of f requires
t2´1‰ 0, that is, t ‰˘1. So the domain of f (t) is (´1,1).
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S-8: The domain of arcsecx is |x| ě 1: that is, we can plug into arcsecant only values with absolute
value greater than or equal to one. Since ´x2´2ď´2, every real value of x gives us an acceptable
value to plug into arcsecant. So, the domain of f (x) is all real numbers.

To differentiate, we use the chain rule. Remember
d
dx
tarcsecxu= 1

|x|?x2´1
.

d
dx

 

arcsec(´x2´2)
(

=
1

|´ x2´2|a(´x2´2)2´1
¨ (´2x)

=
´2x

(x2 + 2)
?

x4 + 4x+ 3
.

S-9: We use the chain rule, remembering that a is a constant.

d
dx

"

1
a

arctan
(x

a

)*
=

1
a
¨ 1

1+
( x

a

)2 ¨
1
a

=
1

a2 + x2

The domain of arctangent is all real numbers, so the domain of f (x) is also all real numbers.

S-10: We differentiate using the product and chain rules.

d
dx

!

xarcsinx+
a

1´ x2
)

= arcsinx+
x?

1´ x2
+

´2x
2
?

1´ x2

= arcsinx

The domain of arcsinx is [´1,1], and the domain of
?

1´ x2 is all values of x so that 1´ x2 ě 0, so
x in [´1,1]. Therefore, the domain of f (x) is [´1,1].

S-11: We differentiate using the chain rule:

d
dx
tarctan(x2)u= 2x

1+ x4

This is zero exactly when x = 0.

S-12: Using formulas you should memorize from this section,

d
dx
tarcsinx+ arccosxu= 1?

1´ x2
+

´1?
1´ x2

= 0

Remark: the only functions with derivative equal to zero everywhere are constant functions, so
arcsinx+ arccosx should be a constant. Since sinθ = cos

(
π

2 ´θ
)
, we can set

sinθ = x cos
(

π

2
´θ

)
= x
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where x and θ are the same in both expressions, and ´π

2 ď θ ď π

2 . Then

arcsinx = θ arccosx =
π

2
´θ

We note here that arcsine is the inverse of the sine function restricted to
[´π

2 , π

2

]
. So, since we

restricted θ to this domain, sinθ = x really does imply arcsinx = θ . (For an example of why this
matters, note sin(2π) = 0, but arcsin(0) = 0‰ 2π .) Similarly, arccosine is the inverse of the cosine
function restricted to [0,π ]. Since ´π

2 ď θ ď π

2 , then 0ď (π

2 ´θ ) ď π , so cos
(

π

2 ´θ
)
= x really

does imply arccosx = π

2 ´θ .

So,
arcsinx+ arccosx = θ +

π

2
´θ =

π

2

which means the derivative we were calculating was actually just
d
dx

!

π

2

)

= 0.

S-13: Using the chain rule,

y1 =
´ 1

x2
b

1´ (1
x

)2
=

´1

x2
b

1´ 1
x2

.

S-14:

d
dx
tarctanxu= 1

1+ x2

d
dx

"

1
1+ x2

*

=
d
dx

 

(1+ x2)´1(

= (´1)(1+ x2)´2(2x)

=
´2x

(1+ x2)2

S-15: Using the chain rule,

y1 =
´ 1

x2

1+
(1

x

)2 =
´1

x2 + 1
.

S-16: Using the product rule:

d
dx

 

(1+ x2)arctanx
(

= 2xarctanx+(1+ x2)
1

1+ x2

= 2xarctanx+ 1
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S-17: Let θ = arctanx. Then θ is the angle of a right triangle that gives tanθ = x. In particular, the
ratio of the opposite side to the adjacent side is x. So, we have a triangle that looks like this:

θ

x

1

?
x2 + 1

where the length of the hypotenuse came from the Pythagorean Theorem. Now,

sin (arctanx) = sinθ =
opp
hyp

=
x?

x2 + 1

From here, we differentiate using the quotient rule:

d
dx

"

x?
x2 + 1

*

=

?
x2 + 1´ x 2x

2
?

x2+1

x2 + 1

=

?x2 + 1´ x2
?

x2+1

x2 + 1

 ¨ ?x2 + 1?
x2 + 1

=
(x2 + 1)´ x2

(x2 + 1)3/2

=
1

(x2 + 1)3/2 = (x2 + 1)´3/2

Remark: another strategy is to differentiate first, using the chain rule, then draw a triangle to

simplify the resulting expression
d
dx
tsin (arctanx)u= cos(arctanx)

1+ x2 .

S-18:

Let θ = arcsinx. Then θ is the angle of a right triangle that gives sinθ = x. In particular, the ratio
of the opposite side to the hypotenuse is x. So, we have a triangle that looks like this:

θ

x

?
1´ x2

1

where the length of the adjacent side came from the Pythagorean Theorem. Now,

cot (arcsinx) = cotθ =
adj
opp

=

?
1´ x2

x
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From here, we differentiate using the quotient rule:

d
dx

#?
1´ x2

x

+

=
x ´2x

2
?

1´x2 ´
?

1´ x2

x2

=
´x2´ (1´ x2)

x2
?

1´ x2

=
´1

x2
?

1´ x2

Remark: another strategy is to differentiate first, using the chain rule, then draw a triangle to

simplify the resulting expression
d
dx
tcot (arcsinx)u= ´csc2(arcsinx)?

1´ x2
.

S-19: The line y = 2x+9 has slope 2, so we must find all values of x between ´1 and 1 (arcsinx is
only defined for these values of x) for which d

dxtarcsinxu= 2. Evaluating the derivative:

y = arcsinx

2 = y1 =
1?

1´ x2

4 =
1

1´ x2

1
4
= 1´ x2

x2 =
3
4

x = ˘
?

3
2

(x,y) = ˘(?3
2

,
π

3
)

S-20: We differentiate using the chain rule:

d
dx
tarctan(cscx)u= 1

1+ csc2 x
¨ d

dx
tcscxu

=
´cscxcotx
1+ csc2 x

=
´ 1

sinx ¨ cosx
sinx

1+
( 1

sinx

)2

=
´cosx

sin2 x+ 1

So if f 1(x) = 0, then cosx = 0, and this happens when x =
(2n+ 1)π

2
for any integer n. We should

check that these points are in the domain of f . Arctangent is defined for all real numbers, so we
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only need to check the domain of cosecant; when x =
(2n+ 1)π

2
, then sinx = ˘1‰ 0, so

cscx =
1

sinx
exists.

S-21: Since g(y) = f´1(y),

f (g(y)) = f
(

f´1(y)
)
= y

Now, we can differentiate with respect to y using the chain rule.

d
dy
t f (g(y))u= d

dy
tyu

f 1(g(y)) ¨g1(y) = 1

g1(y) =
1

f 1(g(y))
=

1
1´ sing(y)

S-22: Write g(y) = f´1(y). Then g( f (x)) = x, so differentiating both sides (using the chain rule),
we see

g1( f (x)) ¨ f 1(x) = 1

What we want is g1(π´1), so we need to figure out which value of x gives f (x) = π´1. A little
trial and error leads us to x = π

2 .

g1(π´1) ¨ f 1
(

π

2

)
= 1

Since f 1(x) = 2´ cos(x), f 1
(

π

2

)
= 2´0 = 2:

g1(π´1) ¨2 = 1

g1(π´1) =
1
2

S-23: Write g(y) = f´1(y). Then g( f (x)) = x, so differentiating both sides (using the chain rule),
we see

g1( f (x)) f 1(x) = 1

What we want is g1(e+ 1), so we need to figure out which value of x gives f (x) = e+ 1. A little
trial and error leads us to x = 1.

g1( f (1)) f 1(1) = 1
g1(e+ 1) ¨ f 1(1) = 1

g1(e+ 1) =
1

f 1(1)
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It remains only to note that f 1(x) = ex + 1, so f 1(1) = e+ 1

g1(e+ 1) =
1

e+ 1

S-24: We use logarithmic differentiation, our standard method of differentiating an expression of
the form (function)function.

f (x) = [sinx+ 2]arcsecx

log( f (x)) = arcsecx ¨ log[sinx+ 2]
f 1(x)
f (x)

=
1

|x|?x2´1
log[sinx+ 2]+ arcsecx ¨ cosx

sinx+ 2

f 1(x) = [sinx+ 2]arcsecx
(

log[sinx+ 2]
|x|?x2´1

+
arcsecx ¨ cosx

sinx+ 2

)
The domain of arcsecx is |x| ě 1. For any x, sinx+ 2 is positive, and a positive number can be
raised to any power. (Recall negative numbers cannot be raised to any power–for example,
(´1)1/2 =

?´1 is not a real number.) So, the domain of f (x) is |x| ě 1.

S-25: The function
1?

x2´1
exists only for those values of x with x2´1ą 0: that is, the domain of

1?
x2´1

is |x| ą 1. However, the domain of arcsine is |x| ď 1. So, there is not one single value of x

where arcsinx and
1?

x2´1
are both defined.

If the derivative of arcsin(x) were given by
1?

x2´1
, then the derivative of arcsin(x) would not

exist anywhere, so we would probably just write “derivative does not exist,” instead of making up a
function with a mismatched domain. Also, the function f (x) = arcsin(x) is a smooth curve–its
derivative exists at every point strictly inside its domain. (Remember not all curves are like this: for
instance, g(x) = |x| does not have a derivative at x = 0, but x = 0 is strictly inside its domain.) So,

it’s a pretty good bet that the derivative of arcsine is not
1?

x2´1
.

S-26: This limit represents the derivative computed at x = 1 of the function f (x) = arctanx. To see
this, simply use the definition of the derivative at a = 1:

d
dx
t f (x)u

ˇ

ˇ

ˇ

ˇ

a
= lim

xÑa

f (x)´ f (a)
x´a

d
dx
tarctanxu

ˇ

ˇ

ˇ

ˇ

1
= lim

xÑ1

arctanx´ arctan1
x´1

= lim
xÑ1

arctanx´ π

4
x´1

= lim
xÑ1

(
(x´1)´1

(
arctanx´ π

4

))
.
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Since the derivative of f (x) is
1

1+ x2 , its value at x = 1 is exactly
1
2

.

S-27: First, let’s interpret the given information: when the input of our function is 2x+ 1 for some

x, then its output is
5x´9
3x+ 7

, for that same x. We’re asked to evaluate f´1(7), which is the number y

with the property that f (y) = 7. If the output of our function is 7, that means

7 =
5x´9
3x+ 7

and so

7(3x+ 7) = 5x´9

x = ´29
8

So, when x = ´29
8

, our equation f (2x+ 1) =
5x´9
3x+ 7

becomes:

f
(

2 ¨ ´29
8

+ 1
)
=

5 ¨ ´29
8 ´9

3 ¨ ´29
8 + 7

Or, equivalently:

f
(
´25

4

)
= 7

Therefore, f´1(7) = ´25
4

.

S-28: If f´1(y) = 0, that means f (0) = y. So, we want to find out what we plug into f´1 to get 0.
Since we only know f´1 in terms of a variable x, let’s figure out what x gives us an output of 0:

2x+ 3
x+ 1

= 0

2x+ 3 = 0

x = ´3
2

Now, the equation f´1(4x´1) =
2x+ 3
x+ 1

with x =
´3
2

tells us:

f´1
(

4 ¨ ´3
2
´1
)
=

2 ¨ ´3
2 + 3

´3
2 + 1

Or, equivalently:

f´1(´7) = 0

Therefore, f (0) = ´7.
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S-29:

• Solution 1: We begin by differentiating implicitly. Following the usual convention, we use y1

to mean y1(x).

arcsin(x+ 2y) = x2 + y2 Using the chain rule:
1+ 2y1

a

1´ (x+ 2y)2
= 2x+ 2yy1

1
a

1´ (x+ 2y)2
+

2y1
a

1´ (x+ 2y)2
= 2x+ 2yy1

2y1
a

1´ (x+ 2y)2
´2yy1 = 2x´ 1

a

1´ (x+ 2y)2

y1
(

2
a

1´ (x+ 2y)2
´2y

)
= 2x´ 1

a

1´ (x+ 2y)2

y1 =
2x´ 1?

1´(x+2y)2

2?
1´(x+2y)2

´2y

(
a

1´ (x+ 2y)2
a

1´ (x+ 2y)2

)

y1 =
2x
a

1´ (x+ 2y)2´1

2´2y
a

1´ (x+ 2y)2

• Solution 2: We begin by taking the sine of both sides of the equation.

arcsin(x+ 2y) = x2 + y2

x+ 2y = sin(x2 + y2)

Now, we differentiate implicitly.

1+ 2y1 = cos(x2 + y2) ¨ (2x+ 2yy1)

1+ 2y1 = 2xcos(x2 + y2)+ 2yy1 cos(x2 + y2)

2y1´2yy1 cos(x2 + y2) = 2xcos(x2 + y2)´1

y1
(
2´2ycos(x2 + y2)

)
= 2xcos(x2 + y2)´1

y1 =
2xcos(x2 + y2)´1
2´2ycos(x2 + y2)

• We used two different methods, and got two answers that look pretty different. However, the
answers ought to be equivalent. To see this, we remember that for all values of x and y that we
care about (those pairs (x,y) in the domain of our curve), the equality

arcsin(x+ 2y) = x2 + y2

holds. Drawing a triangle:
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x2 +
y2

x+ 2y1

a

1´ (x+ 2y)2

where the adjacent side (in red) come from the Pythagorean Theorem. Then,
cos(x2 + y2) =

a

1´ (x+ 2y)2, so using our second solution:

y1 =
2xcos(x2 + y2)´1
2´2ycos(x2 + y2)

=
2x
a

1´ (x+ 2y)2´1

2´2y
a

1´ (x+ 2y)2

which is exactly the answer from our first solution.

Solutions to Exercises 5 — Jump to TABLE OF CONTENTS

S-1: We have an equation relating P and Q:

P = Q3

We differentiate implicitly with respect to a third variable, t:

dP
dt

= 3Q2 ¨ dQ
dt

If we know two of the three quantities
dP
dt

, Q, and
dQ
dt

, then we can find the third. Therefore, ii is a
question we can solve. If we know P, then we also know Q (it’s just the cube root of P), so also we

can solve iv. However, if we know neither P nor Q, then we can’t find
dP
dt

based only off
dQ
dt

, and

we can’t find
dQ
dt

based only off
dP
dt

. So we can’t solve i or iii.

S-2: Suppose that at time t, the point is at
(
x(t),y(t)

)
. Then x(t)2 + y(t)2 = 1 so that

2x(t)x1(t)+ 2y(t)y1(t) = 0. We are told that at some time t0, x(t0) = 2/
?

5, y(t0) = 1/
?

5 and
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y1(t0) = 3. Then

2x(t0)x1(t0)+ 2y(t0)y1(t0) = 0 ñ
2
(

2?
5

)
x1(t)+ 2

(
1?
5

)
(3) = 0 ñ

x1(t0) = ´3
2

S-3: The instantaneous percentage rate of change for R is

100
R1

R
= 100

(PQ)1

PQ
R=PQ

= 100
P1Q+PQ1

PQ
product rule

= 100
[

P1

P
+

Q1

Q

]
simplify

= 100[0.08´0.02] = 6%

S-4: (a) By the quotient rule, F 1 =
P1Q´PQ1

Q2 . At the moment in question,

F 1 =
5ˆ5´25ˆ1

52 = 0.

(b) We are told that, at the second moment in time, P1 = 0.1P and Q1 = ´0.05Q(
or equivalently 100P1

P = 10 and 100Q1
Q = ´5

)
. Substituting in these values:

F 1 =
P1Q´PQ1

Q2

=
0.1PQ´P(´0.05Q)

Q2

=
0.15PQ

Q2

= 0.15
P
Q

= 0.15F ùñ
F 1 = 0.15F

or 100F 1
F = 15%. That is, the instantaneous percentage rate of change of F is 15%.

S-5:
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• The distance z(t) between the particles at any moment in time is

z2(t) = x(t)2 + y(t)2,

where x(t) is the position on the x-axis of the particle A at time t (measured in seconds) and
y(t) is the position on the y-axis of the particle B at the same time t.

• We differentiate the above equation with respect to t and get

2z ¨ z1 = 2x ¨ x1+ 2y ¨ y1,

• We are told that x1 = ´2 and y1 = ´3. (The values are negative because x and y are
decreasing.) It will take 3 seconds for particle A to reach x = 4, and in this time particle B
will reach y = 3.

• At this point z =
a

x2 + y2 =
?

32 + 42 = 5.

• Hence

10z1 = 8 ¨ (´2)+ 6 ¨ (´3) = ´34

z1 = ´34
10

= ´17
5

units per second.

S-6:

• We compute the distance z(t) between the two particles after t seconds as

z2(t) = 32 +(yA(t)´ yB(t))2,

where yA(t) and yB(t) are the y-coordinates of particles A and B after t seconds, and the
horizontal distance between the two particles is always 3 units.

• We are told the distance between the particles is 5 units, this happens when

(yA´ yB)
2 = 52´32 = 16

yA´ yB = 4

That is, when the difference in y-coordinates is 4. This happens when t = 4.

• We differentiate the distance equation (from the first bullet point) with respect to t and get

2z ¨ z1 = 2(yA
1´ yB

1)(yA´ yB),

• We know that (yA´ yB) = 4, and we are told that z = 5, y1A = 3, and y1B = 2. Hence

10z1(4) = 2ˆ1ˆ4 = 8

• Therefore

z1(4) =
8

10
=

4
5

units per second.
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S-7:

y(t)

x(t)

A

BH

z(t)

15 mph

20 mph

As in the above figure, let x(t) be the distance between H (Hawaii) and ship B, and y(t) be the
distance between H and ship A, and z(t) be the distance between ships A and B, all at time t. Then

x(t)2 + y(t)2 = z(t)2

Differentiating with respect to t,

2x(t)x1(t)+ 2y(t)y1(t) = 2z(t)z1(t)
x(t)x1(t)+ y(t)y1(t) = z(t)z1(t)

At the specified time, x(t) is decreasing, so x1(t) is negative, and y(t) is increasing, so y1(t) is
positive.

(300)(´15)+ (400)(20) =
a

3002 + 4002z1(t)
500z1(t) = 3500

z1(t) = 7 mph

S-8:

• We compute the distance d(t) between the two snails after t minutes as

d2(t) = 302 +(y1(t)´ y2(t))2,

where y1(t) is the altitude of the first snail, and y2(t) the altitude of the second snail after t
minutes.

• We differentiate the above equation with respect to t and get

2d ¨d1 = 2(y1
1´ y2

1)(y1´ y2)

d ¨d1 = (y1
1´ y2

1)(y1´ y2)

• We are told that y1
1 = 25 and y2

1 = 15. It will take 4 minutes for the first snail to reach
y1 = 100, and in this time the second snail will reach y2 = 60.

• At this point d2 = 302 +(100´60)2 = 900+ 1600 = 2500, hence d = 50.
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• Therefore

50d1 = (25´15)ˆ (100´60)

d1 =
400
50

= 8 cm per minute.

S-9:

• If we write z(t) for the length of the ladder at time t and y(t) for the height of the top end of
the ladder at time t we have

z(t)2 = 52 + y(t)2.

• We differentiate the above equation with respect to t and get

2z ¨ z1 = 2y ¨ y1,

• We are told that z1(t) = ´2, so z(3.5) = 20´3.5 ¨2 = 13.

• At this point y =
?

z2´52 =
?

169´25 =
?

144 = 12.

• Hence

2 ¨13 ¨ (´2) = 2 ¨12y1

y1 = ´2 ¨13
12

= ´13
6

meters per second.

S-10: What we’re given is
dV
dt

(where V is volume of water in the trough, and t is time), and what

we are asked for is
dh
dt

(where h is the height of the water). So, we need an equation relating V and
h. First, let’s get everything in the same units: centimetres.

60 cm

100 cm

50 cm

200 cm

h
w

We can calculate the volume of water in the trough by multiplying the area of its trapezoidal cross
section by 200 cm. A trapezoid with height h and bases b1 and b2 has area h

(
b1+b2

2

)
. (To see why

this is so, draw the trapezoid as a rectangle flanked by two triangles.) So, using w as the width of the
top of the water (as in the diagram above), the area of the cross section of the water in the trough is

A = h
(

60+w
2

)
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and therefore the volume of water in the trough is

V = 100h(60+w) cm3.

We need a formula for w in terms of h. If we draw lines straight up from the bottom corners of the
trapezoid, we break it into rectangles and triangles.

60

50

h

a

20

Using similar triangles,
a
h
=

20
50

, so a =
2
5

h. Then

w = 60+ 2a

= 60+ 2
(

2
5

h
)
= 60+

4
5

h

so

V = 100h(60+w)

= 100h(120+
4
5

h)

= 80h2 + 12000h

This is the equation we need, relating V and h. Differentiating implicitly with respect to t:

dV
dt

= 2 ¨80h ¨ dh
dt

+ 12000
dh
dt

= (160h+ 12000)
dh
dt

We are given that h = 25 and
dV
dt

= 3 litres per minute. Converting to cubic centimetres,
dV
dt

= ´3000 cubic centimetres per minute. So:

´3000 = (160 ¨25+ 12000)
dh
dt

dh
dt

= ´ 3
16

= ´.1875
cm
min

So, the water level is dropping at
3
16

centimetres per minute.

S-11: If V is the volume of the water in the tank, and t is time, then we are given
dV
dt

. What we

want to know is
dh
dt

, where h is the height of the water in the tank. A reasonable plan is to find an
equation relating V and h, and differentiate it implicitly with respect to t.
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Let’s be a little careful about units. The volume of water in the tank is

(area of cross section of water)ˆ(length of tank)

If we measure these values in metres (area in square metres, length in metres), then the volume is
going to be in cubic metres. So, when we differentiate with respect to time, our units will be cubic
metres per second. The water is flowing in at one litre per second, or 1000 cubic centimetres per
second. So, we either have to measure our areas and distances in centimetres, or convert litres to
cubic metres. We’ll do the latter, but both are fine.

If we imagine one cubic metre as a cube, with each side of length 1 metre, then it’s easy to see the
volume inside is (100)3 = 106 cubic centimetres: it’s the volume of a cube with each side of length
100 cm. Since a litre is 103 cubic centimetres, and a cubic metre is 106 cubic centimetres, one litre

is 10´3 cubic metres. So,
dV
dt

=
1

103 cubic metres per second.

Let h be the height of the water (in metres). We can figure out the area of the cross section by
breaking it into three pieces: a triangle on the left, a rectangle in the middle, and a trapezoid on the
right.

h

a b1.25 m

3 m3 m

1 m

• The triangle on the left has height h metres. Let its base be a metres. It forms a similar
triangle with the triangle whose height is 1.25 metres and width is 1 metre, so:

a
h
=

1
1.25

a =
4
5

h

So, the area of the triangle on the left is

1
2

ah =
2
5

h2

• The rectangle in the middle has length 3 metres and height h metres, so its area is 3h square
metres.
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• The trapezoid on the right is a portion of a triangle with base 3 metres and height 1.25 metres.
So, its area is (

1
2
(3)(1.25)

)
looooooomooooooon

area of big triangle

´
(

1
2
(b)(1.25´h)

)
loooooooooomoooooooooon

area of little triangle

The little triangle (of base b and height 1.25´h) is formed by the air on the right side of the
tank. It is a similar triangle to the triangle of base 3 and height 1.25, so

b
1.25´h

=
3

1.25

b =
3

1.25
(1.25´h)

So, the area of the trapezoid on the right is

1
2
(3)(1.25)´ 1

2

(
3

1.25

)
(1.25´h) (1.25´h)

= 3h´ 6
5

h2

So, the area A of the cross section of the water is

A =
2
5

h2

loomoon

triangle

+ 3h
loomoon

rectangle

+ 3h´ 6
5

h2

looomooon

trapezoid

= 6h´ 4
5

h2

So, the volume of water is

V = 5
(

6h´ 4
5

h2
)
= 30h´4h2

Differentiating with respect to time, t:

dV
dt

= 30
dh
dt
´8h

dh
dt

When h =
1

10
metre, and

dV
dt

=
1

103 cubic metres per second,

1
103 = 30

dh
dt
´8
(

1
10

)
dh
dt

dh
dt

=
1

29200
metres per second

This is about 1 centimetre every five minutes. You might want a bigger hose.

391



S-12: Let θ be the angle of your head, where θ = 0 means you are looking straight ahead, and

θ =
π

2
means you are looking straight up. We are interested in

dθ

dt
, but we only have information

about h. So, a reasonable plan is to find an equation relating h and θ , and differentiate with respect
to time.

θ

The right triangle formed by you, the rocket, and the rocket’s original position has adjacent side (to
θ ) length 2km, and opposite side (to θ ) length h(t) kilometres, so

tanθ =
h
2

Differentiating with respect to t:

sec2
θ ¨ dθ

dt
=

1
2

dh
dt

dθ

dt
=

1
2

cos2
θ ¨ dh

dt

We know tanθ = h
2 . We draw a right triangle with angle θ (filling in the sides using

SOH CAH TOA and the Pythagorean theorem) to figure out cosθ :

θ

2

h
? h2

+
4

Using the triangle, cosθ =
2?

h2 + 4
, so

dθ

dt
=

1
2

(
2?

h2 + 4

)2

¨ dh
dt

=

(
2

h2 + 4

)
dh
dt
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So, the quantities we need to know one minute after liftoff (that is, when t =
1

60
) are h

(
1

60

)
and

dh
dt

(
1

60

)
. Recall h(t) = 61750t2.

h
(

1
60

)
=

61750
3600

=
1235
72

dh
dt

= 2(61750)t

dh
dt

(
1
60

)
=

2(61750)
60

=
6175

3

Returning to the equation
dθ

dt
=

(
2

h2 + 4

)
dh
dt

:

dθ

dt

(
1
60

)
=

(
2(1235

72

)2
+ 4

)(
6175

3

)
« 13.8

rad
hour

« 0.0038
rad
sec

S-13: (a) Let x(t) be the distance of the train along the track at time t, measured from the point on
the track nearest the camera. Let z(t) be the distance from the camera to the train at time t.

0.5 km

camera

trainx

zθ

Then x1(t) = 2 and at the time in question, z(t) = 1.3 km and x(t) =
?

1.32´0.52 = 1.2 km. So

z(t)2 = x(t)2 + 0.52

2z(t)z1(t) = 2x(t)x1(t)
2ˆ1.3z1(t) = 2ˆ1.2ˆ2

z1(t)=
2ˆ1.2

1.3
« 1.85 km/min

(b) Let θ (t) be the angle shown at time t. Then

sin (θ (t)) =
x(t)
z(t)

Differentiating with respect to t:

θ
1(t)cos (θ (t)) =

x1(t)z(t)´ x(t)z1(t)
z(t)2

θ
1(t) =

x1(t)z(t)´ x(t)z1(t)
z(t)2 cos (θ (t))
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From our diagram, we see cos (θ (t)) =
0.5
z(t)

, so:

= 2
x1(t)z(t)´ x(t)z1(t)

z(t)

Substituting in x1(t) = 2, z(t) = 1.3, x(t) = 1.2, and z1(t) =
2ˆ1.2

1.3
:

θ
1(t) = 2

2ˆ1.3´1.2ˆ 2ˆ1.2
1.3

1.3
« .592 radians/min

S-14: Let θ be the angle between the two hands.

D
θ

5cm

10
cm

The Law of Cosines tells us that

D2 = 52 + 102´2 ¨5 ¨10 ¨ cosθ

D2 = 125´100cosθ

Differentiating with respect to time t,

2D
dD
dt

= 100sinθ ¨ dθ

dt

Our tasks now are to find D, θ and
dθ

dt
when the time is 4:00. At 4:00, the minute hand is straight

up, and the hour hand is
4

12
=

1
3

of the way around the clock, so θ =
1
3
(2π) =

2π

3
at 4:00. Then

D2 = 125´100cos
(2π

3

)
= 125´100

(´1
2

)
= 175, so D =

?
175 = 5

?
7 at 4:00.

To calculate
dθ

dt
, remember that both hands are moving. The hour hand makes a full rotation every

12 hours, so its rotational speed is
2π

12
=

π

6
radians per hour. The hour hand is being chased by the

minute hand. The minute hand makes a full rotation every hour, so its rotational speed is
2π

1
= 2π

radians per hour. Therefore, the angle θ between the two hands is changing at a rate of

dθ

dt
= ´

(
2π´ π

6

)
=
´11π

6
rad
hr

.
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Now, we plug in D, θ , and
dθ

dt
to find

dD
dt

:

2D
dD
dt

= 100sinθ ¨ dθ

dt

2
(

5
?

7
) dD

dt
= 100sin

(
2π

3

)(´11π

6

)
10
?

7
dD
dt

= 100
(?

3
2

)(´11π

6

)
= ´275π?

3
dD
dt

=
´55

?
21π

42
cm
hr

So D is decreasing at
55
?

21π

42
« 19 centimetres per hour.

S-15: The area at time t is the area of the outer circle minus the area of the inner circle:

A(t) = π
(
R(t)2´ r(t)2)

So, A1(t) = 2π
(
R(t)R1(t)´ r(t)r1(t)

)
Plugging in the given data,

A1 = 2π
(
3 ¨2´1 ¨7)= ´2π

So the area is shrinking at a rate of 2π
cm2

s
.

S-16: The volume between the spheres, while the little one is inside the big one, is

V =
4
3

πR3´ 4
3

πr3

Differentiating implicitly with respect to t:

dV
dt

= 4πR2 dR
dt
´4πr2 dr

dt

We differentiate R = 10+ 2t and r = 6t to find
dR
dt

= 2 and
dr
dt

= 6. When R = 2r,

10+ 2t = 2(6t), so t = 1. When t = 1, R = 12 and r = 6. So:

dV
dt

= 4π
(
122) (2)´4π

(
62) (6) = 288π

So the volume between the two spheres is increasing at 288π cubic units per unit time.

Remark: when the radius of the inner sphere increases, we are “subtracting” more area. Since the
radius of the inner sphere grows faster than the radius of the outer sphere, we might expect the area
between the spheres to be decreasing. Although the radius of the outer sphere grows more slowly, a
small increase in the radius of the outer sphere results in a larger change in volume than the same
increase in the radius of the inner sphere. So, a result showing that the volume between the spheres
is increasing is not unreasonable.
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S-17: We know something about the rate of change of the height h of the triangle, and we want to
know something about the rate of change of its area, A. A reasonable plan is to find an equation
relating A and h, and differentiate implicitly with respect to t. The area of a triangle with height h
and base b is

A =
1
2

bh

Note, b will change with time as well as h. So, differentiating with respect to time, t:

dA
dt

=
1
2

(
db
dt
¨h+ b ¨ dh

dt

)
We are given dh

dt and h, but those b’s are a mystery. We need to relate them to h. We can do this by
breaking our triangle into two right triangles and using the Pythagorean Theorem:

150 cm 200 cmh

?
1502´h2

?
2002´h2

So, the base of the triangle is

b =
a

1502´h2 +
a

2002´h2

Differentiating with respect to t:

db
dt

=
´2hdh

dt

2
?

1502´h2
+

´2hdh
dt

2
?

2002´h2

=
´hdh

dt?
1502´h2

+
´hdh

dt?
2002´h2

Using
dh
dt

= ´3 centimetres per minute:

db
dt

=
3h?

1502´h2
+

3h?
2002´h2

When h = 120,
?

1502´h2 = 90 and
?

2002´h2 = 160. So, at this moment in time:

b = 90+ 160 = 250
db
dt

=
3(120)

90
+

3(120)
160

= 4+
9
4
=

25
4

We return to our equation relating the derivatives of A, b, and h.

dA
dt

=
1
2

(
db
dt
¨h+ b ¨ dh

dt

)
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When h = 120 cm, b = 250,
dh
dt

= ´3, and
db
dt

=
25
4

:

dA
dt

=
1
2

(
25
4
(120)+ 250(´3)

)
= 0

Remark: What does it mean that
dA
dt

ˇ

ˇ

ˇ

ˇ

h=120
= 0? Certainly, as the height changes, the area changes

as well. As the height sinks to 120 cm, the area is increasing, but after it sinks past 120 cm, the area
is decreasing. So, at the instant when the height is exactly 120 cm, the area is neither increasing nor
decreasing: it is at a local maximum. You’ll learn more about this kind of problem in Section 8.

S-18: Let S be the flow of salt (in cubic centimetres per second). We want to know
dS
dt

: how fast
the flow is changing at time t. We are given an equation for S:

S =
1
5

A

where A is the uncovered area of the cut-out. So,
dS
dt

=
1
5

dA
dt

If we can find
dA
dt

, then we can find
dS
dt

. We are given information about how quickly the door is
rotating. If we let θ be the angle made by the leading edge of the door and the far edge of the

cut-out (shown below), then
dθ

dt
= ´π

6
radians per second. (Since the door is covering more and

more of the cut-out, θ is getting smaller, so
dθ

dt
is negative.)

ed
ge

of
cu

t-
ou

t

ed
ge

of
do

or

θ

Since we know
dθ

dt
, and we want to know

dA
dt

(in order to get
dS
dt

), it is reasonable to look for an
equation relating A and θ , and differentiate it implicitly with respect to t to get an equation relating
dA
dt

and
dθ

dt
.
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The area of an annulus with outer radius 6 cm and inner radius 1 cm is π ¨62´π ¨12 = 35π square
centimetres. A sector of that same annulus with angle θ has area

(
θ

2π

)
(35π), since θ

2π
is the ratio of

the sector to the entire annulus. (For example, if θ = π , then the sector is half of the entire annulus,
so its area is (1/2)35π .)

So, when 0ď θ ď π

2 , the area of the cutout that is open is

A =
θ

2π
(35π) =

35
2

θ

This is the formula we wanted, relating A and θ . Differentiating with respect to t,

dA
dt

=
35
2

dθ

dt
=

35
2

(
´π

6

)
= ´35π

12

Since
dS
dt

=
1
5

dA
dt

,

dS
dt

= ´1
5

35π

12
= ´7π

12
«´1.8

cm3

sec2

Remark: the change in flow of salt is constant while the door covers more and more of the cut-out,
so we never used the fact that precisely half of the cut-out was open. We also never used the radius
of the lid, which is immaterial to the flow of salt.

S-19: Let F be the flow of water through the pipe, so F =
1
5

A. We want to know
dF
dt

, so
differentiating implicitly with respect to t, we find

dF
dt

=
1
5

dA
dt

.

If we can find
dA
dt

, then we can find
dF
dt

. We know something about the shape of the uncovered area
of the pipe; a reasonable plan is to find an equation relating the height of the door with the
uncovered area of the pipe. Let h be the distance from the top of the pipe to the bottom of the door,
measured in metres.
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door
h

1 1´h

?
2h´h2

θ

Since the radius of the pipe is 1 metre, the orange line has length 1´h metres, and the blue line has
length 1 metre. Using the Pythagorean Theorem, the green line has length
a

12´ (1´h)2 =
?

2h´h2 metres.

The uncovered area of the pipe can be broken up into a triangle (of height 1´h and base
2
?

2h´h2) and a sector of a circle (with angle 2π´2θ ). The area of the triangle is

(1´h)
loomoon

height

a

2h´h2
loooomoooon

1
2 base

.

The area of the sector is (
2π´2θ

2π

)
looooomooooon

fraction
of circle

(π ¨12)
loomoon

area
of circle

= π´θ .

Remember: what we want is to find
dA
dt

, and what we know is
dh
dt

= 0.01 metres per second. If we
find θ in terms of h, we find A in terms of h, and then differentiate with respect to t.

Since θ is an angle in a right triangle with hypotenuse 1 and adjacent side length 1´h,
cosθ = 1´h

1 = 1´h. We want to conclude that θ = arccos(1´h), but let’s be a little careful:
remember that the range of the arccosine function is angles in [0,π ]. We must be confident that
0ď θ ď π in order to conclude θ = arccos(1´h)–but clearly, θ is in this range. (Remark: we
could also have said sinθ =

?
2h´h2

1 , and so θ = arcsin
(?

2h´h2
)

. This would require
´π

2 ď θ ď π

2 , which is true when hă 1, but false for hą 1. Since our problem asks about h = 0.25,
we could also use arcsine.)
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Now, we know the area of the open pipe in terms of h.

A = (area of triangle)+ (area of sector)

= (1´h)
a

2h´h2 +(π´θ )

= (1´h)
a

2h´h2 +π´ arccos (1´h)

We want to differentiate with respect to t. Using the chain rule:

dA
dt

=
dA
dh
¨ dh

dt
dA
dt

=

(
(1´h)

2´2h
2
?

2h´h2
+(´1)

a

2h´h2 +
´1

a

1´ (1´h)2

)
dh
dt

=

(
(1´h)2
?

2h´h2
´
a

2h´h2´ 1?
2h´h2

)
dh
dt

=

(
(1´h)2´1?

2h´h2
´
a

2h´h2
)

dh
dt

=

(´(2h´h2)?
2h´h2

´
a

2h´h2
)

dh
dt

=
(
´
a

2h´h2´
a

2h´h2
) dh

dt

= ´2
a

2h´h2 dh
dt

We note here that the negative sign makes sense: as the door lowers, h increases and A decreases, so
dh
dt

and
dA
dt

should have opposite signs.

When h =
1
4

metres, and
dh
dt

=
1

100
metres per second:

dA
dt

= ´2

c

2
4
´ 1

42

(
1

100

)
= ´

?
7

200
cm2

s

Since
dF
dt

=
1
5

dA
dt

:

dF
dt

= ´
?

7
1000

m3

sec2

That is, the flow is decreasing at a rate of

?
7

1000
m3

sec2 .

S-20: We are given the rate of change of the volume of liquid, and are asked for the rate of change
of the height of the liquid. So, we need an equation relating volume and height.

The volume V of a cone with height h and radius r is 1
3πr2h. Since we know

dV
dt

, and want to know
dh
dt

, we need to find a way to deal with the unwanted variable r. We can find r in terms of h by using
similar triangles. Viewed from the side, the conical glass is an equilateral triangle, as is the water in
it. Using the Pythagorean Theorem, the cone has height 5

?
3.

400



h

r
10

5

5
?

3

Using similar triangles,
r
h
=

5
5
?

3
, so r =

h?
3

. (Remark: we could also use the fact that the water

forms a cone that looks like an equilateral triangle when viewed from the side to conclude r =
h?
3

.)

Now, we can write the volume of water in the cone in terms of h, and no other variables.

V =
1
3

πr2h

=
1
3

π

(
h?
3

)2

h

=
π

9
h3

Differentiating with respect to t:

dV
dt

=
π

3
h2 dh

dt

When h = 7 cm and
dV
dt

= ´5 mL per minute,

´5 =
π

3
(49)

dh
dt

dh
dt

=
´15
49π

«´0.097 cm per minute

S-21: As is so often the case, we use a right triangle in this problem to relate the quantities.

2

θ

D

sinθ =
D
2

D = 2sinθ
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Using the chain rule, we differentiate both sides with respect to time, t.

dD
dt

= 2cosθ ¨ dθ

dt

So, if
dθ

dt
= 0.25 radians per hour and θ =

π

4
radians, then

(a)
dD
dt

= 2cos
(

π

4

)
¨0.25 = 2

(
1?
2

)
1
4
=

1
2
?

2
metres per hour.

Setting aside part (b) for a moment, let’s think about (c). If
dθ

dt
and

dD
dt

have different signs, then

because
dD
dt

= 2cosθ ¨ dθ

dt
, that means cosθ ă 0. We have to have a nonnegative depth, so Dą 0

and D = 2sinθ implies sinθ ą 0. If sinθ ě 0 and cosθ ă 0, then θ P (π/2,π ]. On the diagram,
that looks like this:

2
θD

That is: the water has reversed direction. This happens, for instance, when a river empties into the
ocean and the tide is high. Skookumchuck Narrows provincial park, in the Sunshine Coast, has
reversing rapids.

Now, let’s return to (b). If the rope is only 2 metres long, and the river rises higher than 2 metres,
then our equation D = 2sinθ doesn’t work any more: the buoy might be stationary underwater
while the water rises or falls (but stays at or above 2 metres deep).

S-22: (a) When the point is at (0,´2), its y-coordinate is not changing, because it is moving along

a horizontal line. So, the rate at which the particle moves is simply
dx
dt

. Let θ be the angle an

observer would be looking at, in order to watch the point. Since we know
dθ

dt
, a reasonable plan is

to find an equation relating θ and x, and then differentiate implicitly with respect to t. To do this,
let’s return to our diagram.
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x

y

x

θ

2

When the point is a little to the right of (0,´2), then we can make a triangle with the origin, as

shown. If we let θ be the indicated angle, then
dθ

dt
= 1 radian per second. (It is given that the

observer is turning one radian per second, so this is how fast θ is increasing.) From the right
triangle in the diagram, we see

tanθ =
x
2

Now, we have to take care of a subtle point. The diagram we drew only makes sense for the point
when it is at a position a little to the right of (0,´2). So, right now, we’ve only made a set-up that
will find the derivative from the right. But, with a little more thought, we see that even when x is
negative (that is, when the point is a little to the left of (0,´2)), our equation holds if we are careful
about how we define θ . Let θ be the angle between the line connecting the point and the origin, and
the y-axis, where θ is negative when the point is to the left of the y-axis.

x

y

|x|

2|θ |
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Since x and θ are both negative when the point is to the left of the y-axis,

tan |θ |= 2
|x|

tan(´θ ) =
´x
2

So, since tan(´θ ) = ´ tan(θ ):

tanθ =
x
2

So, we’ve shown that the relationship tanθ =
x
2

holds when our point is at (x,´2), regardless of the
sign of x.

Moving on, since we are given
dθ

dt
and asked for

dx
dt

, we differentiate with respect to t:

sec2
θ ¨ dθ

dt
=

1
2
¨ dx

dt

When the point is at (0,´2), since the observer is turning at one radian per second, also
dθ

dt
= 1.

Also, looking at the diagram, θ = 0. Plugging in these values:

sec2 (0) ¨ (1) = 1
2
¨ dx

dt

1 =
1
2
¨ dx

dt
dx
dt

= 2

So, the particle is moving at 2 units per second.

(b) When the point is at (0,2), it is moving along a line with slope ´1
2 and y-intercept 2. So, it is on

the line
y = 2´ 1

2
x

That is, at time t, if the point is at (x(t),y(t)), then x(t) and y(t) satisfy y(t) = 2´ 1
2x(t). Implicitly

differentiating with respect to t:
dy
dt

= ´1
2
¨ dx

dt

So, when
dx
dt

= 1,
dy
dt

= ´1
2

. That is, its y-coordinate is decreasing at
1
2

unit per second.

For the question “How fast is the point moving?”, remember that the velocity of an object can be
found by differentiating (with respect to time) the equation that gives the position of the object. The
complicating factors in this case are that (1) the position of our object is not given as a function of
time, and (2) the position of our object is given in two dimensions (an x coordinate and a y
coordinate), not one.

Remark: the solution below is actually pretty complicated. It is within your abilities to figure it out,
but later on in your mathematical career you will learn an easier way, using vectors. For now, take

404



this as a relatively tough exercise, and a motivation to keep learning: your intuition that there must
be an easier way is well founded!

The point is moving along a straight line. So, to take care of complication (2), we can give its
position as a point on the line. We can take the line as a sort of axis. We’ll need to choose a point on
the axis to be the “origin”: (2,1) is a convenient point. Let D be the point’s (signed) distance along
the “axis” from (2,1). When the point is a distance of one unit to the left of (2,1), we’ll have
D = ´1, and when the point is a distance of one unit to the right of (2,1), we’ll have D = 1. Then

D changes with respect to time, and
dD
dt

is the velocity of the point. Since we know
dx
dt

and
dy
dt

, a
reasonable plan is to find an equation relating x, y, and D, and differentiate implicitly with respect to
t. (This implicit differentiation takes care of complication (1).) Using the Pythagorean Theorem:

D2 = (x´2)2 +(y´1)2

Differentiating with respect to t:

2D ¨ dD
dt

= 2(x´2) ¨ dx
dt

+ 2(y´1) ¨ dy
dt

We plug in x = 0, y = 2, dx
dt = 1, dy

dt = ´1
2 , and D = ´a(0´2)2 +(2´1)2 = ´?5 (negative

because the point is to the left of (2,1)):

´2
?

5 ¨ dD
dt

= 2(´2)(1)+ 2(1)
(
´1

2

)
dD
dt

=

?
5

2
units per second

S-23: (a) Since the perimeter of the bottle is unchanged (you aren’t stretching the plastic), it is
always the same as the perimeter before it was smooshed, which is the circumference of a circle of
radius 5, or 2π(5) = 10π . So, using our approximation for the perimeter of an ellipse,

10π = π

[
3(a+ b)´

b

(a+ 3b)(3a+ b)
]

10 = 3(a+ b)´
b

(a+ 3b)(3a+ b)

(b) The area of the base of the bottle is πab, and its height is 20 cm, so the volume of the bottle is

V = 20πab

(c) As you smoosh the bottle, its volume decreases, so the water spills out. (If it turns out that the
volume is increasing, then no water is spilling out–but life experience suggests, and our calculations

verify, that this is not the case.) The water will spill out at a rate of ´dV
dt

cubic centimetres per

second, where V is the volume inside the bottle. We know something about a and
da
dt

, so a
reasonable plan is to differentiate the equation from (b) (relating V and a) with respect to t.
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Using the product rule, we differentiate the equation in (b) implicitly with respect to t and get

dV
dt

= 20π

(
da
dt

b+ a
db
dt

)

So, we need to find the values of a, b,
da
dt

, and
db
dt

at the moment when a = 2b.

The equation from (a) tells us 10 = 3(a+ b)´a

(a+ 3b)(3a+ b). So, when a = 2b,

10 = 3(2b+ b)´
b

(2b+ 3b)(6b+ b)

10 = 9b´
b

(5b)(7b) = b
(

9´?35
)

b =
10

9´?35

where we use the fact that b is a positive number, so
?

b2 = |b|= b.

Since a = 2b,

a =
20

9´?35

Now we know a and b at the moment when a = 2b. We still need to know
da
dt

and
db
dt

at that

moment. Since a = 5+ t, always
da
dt

= 1. The equation from (a) relates a and b, so differentiating

both sides with respect to t will give us an equation relating
da
dt

and
db
dt

. When differentiating the
portion with a square root, be careful not to forget the chain rule.

0 = 3
(

da
dt

+
db
dt

)
´
(da

dt + 3db
dt

)
(3a+ b)+ (a+ 3b)

(
3da

dt +
db
dt

)
2
a

(a+ 3b)(3a+ b)

Since
da
dt

= 1:

0 = 3
(

1+
db
dt

)
´
(
1+ 3db

dt

)
(3a+ b)+ (a+ 3b)

(
3+ db

dt

)
2
a

(a+ 3b)(3a+ b)
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At this point, we could plug in the values we know for a and b at the moment when a = 2b.
However, the algebra goes a little smoother if we start by plugging in a = 2b:

0 = 3
(

1+
db
dt

)
´
(
1+ 3db

dt

)
(7b)+ (5b)

(
3+ db

dt

)
2
a

(5b)(7b)

0 = 3
(

1+
db
dt

)
´ b

(
7+ 21db

dt + 15+ 5db
dt

)
2b
?

35

0 = 3
(

1+
db
dt

)
´ 22+ 26db

dt

2
?

35

0 = 3+ 3
db
dt
´ 11?

35
´ 13?

35
db
dt

´3+
11?
35

=

(
3´ 13?

35

)
db
dt

db
dt

=
´3+ 11?

35

3´ 13?
35

=
´3
?

35+ 11
3
?

35´13

Now, we can calculate
dV
dt

at the moment when a = 2b. We already found

dV
dt

= 20π

(
da
dt

b+ a
db
dt

)

So, plugging in the values of a, b,
da
dt

, and
db
dt

at the moment when a = 2b:

dV
dt

= 20π

(
(1)
(

10
9´?35

)
+

(
20

9´?35

)(´3
?

35+ 11
3
?

35´13

))
=

200π

9´?35

(
1´2

(
3
?

35´11
3
?

35´13

))
«´375.4

cm3

sec

So the water is spilling out of the cup at about 375.4 cubic centimetres per second.

Remark: the algebra in this problem got a little nasty, but the method behind its solution is no more
difficult than most of the problems in this section. One of the reasons why calculus is so widely
taught in universities is to give you lots of practice with problem-solving: taking a big problem,
breaking it into pieces you can manage, solving the pieces, and getting a solution.

A problem like this can sometimes derail people. Breaking it up into pieces isn’t so hard, but when
you actually do those pieces, you can get confused and forget why you are doing the calculations
you’re doing. If you find yourself in this situation, look back a few steps to remind yourself why
you started the calculation you just did. It can also be helpful to write notes, like “We are trying to
find dV

dt . We already know that dV
dt = .... We still need to find a, b, da

dt and db
dt .”
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S-24: Since A = 0, the equation relating the variables tells us:

0 = log
(
C2 +D2 + 1

)
1 =C2 +D2 + 1

0 =C2 +D2

0 =C = D

This will probably be useful information. Since we’re also given the value of a derivative, let’s
differentiate the equation relating the variables implicitly with respect to t. For ease of notation, we

will write
dA
dt

= A1, etc.

A1B+AB1 =
2CC1+ 2DD1

C2 +D2 + 1

At t = 10, A =C = D = 0:

A1B+ 0 =
0+ 0

0+ 0+ 1
A1B = 0

at t = 10, A1 = 2 units per second:

2B = 0
B = 0.

Solutions to Exercises 6 — Jump to TABLE OF CONTENTS

S-1: There are many possible answers. Consider these: f (x) = 5x, g(x) = 2x. Then

lim
xÑ8

f (x) = lim
xÑ8

g(x) =8, and lim
xÑ8

f (x)
g(x)

= lim
xÑ8

5x
2x

= lim
xÑ8

5
2
=

5
2
= 2.5.

S-2: There are many possible answers. Consider these: f (x) = x, g(x) = x2. Then

lim
xÑ8

f (x) = lim
xÑ8

g(x) =8, and lim
xÑ8

f (x)
g(x)

= lim
xÑ8

x
x2 = lim

xÑ8

1
x
= 0.

S-3: If we plug in x = 1 to the numerator and the denominator, we find they are both zero. So, we
have an indeterminate form appropriate for L’Hôpital’s Rule.

lim
xÑ1

x3´ ex´1

sin(πx)
loooomoooon

numÑ0
denÑ0

= lim
xÑ1

3x2´ ex´1

π cos(πx)
= ´ 2

π
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S-4: Be careful– this is not an indeterminate form!

As xÑ 0+, the numerator logxÑ´8. That is, the numerator is becoming an increasingly huge,
negative number. As xÑ 0+, the denominator xÑ 0+, which only serves to make the total

fraction even larger, and still negative. So, lim
xÑ0+

logx
x

= ´8.

Remark: if we had tried to use l’Hôpital’s Rule here, we would have come up with the wrong

answer. If we differentiate the numerator and the denominator, the fraction becomes
1
x
1
= 1

x , and

lim
xÑ0+

1
x
=8. The reason we cannot apply l’Hôpital’s Rule is that we do not have an indeterminate

form, like both numerator and denominator going to infinity, or both numerator and denominator
going to zero.

S-5: We rearrange the expression to a more natural form:

lim
xÑ8

(logx)2e´x = lim
xÑ8

(logx)2

ex
looomooon

numÑ8
denÑ8

Both the numerator and denominator go to infinity as x goes to infinity. So, we can apply l’Hôpital’s
Rule. In fact, we end up applying it twice.

= lim
xÑ8

2logx
xex

loomoon

numÑ8
denÑ8

= lim
xÑ8

2/x
xex + ex

The numerator gets smaller and smaller while the denominator gets larger and larger, so:

= 0

S-6:

lim
xÑ8

x2e´x = lim
xÑ8

x2

ex
loomoon

numÑ8
denÑ8

= lim
xÑ8

2x
ex

loomoon

numÑ8
denÑ8

= lim
xÑ8

2
ex

loomoon

numÑ8
denÑ8

= 0

S-7:

lim
xÑ0

x´ xcosx
x´ sinx
loooomoooon

numÑ0
denÑ0

= lim
xÑ0

1´ cosx+ xsinx
1´ cosx

looooooooomooooooooon

numÑ0
denÑ0

= lim
xÑ0

sinx+ sinx+ xcosx
sinx

looooooooooomooooooooooon

numÑ0
denÑ0

= lim
xÑ0

2cosx+ cosx´ xsinx
cosx

= 3
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S-8: If we plug in x = 0 to the numerator and denominator, both are zero, so this is a candidate for
l’Hôpital’s Rule. However, an easier way to evaluate the limit is to factor x2 from the numerator and
denominator, and cancel.

lim
xÑ0

?
x6 + 4x4

x2 cosx
= lim

xÑ0

?
x4
?

x2 + 4
x2 cosx

= lim
xÑ0

x2
?

x2 + 4
x2 cosx

= lim
xÑ0

?
x2 + 4
cosx

=

?
02 + 4

cos(0)
= 2

S-9:

lim
xÑ8

(logx)2

x
looomooon

numÑ8
denÑ8

= lim
xÑ8

2(logx)1
x

1
= 2 lim

xÑ8

logx
x

loomoon

numÑ8
denÑ8

= 2 lim
xÑ8

1
x
1
= 0

S-10:

lim
xÑ0

1´ cosx
sin2 x

looomooon

numÑ0
denÑ0

= lim
xÑ0

sinx
2sinxcosx

= lim
xÑ0

1
2cosx

=
1
2

S-11: If we plug in x = 0, the numerator is zero, and the denominator is

sec0 =
1

cos0
=

1
1
= 1. So the limit is

0
1
= 0.

Be careful: you cannot use l’Hôpital’s Rule here, because the fraction does not give an
indeterminate form. If you try to differentiate the numerator and the denominator, you get an
expression whose limit does not exist:

lim
xÑ0

1
secx tanx

= lim
xÑ0

cosx ¨ cosx
sinx

= DNE.

S-12: If we plug x = 0 into the denominator, we get 1. However, the numerator is an indeterminate
form: tan0 = 0, while lim

xÑ0+
cscx =8 and lim

xÑ0´
cscx = ´8. If we use cscx = 1

sinx , our expression

becomes

lim
xÑ0

tanx ¨ (x2 + 5)
sinx ¨ ex
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Since plugging in x = 0 makes both the numerator and the denominator equal to zero, this is a
candidate for l’Hôspital’s Rule. However, a much easier way is to simplify the trig first.

lim
xÑ0

tanx ¨ (x2 + 5)
sinx ¨ ex = lim

xÑ0

sinx ¨ (x2 + 5)
cosx ¨ sinx ¨ ex

= lim
xÑ0

x2 + 5
cosx ¨ ex

=
02 + 5

cos(0) ¨ e0 = 5

S-13: If we plug in x = 0, both numerator and denominator become zero. So, we have exactly one
of the indeterminate forms that l’Hôpital’s Rule applies to.

lim
xÑ0

sin(x3 + 3x2)

sin2 x
loooooomoooooon

numÑ0
denÑ0

= lim
xÑ0

(3x2 + 6x)cos(x3 + 3x2)

2sinxcosx

If we plug in x = 0, still we find that both the numerator and the denominator go to zero. We could
jump in with another iteration of l’Hôpital’s Rule. However, the derivatives would be a little messy,
so we use limit laws and break up the fraction into the product of two fractions. If both limits exist:

lim
xÑ0

(3x2 + 6x)cos(x3 + 3x2)

2sinxcosx
=

(
lim
xÑ0

x2 + 2x
sinx

)
¨
(

lim
xÑ0

3cos(x3 + 3x2)

2cosx

)
We can evaluate the right-hand limit by simply plugging in x = 0:

=
3
2

lim
xÑ0

x2 + 2x
sinx

loomoon

numÑ0
denÑ0

=
3
2

lim
xÑ0

2x+ 2
cosx

=
3
2

(
2
1

)
= 3

S-14:

lim
xÑ1

log(x3)

x2´1
= lim

xÑ1

3log(x)
x2´1
looomooon

numÑ0
denÑ0

= lim
xÑ1

3/x
2x

=
3
2

S-15:

• Solution 1.

lim
xÑ0

e´1/x2

x4 = lim
xÑ0

1
x4

e1/x2
loomoon

numÑ8
denÑ8

= lim
xÑ0

´4
x5

´2
x3 e1/x2 = lim

xÑ0

2
x2

e1/x2
loomoon

numÑ8
denÑ8

= lim
xÑ0

´4
x3

´2
x3 e1/x2 = lim

xÑ0

2
e1/x2 = 0
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since, as xÑ 0, the exponent 1
x2 Ñ8 so that e1/x2 Ñ8 and e´1/x2 Ñ 0.

• Solution 2.

lim
xÑ0

e´1/x2

x4 = lim
t= 1

x2Ñ8

e´t

t´2 = lim
tÑ8

t2

et
loomoon

numÑ8
denÑ8

= lim
tÑ8

2t
et

loomoon

numÑ8
denÑ8

= lim
tÑ8

2
et = 0

S-16:

lim
xÑ0

xex

tan(3x)
loomoon

numÑ0
denÑ0

= lim
xÑ0

ex + xex

3sec2(3x)
=

1
3

S-17: Both the numerator and denominator converge to 0 as xÑ 0. So, by l’Hôpital,

lim
xÑ0

1+ cx´ cosx
ex2´1

loooooomoooooon

numÑ0
denÑ0

= lim
xÑ0

c+ sinx
2xex2

The new denominator still converges to 0 as xÑ 0. For the limit to exist, the same must be true for
the new numerator. This tells us that if c‰ 0, the limit does not exist. We should check whether the
limit exists when c = 0. Using l’Hôpital:

lim
xÑ0

sinx
2xex2
loomoon

numÑ0
denÑ0

= lim
xÑ0

cosx
ex2(4x2 + 2)

=
1

1(0+ 2)
=

1
2

.

So, the limit exists when c = 0.

S-18: The first thing we notice is, regardless of k, when we plug in x = 0 both numerator and
denominator become zero. Let’s use this fact, and apply l’Hôpital’s Rule.

lim
xÑ0

ek sin(x2)´ (1+ 2x2)

x4
looooooooooomooooooooooon

numÑ0
denÑ0

= lim
xÑ0

2kxcos(x2)ek sin(x2)´4x
4x3

= lim
xÑ0

2k cos(x2)ek sin(x2)´4
4x2

When we plug in x = 0, the denominator becomes 0, and the numerator becomes 2k´4. So, we’ll
need some cases, because the behaviour of the limit depends on k.
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For k = 2:

lim
xÑ0

2k cos(x2)ek sin(x2)´4
4x2 = lim

xÑ0

4cos(x2)e2sin(x2)´4
4x2

looooooooooomooooooooooon

numÑ0
denÑ0

= lim
xÑ0

´8xsin(x2)e2sin(x2)+ 16xcos2(x2)e2sin(x2)

8x

= lim
xÑ0

[´ sin(x2)e2sin(x2)+ 2cos2(x2)e2sin(x2)
]

= 2

For k ą 2, the numerator goes to 2k´4, which is a positive constant, while the denominator goes to
0 from the right, so:

lim
xÑ0

2k cos(x2)ek sin(x2)´4
4x2 =8

For k ă 2, the numerator goes to 2k´4, which is a negative constant, while the denominator goes to
0 from the right, so:

lim
xÑ0

2k cos(x2)ek sin(x2)´4
4x2 = ´8

S-19:

• We want to find the limit as n goes to infinity of the percentage error, lim
nÑ8

100
|S(n)´A(n)|
|S(n)| .

Since A(n) is a nicer function than S(n), let’s simplify:

lim
nÑ8

100
|S(n)´A(n)|
|S(n)| = 100

ˇ

ˇ

ˇ

ˇ

1´ lim
nÑ8

A(n)
S(n)

ˇ

ˇ

ˇ

ˇ

.

We figure out this limit the natural way:

100
ˇ

ˇ

ˇ

ˇ

1´ lim
nÑ8

A(n)
S(n)

ˇ

ˇ

ˇ

ˇ

= 100

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1´ lim
nÑ8

5n4

5n4´13n3´4n+ log(n)
loooooooooooooomoooooooooooooon

numÑ8
denÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= 100

ˇ

ˇ

ˇ

ˇ

ˇ

1´ lim
nÑ8

20n3

20n3´39n2´4+ 1
n

ˇ

ˇ

ˇ

ˇ

ˇ

= 100

ˇ

ˇ

ˇ

ˇ

ˇ

1´ lim
nÑ8

n3

n3 ¨
20

20´ 39
n ´ 4

n3 +
1
n4

ˇ

ˇ

ˇ

ˇ

ˇ

= 100|1´1|= 0

So, as n gets larger and larger, the relative error in the approximation gets closer and closer to
0.
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• Now, let’s look at the absolute error.

lim
nÑ8

|S(n)´A(n)|= lim
nÑ8

|´13n3´4n+ logn|=8

So although the error gets small relative to the giant numbers we’re talking about, the
absolute error grows without bound.

S-20: From Example 6.3.4, we know that lim
xÑ0

(1+ x)
a
x = ea, so lim

xÑ0
(1+ x)

log5
x = elog5 = 5.

However, this is the limit as x goes to 0, which is not what we were asked. So, we modify the
functions by replacing x with 1

x . If xÑ 0+, then 1
x Ñ8.

Taking f (x) = 1+ 1
x and g(x) = x log5, we see:

(i) lim
xÑ8

f (x) = lim
xÑ8

(
1+

1
x

)
= 1

(ii) lim
xÑ8

g(x) = lim
xÑ8

x log5 =8
(iii) Let us name

1
x
= X . Then as xÑ8, X Ñ 0+, so:

lim
xÑ8

[ f (x)]g(x) = lim
xÑ8

[
1+

1
x

]x log5

= lim
xÑ8

[
1+

1
x

] log5
1
x = lim

XÑ0+
[1+X ]

log5
X = elog5 = 5, where in

the penultimate step, we used the result of Example 6.3.4.

S-21: lim
xÑ0

sin2 x = 0, and lim
xÑ0

1
x2 =8, so we have the form 08. (Note that sin2 x is positive, so our

root is defined.) This is not an indeterminate form: lim
xÑ0

x2?
sin2 x = 0.

S-22: lim
xÑ0

cosx = 1 and lim
xÑ0

1
x2 =8, so lim

xÑ0
(cosx)

1
x2 has the indeterminate form 18. We want to

use l’Hôpital, but we need to get our function into a fractional indeterminate form. So, we’ll use a
logarithm.

y : = (cosx)
1

x2

logy = log
(
(cosx)

1
x2
)
=

1
x2 log(cosx) =

logcosx
x2

lim
xÑ0

logy = lim
xÑ0

logcosx
x2

looomooon

numÑ0
denÑ0

= lim
xÑ0

´sinx
cosx
2x

= lim
xÑ0

´ tanx
2x

loomoon

numÑ0
denÑ0

= lim
xÑ0

´sec2 x
2

= lim
xÑ0

´1
2cos2 x

= ´1
2

Therefore, lim
xÑ0

y = lim
xÑ0

elogy = e´1/2 =
1?
e

S-23:
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• Solution 1

y : = ex logx = (ex)logx

lim
xÑ0+

y = lim
xÑ0+

(ex)logx

This has the form 1´8 = 1
18 , and 18 is an indeterminate form. We want to use l’Hôpital, but

we need to get a different indeterminate form. So, we’ll use logarithms.

lim
xÑ0+

logy = lim
xÑ0+

log
(
(ex)logx

)
= lim

xÑ0+
logx log (ex) = lim

xÑ0+
(logx) ¨ x

This has the indeterminate form 0 ¨8, so we need one last adjustment before we can use
l’Hôpital’s Rule.

= lim
xÑ0+

logx
1
x

loomoon

numÑ´8
denÑ8

= lim
xÑ0+

1
x
´1
x2

= lim
xÑ0+

´x = 0

Now, we can figure out what happens to our original function, y:

lim
xÑ0+

y = lim
xÑ0+

elogy = e0 = 1

• Solution 2

y : = ex logx =
(

elogx
)x

= xx

lim
xÑ0+

y = lim
xÑ0+

xx

We have the indeterminate form 00. We want to use l’Hôpital, but we need a different
indeterminate form. So, we’ll use logarithms.

lim
xÑ0+

logy = lim
xÑ0+

log(xx) = lim
xÑ0+

x logx

Now we have the indeterminate form 0 ¨8, so we need one last adjustment before we can use
l’Hôpital’s Rule.

lim
xÑ0+

y = lim
xÑ0+

logx
1
x

loomoon

numÑ0
denÑ´8

= lim
xÑ0+

1
x
´1
x2

= lim
xÑ0+

´x = 0

Now, we can figure out what happens to our original function, y:

lim
xÑ0+

y = lim
xÑ0+

elogy = e0 = 1
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S-24: First, note that the function exists near 0: x2 is positive, so log(x2) exists; near 0, logx2 is
negative, so ´ log(x2) is positive, so

[´ log(x2)
]x exists even when x is negative.

Since lim
xÑ0

´ log(x2) =8 and lim
xÑ0

x = 0, we have the indeterminate form80. We need l’Hôpital,

but we need to manipulate our function into an appropriate form. We do this using logarithms.

y : =
[´ log(x2)

]x
logy = log

([´ log(x2)
]x)

= x
loomoon

Ñ0

¨ log

´ log(x2)
loooomoooon

Ñ8


looooooooomooooooooon

Ñ8

=
log
(´ log(x2)

)
1
x

lim
xÑ0

logy = lim
xÑ0

log
(´ log(x2)

)
1
x

loooooooomoooooooon

numÑ8
denÑ˘8

= lim
xÑ0

´ 2
x

´ log(x2)

´1
x2

= lim
xÑ0

´2x
log(x2)
loomoon

numÑ0
denÑ´8

= 0

Now, we’re ready to figure out our original limit.

lim
xÑ0

y = lim
xÑ0

elogy = e0 = 1

Solutions to Exercises 7.1 — Jump to TABLE OF CONTENTS

S-1: In general, this is false. For example, the function f (x) =
x2´9
x2´9

has no vertical asymptotes,

because it is equal to 1 in every point in its domain (and is undefined when x = ˘3).

However, it is certainly possible that f (x) has a vertical asymptote at x = ´3. For example,

f (x) =
1

x2´9
has a vertical asymptote at x = ´3. More generally, if g(x) is continuous and

g(´3) ‰ 0, then f (x) has a vertical asympotote at x = ´3.

S-2: Since x2 + 1 and x2 + 4 are always positive, f (x) and h(x) are defined over all real numbers.
So, f (x) and h(x) correspond to A(x) and B(x). Which is which? A(0) = 1 = f (0) while
B(0) = 2 = h(0), so A(x) = f (x) and B(x) = h(x).

That leaves g(x) and k(x) matching to C(x) and D(x). The domain of g(x) is all x such that
x2´1ě 0. That is, |x| ě 1, like C(x). The domain of k(x) is all x such that x2´4ě 0. That is,
|x| ě 2, like D(x). So, C(x) = g(x) and D(x) = k(x).
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S-3: (a) Since f (0) = 2, we solve

2 =
b

log2(0+ p)

=
b

log2 p

= |log p|
log p = ˘2

p = e˘2

p = e2 or p =
1
e2

We know that p is e2 or
1
e2 , but we have to decide between the two. In both cases, f (0) = 2. Let’s

consider the domain of f (x). Since log2(x+ p) is never negative, the square root does not restrict
our domain. However, we can only take the logarithm of positive numbers. Therefore, the domain is

x such that x+ pą 0
x such that xą´p

If p =
1
e2 , then the domain of f (x) is

(
´ 1

e2 ,8
)

. In particular, since ´ 1
e2 ą´1, the domain of

f (x) does not include x = ´1. However, it is clear from the graph that f (´1) exists. So, p = e2.

(b) Now, we need to figure out what b is. Notice that b is the end of the domain of f (x), which we
already found to be (´p,8). So, b = ´p = ´e2.

(As a quick check, if we take e« 2.7, then ´e2 = ´7.29, and this looks about right on the graph.)

(c) The x-intercept is the value of x for which f (x) = 0:

0 =
b

log2(x+ p)

0 = log(x+ p)
1 = x+ p

x = 1´ p = 1´ e2

The x-intercept is 1´ e2.

(As another quick check, the x-intercept we found is a distance of 1 from the vertical asymptote, and
this looks about right on the graph.)

S-4: Vertical asymptotes occur where the function blows up. In rational functions, this can only
happen when the denominator goes to 0. In our case, the denominator is 0 when x = 3, and in this
case the numerator is 147. That means that as x gets closer and closer to 3, the numerator gets closer
and closer to 147 while the denominator gets closer and closer to 0, so | f (x)| grows without bound.
That is, there is a vertical asymptote at x = 3.
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The horizontal asymptotes are found by taking the limits as x goes to infinity and negative infinity.
In our case, they are the same, so we condense our work.

lim
xÑ˘8

x(2x+ 1)(x´7)
3x3´81

= lim
xÑ˘8

2x3 + ax2 + bx+ c
3x3´81

where a, b, ad c are some constants. Remember, for rational functions, you can figure out the end
behaviour by looking only at the terms with the highest degree–the others won’t matter, so we don’t
bother finding them. From here, we divide the numerator and denominator by the highest power of x
in the denominator, x3.

= lim
xÑ˘8

2x3 + ax2 + bx+ c
3x3´81

(
1
x3

1
x3

)

= lim
xÑ˘8

2+ a
x +

b
x2 +

c
x3

3´ 81
x3

=
2+ 0+ 0+ 0

3´0
=

2
3

So there is a horizontal asymptote of y =
2
3

both as xÑ8 and as xÑ´8.

S-5: Since f (x) is continuous over all real numbers, it has no vertical asymptote.

To find the horizontal asymptotes, we evaluate lim
xÑ˘8

f (x).

lim
xÑ8

103x´7 = lim
XÑ8

10X

looomooon

let X=3x´7

=8

So, there’s no horizontal asymptote as xÑ8.

lim
xÑ´8

103x´7 = lim
XÑ´8

10X

loooomoooon

let X=3x´7

= lim
X 1Ñ8

10´X 1

looooomooooon

let X 1=´X

= lim
X 1Ñ8

1
10X 1

= 0

That is, y = 0 is a horizontal asymptote as xÑ´8.

Solutions to Exercises 7.2 — Jump to TABLE OF CONTENTS
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S-1: Functions A(x) and B(x) share something in common that sets them apart from the others:
they have a horizontal tangent line only once. In particular, A1(´2) ‰ 0 and B1(2) ‰ 0. The only
listed functions that do not have two distinct roots are l(x) and p(x). Since l(´2)‰ 0 and p(2)‰ 0,
we conclude

A1(x) = l(x) B1(x) = p(x)

Function C(x) is never decreasing. Its tangent line is horizontal when x = ˘2, but the curve never
decreases, so C1(x) ě 0 for all x and C1(2) =C1(´2) = 0. The only function that matches this is
n(x) = (x´2)2(x+ 2)2. Since its linear terms have even powers, it is never negative, and its roots
are precisely x = ˘2.

C1(x) = n(x)

For the functions D(x) and E(x) we consider their behaviour near x = 0. D(x) is decreasing near
x = 0, so D1(0) ă 0, which matches with o(0) ă 0. Contrastingly, E(x) is increasing near zero, so
E 1(0) ą 0, which matches with m(0) ą 0.

D1(x) = o(x) E 1(x) = m(x)

S-2: The domain of f (x) is all real numbers except ´3 (because when x = ´3 the denominator is
zero). For x‰´3, we differentiate using the quotient rule:

f 1(x) =
ex(x+ 3)´ ex(1)

(x+ 3)2 =
ex

(x+ 3)2 (x+ 2)

Since ex and (x+ 3)2 are positive for every x in the domain of f (x), the sign of f 1(x) is the same as
the sign of x+ 2. We conclude that f (x) is increasing for every x in its domain with x+ 2ą 0. That
is, over the open interval (´2,8).

S-3: Since we can’t take the square root of a negative number, f (x) is only defined when xě 1.
Furthermore, since we can’t have zero as a denominator, x = ´2 is not in the domain — but as long
as xě 1, we also have x‰´2. So, the domain of the function is [1,8).

In order to find where f (x) is increasing, we find where f 1(x) is positive.

f 1(x) =
2x+4

2
?

x´1
´2
?

x´1

(2x+ 4)2 =
(x+ 2)´2(x´1)?

x´1(2x+ 4)2
=

´x+ 4?
x´1(2x+ 4)2

The denominator is never negative, so f (x) is increasing when the numerator of f 1(x) is positive, i.e.
when 4´ xą 0, or xă 4. Recalling that the domain of definition for f (x) is [1,+8), we conclude
that f (x) is increasing on the open interval (1,4).

S-4: The domain of arctangent is all real numbers. The domain of the logarithm function is all
positive numbers, and 1+ x2 is positive for all x. So, the domain of f (x) is all real numbers.

In order to find where f (x) is increasing, we find where f 1(x) is positive.

f 1(x) =
2

1+ x2 ´
2x

1+ x2 =
2´2x
1+ x2

419



Since the denominator is always positive, f (x) is increasing when when 2´2xą 0. We conclude
that f (x) is increasing on the open interval (´8,1).

Solutions to Exercises 7.3 — Jump to TABLE OF CONTENTS

S-1:

x

y

concave up concave down concave up

concave down

In the graph above, the concave-up sections are marked in red. These are where the graph has an
increasing derivative; equivalently, where the graph lies above its tangent lines; more descriptively,
where it curves like a smiley face.

Concave-down sections are marked in blue. These are where the graph has a decreasing derivative;
equivalently, where the graph lies below its tangent lines; more descriptively, where it curves like a
frowney face.

S-2: The most basic shape of the graph is given by the last two bullet points:

x

y

´5 5
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The curve is concave down over the interval (´5,5), so let’s give it a frowney-face curvature there.

x

y

´5 5

Finally, when xą 5 or xă´5, our curve should be concave up, so let’s give it smiley-face
curvature there, without changing its basic increasing/decreasing shape.

x

y

´5 5

This finishes our sketch.

S-3: An inflection point is where the concavity of a function changes. It is possible that x = 3 is an
inflection point, but it is also possible that is not. So, the statement is false, in general.

For example, let f (x) = (x´3)4. Since f (x) is a polynomial, all its derivatives exist and are
continuous. f 2(x) = 12(x´3)2, so f 2(3) = 0. However, since f 2(x) is something squared, it is
never negative, so f (x) is never concave down. Since f (x) is never concave down, it never changes
concavity, so it has no inflection points.

Remark: finding inflection points is somewhat reminiscent of finding local extrema. To find local
extrema, we first find all critical and singular points, since local extrema can only occur there or at
endpoints. Then, we have to figure out which critical and singular points are actually local extrema.
Similarly, if you want to find inflection points, start by finding where f 2(x) is zero or non-existant,
because inflection points can only occur there. Then, you still have to check whether those points
are actually inflection points.

S-4: Inflection points occur where f 2(x) changes sign. Since f (x) is a polynomial, its first and
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second derivatives exist everywhere, and are themselves polynomials. In particular,

f (x) = 3x5´5x4 + 13x

f 1(x) = 15x4´20x3 + 13

f 2(x) = 60x3´60x2 = 60x2(x´1)

The second derivative is negative for xă 1 and positive for xą 1. Thus the concavity changes
between concave up and concave down at x = 1, y = 11.

This is the only inflection point. It is true that f 2(0) = 0, but for values of x both a little larger than
and a little smaller than 0, f 2(x) ă 0, so the concavity does not change at x = 0.

Solutions to Exercises 7.4 — Jump to TABLE OF CONTENTS

S-1: This function is symmetric across the y-axis, so it is even.

S-2: The function is not even, because it is not mirrored across the y-axis.

Assuming it continues as shown, the function is periodic, because the unit shown below is repeated:

x

y

y = f (x)

Additionally, f (x) is odd. In a function with odd symmetry, if we mirror the right-hand portion of
the curve (the portion to the right of the y-axis) across both the y-axis and the x-axis, it lines up with
the left-hand portion of the curve.
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x

y

y = f (x)

reflected across y-axis

x

y

y = f (x)

reflected across both axes

Since reflecting the right-hand portion of the graph across the y-axis, then the x-axis, gives us f (x),
we conclude f (x) is odd.
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S-3: Since the function is even, we simply reflect the portion shown across the y-axis to complete
the sketch.

x

y

S-4: Since the function is odd, to complete the sketch, we reflect the portion shown across the
y-axis (shown dashed), then the x-axis (shown in red).

x

y
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S-5: A function is even if f (´x) = f (x).

f (´x) =
(´x)4´ (´x)6

e(´x)2

=
x4´ x6

ex2

= f (x)

So, f (x) is even.

S-6: For any real number x, we will show that f (x) = f (x+ 4π).

f (x+ 4π) = sin(x+ 4π)+ cos
(

x+ 4π

2

)
= sin(x+ 4π)+ cos

(x
2
+ 2π

)
= sin(x)+ cos

(x
2

)
= f (x)

So, f (x) is periodic.

S-7: f (x) is not periodic. (You don’t really have to justify this, but if you wanted to, you could say
something like this. Notice f (0) = 1. Whenever xą 10, f (x) ą 1. Then the value of f (0) is not
repeated indefinitely, so f (x) is not periodic.)

To decide whether f (x) is even, odd, or neither, simplify f (´x):

f (´x) = (´x)4 + 5(´x)2 + cos
(
(´x)3)

= x4 + 5x3 + cos(´x)

= x4 + 5x3 + cos(x)
= f (x)

Since f (´x) = f (x), our function is even.

S-8: It should be clear that f (x) is not periodic. (If you wanted to justify this, you could note that
f (x) = 0 has exactly two solutions, x = 0,´5. Since the value of f (0) is repeated only twice, and
not indefinitely, f (x) is not periodic.)

To decide whether f (x) is odd, even, or neither, we simplify f (´x).

f (´x) = (´x)5 + 5(´x)4

= ´x5 + 5x4

We see that f (´x) is not equal to f (x) or to ´ f (x). For instance, when x = 1:

• f (´x) = f (´1) = 4,
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• f (x) = f (1) = 6, and

• ´ f (x) = ´ f (1) = ´6.

Since f (´x) is not equal to f (x) or to ´ f (x), f (x) is neither even nor odd.

S-9: Recall the period of g(X) = tanX is π .

tan(X +π) = tan(X) for any X in the domain of tanX

Replacing X with πx:

tan(πx+π) = tan(πx) for any x in the domain of tan(πx)
tan(π(x+ 1)) = tan(πx) for any x in the domain of tan(πx)

f (x+ 1) = f (x) for any x in the domain of tan(πx)

The period of f (x) is 1.

S-10: Let’s consider g(x) = tan(3x) and h(x) = sin(4x) separately. Recall that π is the period of
tangent.

tanX = tan(X +π) for every X in the domain of tanX

Replacing X with 3x:

tan(3x) = tan(3x+π) for every x in the domain of tan3x

tan(3x) = tan
(

3
(

x+
π

3

))
for every x in the domain of tan3x

g(x) = g
(

x+
π

3

)
for every x in the domain of tan3x

So, the period of g(x) = tan(3x) is
π

3
.

Similarly, 2π is the period of sine.

sin(X) = sin(X + 2π) for every X in the domain of sin(X)

Replacing X with 4x:

sin(4x) = sin(4x+ 2π) for every x in the domain of sin(4x)

sin(4x) = sin
(

4
(

x+
π

2

))
for every x in the domain of sin(4x)

h(x) = h
(

x+
π

2

)
for every x in the domain of sin(4x)

So, the period of h(x) = sin(4x) is
π

2
.

All together, f (x) = g(x)+ h(x) will repeat when both g(x) and h(x) repeat. The least common

integer multiple of
π

3
and

π

2
is π . Since g(x) repeats every

π

3
units, and h(x) repeats every

π

2
units,

they will not both repeat until we move π units. So, the period of f (x) is π .
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No exercises for Section 7.5. — Jump to TABLE OF CONTENTS

Solutions to Exercises 7.6 — Jump to TABLE OF CONTENTS

S-1: (a) Since we must have 3´ xě 0, this tells us xď 3. So, the domain is (´8,3].

(b)

f 1(x) =
?

3´ x´ x
2
?

3´ x
= 3

2´ x
2
?

3´ x

For every x in the domain of f 1(x), the denominator is positive, so the sign of f 1(x) depends only on
the numerator.

x (´8,2) 2 (2,3) 3

f 1(x) positive 0 negative DNE

f (x) increasing maximum decreasing endpoint

So, f is increasing for xă 2, has a local (in fact global) maximum at x = 2, is decreasing for
2ă xă 3, and has a local minimum at x = 3.

Remark: this shows us the basic skeleton of the graph. It consists of a single hump.

x
2 3

(c) When xă 3,

f 2(x) =
1
4
(3x´12)(3´ x)´3/2 ă 0

The domain of f 2(x) is (´8,´3), and over its domain it is always negative (the factor (3x´12) is
negative for all xă 4 and the factor (3´ x)´3/2 is positive for all xă 3). So, f (x) has no inflection
points and is concave down everywhere.

(d) We already found

f 1(x) = 3
2´ x

2
?

3´ x
.

This is undefined at x = 3. Indeed,

lim
xÑ3´

3
2´ x

2
?

3´ x
= ´8,

so f (x) has a vertical tangent line at (3,0).

(e) To sketch the curve y = f (x), we already know its intervals of increase and decrease, and its
concavity. We also note its intercepts are (0,0) and (3,0).
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x

y

(3,0)

(2.2)

increasing decreasing

concave down

S-2:

• Asymptotes:

lim
xÑ˘8

f (x) = lim
xÑ˘8

1
x
´ 2

x4 = 0

So y = 0 is a horizontal asymptote both at x =8 and x = ´8.

lim
xÑ0

f (x) = lim
xÑ0

x3´2
x4 = ´8

So there is a vertical asymptote at x = 0, where the function plunges downwards from both
the right and the left.

• Intervals of increase and decrease:

f 1(x) = ´ 1
x2 +

8
x5 =

8´ x3

x5

The only place where f 1(x) is zero only at x = 2. So f (x) has a horizontal tangent at x = 2,
y = 3

8 . This is a critical point.

The derivative is undefined at x = 0, as is the function.

x (´8,0) 0 (0,2) 2 (2,8)

f 1(x) negative DNE positive 0 negative

f (x) decreasing vertical asymptote increasing local max decreasing

Since the function changes from increasing to decreasing at x = 2, the only local maximum is
at x = 2.

At this point, we get a rough sketch of f (x).
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x

y

2

horizontal asymptotes y = 0

decreasing decreasingincreasing

(
2, 3

8

)

• Concavity:

f 2(x) =
2
x3 ´

40
x6 =

2x3´40
x6

The second derivative of f (x) is positive for xą 3
?

20 and negative for xă 3
?

20. So the curve
is concave up for xą 3

?
20 and concave down for xă 3

?
20. There is an inflection point at

x = 3
?

20« 2.7, y = 18
204/3 « 0.3.

• Intercepts:

Since f (x) is not defined at x = 0, there is no y-intercept. The only x-intercept is
x = 3

?
2« 1.3.

• Sketch:

We can add concavity to our skeleton sketched above, and label our intercept and inflection
point (marked with a square).
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x

y
(
2, 3

8

)

2 3
?

203
?

2

decreasing decreasingincreasing

concave down concave up

S-3:

• Asymptotes:

When x = ´1, the denominator 1+ x3 of f (x) is zero while the numerator is 1, so x = ´1 is
a vertical asymptote. More precisely,

lim
xÑ´1´

f (x) = ´8 lim
xÑ´1+

f (x) =8

There are no horizontal asymptotes, because

lim
xÑ8

x4

1+ x3 =8 lim
xÑ´8

x4

1+ x3 = ´8

• Intervals of increase and decrease:

We note that f 1(x) is defined for all x‰´1 and is not defined for x = ´1. Therefore, the only
singular point for f (x) is x = ´1.

To find critical points, we set

f 1(x) = 0

4x3 + x6 = 0

x3(4+ x3) = 0

x3 = 0 or 4+ x3 = 0

x = 0 or x = ´ 3
?

4«´1.6

At these critical points, f (0) = 0 and f (´ 3
?

4) = 4 3?4
´3 ă 0. The denominator of f 1(x) is

never negative, so the sign of f 1(x) is the same as the sign of its numerator, x3(4+ x3).
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x (´8,´ 3
?

4) ´ 3
?

4 (´ 3
?

4,´1) ´1 (´1,0) 0 (0,8)

f 1(x) positive 0 negative DNE negative 0 positive

f (x) increasing l. max decreasing VA decreasing l. min increasing

Now, we have enough information to make a skeleton of our graph.

x

y

´1´ 3
?

4

increasing decr decr increasing

• Concavity:

The second derivative is undefined when x = ´1. It is zero when
12x2´6x5 = 6x2(2´ x3) = 0. That is, at x = 3

?
2« 1.3 and x = 0. Notice that the sign of

f 2(x) does not change at x = 0, so x = 0 is not an inflection point.

x (´8,´1) ´1 (´1,0) 0 (0, 3
?

2) 3
?

2 ( 3
?

2,8)

f 2(x) negative DNE positive 0 positive 0 negative

f (x) concave down VA concave up concave up IP concave down

Now we can refine our skeleton by adding concavity.
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x

y

´1´ 3
?

4 3
?

2

increasing decr decr increasing

concave down concave up concave down

S-4:

• Asymptotes:

lim
xÑ´8

x3

1´ x2 =8 lim
xÑ8

x3

1´ x2 = ´8
So, f (x) has no horizontal asymptotes.

On the other hand f (x) blows up at both x = 1 and x = ´1, so there are vertical asymptotes
at x = 1 and x = ´1. More precisely,

lim
xÑ´1´

x3

1´ x2 =8 lim
xÑ´1+

x3

1´ x2 = ´8

lim
xÑ1´

x3

1´ x2 =8 lim
xÑ1+

x3

1´ x2 = ´8

• Symmetry:

f (x) is an odd function, because

f (´x) =
(´x)3

1´ (´x)2 =
´x3

1´ x2 = ´ f (x)

• Intercepts:

The only intercept of f (x) is the origin. In particular, that means that out of the three intervals
where it is continuous, namely (´8,´1), (´1,1) and (1,8), in two of them f (x) is always
positive or always negative.
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– When xă´1: 1´ x2 ă 0 and x3 ă 0, so f (x) ą 0.

– When xą 1: 1´ x2 ă 0 and x3 ą 0, so f (x) ă 0.

– When ´1ă xă 0, 1´ x2 ą 0 and x3 ă 0 so f (x) ă 0.

– When 0ă xă 1, 1´ x2 ą 0 and x3 ą 0 so f (x) ą 0.

• Intervals of increase and decrease:

f 1(x) =
3x2´ x4

(1´ x2)2 =
x2(3´ x2)

(1´ x2)2

The only singular points are x = ˘1, where f (x), and hence f 1(x), is not defined. The critical
points are:

f 1(x) = 0

x2 = 0 or 3´ x2 = 0

x = 0 or x = ˘?3«˘1.7

The values of f at its critical points are f (0) = 0, f (
?

3) = ´3
?

3
2
«´2.6 and

f (´?3) =
3
?

3
2
« 2.6.

Notice the sign of f 1(x) is the same as the sign of 3´ x2.

x (´8,´?3) ´?3 (´?3,´1) ´1

f 1(x) negative 0 positive DNE

f (x) decreasing local min increasing VA

x (´1,0) 0 (0,
?

3)
?

3 (
?

3,8)

f 1(x) positive 0 positive 0 negative

f (x) increasing increasing local max decreasing

Now we have enough information to sketch a skeleton of f (x).

433



x

y

´1 1´?3
?

3

3
?

3
2

´3
?

3
2

decreasing incr increasing incr decreasing

• Concavity:

f 2(x) =
2x(3+ x2)

(1´ x2)3

The second derivative is zero when x = 0, and is undefined when x = ˘1.

x (´8,´1) (´1,0) 0 (0,1) (1,8)

f 2(x) positive negative 0 positive negative

f (x) concave up concave down inflection point concave up concave down

Now, we can refine our skeleton.
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x

y

´1 1´?3
?

3

3
?

3
2

´3
?

3
2

decreasing incr increasing incr decreasing

concave up concave down concave up concave down

S-5: (a) One branch of the function, the exponential function ex, is continuous everywhere. So f (x)

is continuous for xă 0. When xě 0, f (x) =
x2 + 3

3(x+ 1)
, which is continuous whenever x‰´1 (so

it’s continuous for all xą 0). So, f (x) is continuous for xą 0. To see that f (x) is continuous at
x = 0, we see:

lim
xÑ0´

f (x) = lim
xÑ0´

ex = 1

lim
xÑ0+

f (x) = lim
xÑ0+

x2 + 3
3(x+ 1)

= 1

So, lim
xÑ0

f (x) = 1 = f (0)

Hence f (x) is continuous at x = 0, so f (x) is continuous everywhere.
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(b) We differentiate the function twice. Notice

d
dx

"

x2 + 3
3(x+ 1)

*

=
3(x+ 1)(2x)´ (x2 + 3)(3)

9(x+ 1)2

=
x2 + 2x´3
3(x+ 1)2

=
(x´1)(x+ 3)

3(x+ 1)2 where x‰´1

Then lim
xÑ0+

f 1(x) =
(0´1)(0+ 3)

3(0+ 1)2 = ´1‰ 1 = e0 = lim
xÑ0´

f 1(x)

so f 1(x) =

$

’

’

&

’

’

%

ex xă 0

DNE x = 0
(x´1)(x+3)

3(x+1)2 xą 0

Differentiating again,

d 2

dx2

"

x2 + 3
3(x+ 1)

*

=
d
dx

"

x2 + 2x´3
3(x+ 1)2

*

=
3(x+ 1)2(2x+ 2)´ (x2 + 2x´3)(6)(x+ 1)

9(x+ 1)4

(˜3(x+ 1)
˜3(x+ 1)

)
=

(x+ 1)(2x+ 2)´2(x2 + 2x´3)
3(x+ 1)3

=
8

3(x+ 1)3 where x‰´1

so f 2(x) =

$

’

’

&

’

’

%

ex xă 0

DNE x = 0
8

3(x+1)3 xą 0

i. The only singular point is x = 0, and the only critical point is x = 1. (When you’re reading off the
expression for f 1(x), remember that the bottom line only applies when xą 0.)

x (´8,0) 0 (0,1) 1 (1,8)

f 1(x) positive DNE negative 0 positive

f (x) increasing local max decreasing local min increasing

The coordinates of the local maximum are (0,1) and the coordinates of the local minimum are(
1, 2

3

)
.

ii.
When x‰ 0, f 2(x) is always positive, so f (x) is concave up.
iii.
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lim
xÑ8

f (x) = lim
xÑ8

x2 + 3
3x+ 3

= lim
xÑ8

x+ 3
x

1+ 3
x

=8

So, there is no horizontal asymptote to the right.

lim
xÑ´8

f (x) = lim
xÑ´8

ex = 0

So, y = 0 is a horizontal asymptote to the left.

Since f (x) is continuous everywhere, there are no vertical asymptotes.

(c)

x

y

(0,1)
(1, 2

3)

increasing decr increasing

concave up concave up

S-6:

• Asymptotes: In the problem statement, we are told:

lim
xÑ˘8

1+ 2x
ex2 = 0

So, y = 0 is a horizontal asymptote both at x =8 and at x = ´8.

Since f (x) is continuous, it has no vertical asymptotes.

• Intervals of increase and decrease:

The critical points are the zeroes of 1´ x´2x2 = (1´2x)(1+ x). That is, x = 1
2 , ´1.

x (´8,´1) ´1 (´1, 1
2)

1
2 (1

2 ,8)

f 1(x) negative 0 positive 0 negative

f (x) decreasing local min increasing local max decreasing

At these critical points, f
(1

2

)
= 2e´1/4 ą 0 and f (´1) = ´e´1 ă 0.

From here, we can sketch a skeleton of the graph.
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x

y

´1 1
2

decreasing increasing decr increasing

• Concavity:

We are told that we don’t have to actually solve for the inflection points. We just need to know
enough to get a basic idea. So, we’ll turn the skeleton of the graph into smooth curve.

0.5−1
x

y

Inflection points are points where the convexity changes from up to down or vice versa. It
looks like our graph is convex down for x from ´8 to about ´1.8, convex up from about
x = ´1.8 to about x = ´0.1, convex down from about x = ´0.1 to about x = 1.4 and convex
up from about x = 1.4 to infinity. So there are three inflection points at roughly
x = ´1.8, ´0.1, 1.4.

S-7:

(a) We need to know the first and second derivative of f (x). Using the product and chain rules,
f 1(x) = e´x2/2(1´ x2). Given to us is f 2(x) = (x3´3x)e´x2/2. (These derivatives are also easy to
find using the formula developed in Question 20, Section 3.4.)

Since e´x2/2 is always positive, the sign of f 1(x) is the same as the sign of 1´ x2. f (x) has no

singular points and its only critical points are x = ˘1. At these critical points, f (´1) = ´ 1?
e

and

f (1) =
1?
e

.
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x (´8,´1) ´1 (´1,1) 1 (1,8)

f 1(x) negative 0 positive 0 negative

f (x) decreasing local min increasing local max decreasing

This, together with the observations that f (x) ă 0 for xă 0, f (0) = 0 and f (x) ą 0 for xą 0 (in
fact f is an odd function), is enough to sketch a skeleton of our graph.

x

y

´1 1
´ 1?

e

1?
e

We can factor f 2(x) = (x3´3x)e´x2/2 = x(x+
?

3)(x´?3)e´x2/2. Since e´x2/2 is always
positive, the sign of f 2(x) is the same as the sign of x(x+

?
3)(x´?3).

x (´8,´?3) ´?3 (´?3,0) 0 (0,
?

3)
?

3 (
?

3,8)

f 2(x) negative 0 positive 0 negative 0 positive

f (x) concave down IP concave up IP concave down IP concave up

(b) We’ve already seen that f (x) has a local min at x = ´1 and a local max at x = 1.

As x tends to negative infinity, f (x) tends to 0, and f (x) is decreasing on (´8,´1). Then f (x) is
between 0 and f (´1) = ´1?

e on (´8,´1). Then f (x) is increasing on (´1,1) from f (´1) = ´1?
e

to f (1) = 1?
e . Finally, for xą 1, f (x) is decreasing from f (1) = 1?

e and tending to 0. So when

xą 1, f (x) is between 1?
e and 0.

So, over its entire domain, f (x) is between ´1?
e and 1?

e , and it only achieves those values at x = ´1

and x = 1, respectively. Therefore, the local and global min of f (x) is at (´1, ´1?
e), and the local

and global max of f (x) is at (1, 1?
e).

(c) In the graph below, square marks are inflection points, and solid dots are extrema.
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x

y

´1 1´?3 ?
3

´1?
e

1?
e

S-8:

• Symmetry:

f (´x) = ´x+ 2sin(´x) = ´x´2sinx = ´ f (x)

So, f (x) is an odd function. If we can sketch y = f (x) for nonnegative x, we can use
symmetry to complete the curve for all x.

• Asymptotes:

Since f (x) is continuous, it has no vertical asymptotes. It also has no horizontal asymptotes,
since

lim
xÑ´8

f (x) = ´8 lim
xÑ8

f (x) =8

• Intervals of increase and decrease:

Since f (x) is differentiable everywhere, there are no singular points.

f 1(x) = 1+ 2cosx

So, the critical points of f (x) occur when

cosx = ´1
2

x = 2πn˘ 2π

3
for any integer n

For instance, f (x) has critical points at x =
2π

3
, x =

4π

3
, x =

8π

3
, and x =

10π

3
.

From the unit circle, or the graph of y = 1+ 2cosx, we see:

x
(´2π

3 , 2π

3

) 2π

3

(2π

3 , 4π

3

) 4π

3

(4π

3 , 8π

3

) 8π

3

(8π

3 , 10π

3

)
f 1(x) positive 0 negative 0 positive 0 negative

f (x) increasing l. max decreasing l. min increasing l. max decreasing
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We have enough information to sketch a skeleton of the curve y = f (x). We use the pattern
above for the graph to the right of the y-axis, and use odd symmetry for the graph to the left of
the y-axis.

x

y

2π

3
4π

3
8π

3
10π

3
14π

3
´8π

3
´10π

3
´14π

3

• Concavity:

f 2(x) = ´2sinx

So, f 2(x) exists everywhere, and is zero for x = π +πn for every integer n.

x (0,π) π (π ,2π) 2π (2π ,3π) 3π (3π ,4π)

f 2(x) negative 0 positive 0 negative 0 positive

f (x) concave down IP concave up IP concave down IP concave up

Using these values, and the odd symmetry of f (x), we can refine our skeleton. The closed
dots are local extrema, and the square marks are inflection points occurring at every integer
multiple of π .
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x

y

2π

3
4π

3
8π

3
10π

3
14π

3
´2π

3
´4π

3
´8π

3
´10π

3
´14π

3

S-9: We first compute the derivatives f 1(x) and f 2(x).

f 1(x) = 4cosx+ 4sin2x = 4cosx+ 8sinxcosx = 4cosx(1+ 2sinx)

f 2(x) = ´4sinx+ 8cos2x = ´4sinx+ 8´16sin2 x = ´4(4sin2 x+ sinx´2)

The graph has the following features.

• Symmetry: f (x) is periodic of period 2π . We’ll consider only ´π ď xď π . (Any interval of
length 2π will do.)

• y-intercept: f (0) = ´2

• Intervals of increase and decrease: f 1(x) = 0 when cosx = 0, i.e. x = ˘π

2
, and when

sinx = ´1
2

, i.e. x = ´π

6
,´5π

6
.

x (´π ,´5π

6 )
(´5π

6 ,´π

2

) (´π

2 ,´π

6

) (´π

6 , π

2

) (
π

2 ,π
)

f 1(x) negative positive negative positive negative

f (x) decreasing increasing decreasing increasing decreasing
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This tells us local maxima occur at x =˘π

2
and local minima occur at x =´5π

6
and x =´π

6
.

Here is a table giving the value of f at each of its critical points.

x ´5
6

π ´π

2
´π

6
π

2
sinx ´1

2 ´1 ´1
2 1

cos2x 1
2 ´1 1

2 ´1
f (x) ´3 ´2 ´3 6

From here, we can graph a skeleton of of f (x):

x

y

π´π π

2´π

2 ´π

6´5π

6

6

´3

´2

• Concavity: To find the points where f 2(x) = 0, set y = sinx, so f 2(x) = ´4(4y2 + y´2).
Then we really need to solve

4y2 + y´2 = 0 which gives us

y =
´1˘?33

8

These two y-values map to the following two x-values, which we’ll name a and b for
convenience:

a = arcsin
(´1+

?
33

8

)
« 0.635

b = arcsin
(´1´?33

8

)
«´1.003
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However, these are not the only values of x in [´π ,π ] with sinx = ´1˘
?

33
8 . The analysis

above misses the others because the arcsine function only returns numbers in the range[´π

2 , π

2

]
. The graph below shows that there should be other values of x with sinx = ´1˘

?
33

8 ,
and hence f 2(x) = 0.

x

y

y = sinx

´1+
?

33
8

´1´
?

33
8

b a

We can recover the other solutions in [´π ,π ] by recalling that

sin(x) = sin(π´ x).

So, if we choose x = arcsin
(
´1+

?
33

8

)
« 0.635 to make sin(x) = ´1+

?
33

8 so that f 2(x) = 0,
then setting

x = π´a = π´ arcsin
(´1+

?
33

8

)
« 2.507

will also give us sin(x) = ´1+
?

33
8 and f 2(x) = 0. Similarly, setting

x = π´b = π´ arcsin
(´1´?33

8

)
« 4.145

would give us f 2(x) = 0. However, this value is outside [´π ,π ]. To find another solution
inside [´π ,π ] we use the identity

sin(x) = sin(´π´ x)

(which we can obtain from the identity we used above and the fact that sin(θ ) = sin(θ ˘2π)
for any angle θ ). Using this, we can show that

x = ´π´b = ´π´ arcsin
(´1´?33

8

)
«´2.139

also gives f 2(x) = 0.

So, all together, f 2(x) = 0 when x = ´π´b, x = b, x = a, and x = π´a.

Now, we should compute the sign of f 2(x) while x is between ´π and π . Recall that, if
y = sinx, then f 2(x) = ´4(4y2 + y´2). So, in terms of y, f 2 is a parabola pointing down,
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with intercepts y = ´1˘
?

33
8 . Then f 2 is positive when y is in the interval

(
´1´

?
33

8 , ´1+
?

33
8

)
,

and f 2 is negative otherwise. From the graph of sine, we see that y is between ´1´
?

33
8 and

´1+
?

33
8 precisely on the intervals (´π ,´π´b), (b,a), and (π´a,π).

Therefore, f (x) is concave up on the intervals (´π ,´π´b), (b,a), and (π´a,π), and f (x)
is concave down on the intervals (´π´b,b) and (a,π´a). So, the inflection points of f
occur at x = ´π´b, x = b, x = a, and x = π´a.

x

y

π´π π

2´π

2 ´π

6´5π

6

ab π´a´π´b

6

´3

´2

To find the maximum and minimum values of f (x) on [0,π ], we compare the values of f (x) at its
critical points in this interval (only x = π

2 ) with the values of f (x) at its endpoints x = 0, x = π .

Since f (0) = f (π) = ´2, the minimum value of f on [0,π ] is ´2, achieved at x = 0,π and the

maximum value of f on [0,π ] is 6, achieved at x =
π

2
.

S-10: Let f (x) = 3

c

x+ 1
x2 .

• Asymptotes: Since lim
xÑ0

f (x) =8, f (x) has a vertical asymptote at x = 0 where the curve

reaches steeply upward from both the left and the right.

lim
xÑ˘8

f (x) = 0, so y = 0 is a horizontal asymptote for xÑ˘8.

• Intercepts: f (´1) = 0.
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• Intervals of increase and decrease:

f 1(x) =
´(x+ 2)

3x5/3(x+ 1)2/3

There is a singular point at x = ´1 and a critical point at x = ´2, in addition to a
discontinuity at x = 0. Note that (x+ 1)2/3 =

(
3
?

x+ 1
)2, which is never negative. Note also

that lim
xÑ´1

f 1(x) =8, so f (x) has a vertical tangent line at x = ´1.

x (´8,´2) ´2 (´2,´1) ´1 (´1,0) 0 (0,8)

f 1(x) negative 0 positive DNE positive DNE negative

f (x) decreasing l. min increasing vertical increasing VA decreasing

This gives us enough information to sketch a skeleton of the curve.

x

y

´2 ´1

• Concavity:

f 2(x) =
4x2 + 16x+ 10
9x8/3(x+ 1)5/3

We still have a discontinuity at x = 0, and f 2(x) does not exist at x = ´1. The second
derivative is zero when 4x2 + 16x+ 10 = 0. Using the quadratic formula, we find this occurs
when x = ´2˘?1.5«´0.8,´3.2. Note x8/3 = ( 3

?
x)8 is never negative.

x
(´8,´2´?1.5

) ´2´?1.5 (´2´?1.5,´1) ´1

f 2(x) negative 0 positive DNE

f (x) concave down IP concave up IP

x (´1,´2+
?

1.5) ´2+
?

1.5 (´2+
?

1.5,0) (0,8)

f 2(x) negative 0 positive positive

f (x) concave down IP concave up concave up

Now, we can refine our skeleton. The closed dot is the local minimum, and the square marks
are inflection points.
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x

y

´1´2

´1

1

S-11: The parts of the question are just scaffolding to lead you through sketching the curve. Their
answers are given explicitly, in an organized manner, in the “answers” section. In this solution, they
are scattered throughout.

• Asymptotes:

Since the function has a derivative at every real number, the function is continuous for every
real number, so it has no vertical asymptotes. In the problem statement, you are told
lim

xÑ8
f (x) = 0, so y = 0 is a horizontal asymptote as x goes to infinity. It remains to evaluate

lim
xÑ´8

f (x). Let’s consider the limit of f 1(x) instead. Recall K is a positive constant.

lim
xÑ´8

e´x = lim
xÑ8

ex =8
lim

xÑ´8
K(2x´ x2) = ´8

So,

lim
xÑ´8

K(2x´ x2)e´x = ´8

That is, as x becomes a hugely negative number, f 1(x) also becomes a hugely negative
number. As we move left along the x-axis, f (x) is decreasing with a steeper and steeper slope,
as in the sketch below. That means lim

xÑ´8
f (x) =8.
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x

y

Sketch: various tangent lines to f (x),
their slopes getting more strongly negative

as x gets more strongly negative.

• Intervals of increase and decrease:

We are given f 1(x) (although we don’t know f (x)):

f 1(x) = Kx(2´ x)e´x

The critical points of f (x) are x = 0 and x = 2, and there are no singular points. Recall e´x is
always positive, and K is a positive constant.

x (´8,0) 0 (0,2) 2 (2,8)

f 1(x) negative 0 positive 0 negative

f (x) decreasing local min increasing local max decreasing

So, f (0) = 0 is a local minimum, and f (2) = 2 is a local maximum.

Looking ahead to part (d), we have a skeleton of the curve.
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x

y

decreasing increasing decreasing

2

• Concavity:

Since we’re given f 1(x), we can find f 2(x).

f 2(x) = K(2´2x´2x+ x2)e´x

= K(2´4x+ x2)e´x

= K
(
x´2´?2

)(
x´2+

?
2
)
e´x

where the last line can be found using the quadratic equation. So, f 2(x) = 0 for x = 2˘?2,
and f 2(x) exists everywhere.

x (´8,2´?2) 2´?2 (2´?2,2+
?

2) 2+
?

2 (2+
?

2,8)

f 1(x) positive 0 negative 0 positive

f (x) concave up IP concave down IP concave up

Now, we can add concavity to our sketch.

x

y

22´?2 2+
?

2

decr increasing decreasing

cc up concave down concave up
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S-12: (a) You should be familiar with the graph of y = ex. You can construct the graph of y = e´x

just by reflecting the graph of y = ex across the y–axis. To see why this is the case, imagine
swapping each value of x with its negative: for example, swapping the point at x = ´1 with the
point at x = 1, etc. Alternatively, you can graph y = f (x) = e´x, xě 0, using the methods of this
section: at x = 0, y = f (0) = 1; as x increases, y = f (x) = e´x decreases, with no local extrema;
and as xÑ+8, y = f (x)Ñ 0.

There are no inflection points or extrema, except the endpoint (0,1).

x

y

y = f (x)
1

1

(b)

Recall that, to graph the inverse of a function, we reflect the original function across the line y = x.
To see why this is true, consider the following. By definition, the inverse function g of f is obtained
by solving y = f (x) for x as a function of y. So, for any pair of numbers x and y, we have

f (x) = y if and only g(y) = x

That is, g is the function that swaps the input and output of f . Now the point (x,y) lies on the graph
of f if and only if y = f (x). Similarly, the point (X ,Y ) lies on the graph of g if and only if
Y = g(X). Choosing Y = x and X = y, we see that the point (X ,Y ) = (y,x) lies on the graph of g if
and only if x = g(y), which in turn is the case if and only if y = f (x). So

(y,x) is on the graph of g if and only if (x,y) is on the graph of f .

To get from the point (x,y) to the point (y,x) we have to exchange xØ y, which we can do by
reflecting over the line y = x. Thus we can construct the graph of g by reflecting the curve y = f (x)
over the line y = x.
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x

y

y = f (x)

y = x

y = g(x)

1

1

(c) The domain of g is the range of f , which is (0,1]. The range of g is the domain of f , which is
[0,8).

(d) Since g and f are inverses,

g( f (x)) = x

Using the chain rule,

g1( f (x)) ¨ f 1(x) = 1

Since f 1(x) = ´e´x = ´ f (x):

g1( f (x)) ¨ f (x) = ´1

We plug in f (x) = 1
2 .

g1
(

1
2

)
¨ 1

2
= ´1

g1
(

1
2

)
= ´2

S-13: (a) First, we differentiate.

f (x) = x5´ x f 1(x) = 5x4´1 f 2(x) = 20x3

The function and its first derivative tells us the following:

• lim
xÑ8

f (x) =8, lim
xÑ´8

f (x) = ´8

• f 1(x) ą 0 (i.e. f is increasing) for |x| ą 1
4
?

5
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• f 1(x) = 0 (i.e. f has critical points) for x = ˘ 1
4
?

5
«˘0.67

• f 1(x) ă 0 (i.e. f is decreasing) for |x| ă 1
4
?

5

• f
(
˘ 1

4
?

5

)
= ¯ 4

5 4
?

5
«¯0.53

This gives us a first idea of the shape of the graph.

x

y

´1
4?5

1
4?5

4
5 4?5

´4
5 4?5

We refine this skeleton using information from the second derivative.

• f 2(x) ą 0 (i.e. f is concave up) for xą 0,

• f 2(x) = 0 (i.e. f has an inflection point) for x = 0, and

• f 2(x) ă 0 (i.e. f is concave down) for xă 0

Thus

• f has no asymptotes

• f has a local maximum at x = ´ 1
4
?

5
and a local minimum at x =

1
4
?

5

• f has an inflection point at x = 0

• f is concave down for xă 0 and concave up for xą 0
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x

y

´1
4?5

1
4?5

4
5 4?5

´4
5 4?5

(b) The function x5´ x+ k has a root at x = x0 if and only if x5´ x = ´k at x = x0. So the number
of distinct real roots of x5´ x+ k is the number of times the curve y = x5´ x crosses the horizontal

line y = ´k. The local maximum of x5´ x (when x = ´ 1
4
?

5
) is

4
5 4
?

5
, and the local minimum of

x5´ x (when x =
1
4
?

5
) is ´ 4

5 4
?

5
. So, looking at the graph of x5´ x above, we see that the number

of distinct real roots of x5´ x+ k is

• 1 when |k| ą 4
5 4
?

5

• 2 when |k|= 4
5 4
?

5

• 3 when |k| ă 4
5 4
?

5

S-14:

(a) You might not be familiar with hyperbolic sine and cosine, but you don’t need to be. We can
graph them using the same methods as the other curves in this section. The derivatives are given to
us:

d
dx
tsinhxu= coshx =

ex + e´x

2
d
dx
tcoshxu= sinhx =

ex´ e´x

2(
d
dx

)2

tsinhxu= sinhx =
ex´ e´x

2

(
d
dx

)2

tcoshxu= coshx =
ex + e´x

2
Observe that:

• sinh(x) has a derivative that is always positive, so sinh(x) is always increasing. The second
derivative of sinh(x) is negative to the left of x = 0 and positive to the right of x = 0, so
sinh(x) is concave down to the left of the y-axis and concave up to its right, with an inflection
point at x = 0.
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• cosh(x) has a derivative that is positive when xą 0 and negative when xă 0. The second
derivative of cosh(x) is always positive, so it is always concave up.

• cosh(0) = 1 and sinh(0) = 0.

• lim
xÑ8

sinhx = lim
xÑ8

coshx = lim
xÑ8

ex

2
=8, since lim

xÑ8
e´x = 0

• lim
xÑ´8

sinhx = lim
xÑ´8

(
ex

2
´ e´x

2

)
= lim

xÑ8

(
e´x

2
´ ex

2

)
= ´8 and

lim
xÑ´8

coshx = lim
xÑ´8

(
ex

2
+

e´x

2

)
= lim

xÑ8

(
e´x

2
+

ex

2

)
=8

• cosh(x) is even, since cosh(´x) =
e´x + e´(´x)

2
=

e´x + ex

2
= cosh(x), and

sinh(x) is odd, since sinh(´x) =
e´x´ e´(´x)

2
=

e´x´ ex

2
=
´ (ex´ e´x)

2
= ´sinh(x)

x

y
y = sinhx

x

y
y = coshx

1

(b)

• As y runs over (´8,8) the function sinh(y) takes every real value exactly once. So, for each
x P (´8,8), define sinh´1(x) to be the unique solution of sinh(y) = x.

• As y runs over [0,8) the function cosh(y) takes every real value in [1,8) exactly once. In
particular, the smallest value of cosh(y) is cosh(0) = 1. So, for each x P [1,8), define
cosh´1(x) to be the unique y P [0,8) that obeys cosh(y) = x.

To graph the inverse of a (one-to-one) function, we reflect the original function over the line y = x.
Using this method to graph y = sinh´1(x) is straightforward. To graph y = cosh(x), we need to be
careful of the domains: we are restricting cosh(x) to values of x in [0,8). The graphs are
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x

y

y = sinhx

y = sinh´1 x

x

y

y = sinh´1 x

x

y
y = coshx

y = cosh´1 x

x

y

y = cosh´1 x

(c) Let y(x) = cosh´1(x). Then, using the definition of cosh´1,

coshy(x) = x

We differentiate with respect to x using the chain rule.

d
dx
tcoshy(x)u= d

dx
txu

y1(x) sinhy(x) = 1

We solve for y1(x).

y1(x) =
1

sinhy(x)

We want to have our answer in terms of x, not y. We know that coshy = x, so if we can convert
hyperbolic sine into hyperbolic cosine, we can get rid of y. Our tool for this is the identity, given in
the question statement, cosh2(x)´ sinh2(x) = 1. This tells us sinh2(y) = 1´ cosh2(y). Now we
have to decide whether sinh(y) is the positive or negative square root of 1´ cosh2(y) in our context.
Looking at the graph of y(x) = cosh´1(x), we see y1(x) ą 0. So we use the positive square root:

y1(x) =
1

b

cosh2 y(x)´1
=

1?
x2´1

Remark:
d
dx
tarccos(x)u= ´1?

1´ x2
, so again the hyperbolic trigonometric function has properties

similar to (but not exactly the same as) its trigonometric counterpart.
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Solutions to Exercises 8.1 — Jump to TABLE OF CONTENTS

S-1:

x

y

y = f (x)

a

When x = 0, the curve y = f (x) appears to have a flat tangent line, so the x = 0 is a critical point.
However, it is not a local extremum: it is not true that f (0) ě f (x) for all x near 0, and it is not true
that f (0) ď f (x) for all x near 0.

To the right of the x-axis, there is a spike where the derivative of f (x) does not exist. The x-value
corresponding to this spike (call it a) is a singular point, and f (x) has a local maximum at x = a.

S-2:

x

y

y = f (x)

a b

The x-coordinate corresponding to the blue dot (let’s call it a) is a critical point, because the tangent
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line to f (x) at x = a is horizontal. There is no lower point nearby, and actually no lower point on
the whole interval shown, so f (x) has both a local minimum and a global minimum at x = a.

If a function is not continuous at a point, then it is not differentiable at that point. So, the
x-coordinate corresponding to the discontinuity (let’s call it b) is a singular point. Values of f (x)
immediately to the right of b are lower, and values immediately to the left of b are higher, so f (x)
has no local (or global) extremum at x = b.

S-3: One possible answer is shown below.

x

y

2

For every x in the red interval shown below, f (2) ě f (x), so f (2) is a local maximum. However,
the point marked with a blue dot shows that f (x) ą f (2) for some x, so f (2) is not a global
maximum.

x

y

2

S-4: Critical points are those values of x for which f 1(x) = 0, and singular points are those values
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of x for which f (x) is not differentiable. So, we ought to find f 1(x). Using the quotient rule,

f 1(x) =
(1)(x2 + 3)´ (x´1)(2x)

(x2 + 3)2

=
´x2 + 2x+ 3

(x2 + 3)2

= ´(x´3)(x+ 1)

(x2 + 3)2

(a) The derivative f 1(x) is zero when x = 3 and when x = ´1, so those are the critical points.

(b) The denominator of f 1(x) is never zero, so the derivative f 1(x) exists for all x and f (x) has no
singular points.

(c) Theorem 8.1.3 tells us that local extrema of f (x) can only occur at critical points and singular
points. So, the possible points where extrema of f (x) may exist are x = 3 and x = ´1.

S-5:

x

y

2

local max

x

y

2

neither

x

y

2

neither

x

y

2

local max

For the first curve, the function’s value at x = 2 (that is, the y-value of the solid dot) is higher than
anything around it. So, it’s a local maximum.

For the second curve, the function’s value at x = 2 (that is, the y-value of the solid dot) is higher
than everything to the left, but lower than values immediately to the right. (On the graph reproduced
below, f (x) is higher than everything in the red section, and lower than everything in the blue
section.) So, it is neither a local max nor a local min.

x

y

2

Similarly, for the third curve, f (2) is lower than the values to the right of it, and higher than values
to the left of it, so it is neither a local minimum nor a local maximum.

In the final curve, f (2) (remember–this is the y-value of the solid dot) is higher than everything
immediately to the left or right of it (for instance, over the interval marked in red below), so it is a
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local maximum.

x

y

2

S-6: The question specifies that x = 2 must not be an endpoint. By Theorem 8.1.3, if x = 2 not a
critical point, then it must be a singular point. That is, f (x) is not differentiable at x = 2. Two
possibilities are shown below, but there are infinitely many possible answers.

x

y

2
x

y

2

S-7: Critical points are those values of x for which f 1(x) = 0, and singular points are those values
of x for which f (x) is not differentiable. So, we ought to find f 1(x). Since f (x) has an absolute
value sign, let’s re-write it in a version that is friendlier to differentiation. Remember that |X |= X
when X ě 0, and |X |= ´X when X ă 0.

f (x) =
b

|(x´5)(x+ 7)|

=

#

a

(x´5)(x+ 7) if (x´5)(x+ 7) ě 0
a´(x´5)(x+ 7) if (x´5)(x+ 7) ă 0

The product (x´5)(x+ 7) is positive when (x´5) and (x+ 7) have the same sign, and negative
when they have opposite signs, so

f (x) =

#

a

(x´5)(x+ 7) if x P (´8,´7]Y [5,8)
a´(x´5)(x+ 7) if x P (´7,5)
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Now, when x‰´7,5, we can differentiate, using the chain rule.

f 1(x) =

$

’

’

’

&

’

’

’

%

d
dxt(x´5)(x+7)u

2
?

(x´5)(x+7)
if x P (´8,´7)Y (5,8)

d
dxt´(x´5)(x+7)u

2
?
´(x´5)(x+7)

if x P (´7,5)

? if x = ´7, x = 5

=

$

’

’

’

&

’

’

’

%

2x+2
2
?

(x´5)(x+7)
if x P (´8,´7)Y (5,8)

´2x´2
2
?
´(x´5)(x+7)

if x P (´7,5)

? if x = ´7, x = 5

We are tempted to say that the derivative doesn’t exist when x = ´7 and x = 5, but be careful– we
don’t actually know that yet. The formulas we have for the f 1(x) are only good when x is not ´7 or
5.

The middle formula
´2x´2

2
a´(x´5)(x+ 7)

tells us x = ´1 is a critical point: when x = ´1, f 1(x) is

given by the middle line, and it is 0. Note that x = ´1 also makes the top formula 0, but f 1(´1) is
not given by the top formula, so that doesn’t matter.

What we’ve concluded so far is that x = ´1 is a critical point of f (x), and f (x) has no other critical
points or singular points when x‰´7,5. It remains to figure out what’s going on at ´7 and 5. One
way to do this is to use the definition of the derivative to figure out what f 1(´7) and f 1(5) are, if
they exist. This is somewhat laborious. Let’s look for a better way.

• First, let’s notice that f (x) is defined for all values of x, thanks to that handy absolute value
sign.

• Next, notice f (x) ě 0 for all x, since square roots never give a negative value.

• Then if there is some value of x that gives f (x) = 0, that x gives a global minimum, and
therefore a local minimum.

• f (x) = 0 exactly when (x´5)(x+ 7) = 0, which occurs at x = ´7 and x = 5

• Therefore, f (x) has global and local minima at x = ´7 and x = 5

• So, x = ´7 and x = 5 are critical points or singular points by Theorem 8.1.3.

So, all together:

x = ´1 is a critical point, and x = ´7 and x = 5 are critical points or singular points (but we don’t
know which).

Remark: if you would like a review of how to use the definition of the derivative, below we show
that f (x) is not differentiable at x = ´7. (In fact, x = ´7 and x = 5 are both singular points.)
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f 1(´7) = lim
hÑ0

f (´7+ h)´ f (´7)
h

= lim
hÑ0

a|(´13+ h)(h)|´a|0|
h

= lim
hÑ0

a|(´13+ h)(h)|
h

Let’s first consider the case hą 0.

lim
hÑ0+

a|(´13+ h)(h)|
h

= lim
hÑ0+

a

(13´h)(h)
h

= lim
hÑ0+

?
13h´h2
?

h2

= lim
hÑ0+

c

13h´h2

h2

= lim
hÑ0+

c

13
h
´1

=8

Since one side of the limit doesn’t exist,

lim
hÑ0

f (´7+ h)´ (´7)
h

= DNE

so f 1(x) is not differentiable at x = ´7. Therefore, x = ´7 is a singular point.

S-8: For any real number c, c is in the domain of f (x) and f 1(c) exists and is equal to zero. So,
following Definition 8.1.5, every real number is a critical point of f (x), and f (x) has no singular
points.

For every number c, let a = c´1 and b = c+ 1, so aă că b. Then f (x) is defined for every x in
the interval [a,b], and f (x) = f (c) for every aď xď b. That means f (x) ď f (c) and f (x) ě f (c).
So, comparing with Definition 8.1.2, we see that f (x) has a global and local maximum AND
minimum at every real number x = c.

Solutions to Exercises 8.2 — Jump to TABLE OF CONTENTS

S-1: Two examples are given below, but many are possible.
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x

y

y = ´x2

x

y

y = ´a|x|

If f (x) = ´x2 or f (x) = ´a|x|, then f (x) has a global maximum at x = 0. Since f (x) keeps
getting more and more strongly negative as x gets farther and farther from 0, f (x) has no global
minimum.

S-2: Two examples are given below, but many are possible.

x

y

y = ex

If f (x) = ex, then f (x) ą 0 for all x. As we move left along the x-axis, f (x) gets smaller and
smaller, approaching 0 but never reaching it. Since f (x) gets smaller and smaller as we move left,
there is no global minimum. Likewise, f (x) increases more and more as we move right, so there is
no maximum.

x

y

y = arctanx+ 2

If f (x) = arctan(x)+ 2, then f (x) ą (´π

2

)
+ 2ą 0 for all x.
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As we move left along the x-axis, f (x) gets smaller and smaller, approaching
(´π

2 + 2
)

but never
reaching it. Since f (x) gets smaller and smaller as we move left, there is no global minimum.

Likewise, as we move right along the x-axis, f (x) gets bigger and bigger, approaching
(

π

2 + 2
)

but
never reaching it. Since f (x) gets bigger and bigger as we move right, there is no global maximum.

S-3: Since f (5) is a global minimum, f (5) ď f (x) for all x, and so in particular f (5) ď f (´5).
Similarly, f (´5) ď f (x) for all x, so in particular f (´5) ď f (5).
Since f (´5) ď f (5) AND f (5) ď f (´5), it must be true that f (´5) = f (5).

A sketch of one such graph is below.

x

y

y = f (x)

´5 5

S-4: Global extrema will occur at critical or singular points in the interval (´5,5) or at the
endpoints x = 5, x = ´5.

f 1(x) = 2x+ 6. Since this is defined for all real numbers, there are no singular points. The only
time f 1(x) = 0 is when x = ´3. This is inside the interval [´5,5]. So, our points to check are
x = ´3, x = ´5, and x = 5.

c ´3 ´5 5

type critical point endpoint endpoint

f (c) ´19 ´15 45

The global maximum is 45 at x = 5 and the global minimum is ´19 at x = ´3.

S-5: Global extrema will occur at the endpoints of the interval, x = ´4 and x = 0, or at singular or
critical points inside the interval. Since f (x) is a polynomial, it is differentiable everywhere, so
there are no singular points. To find the critical points, we set the derivative equal to zero.

f 1(x) = 2x2´4x´30

0 = 2x2´4x´30 = (2x´10)(x+ 3)
x = 5,´3
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The only critical point inside the interval is x = ´3.

c ´3 ´4 0

type critical point endpoint endpoint

f (c) 61 157
3 = 52+ 1

3 7

The global maximum over the interval is 61 at x = ´3, and the global minimum is 7 at x = 0.

Solutions to Exercises 8.3 — Jump to TABLE OF CONTENTS

S-1: We compute f 1(x) = 5x4´5, which means that f (x) has no singular points (i.e., it is
differentiable for all values of x), but it has two critical points:

0 = 5x4´5

0 = x4´1 = (x2 + 1)(x2´1)

0 = x2´1
x = ˘1

Note, however, that 1 is not in the interval [´2,0].

The global maximum and the global minimum for f (x) on the interval [´2,0] will occur at x = ´2,
x = 0, or x = ´1.

c ´2 0 ´1

type endpoint endpoint critical point

f (c) ´20 2 6

So, the global maximum is f (´1) = 6 while the global minimum is f (´2) = ´20.

S-2: We compute f 1(x) = 5x4´5, which means that f (x) has no singular points (i.e., it is
differentiable for all values of x), but it has two critical points:

0 = 5x4´5

0 = x4´1 = (x2 + 1)(x2´1)

0 = x2´1
x = ˘1

Note, however, that ´1 is not in the interval [0,2].

The global maximum and the global minimum for f (x) on the interval [0,2] will occur at x = 2,
x = 0, or x = 1.

c 2 0 1

type endpoint endpoint critical point

f (c) 12 ´10 ´14
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So, the global maximum is f (2) = 12 while the global minimum is f (1) = ´14.

S-3: We compute f 1(x) = 6x2´12x = 6x(x´2), which means that f (x) has no singular points
(i.e., it is differentiable for all values of x), but it has the two critical points: x = 0 and x = 2. Note,
however, 0 is not in the interval [1,4].

c 1 4 2

type endpoint endpoint critical point

f (c) ´6 30 ´10

So, the global maximum is f (4) = 30 while the global minimum is f (2) = ´10.

S-4: Since h(x) is a polynomial, it has no singular points. We compute its critical points:

h1(x) = 3x2´12

0 = 3x2´12
x = ˘2

Notice as xÑ8, h(x)Ñ8, and as xÑ´8 h(x)Ñ´8. So Theorem 8.3.3 doesn’t exactly apply.
Instead, let’s consider the signs of h1(x).

x (´8,´2) (´2,2) (2,8)

h1(x) ą 0 ă 0 ą 0

h(x) increasing decreasing increasing

So, h(x) increases until x = ´2, then decreases. That means h(x) has a local maximum at x = ´2.
The function decreases from ´2 until 2, after which is increases, so h(x) has a local minimum at
x = 2. We compute f (´2) = 20 and f (2) = ´12.

S-5: Since h(x) is a polynomial, it has no singular points. We compute its critical points:

h1(x) = 6x2´24

0 = 6x2´24
x = ˘2

Notice as xÑ8, h(x)Ñ8, and as xÑ´8 h(x)Ñ´8. So Theorem 8.3.3 doesn’t exactly apply.
Instead, let’s consider the signs of h1(x).

x (´8,´2) (´2,2) (2,8)

h1(x) ą 0 ă 0 ą 0

h(x) increasing decreasing increasing

So, h(x) increases until x = ´2, then decreases. That means h(x) has a local maximum at x = ´2.
The function decreases from ´2 until 2, after which is increases, so h(x) has a local minimum at
x = 2.

We compute f (´2) = 33 and f (2) = ´31.
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S-6: Suppose that Q is a distance of x from A. Then it is a distance of 18´ x from B.

A Q B

P

12 km

x 18´ x

Using the Pythagorean Theorem, the distance from P to Q is
?

122 + x2 kilometres, and the buggy

travels 15 kph over this off-road stretch. The travel time from P to Q is

?
122 + x2

15
hours.

The distance from Q to B is 18´ x kilometres, and the dune buggy travels 30 kph along this road.

The travel time from Q to B is
18´ x

30
hours. So, the total travel time is

f (x) =

?
122 + x2

15
+

18´ x
30

.

We wish to minimize this for 0ď xď 18. We will test all singular points, critical points, and
endpoints to find which yields the smallest value of f (x). Since there are no singular points, we
begin by locating the critical points.

0 = f 1(x) =
1

15
¨ 1

2
(144+ x2)´1/2(2x)´ 1

30
1

15
¨ x?

144+ x2
=

1
30

x?
144+ x2

=
1
2

x2

144+ x2 =
1
4

4x2 = 144+ x2

x =
12?

3
= 4

?
3

So the minimum travel times must be one of f (0), f (18), and f
(
4
?

3
)
.

f (0) =
12
15

+
18
30

= 1.4

f (18) =

?
122 + 182

15
« 1.44

f
(

4
?

3
)
=

?
144+ 144/3

15
+

18´12/
?

3
30

« 1.29

So Q should be 4
?

3 km from A.
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S-7: Let `, w and h denote the length, width and height of the box respectively. We are told that

`wh = 4500 and that `= 3w. Hence h =
4500
`w

=
4500
3w2 =

1500
w2 . The surface area of the box is

A = 2`w+ 2`h+ 2wh = 2
(

3w2 + 3w
1500
w2 +w

1500
w2

)
= 2

(
3w2 +

6000
w

)
= 6

(
w2 +

2000
w

)

w

h

`

wh

`w

`h

As w tends to zero or to infinity, the surface area approaches infinity. By Theorem 8.3.3 the

minimum surface area must occur at a critical point of w2 +
2000

w
.

0 =
d
dw

"

w2 +
2000

w

*

= 2w´ 2000
w2

2w =
2000
w2

w3 = 1000
w = 10

Therefore,

`= 3w = 30

h =
1500
w2 = 15.

The dimensions of the box with minimum surface area are 10ˆ30ˆ15.

S-8: Let the length of the sides of the square base be b metres and let the height be h metres. The
area of the base is b2, the area of the top is b2 and the area of each of the remaining four sides is bh
so the total cost is

5(b2)
loomoon

cost of base

+ 1(b2 + 4bh)
looooomooooon

cost of 5 sides

= 6b2 + 4bh = 72
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Solving for h,

h =
72´6b2

4b

=
6
4

(
12´b2

b

)
=

3
2

(
12´b2

b

)
The volume is

V = b2h = b2 ¨ 3
2

(
12´b2

b

)
= 18b´ 3

2
b3.

This is the function we want to maximize. Since volume is never negative, the endpoints of the
functions are the values of b that make the volume 0. So, the maximum volume will not occur at an
endpoint, it will occur at a critical point. The only critical point is b = 2:

0 =
d
db

"

18b´ 3
2

b3
*

= 18´ 9
2

b2

b2 = 4

b = 2, h =
3
2

(
12´4

2

)
= 6

The desired dimensions are 2ˆ2ˆ6.

S-9: It suffices to consider X and Y such that the line XY is tangent to the circle. Otherwise we
could reduce the area of the triangle by, for example, holding X fixed and reducing Y . So let X and

Y be the x– and y–intercepts of the line tangent to the circle at (cosθ , sinθ ). Then
1
X
= cosθ and

1
Y
= cos

(
π

2
´θ

)
= sinθ . The area of the triangle is

1
2

XY =
1

2cosθ sinθ
=

1
sin(2θ )

x

y

X

Y

θ

This is a minimum when sin(2θ ) is a maximum. That is when 2θ =
π

2
. Hence X =

1
cos(π/4)

and

Y =
1

sin(π/4)
. That is, X = Y =

?
2.
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S-10: For ease of notation, we place the semicircle on a Cartesian plane with diameter along the
x-axis and centre at the origin.

x

y

x

R

If x is the point where the rectangle touches the diameter to the right of the y-axis, then 2x is the
width of the rectangle. The origin and the two right corners of the rectangle form a right triangle
with hypotenuse R, so by the Pythagorean Theorem, the upper right hand corner of the rectangle is
at
(
x,
?

R2´ x2
)
. The perimeter of the rectangle is given by the function:

P(x) = 4x+ 2
a

R2´ x2

So, this is what we optimize. The endpoints of the domain for this function are x = 0 and x = R. To
find the critical points, we differentiate:

P1(x) = 4´ 2x?
R2´ x2

P1(x) = 0 ðñ 4 =
2x?

R2´ x2

x = 2
a

R2´ x2

x2 = 4(R2´ x2)

5x2 = 4R2

x =
2?
5

R

Note that since our perimeter formula was defined to work only for x in [0,R], we neglect the

negative square root, ´ 2?
5

R.

Now, we find the size of the perimeter at the critical point and the endpoints:

c 0 R 2?
5
R

type endpoint endpoint critical point

P(c) 2R 4R 2
?

5R

So, the largest possible perimeter is 2
?

5R and the smallest possible perimeter is 2R.

Remark: as a check on the correctness of our formula for P(x), when x = 0 the rectangle
degenerates to the line segment from (0,0) to (0,R). The perimeter of this “width zero rectangle” is
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2R, agreeing with P(0). Similarly, when x = R the rectangle degenerates to the line segment from
(R,0) to (´R,0). The perimeter of this “width zero rectangle” is 4R, agreeing with P(R).

S-11: Let the cylinder have radius r and height h. If we imagine popping off the ends, they are two
circular disks, each with surface area πr2. Then we imagine unrolling the remaining tube. It has
height h, and its other dimension is given by the circumference of the disks, which is 2πr. Then the
area of the “unrolled tube” is 2πrh.

h

r

r

h(2πr)h

πr2

So, the surface area is 2πr2 + 2πrh. Since the area is given as A, we can solve for h:

A = 2πr2 + 2πrh

2πrh = A´2πr2

h =
A´2πr2

2πr
.

Then we can write the volume as a function of the variable r and the constant A:

V (r) = πr2h

= πr2
(

A´2πr2

2πr

)
=

1
2
(
Ar´2πr3)

This is the function we want to maximize. Let’s find its critical points.

V 1(r) =
1
2
(
A´6πr2)

V 1(r) = 0 ðñ A = 6πr2 ðñ r =

c

A
6π
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since negative values of r don’t make sense. At this critical point,

V

(
c

A
6π

)
=

1
2

A

(
c

A
6π

)
´2π

(
c

A
6π

)3


=
1
2

[
A3/2
?

6π
´ 2πA3/2

6π
?

6π

]

=
1
2

[
A3/2
?

6π
´ A3/2

3
?

6π

]

=
A3/2

3
?

6π
.

We should also check the volume of the cylinder at the endpoints of the function. Since r ě 0, one
endpoint is r = 0. Since hě 0, and r grows as h shrinks, the other endpoint is whatever value of r
causes h to be 0. We could find this value of r, but it’s not strictly necessary: when r = 0, the
volume of the cylinder is zero, and when h = 0, the volume of the cylinder is still zero. So, the
maximum volume does not occur at the endpoints.

Therefore, the maximum volume is achieved at the critical point, where

Vmax =
A3/2

3
?

6π
.

Remark: as a check, A has units m2 and, because of the A3/2, our answer has units m3, which are
the correct units for a volume.

S-12: Denote by r the radius of the semicircle, and let h be the height of the recangle.

r

h

πr

2r

h h

Since the perimeter is required to be P, the height, h, of the rectangle must obey

P = πr+ 2r+ 2h

h =
1
2
(P´πr´2r)

471



So the area is

A(r) = 1
2πr2 + 2rh

= 1
2πr2 + r(P´πr´2r)

= rP´ 1
2(π + 4)r2

Finding all critical points:

0 = A1(r) = P´ (π + 4)r

r =
P

π + 4

Now we want to know what radius yields the maximum area. We notice that A1(r) ą 0 for

r ă P
π + 4

and A1(r) ă 0 for r ą P
π + 4

. So, A(r) is increasing until the critical point, then

decreasing after it. That means the global maximum occurs at the critical point, r =
P

π + 4
. The

maximum area is

rP´ 1
2
(π + 4)r2 =

P2

π + 4
´ 1

2
(π + 4)

P2

(π + 4)2

=
P2

2(π + 4)

Remark: another way to see that the global maximum occurs at the critical point is to compare the
area at the critical point to the areas at the endpoints of the function. The smallest value of r is 0,

while the biggest is
P

π + 2
(when the shape is simply a half-circle). Comparing A(0), A

(
P

π + 2

)
,

and A
(

P
π + 4

)
is somewhat laborious, but certainly possible.

S-13:

y = px
x

z

(a) The surface area of the pan is

xy+ 2xz+ 2yz = px2 + 2xz+ 2pxz

= px2 + 2(1+ p)xz

and the volume of the pan is xyz = px2z. Assuming that all Acm2 is used, we have the constraint

px2 + 2(1+ p)xz = A or z =
A´ px2

2(1+ p)x
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So

V (x) = xyz = x(px)
(

A´ px2

2(1+ p)x

)
=

p
2(1+ p)

x(A´ px2)

Using the product rule,

V 1(x) =
p

2(1+ p)

[
x(´2px)+ (A´ px2)

]
=

p
2(1+ p)

[
A´3px2]

The derivative V 1(x) is 0 when x =
c

A
3p

. The derivative is positive (i.e. V (x) is increasing) for

xă
c

A
3p

and is negative (i.e. V (x) is decreasing) for xą
c

A
3p

. So the pan of maximum volume

has dimensions x =
c

A
3p

, y = p
c

A
3p

=

c

Ap
3

and z =
2A/3

2(1+ p)
a

A/(3p)
=

?
Ap?

3(1+ p)
.

(b) The volume of the pan from part (a) is

V (p) =

(d
A
3p

)(
p

d

A
3p

) ?
Ap?

3(1+ p)
=

(
A
3

)3/2 ?
p

1+ p

Since

d
dp

" ?
p

1+ p

*

=
1
2(1+ p)/

?
p´?p

(1+ p)2 =

?
p
(

1
p
´1
)

2(1+ p)2

the volume is increasing with p for pă 1 and decreasing with p for pą 1. So the maximum
volume is achieved for p = 1 (a square base).

S-14: (a) We use logarithmic differentiation.

f (x) = xx

log f (x) = log (xx) = x logx
d
dx
tlog f (x)u= d

dx
tx logxu

f 1(x)
f (x)

= x
(

1
x

)
+ logx = 1+ logx

f 1(x) = f (x) (1+ logx) = xx(1+ logx)

(b) Since xą 0, xx ą 0. Therefore,

f 1(x) = 0 ðñ 1+ logx = 0 ðñ logx = ´1 ðñ x =
1
e
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(c) Since xą 0, xx ą 0. So, the sign of f 1(x) is the same as the sign of 1+ logx.

For xă 1
e

, logxă´1 and f 1(x) ă 0. That is, f (x) decreases as x increases, when xă 1
e

. For

xą 1
e

, logxą´1 and f 1(x) ą 0. That is, f (x) increases as x increases, when xą 1
e

. Hence f (x) is

a local minimum at x =
1
e

.

S-15: Call the length of the wire L units and suppose that it is cut ` units from one end. Make the
square from the piece of length `, and make the circle from the remaining piece of length L´ `.

The square has perimeter `, so its side length is `/4 and its area is
(
`

4

)2

. The circle has

circumference L´ `, so its radius is
L´ `

2π
and its area is π

(
L´ `

2π

)2

=
(L´ `)2

4π
.

The area enclosed by the shapes, when the square is made from a length of size `, is

A(`) =
`2

16
+

(L´ `)2

4π

We want to find the global max and min for this function, given the constraint 0ď `ď L, so we find
its derivative:

A1(`) =
`

8
´ L´ `

2π
=

π + 4
8π

`´ L
2π

Now, we find the critical point.

A1(`) = 0
π + 4

8π
`=

L
2π

`=
4L

π + 4

` 0 L
..

.
4L

π+4

type endpoint endpoint critical point

A(`)
..

.
L2

4π

L2

16 A
( 4L

π+4

)
It seems obnoxious to evaluate A

( 4L
π+4

)
, and the problem doesn’t ask for it–but we still have to

figure out whether it is a global max or min.

When `ă 4L
π+4 , A1(`)ă 0, and when `ą 4L

π+4 , A1(`)ą 0. So, A(`) is decreasing until `= 4L
π+4 , then

increasing. That means our critical point `= 4L
π+4 is a local minimum.

So, the minimum occurs at the only critical point, which is `=
(

4
4+π

)
L. This corresponds to

`

L
=

4
4+π

: the proportion of the wire that is cut is
4

4+π
.
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The maximum has to be either at `= 0 or at `= L. As A(0) =
L2

4π
ą A(L) =

L2

16
, the maximum has

`= 0 (that is, no square).

Solutions to Exercises 8.4 — Jump to TABLE OF CONTENTS

Solutions to Exercises 9.1 — Jump to TABLE OF CONTENTS

S-1: Since f (0) is closer to g(0) than it is to h(0), you would probably want to estimate
f (0) « g(0) = 1+ 2sin(1) if you had the means to efficiently figure out what sin(1) is, and if you
were concerned with accuracy. If you had a calculator, you could use this estimation. Also, later in
this chapter we will learn methods of approximating sin(1) that do not require a calculator, but they
do require time.

Without a calculator, or without a lot of time, using f (0) « h(0) = 0.7 probably makes the most
sense. It isn’t as accurate as f (0) « g(0), but you get an estimate very quickly, without worrying
about figuring out what sin(1) is.

Remark: when you’re approximating something in real life, there probably won’t be an obvious
“correct” way to do it. There’s usually a trade-off between accuracy and ease.

S-2: 0.93 is pretty close to 1, and we know log(1) = 0, so we estimate log(0.93) « log(1) = 0.

x

y

y = f (x)

y = 0

0.93

1

S-3: We don’t know arcsin(0.1), but 0.1 is reasonably close to 0, and arcsin(0) = 0. So, we
estimate arcsin(0.1) « 0.

S-4: We don’t know tan(1), but we do know tan
(

π

3

)
=
?

3. Since
π

3
« 1.047 is pretty close to 1,

we estimate
?

3tan(1) «?3tan
(

π

3

)
=
(?

3
)2

= 3.

S-5: Since 10.1 is pretty close to 10, we estimate 10.13 « 103 = 1000.

Remark: these kinds of approximations are very useful when you are doing computations. It’s easy
to make a mistake in your work, and having in mind that 10.13 should be about a thousand is a good
way to check that whatever answer you have makes sense.
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Solutions to Exercises 9.2 — Jump to TABLE OF CONTENTS

S-1: The linear approximation is L(x) = 3x´9. Since we’re approximating at x = 5, f (5) = L(5),
and f 1(5) = L1(5). However, there is no guarantee that f (x) and L(x) have the same value when
x‰ 5. So:
(a) f (5) = L(5) = 6
(b) f 1(5) = L1(5) = 3
(c) there is not enough information to find f (0).

S-2: The linear approximation is a line, passing through (2, f (2)), with slope f 1(2). That is, the
linear approximation to f (x) about x = 2 is the tangent line to f (x) at x = 2. It is shown below in
red.

x

y

y = f (x)

2

S-3: For any constant a, f (a) = (2a+ 5), and f 1(a) = 2, so our approximation gives us

f (x) « (2a+ 5)+ 2(x´a) = 2x+ 5

Since f (x) itself is a linear function, the linear approximation is actually just f (x) itself. As a
consequence, the linear approximation is perfectly accurate for all values of x.

S-4: We have no idea what f (0.93) is, but 0.93 is pretty close to 1, and we definitely know f (1).
The linear approximation of f (x) about x = 1 is given by

f (x) « f (1)+ f 1(1)(x´1)

So, we calculate:

f (1) = log(1) = 0

f 1(x) =
1
x

f 1(1) =
1
1
= 1
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Therefore,

f (x) « 0+ 1(x´1) = x´1

When x = 0.93:

f (0.93) « 0.93´1 = ´0.07

x

y

y = f (x)

y = x´1

1

S-5: We approximate the function f (x) =
?

x about x = 4, since 4 is a perfect square and it is close
to 5.

f (4) =
?

4 = 2

f 1(x) =
1

2
?

x
ñ f 1(4) =

1
2
?

4
=

1
4

f (x) « f (4)+ f 1(4)(x´4) = 2+
1
4
(x´4)

f (5) « 2+
1
4
(5´4) =

9
4

We estimate
?

5« 9
4

.

Remark:
(

9
4

)2

=
81
16

, which is pretty close to
80
16

= 5. Our approximation seems pretty good.

S-6: We approximate the function f (x) = 5
?

x. We need to centre the approximation about some
value x = a such that we know f (a) and f 1(a), and a is not too far from 30.

f (x) = 5
?

x = x
1
5

f 1(x) =
1
5

x´
4
5 =

1

5 5
?

x4

a needs to be a number whose fifth root we know. Since 5
?

32 = 2, and 32 is reasonably close to 30,
a = 32 is a great choice.

f (32) = 5
?

32 = 2

f 1(32) =
1

5 ¨24 =
1

80
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The linear approximation of f (x) about x = 32 is

f (x) « 2+
1

80
(x´32)

When x = 30:

f (30) « 2+
1

80
(30´32) = 2´ 1

40
=

79
40

We estimate 5
?

30« 79
40

.

Remark:
79
40

= 1.975, while 5
?

30« 1.97435. This is a decent estimation.

S-7: If f (x) = x3, then f (10.1) = 10.13, which is the value we want to estimate. Let’s take the
linear approximation of f (x) about x = 10:

f (10) = 103 = 1000

f 1(x) = 3x2

f 1(10) = 3(102) = 300
f (a) « f (10)+ f 1(10)(x´10)

= 1000+ 300(x´10)
f (10.1) « 1000+ 300(10.1´10) = 1030

We estimate 10.13 « 1030. If we calculate 10.13 exactly (which is certainly possible to do by hand),
we get 1030.301.

Remark: in the previous subsection, we used a constant approximation to estimate 10.13 « 1000.
That approximation was easy to do in your head, in a matter of seconds. The linear approximation is
more accurate, but not much faster than simply calculating 10.13.

S-8: There are many possible answers. One is:

f (x) = sinx a = 0 b = π

We know that f (π) = 0 and f (0) = 0. Using a constant approximation of f (x) about x = 0, our
estimation is f (π) « f (0) = 0, which is exactly the correct value. However, is we make a linear
approximation of f (x) about x = 0, we get

f (π) « f (0)+ f 1(0)(π´0) = sin(0)+ cos(0)π = π

which is not exactly the correct value.
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x

y

π y = f (x)

const

linear

Remark: in reality, we wouldn’t estimate sin(π), because we know its value exactly. The purpose of
this problem is to demonstrate that fancier approximations are not always more accurate. At the of
this section, we’ll talk about how to bound the error of your estimations, to make sure that you are
finding something sufficiently accurate.

S-9: The linear approximation L(x) of f (x) about x = a is chosen so that L(a) = f (a) and
L1(a) = f 1(a). So,

L1(a) = f 1(a) =
1

1+ a2

1
4
=

1
1+ a2

a = ˘?3

We’ve narrowed down a to
?

3 or ´?3. Recall the linear approximation of f (x) about x = a is
f (a)+ f 1(a)(x´a), so its constant term is f (a)´a f 1(a) = arctan(a)´ a

1+ a2 . We compute this

for a =
?

3 and a = ´?3.

a =
?

3 : arctan (a)´ a
1+ a2 = arctan

(?
3
)
´

?
3

1+
(?

3
)2 =

π

3
´
?

3
4

=
4π´?27

12

a = ´?3 : arctan (a)´ a
1+ a2 = arctan

(
´?3

)
´ ´?3

1+
(´?3

)2 = ´π

3
+

?
3

4
=
´4π +

?
27

12

So, when a =
?

3,

L(x) =
1
4

x+
4π´?27

12

and this does not hold when a = ´?3. We conclude a =
?

3.

Solutions to Exercises 9.3 — Jump to TABLE OF CONTENTS
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S-1: If Q(x) is the quadratic approximation of f about 3, then Q(3) = f (3), Q1(3) = f 1(3), and
Q2(3) = f 2(3). There is no guarantee that f (x) and Q(x) share the same third derivative, though,
so we do not have enough information to know f3(3).

f (3) = ´32 + 6(3) = 9

f 1(3) =
d
dx

 ´x2 + 6x
(

ˇ

ˇ

ˇ

ˇ

x=3
= ´2x+ 6|x=3 = 0

f 2(3) =
d2

dx2

 ´x2 + 6x
(

ˇ

ˇ

ˇ

ˇ

x=3
=

d
dx
t´2x+ 6u

ˇ

ˇ

ˇ

ˇ

x=3
= ´2

S-2: The quadratic approximation of f (x) about x = a is

f (x) « f (a)+ f 1(a)(x´a)+
1
2

f 2(a)(x´a)2

We subsitute f (a) = 2a+ 5, f 1(a) = 2, and f 2(a) = 0:

f (x) « (2a+ 5)+ 2(x´a) = 2x+ 5

So, our approximation is f (x) « 2x+ 5.

Remark: Our approximation is exact for every value of x. This will always happen with a quadratic
approximation of a function that is quadratic, linear, or constant.

S-3: We approximate the function f (x) = logx about the point x = 1. We choose 1 because it is
close to 0.93, and we can evaluate f (x) and its first two derivatives at x = 1.

f (1) = 0

f 1(x) =
1
x

ñ f 1(1) = 1

f 2(x) =
´1
x2 ñ f 2(1) = ´1

So,

f (x) « f (1)+ f 1(1)(x´1)+
1
2

f 2(1)(x´1)2

= 0+(x´1)´ 1
2
(x´1)2

When x = 0.93:

f (0.93) « (0.93´1)´ 1
2
(0.93´1)2 = ´0.07´ 1

2
(0.0049) = ´0.07245

We estimate log(0.93) «´0.07245.

Remark: a calculator approximates log(0.93) «´0.07257. We’re pretty close.
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S-4: We approximate the function f (x) = cosx. We can easily evaluate cosx and sinx (sinx will

appear in the first derivative) at x = 0, and 0 is quite close to
1

15
, so we centre our approximation

about x = 0.

f (0) = 1
f 1(x) = ´sinx
f 1(0) = ´sin(0) = 0
f 2(x) = ´cosx
f 2(0) = ´cos(0) = ´1

Using the quadratic approximation f (x) « f (0)+ f 1(0)(x´0)+ 1
2 f 2(0)(x´0)2:

f (x) « 1´ 1
2

x2

f
(

1
15

)
« 1´ 1

2 ¨152 =
449
450

We approximate cos
(

1
15

)
« 449

450
.

Remark:
449
450

= 0.9977, while a calculator gives cos
( 1

15

)« 0.9977786. Our approximation has an
error of about 0.000001.

S-5: The quadratic approximation of a function f (x) about x = a is

f (x) « f (a)+ f 1(a)(x´a)+
1
2

f 2(a)(x´a)2

We compute derivatives.

f (0) = e0 = 1

f 1(x) = 2e2x

f 1(0) = 2e0 = 2

f 2(x) = 4e2x

f 2(0) = 4e0 = 4

Substituting:

f (x) « 1+ 2(x´0)+
4
2
(x´0)2

f (x) « 1+ 2x+ 2x2

S-6: There are a few functions we could choose to approximate. For example:
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• f (x) = x4/3. In this case, we would probably choose to approximate f (x) about x = 8 (since
8 is a cube, 84/3 = 24 = 16 is something we can evaluate) or x = 1.

• f (x) = 5x. We can easily figure out f (x) when x is a whole number, so we would want to
centre our approximation around some whole number x = a, but then f 1(a) = 5a log(5) gives
us a problem: without a calculator, it’s hard to know what log(5) is.

• Since 54/3 = 5 3
?

5, we can use f (x) = 5 3
?

x. As in the first bullet, we would centre about
x = 8, or x = 1.

There isn’t much difference between the first and third bullets. We’ll go with f (x) = 5 3
?

x, centred
about x = 8.

f (x) = 5x
1
3 ñ f (8) = 5 ¨2 = 10

f 1(x) =
5
3

x´
2
3 ñ f 1(8) =

5
3
(
2´2)= 5

12

f 2(x) =
5
3

(
´2

3

)
x´

5
3 = ´10

9
x´

5
3 ñ f 2(8) = ´10

9

(
2´5
)
= ´ 5

144

Using the quadratic approximation f (x) « f (a)+ f 1(a)(x´a)+ 1
2 f 2(a)(x´a)2:

f (x) « 10+
5

12
(x´8)´ 5

288
(x´8)2

f (5) « 10+
5

12
(´3)´ 5

288
(9) =

275
32

We estimate 54/3 « 275
32

Remark:
275
32

= 8.59375, and a calculator gives 54/3 « 8.5499. Although 5 and 8 are somewhat far
apart, our estimate is only off by about 0.04.

S-7:

(a) For every value of n, the term being added is simply the constant 1. So,
30
ÿ

n=5

1 = 1+ 1+ ¨ ¨ ¨+ 1. The trick is figuring out how many 1s are added. Our index n takes

on all integers from 5 to 30, including 5 and 30, which is 26 numbers. So,
30
ÿ

n=5

= 26.

If you’re having a hard time seeing why the sum is 26, instead of 25, think of it this way:
there are thirty numbers in the collection t1,2,3,4,5,6, . . . ,29,30u. If we remove the first
four, we get 30´4 = 26 numbers in the collection t5,6, . . . ,30u.

(b)

3
ÿ

n=1

[
2(n+ 3)´n2]= 2(1+ 3)´12

loooooomoooooon

n=1

+2(2+ 3)´22
loooooomoooooon

n=2

+2(3+ 3)´32
loooooomoooooon

n=3

= 8´1+ 10´4+ 12´9 = 16
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(c)

10
ÿ

n=1

[
1
n
´ 1

n+ 1

]
=

1
1
´ 1

1+ 1
loooomoooon

n=1

+
1
2
´ 1

2+ 1
loooomoooon

n=2

+
1
3
´ 1

3+ 1
loooomoooon

n=3

+
1
4
´ 1

4+ 1
loooomoooon

n=4

+
1
5
´ 1

5+ 1
loooomoooon

n=5

+
1
6
´ 1

6+ 1
loooomoooon

n=6

+
1
7
´ 1

7+ 1
loooomoooon

n=7

+
1
8
´ 1

8+ 1
loooomoooon

n=8

+
1
9
´ 1

9+ 1
loooomoooon

n=9

+
1

10
´ 1

10+ 1
looooomooooon

n=10

Most of these cancel!

=
1
1
´1

2
+

1
2

looomooon

0

´1
3
+

1
3

looomooon

0

´1
4
+

1
4

looomooon

0

´1
5
+

1
5

looomooon

0

´1
6
+

1
6

looomooon

0

´1
7
+

1
7

looomooon

0

´1
8
+

1
8

looomooon

0

´1
9
+

1
9

looomooon

0

´ 1
10

+
1

10
loooomoooon

0

´ 1
11

= 1´ 1
11

=
10
11

(d)

4
ÿ

n=1

5 ¨2n

4n+1 = 5
4
ÿ

n=1

2n

4 ¨4n =
5
4

4
ÿ

n=1

2n

4n =
5
4

4
ÿ

n=1

1
2n

=
5
4

 1
2

loomoon

n=1

+
1
4

loomoon

n=2

+
1
8

loomoon

n=3

+
1

16
loomoon

n=4

=
75
64

S-8: For each of these, there are many solutions. We provide some below.

(a) 1+ 2+ 3+ 4+ 5 =
5
ÿ

n=1

n

(b) 2+ 4+ 6+ 8 =
4
ÿ

n=1

2n

(c) 3+ 5+ 7+ 9+ 11 =
5
ÿ

n=1

(2n+ 1)

(d) 9+ 16+ 25+ 36+ 49 =
7
ÿ

n=3

n2

(e) 9+ 4+ 16+ 5+ 25+ 6+ 36+ 7+ 49+ 8 =
7
ÿ

n=3

(n2 + n+ 1)
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(f) 8+ 15+ 24+ 35+ 48 =
7
ÿ

n=3

(n2´1)

(g) 3´6+ 9´12+ 15´18 =
6
ÿ

n=1

(´1)n+13n

Remark: if we had written (´1)n instead of (´1)n+1, with everything else the same, the signs
would have been reversed.

S-9: Let’s start by taking the first two derivative of f (x).

f (x) = 2arcsinx ñ f (0) = 2(0) = 0

f 1(x) =
2?

1´ x2
ñ f 1(0) =

2
1
= 2

f 2(x) =
d
dx

"

2(1´ x2)´
1
2

*

= 2
(´1

2

)
(1´ x2)´

3
2 (´2x) (chain rule)

=
2x(?

1´ x2
)3 ñ f 2(0) = 0

Now, we can find the quadratic approximation about x = 0.

f (x) « f (0)+ f 1(0)x+
1
2

f 2(0)x2

= 2x
f (1) « 2

Our quadratic approximation gives 2arcsin(1) « 2. However, 2arcsin(1) is exactly equal to

2
(

π

2

)
= π . We’ve just made the rather unfortunate approximation π « 2.

S-10: From the text, the quadratic approximation of ex about x = 0 is

ex « 1+ x+
1
2

x2

So,

e = e1 « 1+ 1+
1
2
= 2.5

We estimate e« 2.5.

Remark: actually, e« 2.718.

S-11:

• First, we’ll show that
(a), (d), (e)
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are equivalent:

(d) = 2
10
ÿ

n=1

n = 2(1+ 2+ ¨ ¨ ¨+ 10) = 2(1)+ 2(2)+ ¨ ¨ ¨+ 2(10) =
10
ÿ

n=1

2n = (a)

So (a) and (d) are equivalent.

(e) = 2
11
ÿ

n=2

(n´1) = 2(1+ 2+ ¨ ¨ ¨+ 10) = (d)

So (e) and (d) are equivalent.

• Second, we’ll show that
(b), (g)

are equivalent.

(g) =
1
4

10
ÿ

n=1

(
4n+1

2n

)
=

1
4

10
ÿ

n=1

(
4 ¨4n

2n

)
=

4
4

10
ÿ

n=1

(
4n

2n

)
=

10
ÿ

n=1

(
4
2

)n

=
10
ÿ

n=1

2n = (b)

• Third, we’ll show that
(c), (f)

are equivalent.

(f) =
14
ÿ

n=5

(n´4)2 = 12 + 22 + ¨ ¨ ¨+ 102 =
10
ÿ

n=1

n2 = (c)

• Now, we have three groups, where each group consists of equivalent expressions. To be quite
thorough, we should show that no two of these groups contain expressions that are secretly
equivalent. They would be hard to evaluate, but we can bound them and show that no two
expressions in two separate groups could possibly be equivalent. Notice that

10
ÿ

n=1

2n = 21 + 22 + ¨ ¨ ¨+ 210 ą 210 = 1024

10
ÿ

n=1

n2 ă
10
ÿ

n=1

102 = 10(100) = 1000

10
ÿ

n=1

n2 = 12 + 22 + ¨ ¨ ¨82 + 92 + 102 ą 82 + 92 + 102 = 245

10
ÿ

n=1

2nă
10
ÿ

n=1

20 = 200
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The expressions in the blue group add to less than 200, but the expressions in the green group
add to more than 245, and the expressions in the red group add to more than 1024, so the blue
groups expressions can’t possibly simplify to the same number as the red and green group
expressions.

The expressions in the green group add to less than 1000. Since the expressions in the red
group add to more than 1024, the expressions in the green and red groups can’t possibly
simplify to the same numbers.

We group our expressions in to collections of equivalent expressions as follows:
t(a), (d), (e)u, t(b), (g)u, t(c), (f)u

Solutions to Exercises 9.4 — Jump to TABLE OF CONTENTS

S-1: Since T3(x) is the third-degree Taylor polynomial for f (x) about x = 1:

• T3(1) = f (1)

• T 13(1) = f 1(1)

• T 23 (1) = f 2(1)

• T33 (1) = f3(1)

In particular, f 2(1) = T 23 (1).

T 13(x) = 3x2´10x+ 9
T 23 (x) = 6x´10
T 23 (1) = 6´10 = ´4

So, f 2(1) = ´4.

S-2: In Question 1, we differentiated the Taylor polynomial to find its derivative. We don’t really
want to differentiate this ten times, though, so let’s look for another way. Unlike Question 1, our
Taylor polynomial is given to us in a form very similar to its definition. The nth degree Taylor
polynomial for f (x) about x = 5 is

Tn(x) =
n
ÿ

k=0

f (k)(5)
k!

(x´5)k

So,

n
ÿ

k=0

f (k)(5)
k!

(x´5)k =
n
ÿ

k=0

2k+ 1
3k´9

(x´5)k

For any k from 0 to n,

f (k)(5)
k!

=
2k+ 1
3k´9
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In particular, when k = 10,

f (10)(5)
10!

=
20+ 1
30´9

= 1

f (10)(5) = 10!

S-3: The fourth-degree Maclaurin polynomial for f (x) is

T4(x) = f (0)+ f 1(0)x+
1
2

f 2(0)x2 +
1
3!

f3(0)x3 +
1
4!

f (4)(0)x4

while the third-degree Maclaurin polynomial for f (x) is

T3(x) = f (0)+ f 1(0)x+
1
2

f 2(0)x2 +
1
3!

f3(0)x3

So, we simply “chop off” the part of T4(x) that includes x4:

T3(x) = ´x3 + x2´ x+ 1

S-4: We saw this kind of problem in Question 3. The fourth-degree Taylor polynomial for f (x)
about x = 1 is

T4(x) = f (1)+ f 1(1)(x´1)+
1
2

f 2(1)(x´1)2 +
1
3!

f3(1)(x´1)3 +
1
4!

f (4)(1)(x´1)4

while the third-degree Taylor polynomial for f (x) about x = 1 is

T3(x) = f (1)+ f 1(1)(x´1)+
1
2

f 2(1)(x´1)2 +
1
3!

f3(1)(x´1)3

In Question 3 we “chopped off” the term of degree 4 to get T3(x). However, our polynomial is not
in this form. It’s not clear, right away, what the term f (4)(x´1)4 is in our given T4(x). So, we will
use a different method from Question 3.

One option is to do some fancy algebra to get T4(x) into the standard form of a Taylor polynomial.
Another option (which we will use) is to recover f (1), f 1(1), f 2(1), and f3(1) from T4(x).

Recall that T4(x) and f (x) have the same values at x = 1 (although maybe not anywhere else!), and
they also have the same first, second, third, and fourth derivatives at x = 1 (but again, maybe not
anywhere else, and maybe their fifth derivatives don’t agree). This tells us the following:

T4(x) = x4 + x3´9 ñ f (1) = T4(1) = ´7

T 14(x) = 4x3 + 3x2 ñ f 1(1) = T 14(1) = 7

T 24 (x) = 12x2 + 6x ñ f 2(1) = T 24 (1) = 18
T34 (x) = 24x+ 6 ñ f3(1) = T34 (1) = 30
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Now, we can write the third-degree Taylor polynomial for f (x) about x = 1:

T3(x) = ´7+ 7(x´1)+
1
2
(18)(x´1)2 +

1
3!
(30)(x´1)3

= ´7+ 7(x´1)+ 9(x´1)2 + 5(x´1)3

Remark: expanding the expression above, we get the equivalent polynomial
T3(x) = 5x3´6x2 + 4x´10. From this, it is clear that we can’t just “chop off” the term with x4 to
change T4(x) into T3(x) when the Taylor polynomial is not centred about x = 0.

S-5: The nth degree Taylor polynomial for f (x) about x = 5 is

Tn(x) =
n
ÿ

k=0

1
k!

f (k)(5)(x´5)k

We expand this somewhat:

Tn(x) = f (5)+ f 1(x´5)+ ¨ ¨ ¨+ 1
10!

f (10)(5)(x´5)10 + ¨ ¨ ¨+ 1
n!

f (n)(5)(x´1)n

So, the coefficient of (x´5)10 is
1

10!
f (10)(5). Expanding the given form of the Taylor polynomial:

Tn(x) =
n/2
ÿ

k=0

2k+ 1
3k´9

(x´5)2k

=
1
´9

loomoon

k=0

+
3
´6

(x´5)2

looooomooooon

k=1

+ ¨ ¨ ¨+ 11
6
(x´5)10

loooooomoooooon

k=5

+ ¨ ¨ ¨+ n+ 1
(3/2)n´9

(x´5)n

loooooooooomoooooooooon

k=n/2

Equating the coefficients of (x´5)10 in the two expressions:

1
10!

f (10)(5) =
11
6

f (10)(5) =
11 ¨10!

6

S-6: Since T3(x) is the third-degree Taylor polynomial for f (x) about x = a, we know the
following things to be true:

• f (a) = T3(a)

• f 1(a) = T 13(a)

• f 2(a) = T 23 (a)

• f3(a) = T33 (a)
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But, some of these don’t look super useful. For instance, if we try to use the first bullet, we get this
equation:

a3
[

2loga´ 11
3

]
= ´2

3

?
e3 + 3ea´6

?
ea2 + a3

Solving this would be terrible. Instead, let’s think about how the equations look when we move
further down the list. Since T3(x) is a cubic equation, T33 (x) is a constant (and so T33 (a) does not
depend on a). That sounds like it’s probably the simplest option. Let’s start differentiating. We’ll
need to know both f3(a) and T33 (a).

f (x) = x3
[

2logx´ 11
3

]
f 1(x) = x3

[
2
x

]
+ 3x2

[
2logx´ 11

3

]
= 6x2 logx´9x2

f 2(x) = 6x2 ¨ 1
x
+ 12x logx´18x = 12x logx´12x

f3(x) = 12x ¨ 1
x
+ 12logx´12 = 12logx

f3(a) = 12loga

Now, let’s move to the Taylor polynomial. Remember that e is a constant.

T3(x) = ´2
3

?
e3 + 3ex´6

?
ex2 + x3

T 13(x) = 3e´12
?

ex+ 3x2

T 23 (x) = ´12
?

e+ 6x
T33 (x) = 6
T33 (a) = 6

The final bullet point gives us the equation:

f3(a) = T33 (a)
12loga = 6

loga =
1
2

a = e
1
2

So, a =
?

e.

Solutions to Exercises 9.5 — Jump to TABLE OF CONTENTS

S-1: If we were to find the 16th degree Maclaurin polynomial for a generic function, we might
expect to have to differentiate 16 times (ugh). But, we know that the derivatives of sines and cosines
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repeat themselves. So, it’s enough to figure out the pattern:

f (x) = sinx+ cosx f (0) = 1
f 1(x) = cosx´ sinx f 1(0) = 1
f 2(x) = ´sinx´ cosx f 2(0) = ´1
f3(x) = ´cosx+ sinx f3(0) = ´1

f (4) = sinx+ cosx f (4)(0) = 1

Since f (4)(x) = f (x), our derivatives repeat from here. They follow the pattern:
+1, +1, ´1, ´1.

T16(x) = 1+x´1
2

x2´ 1
3!

x3+
1
4!

x4+
1
5!

x5´ 1
6!

x6´ 1
7!

x7+
1
8!

x8+
1
9!

x9´ 1
10!

x10´ 1
11!

x11

+
1

12!
x12+

1
13!

x13´ 1
14!

x14´ 1
15!

x15+
1

16!
x16

S-2: A Taylor polynomial gives a polynomial approximation for a function s(t). Since s(t) is itself
a polynomial, any nth-degree Taylor polynomial, with n greater than or equal to the degree of s(t),
will simply give s(t). So, in our case, T100(t) = s(t) = 4.9t2´ t + 10.

If that isn’t satisfying, you can go through the normal method of calculating T100(t).

s(t) = 4.9t2´ t + 10 s(5) = 4.9(25)´5+ 10 = 127.5
s1(t) = 9.8t´1 s1(5) = 9.8(5)´1 = 48
s2(t) = 9.8 s2(5) = 9.8

The rest of the derivatives of s(t) are identically zero, so they are (in particular) zero when t = 5.
Therefore,

T100(t) = 127.5+ 48(t´5)+
1
2

9.8(t´5)2

= 127.5+ 48(t´5)+ 4.9(t´5)2

We can now check that T100(t) really is the same as s(t).

T100(t) = 127.5+ 48(t´5)+ 4.9(t´5)2

= 127.5+ 48(t´5)+ 4.9(t2´10t + 25)

= [127.5+ 48(´5)+ 4.9(25)]+ [48´4.9(10)]t + 4.9t2

= 10´ t + 4.9t2 = s(t)

as expected.
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S-3: Let’s start by differentiating f (x) and looking for a pattern. Remember that log2 = loge 2 is a
constant number.

f (x) = 2x

f 1(x) = 2x log2

f 2(x) = 2x (log2)2

f (3)(x) = 2x (log2)3

f (4)(x) = 2x (log2)4

f (5)(x) = 2x (log2)5

So, in general,

f (k)(x) = 2x (log2)k

We notice that this formula works even when k = 0 and k = 1. When x = 1,

f (k)(1) = 2 (log2)k

The nth degree Taylor polynomial of f (x) about x = 1 is

Tn(x) =
n
ÿ

k=0

f (k)(1)
k!

(x´1)k

=
n
ÿ

k=0

2(log2)k

k!
(x´1)k

S-4: We need to know the first six derivatives of f (x) at x = 1. Let’s get started.

f (x) = x2 logx+ 2x2 + 5 f (1) = 7

f 1(x) = (x2)
1
x
+(2x) logx+ 4x

= 2x logx+ 5x f 1(1) = 5

f 2(x) = (2x)
1
x
+(2) logx+ 5

= 2logx+ 7 f 2(1) = 7

f3(x) = 2x´1 f3(1) = 2

f (4) = ´2x´2 f (4)(1) = ´2

f (5) = 4x´3 f (5)(1) = 4

f (6) = ´12x´4 f (6)(1) = ´12
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Now, we can plug in.

T6(x) = f (1)+ f 1(1)(x´1)+
1
2

f 2(1)(x´1)2 +
1
3!

f3(1)(x´1)3

+
1
4!

f (4)(1)(x´1)4 +
1
5!

f (5)(1)(x´1)5 +
1
6!

f (6)(1)(x´1)6

= 7+ 5(x´1)+
1
2
(7)(x´1)2 +

1
3!
(2)(x´1)3

+
1
4!
(´2)(x´1)4 +

1
5!
(4)(x´1)5 +

1
6!
(´12)(x´1)6

= 7+ 5(x´1)+
7
2
(x´1)2 +

1
3
(x´1)3´ 1

12
(x´1)4 +

1
30

(x´1)5´ 1
60

(x´1)6

S-5: We’ll start by differentiating and looking for a pattern.

f (x) =
1

1´ x
= (1´ x)´1

Using the chain rule,

f 1(x) = (´1)(1´ x)´2(´1) = (1´ x)´2

f 2(x) = (´2)(1´ x)´3(´1) = 2(1´ x)´3

f (3)(x) = (´3)(2)(1´ x)´4(´1) = 2(3)(1´ x)´4

f (4)(x) = (´4)(2)(3)(1´ x)´5(´1) = 2(3)(4)(1´ x)´5

f (5)(x) = (´5)(2)(3)(4)(1´ x)´6(´1) = 2(3)(4)(5)(1´ x)´6

Recognizing the pattern,

f (k)(x) = k!(1´ x)´(k+1)

f (k)(0) = k!(1)´(k+1) = k!

The nth degree Maclaurin polynomial for f (x) is

Tn(x) =
n
ÿ

k=0

f (k)(0)
k!

xk

=
n
ÿ

k=0

k!
k!

xk

=
n
ÿ

k=0

xk
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S-6: We’ll need to know the first three derivatives of xx at x = 1. This is a good review of
logarithmic differentiation, covered in Section 4.4.

f (x) = xx f (1) = 1
log( f (x)) = log (xx) = x logx

d
dx
tlog( f (x))u= d

dx
tx logxu

f 1(x)
f (x)

= x ¨ 1
x
+ logx = 1+ logx

f 1(x) = xx [1+ logx] f 1(1) = 1

f 2(x) =
d
dx
txxu [1+ logx]+ xx d

dx
t1+ logxu

= (xx [1+ logx]) [1+ logx]+ xx ¨ 1
x

= xx
(
(1+ logx)2 +

1
x

)
f 2(1) = 2

f3(x) =
d
dx
txxu

(
(1+ logx)2 +

1
x

)
+ xx d

dx

"

(1+ logx)2 +
1
x

*

= xx [1+ logx]
(
(1+ logx)2 +

1
x

)
+ xx

[
2
x
(1+ logx)´ 1

x2

]
= xx

(
(1+ logx)3 +

3
x
(1+ logx)´ 1

x2

)
f3(1) = 3

Now, we can plug in:

T3(x) = f (1)+ f 1(1)(x´1)+
1
2

f 2(1)(x´1)2 +
1
3!

f3(1)(x´1)3

= 1+ 1(x´1)+
1
2
(2)(x´1)2 +

1
6
(3)(x´1)3

= 1+(x´1)+ (x´1)2 +
1
2
(x´1)3

S-7: We note that 6arctan
(

1?
3

)
= 6

(
π

6

)
= π . We will find the 5th-degree Maclaurin

polynomial T5(x) for f (x) = 6arctanx. Then π = f
(

1?
3

)
« T5

(
1?
3

)
. Let’s begin by finding
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the first five derivatives of f (x) = 6arctanx.

f (x) = 6arctanx f (0) = 0

f 1(x) = 6
(

1
1+ x2

)
f 1(0) = 6

f 2(x) = 6
(

0´2x
(1+ x2)2

)
= ´12

(
x

(1+ x2)2

)
f 2(0) = 0

f3(x) = ´12
(
(1+ x2)2´ x ¨2(1+ x2)(2x)

(1+ x2)4

)
= ´12

(
(1+ x2)´4x2

(1+ x2)3

)
= ´12

(
1´3x2

(1+ x2)3

)
f3(0) = ´12

f (4)(x) = ´12
(
(1+ x2)3(´6x)´ (1´3x2) ¨3(1+ x2)2(2x)

(1+ x2)6

)
= ´12

(´6x(1+ x2)´6x(1´3x2)

(1+ x2)4

)
= 144

(
x´ x3

(1+ x2)4

)
f (4)(0) = 0

f (5)(x) = 144
(
(1+ x2)4(1´3x2)´ (x´ x3) ¨4(1+ x2)3(2x)

(1+ x2)8

)
= 144

(
(1+ x2)(1´3x2)´8x(x´ x3)

(1+ x2)5

)
= 144

5x4´10x2 + 1
(1+ x2)5 f (5)(0) = 144

We now use these values to compute the 5th-degree Maclaurin polynomial for f (x).

T5(x) = f (0)+ f 1(0)x+
1
2

f 2(0)x2 +
1
3!

f3(0)x3 +
1
4!

f (4)(0)x4 +
1
5!

f (5)(0)x5

= 6x´ 12
6

x3 +
144
120

x5

= 6x´2x3 +
6
5

x5

Now, if we want to approximate f
(

1?
3

)
= 6arctan

(
1?
3

)
= π:

π = f
(

1?
3

)
« T5

(
1?
3

)
=

6?
3
´ 2?

33 +
6

5
?

35

= 2
?

3
(

1´ 1
3 ¨3 +

1
5 ¨9

)
« 3.156

Remark: There are numerous methods for computing π to any desired degree of accuracy. Many of
them use the Maclaurin expansion of arctanx. In 1706 John Machin computed π to 100 decimal
digits by using the Maclaurin expansion together with
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π = 16arctan 1
5 ´4arctan 1

239 .

S-8: Let’s start by differentiating, and looking for a pattern.

f (x) = x(logx´1) f (1) = ´1

f 1(x) = x
(

1
x

)
+ logx´1 = logx f 1(1) = 0

f 2(x) =
1
x
= x´1 f 2(1) = 1

f (3)(x) = (´1)x´2 f (3)(1) = ´1

f (4)(x) = (´2)(´1)x´3 = 2!x´3 f (4)(1) = 2!

f (5)(x) = (´3)(´2)(´1)x´4 = ´3!x´4 f (4)(1) = ´3!

f (6)(x) = (´4)(´3)(´2)(´1)x´5 = 4!x´5 f (4)(1) = 4!

f (7)(x) = (´5)(´4)(´3)(´2)(´1)x´6 = ´5!x´6 f (7)(1) = ´5!

f (8)(x) = (´6)(´5)(´4)(´3)(´2)(´1)x´7 = 6!x´7 f (8)(1) = 6!

When k ě 2, making use of the fact that 0! = 1 and (´1)k´2 = (´1)k:

f (k)(x) = (´1)k´2(k´2)!x´(k´1) f (k)(1) = (´1)k(k´2)!

Now we use the standard form of a Taylor polynomial. Since the first two terms don’t fit the pattern,
we add those outside of the sigma.

T100(x) =
100
ÿ

k=0

f (k)(1)
k!

(x´1)k

= f (1)+ f 1(1)(x´1)+
100
ÿ

k=2

f (k)(1)
k!

(x´1)k

= ´1+ 0(x´1)+
100
ÿ

k=2

(´1)k(k´2)!
k!

(x´1)k

= ´1+
100
ÿ

k=2

(´1)k

k(k´1)
(x´1)k

S-9: Recall that

T2n(x) =
2n
ÿ

k=0

f (k)
(

π

4

)
k!

(
x´ π

4

)k

Let’s start by taking some derivatives. Of course, since we’re differentiating sine, the derivatives
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will repeat every four iterations.

f (x) = sinx f
(

π

4

)
=

1?
2

f 1(x) = cosx f 1
(

π

4

)
=

1?
2

f 2(x) = ´sinx f 2
(

π

4

)
= ´ 1?

2

f3(x) = ´cosx f3
(

π

4

)
= ´ 1?

2

So, the pattern of derivatives is
1?
2

,
1?
2

, ´ 1?
2

, ´ 1?
2

,
1?
2

,
1?
2

, ´ 1?
2

, ´ 1?
2

, etc. This is a little

tricky to write in sigma notation. We can deal with the “doubles” by separating the even and odd
powers. The first few terms of T2n that contain even powers of

(
x´ π

4

)
are

1?
2

loomoon

k=0

´ 1
2!
?

2

(
x´ π

4

)2

loooooooomoooooooon

k=2

+
1

4!
?

2

(
x´ π

4

)4

loooooooomoooooooon

k=4

Observe that the signs alternate between successive terms. So if we rename k to 2` these terms are

1?
2

loomoon

`=0

´ 1
2!
?

2

(
x´ π

4

)2

loooooooomoooooooon

`=1

+
1

4!
?

2

(
x´ π

4

)4

loooooooomoooooooon

`=2

and the `th term here is (´1)`

(2`)!
?

2

(
x´ π

4

)2`. To verify that this really is the `th term, evaluate this for
`= 0,1,2 explicitly. When k = 2n, `= n so that

ÿ

0ďkď2n
k even

f (k)
(

π

4

)
k!

(
x´ π

4

)k
=

n
ÿ

`=0

(´1)`

(2`)!
?

2

(
x´ π

4

)2`

Now for the odd powers. The first few terms of T2n that contain odd powers of
(
x´ π

4

)
are

1?
2

(
x´ π

4

)
loooooomoooooon

k=1

´ 1
3!
?

2

(
x´ π

4

)3

loooooooomoooooooon

k=3

+
1

5!
?

2

(
x´ π

4

)5

loooooooomoooooooon

k=5

Observe that the signs again alternate between successive terms. So if we rename k to 2`+ 1 these
terms are

1?
2

(
x´ π

4

)
loooooomoooooon

`=0

´ 1
3!
?

2

(
x´ π

4

)3

loooooooomoooooooon

`=1

+
1

5!
?

2

(
x´ π

4

)5

loooooooomoooooooon

`=2
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and the `th term here is (´1)`

(2`+1)!
?

2

(
x´ π

4

)2`+1. To verify that this really is the `th term, evaluate this
for `= 0,1,2 explicitly. The largest odd integer that is smaller than 2n is 2n´1 and when
k = 2n´1 = 2`+ 1, `= n´1 so that

ÿ

0ďkď2n
k odd

f (k)
(

π

4

)
k!

(
x´ π

4

)k
=

n´1
ÿ

`=0

(´1)`

(2`+ 1)!
?

2

(
x´ π

4

)2`+1

Putting the even and odd powers together

T2n(x) =
n
ÿ

`=0

(´1)`

(2`)!
?

2

(
x´ π

4

)2`
+

n´1
ÿ

`=0

(´1)`

(2`+ 1)!
?

2

(
x´ π

4

)2`+1

S-10: From Example 9.5.1 in the text, we see that the nth Maclaurin polynomial for f (x) = ex is

Tn(x) =
n
ÿ

k=0

1
k!

xk = 1+ x+
x2

2
+

x3

3!
+

x4

4!
+ ¨ ¨ ¨+ xn

n!

If n = 157 and x = 1,

T157(1) =
157
ÿ

k=0

1
k!

= 1+ 1+
1
2
+

1
3!

+
1
4!

+ ¨ ¨ ¨+ 1
157!

Although we wouldn’t expect T157(1) to be exactly equal to e1, it’s probably pretty close. So, we
estimate

1+
1
2
+

1
3!

+
1
4!

+ ¨ ¨ ¨+ 1
157!

« e´1

S-11: While you’re working with sums, it’s easy to mistake a constant for a function. The sum
given in this question is some number: π is a constant, and k is an index– if you wrote out all 100
terms of this sum, there would be no letter k. So, the sum given is indeed a number, but we don’t
want to have to add 100 terms to get a good idea of what number it is.

From Example 9.5.3 in the text, we see that the (2n)th-degree Maclaurin polynomial for
f (x) = cosx is

T2n(x) =
n
ÿ

k=0

(´1)k

(2k)!
¨ x2k

If n = 100 and x =
5π

4
, this equation becomes

T200

(
5π

4

)
=

100
ÿ

k=0

(´1)k

(2k)!
¨
(

5π

4

)2k
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So, the sum corresponds to the 200th Maclaurin polynomial for f (x) = cosx evaluated at x = 5π

4 .
We should be careful to understand that T200(x) is not equal to f (x), in general. However, when x is
reasonably close to 0, these two functions are approximations of one another. So, we estimate

100
ÿ

k=0

(´1)k

2k!

(
5π

4

)2k

= T200

(
5π

4

)
« cos

(
5π

4

)
= ´ 1?

2

Solutions to Exercises 9.6 — Jump to TABLE OF CONTENTS

S-1: From the given information,

|R(10)|= | f (10)´F(10)|= |´3´5|= |´8|= 8

So, (a) is false (since 8 is not less than or equal to 7), while (b), (c), and (d) are true.

Remark: R(x) is the error in our approximation. As mentioned in the text, we almost never know R
exactly, but we can give a bound. We don’t need the tightest bound–just a reasonable one that is
easy to calculate. If we were dealing with real functions and approximations, we might not know
that |R(10)|= 8, but if we knew it was at most 9, that would be a pretty decent approximation.

Often in this section, we will make simplifying assumptions to get a bound that is easy to calculate.
But, don’t go overboard! It is a true statement to say that our absolute error is at most 100, but this
statement would probably not be very helpful as a bound.

S-2: Equation 9.6.6 tells us that, when Tn(x) is the nth degree Taylor polynomial for a function
f (x) about x = a, then

| f (x)´Tn(x)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (n+1)(c)
(n+ 1)!

(x´a)n+1

ˇ

ˇ

ˇ

ˇ

ˇ

for some c strictly between x and a. In our case, n = 3, a = 0, x = 2, and f (4)(c) = ec, so

| f (2)´T3(2)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (4)(c)
4!

(2´0)4

ˇ

ˇ

ˇ

ˇ

ˇ

=
24

4!
ec =

2
3

ec

Since c is strictly between 0 and 2, ec ă e2:

ď 2
3

e2

but this isn’t a number we really know. Indeed: e2 is the very number we’re trying to approximate.
So, we use the estimation eă 3:

ă 2
3
¨32 = 6
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We conclude that the error | f (2)´T3(2)| is less than 6.

Now we’ll get a more exact idea of the error using a calculator. (Calculators will also only give
approximations of numbers like e, but they are generally very good approximations.)

| f (2)´T3(2)|=
ˇ

ˇ

ˇ

ˇ

e2´
(

1+ 2+
1
2
¨22 +

1
3!
¨23
)ˇ
ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

e2´
(

1+ 2+ 2+
4
3

)ˇ
ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

e2´ 19
3

ˇ

ˇ

ˇ

ˇ

« 1.056

So, our actual answer was only off by about 1.

Remark: 1ă 6, so this does not in any way contradict our bound | f (2)´T3(2)| ă 6.

S-3: Whenever you approximate a polynomial with a Taylor polynomial of greater or equal degree,
your Taylor polynomial is exactly the same as the function you are approximating. So, the error is
zero.

S-4: The constant approximation gives

sin(33) « sin(0) = 0

while the linear approximation gives

f (x) « f (0)+ f 1(0)x
sin(x) « sin(0)+ cos(0)x

= x
sin(33) « 33

Since ´1ď sin(33) ď 1, the constant approximation is better. (But both are a little silly.)
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x

y

T0(x)

T1(x)

S-5: Equation 9.6.6 tells us that, when Tn(x) is the nth degree Taylor polynomial for a function
f (x) about x = a, then

| f (x)´Tn(x)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (n+1)(c)
(n+ 1)!

(x´a)n+1

ˇ

ˇ

ˇ

ˇ

ˇ

for some c strictly between x and a. In our case, n = 5, a = 11, x = 11.5, and f (6)(c) =
6!(2c´5)

c+ 3
.

| f (11.5)´T5(11.5)|=
ˇ

ˇ

ˇ

ˇ

1
6!

(
6!(2c´5)

c+ 3

)
(11.5´11)6

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

2c´5
c+ 3

ˇ

ˇ

ˇ

ˇ

¨ 1
26

for some c in (11,11.5). We don’t know exactly which c this is true for, but since we know that c
lies in (11,11.5), we can provide bounds.

• 2c´5ă 2(11.5)´5 = 18

• c+ 3ą 11+ 3 = 14

• Therefore,
ˇ

ˇ

ˇ

ˇ

2c´5
c+ 3

ˇ

ˇ

ˇ

ˇ

=
2c´5
c+ 3

ă 18
14

=
9
7

when c P (11,11.5).

With this bound, we see

| f (11.5)´T5(11.5)|=
ˇ

ˇ

ˇ

ˇ

2c´5
c+ 3

ˇ

ˇ

ˇ

ˇ

¨ 1
26

ă
(

9
7

)(
1
26

)
« 0.0201
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Our error is less than 0.02.

S-6: Equation 9.6.6 tells us that, when Tn(x) is the nth degree Taylor polynomial for a function
f (x) about x = a, then

| f (x)´Tn(x)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (n+1)(c)
(n+ 1)!

(x´a)n+1

ˇ

ˇ

ˇ

ˇ

ˇ

for some c strictly between x and a. In our case, n = 2, a = 0, and x = 0.1, so

| f (0.1)´T2(0.1)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (3)(c)
3!

(0.1´0)3

ˇ

ˇ

ˇ

ˇ

ˇ

=
| f3(c)|

6000
for some c in (0,0.1).

We will find f3(x), and use it to give an upper bound for

| f (0.1)´T2(0.1)|= | f3(c)|
6000

when c is in (0,0.1).

f (x) = tanx

f 1(x) = sec2 x
f 2(x) = 2secx ¨ secx tanx

= 2sec2 x tanx

f3(x) =
(
2sec2 x

)
sec2 x+(4secx ¨ secx tanx) tanx

= 2sec4 x+ 4sec2 x tan2 x

When 0ă că 1
10

, also 0ă că π

6
, so:

• tancă tan
(

π

6

)
=

1?
3

• coscą cos
(

π

6

)
=

?
3

2

• seccă 2?
3

With these bounds in mind for secant and tangent, we return to the expression we found for our
error.

| f (0.1)´T2(0.1)|= | f3(c)|
6000

=

ˇ

ˇ2sec4 x+ 4sec2 x tan2 x
ˇ

ˇ

6000

ă
2
(

2?
3

)4
+ 4
(

2?
3

)2(
1?
3

)2

6000

=
1

1125

501



The error is less than
1

1125
.

S-7: Equation 9.6.6 tells us that, when Tn(x) is the nth degree Taylor polynomial for a function
f (x) about x = a, then

| f (x)´Tn(x)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (n+1)(c)
(n+ 1)!

(x´a)n+1

ˇ

ˇ

ˇ

ˇ

ˇ

for some c strictly between x and a. In our case, n = 5, a = 0, and x = ´1
4

, so

ˇ

ˇ

ˇ

ˇ

f
(
´1

4

)
´T5

(
´1

4

)ˇ
ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

f (6)(c)
6!

(
´1

4
´0
)6

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ
f (6)(c)

ˇ

ˇ

ˇ

6! ¨46

for some c in
(´1

4 ,0
)
. We’ll need to know the sixth derivative of f (x).

f (x) = log(1´ x)

f 1(x) = ´(1´ x)´1

f 2(x) = ´(1´ x)´2

f3(x) = ´2(1´ x)´3

f (4)(x) = ´3!(1´ x)´4

f (5)(x) = ´4!(1´ x)´5

f (6)(x) = ´5!(1´ x)´6

Plugging in
ˇ

ˇ

ˇ
f (6)(c)

ˇ

ˇ

ˇ
=

5!
(1´ c)6 :

ˇ

ˇ

ˇ

ˇ

f
(
´1

4

)
´T5

(
´1

4

)ˇ
ˇ

ˇ

ˇ

=
5!

6! ¨46 ¨ (1´ c)6 =
1

6 ¨46 ¨ (1´ c)6

for some c in
(´1

4 ,0
)
.

We’re interested in an upper bound for the error: we want to know the worst case scenario, so we
can say that the error is no worse than that. We need to know what the biggest possible value of

1
6 ¨46 ¨ (1´ c)6 is, given ´1

4
ă că 0. That means we want to know the biggest possible value of

1
(1´ c)6 . This corresponds to the smallest possible value of (1´ c)6, which in turn corresponds to

the smallest absolute value of 1´ c.

• Since ´1
4
ď cď 0, the smallest absolute value of 1´ c occurs when c = 0. In other words,

|1´ c| ď 1.

• That means the smallest possible value of (1´ c)6 is 16 = 1.
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• Then the largest possible value of
1

(1´ c)6 is 1.

• Then the largest possible value of
1

6 ¨46 ¨
1

(1´ c)6 is
1

6 ¨46 « 0.0000407.

Finally, we conclude
ˇ

ˇ

ˇ

ˇ

f
(
´1

4

)
´T5

(
´1

4

)ˇ
ˇ

ˇ

ˇ

=
1

6 ¨46 ¨ (1´ c)6 ă
1

6 ¨46 ă 0.00004

S-8: Equation 9.6.6 tells us that, when Tn(x) is the nth degree Taylor polynomial for a function
f (x) about x = a, then

| f (x)´Tn(x)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (n+1)(c)
(n+ 1)!

(x´a)n+1

ˇ

ˇ

ˇ

ˇ

ˇ

for some c strictly between x and a. In our case, n = 3, a = 30, and x = 32, so

| f (30)´T3(30)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (4)(c)
4!

(30´32)4

ˇ

ˇ

ˇ

ˇ

ˇ

=
2
3

ˇ

ˇ

ˇ
f (4)(c)

ˇ

ˇ

ˇ

for some c in (30,32).

We will now find f (4)(x). Then we can give an upper bound on | f (30)´T3(30)|= 2
3

ˇ

ˇ

ˇ
f (4)(c)

ˇ

ˇ

ˇ

when c P (30,32).

f (x) = x
1
5

f 1(x) =
1
5

x´
4
5

f 2(x) = ´ 4
52 x´

9
5

f3(x) =
4 ¨9
53 x´

14
5

f (4)(x) = ´4 ¨9 ¨14
54 x´

19
5

Using this,

| f (30)´T3(30)|= 2
3

ˇ

ˇ

ˇ
f (4)(c)

ˇ

ˇ

ˇ

=
2
3

ˇ

ˇ

ˇ

ˇ

´4 ¨9 ¨14
54 c´

19
5

ˇ

ˇ

ˇ

ˇ

=
336

54 ¨ c19
5
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Since 30ă că 32,

ă 336

54 ¨30
19
5

=
336

54 ¨303 ¨30
4
5

=
14

57 ¨9 ¨30
4
5

This isn’t a number we know. We’re trying to find the error in our estimation of 5
?

30, but 5
?

30
shows up in our error. From here, we have to be a little creative to get a bound that actually makes

sense to us. There are different ways to go about it. You could simply use 30
4
5 ą 1. We will be a

little more careful, and use the following estimation:

14

57 ¨9 ¨30
4
5

=
14 ¨30

1
5

57 ¨9 ¨30

ă 14 ¨32
1
5

57 ¨9 ¨30

ă 14 ¨2
57 ¨9 ¨30

ă 14
57 ¨9 ¨15

ă 0.000002

We conclude | f (30)´T3(30)| ă 0.000002.

S-9: Equation 9.6.6 tells us that, when Tn(x) is the nth degree Taylor polynomial for a function
f (x) about x = a, then

| f (x)´Tn(x)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (n+1)(c)
(n+ 1)!

(x´a)n+1

ˇ

ˇ

ˇ

ˇ

ˇ

for some c strictly between x and a. In our case, n = 1, a =
1
π

, and x = 0.01, so

| f (0.01)´T1(0.01)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f 2(c)
2

(
0.01´ 1

π

)2
ˇ

ˇ

ˇ

ˇ

ˇ

=
1
2

(
100´π

100π

)2

¨ ˇˇ f 2(c)ˇˇ

for some c in
( 1

100 , 1
π

)
.
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Let’s find f 2(x).

f (x) = sin
(

1
x

)
f 1(x) = cos

(
1
x

)
¨ ´1

x2 =
´cos

(1
x

)
x2

f 2(x) =
x2 sin

(1
x

)
(´x´2)+ cos

(1
x

)
(2x)

x4

=
2xcos

(1
x

)´ sin
(1

x

)
x4

Now we can plug in a better expression for f 2(c):

| f (0.01)´T1(0.01)|= 1
2

(
100´π

200π

)2

¨ ˇˇ f 2(c)ˇˇ

=
1
2

(
100´π

100π

)2

¨
ˇ

ˇ2ccos
(1

c

)´ sin
(1

c

)ˇ
ˇ

c4

for some c in
( 1

100 , 1
π

)
.

What we want to do now is find an upper bound on this expression containing c,
1
2

(
100´π

100π

)2

¨
ˇ

ˇ2ccos
(1

c

)´ sin
(1

c

)ˇ
ˇ

c4 .

• Since cě 1
100

, it follows that c4 ě 1
1004 , so

1
c4 ď 1004.

• For any value of x, |cosx| and |sinx| are at most 1. Since |c| ă 1, also
|ccos

(1
c

) | ă |cos
(1

c

) | ď 1. So,
ˇ

ˇ2ccos
(1

c

)´ sin
(1

c

)ˇ
ˇă 3

• Therefore,

| f (0.01)´Tn(0.01)|= 1
2

(
100´π

100π

)2

¨ 1
c4 ¨

ˇ

ˇ

ˇ

ˇ

2ccos
(

1
c

)
´ sin

(
1
c

)ˇ
ˇ

ˇ

ˇ

ă 1
2

(
100´π

100π

)2

¨1004 ¨3

=
3 ¨1002

2

(
100
π
´1
)2

Equation 9.6.6 gives the bound | f (0.01)´T1(0.01)| ď 3¨1002

2

(100
π
´1
)2

.

The bound above works out to approximately fourteen million. One way to understand why the
bound is so high is that sin

(1
x

)
moves about crazily when x is near zero–it moves up and down

incredibly fast, so a straight line isn’t going to approximate it very well at all.
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That being said, because sin
(1

x

)
is still “sine of something,” we know ´1ď f (0.01) ď 1. To get a

better bound on the error, let’s find T1(x).

f (x) = sin
(

1
x

)
f
(

1
π

)
= sin(π) = 0

f 1(x) =
´cos

(1
x

)
x2 f 1

(
1
π

)
= ´π

2 cos(π) = π
2

T1(x) = f
(

1
π

)
+ f 1

(
1
π

)(
x´ 1

π

)
= 0+π

2
(

x´ 1
π

)
= π

2x´π

T1 (0.01) =
π2

100
´π

Now that we know T1(0.01), and we know ´1ď f (0.01) ď 1, we can give the bound

| f (0.01)´T1(0.01)| ď | f (0.01)|+ |T1(0.01)|
ď 1+

ˇ

ˇ

ˇ

ˇ

π2

100
´π

ˇ

ˇ

ˇ

ˇ

= 1+π

ˇ

ˇ

ˇ
1´ π

100

ˇ

ˇ

ˇ

ă 1+π

ă 1+ 4 = 5

A more reasonable bound on the error is that it is less than 5.

Still more reasonably, we would not use T1(x) to evaluate sin(100) approximately. We would write
sin(100) = sin(100´32π) and approximate the right hand side, which is roughly sin(´π/6).

S-10: Equation 9.6.6 tells us that, when Tn(x) is the nth degree Taylor polynomial for a function
f (x) about x = a, then

| f (x)´Tn(x)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (n+1)(c)
(n+ 1)!

(x´a)n+1

ˇ

ˇ

ˇ

ˇ

ˇ

for some c strictly between x and a. In our case, n = 2, a = 0, and x =
1
2

, so

ˇ

ˇ

ˇ

ˇ

f
(

1
2

)
´T2

(
1
2

)ˇ
ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

f (3)(c)
3!

(
1
2
´0
)3

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ
f (3)(c)

ˇ

ˇ

ˇ

3! ¨23
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for some c in
(
0, 1

2

)
.

The next task that suggests itself is finding f (3)(x).

f (x) = arcsinx

f 1(x) =
1?

1´ x2
= (1´ x2)´

1
2

f 2(x) = ´1
2
(1´ x2)´

3
2 (´2x)

= x(1´ x2)´
3
2

f3(x) = x
(
´3

2

)
(1´ x2)´

5
2 (´2x)+ (1´ x2)´

3
2

= 3x2(1´ x2)´
5
2 +(1´ x2)´

5
2+1

= (1´ x2)´
5
2
(
3x2 +(1´ x2)

)
= (1´ x2)´

5
2
(
2x2 + 1

)
Since

ˇ

ˇ f
(1

2

)´T2
(1

2

)ˇ
ˇ=

ˇ

ˇ

ˇ
f (3)(c)

ˇ

ˇ

ˇ

3! ¨23 for some c in
(
0, 1

2

)
,

ˇ

ˇ

ˇ

ˇ

f
(

1
2

)
´T2

(
1
2

)ˇ
ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1+ 2c2(?
1´ c2

)5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3! ¨23 =
1+ 2c2

48
(?

1´ c2
)5

for some c in
(
0, 1

2

)
.

We want to know what is the worst case scenario-what’s the biggest this expression can be. So, now

we find an upper bound on
1+ 2c2

48
(?

1´ c2
)5 when 0ď cď 1

2
. Remember that our bound doesn’t

have to be exact, but it should be relatively easy to calculate.

• When 0ď cď 1
2

, the biggest 1+ 2c2 can be is 1+ 2
(

1
2

)2

=
3
2

.

So, the numerator of
1+ 2c2

48
(?

1´ c2
)5 is at most

3
2

.

• The smallest 1´ c2 can be is 1´
(

1
2

)2

=
3
4

.

• So, the smallest
(?

1´ c2
)5

can be is

(
c

3
4

)5

=

(?
3

2

)5

.

507



• Then smallest possible value for the denominator of
1+ 2c2

48
(?

1´ c2
)5 is 48

(?
3

2

)5

• Then

1+ 2c2

48
(?

1´ c2
)5 ď

3
2

48
(?

3
2

)5

=
1?
35 =

1
9
?

3

ă 1
10

Let’s put together these pieces. We found that
ˇ

ˇ

ˇ

ˇ

f
(

1
2

)
´T2

(
1
2

)ˇ
ˇ

ˇ

ˇ

=
1+ 2c2

48
(?

1´ c2
)5

for some c in
(
0, 1

2

)
. We also found that

1+ 2c2

48
(?

1´ c2
)5 ă

1
10

when c is in
(
0, 1

2

)
. We conclude

ˇ

ˇ

ˇ

ˇ

f
(

1
2

)
´T2

(
1
2

)ˇ
ˇ

ˇ

ˇ

ă 1
10

.

For the second part of the question, we need to find f
(1

2

)
and T2

(1
2

)
.

Finding f
(1

2

)
is not difficult.

f (x) = arcsinx

f
(

1
2

)
= arcsin

(
1
2

)
=

π

6

In order to find T2
(1

2

)
, we need to find T2(x).

T2(x) = f (0)+ f 1(0)x+
1
2

f 2(0)x2

Conveniently, we’ve already found the first few derivatives of f (x).

T2(x) = arcsin(0)+
(

1?
1´02

)
x+

1
2

 0(?
1´02

)3

x2

= 0+ x+ 0
= x

T2

(
1
2

)
=

1
2
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So, the actual error is
ˇ

ˇ

ˇ

ˇ

f
(

1
2

)
´T2

(
1
2

)ˇ
ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

π

6
´ 1

2

ˇ

ˇ

ˇ

ˇ

=
π

6
´ 1

2

A calculator tells us that this is about 0.02.

S-11: Our error will have the form
f (n+1)(c)
(n+ 1)!

(x´1)n+1 for some constant c, so let’s find an

equation for f (n)(x). This has been done before in the text, but we’ll do it again here: we’ll take
several derivatives, then notice the pattern.

f (x) = logx

f 1(x) = x´1

f 2(x) = ´x´2

f3(x) = 2!x´3

f (4)(x) = ´3!x´4

f (5)(x) = 4!x´5

So, when ně 1,

f (n)(x) = (´1)n´1(n´1)! ¨ x´n

Now that we know the derivative of f (x), we have a better idea what the error in our approximation
looks like.

| f (1.1)´Tn(1.1)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (n+1)(c)
(n+ 1)!

(1.1´1)n+1

ˇ

ˇ

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ
f (n+1)(c)

ˇ

ˇ

ˇ

0.1n+1

(n+ 1)!

=

ˇ

ˇ

ˇ

ˇ

n!
cn+1

ˇ

ˇ

ˇ

ˇ

1
10n+1(n+ 1)!

=
1

|c|n+1 ¨10n+1 ¨ (n+ 1)

for some c in (1,1.1)

ă 1
(n+ 1)10n+1 ¨1n+1

=
1

(n+ 1)10n+1

What we’ve shown so far is

| f (1.1)´Tn(1.1)| ă 1
(n+ 1)10n+1
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If we can show that
1

(n+ 1)10n+1 ď 10´4, then we’ll be able to conclude

| f (1.1)´Tn(1.1)| ă 1
(n+ 1)10n+1 ď 10´4

That is, our error is less than 10´4.

So, our goal for the problem is to find a value of n that makes
1

(n+ 1)10n+1 ď 10´4. Certainly,

n = 3 is such a number. Therefore, any n greater than or equal to 3 is an acceptable value.

S-12: We will approximate f (x) = x
1
7 using a Taylor polynomial. Since 37 = 2187, we will use

x = 2187 as our centre.

We need to figure out which degree Taylor polynomial will result in a small-enough error.

If we use the nth Taylor polynomial, our error will be

| f (2200)´Tn(2200)|=
ˇ

ˇ

ˇ

ˇ

ˇ

f (n+1)(c)
(n+ 1)!

(2200´2187)n+1

ˇ

ˇ

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ
f (n+1)(c)

ˇ

ˇ

ˇ
¨ 13n+1

(n+ 1)!

for some c in (2187,2200). In order for this to be less than 0.001, we need

ˇ

ˇ

ˇ
f (n+1)(c)

ˇ

ˇ

ˇ
¨ 13n+1

(n+ 1)!
ă 0.001

ˇ

ˇ

ˇ
f (n+1)(c)

ˇ

ˇ

ˇ
ă (n+ 1)!

1000 ¨13n+1

It’s a tricky thing to figure out which n makes this true. Let’s make a table. We won’t show all the
work of filling it in, but the work is standard.

n
(n+ 1)!

1000 ¨13n+1

ˇ

ˇ

ˇ
f (n+1)(c)

ˇ

ˇ

ˇ
Is

ˇ

ˇ

ˇ
f (n+1)(c)

ˇ

ˇ

ˇ
ă (n+ 1)!

1000 ¨13n+1 ?

0
1

1000 ¨13
| f 1(c)|= 1

7c6/7 ă
1

7 ¨36

1
2

1000 ¨132 | f 2(c)|= 6

72 ¨ c13
7

ă 6
72 ¨313 Yes!
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That is: if we use the first-degree Taylor polynomial, then for some c between 2187 and 2200,

| f (2200)´T1(2200)|= ˇ

ˇ f 2(c)
ˇ

ˇ ¨ 132

2!

=
6

72 ¨ c13
7

¨ 132

2

ă 6
72 ¨313 ¨

132

2

=
3 ¨132

72 ¨313 « 0.0000065

So, actually, the linear Taylor polynomial (or any higher-degree Taylor polynomial) will result in an
approximation that is much more accurate than required. (We don’t know, however, that the
constant approximation will be accurate enough–so we’d better stick with ně 1.)

Now that we know we can take the first-degree Taylor polynomial, let’s compute T1(x). Recall we

are taking the Taylor polynomial for f (x) = x
1
7 about x = 2187.

f (2187) = 2187
1
7 = 3

f 1(x) =
1
7

x´
6
7

f 1(2187) =
1

7 7
?

21876 =
1

7 ¨36

T1(x) = f (2187)+ f 1(2187)(x´2187)

= 3+
x´2187

7 ¨36

T1(2200) = 3+
2200´2187

7 ¨36

= 3+
13

7 ¨36

« 3.00255

We conclude 7
?

2200« 3.00255.

S-13: If we’re going to use Equation 9.6.6, then we’ll probably be taking a Taylor polynomial.
Using Example 9.5.5, the 6th-degree Maclaurin polynomial for sinx is

T6(x) = T5(x) = x´ x3

3!
+

x5

5!

so let’s play with this a bit. Equation 9.6.6 tells us that the error will depend on the seventh
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derivative of f (x), which is ´cosx:

f (1)´T6(1) = f (7)(c)
17

7!

sin(1)´
(

1´ 1
3!

+
1
5!

)
=
´cosc

7!

sin(1)´ 101
5!

=
´cosc

7!

sin(1) =
4242´ cosc

7!

for some c between 0 and 1. Since ´1ď coscď 1,

4242´1
7!

ď sin(1) ď 4242+ 1
7!

4241
7!

ď sin(1) ď 4243
7!

4241
5040

ď sin(1) ď 4243
5040

Remark: there are lots of ways to play with this idea to get better estimates. One way is to take a
higher-degree Maclaurin polynomial. Another is to note that, since 0ă că 1ă π

3
, then

1
2
ă coscă 1, so

4242´1
7!

ă sin(1) ă 4242´ 1
2

7!
4241
5040

ă sin(1) ă 8483
10080

ă 4243
5040

If you got tighter bounds than asked for in the problem, congratulations!

S-14: (a) For every whole number n, the nth derivative of ex is ex. So:

T4(x) =
4
ÿ

n=0

e0

n!
xn =

4
ÿ

n=0

xn

n!

(b)

T4(1) =
4
ÿ

n=0

1n

n!
=

4
ÿ

n=0

1
n!

=
1
0!

+
1
1!

+
1
2!

+
1
3!

+
1
4!

=
1
1
+

1
1
+

1
2
+

1
6
+

1
24

=
65
24
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(c) Using Equation 9.6.6,

e1´T4(1) =
1
5!

ec for some c strictly between 0 and 1. So,

e´ 65
24

=
ec

120

e =
65
24

+
ec

120

Since ex is a strictly increasing function, and 0ă că 1, we conclude e0 ă ec ă e1:

65
24

+
1

120
ă eă 65

24
+

e
120

Simplifying the left inequality, we see

326
120

ă e

From the right inequality, we see

eă 65
24

+
e

120

e´ e
120

ă 65
24

e ¨ 119
120

ă 65
24

eă 65
24
¨ 120

119
=

325
119

So, we conclude

326
120

ă eă 325
119

,

as desired.

Remark:
326
120

« 2.717, and
325
119

« 2.731.

Solutions to Exercises 10 — Jump to TABLE OF CONTENTS

S-3: Before we start, we may want to get a feel for the problem with a quick sketch of y = g(x). A
full sketch, like we did in Chapter 7, isn’t necessary (or really possible, since we don’t know where
the critical points are – although we can guess from the question text that there is only one critical
point). But we can do a quick sketch using the ideas from Chapter 1. Namely: close to the origin,
we expect g(x) « x; far from the origin, we expect g(x) «´x4.
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x

y
y = x

y = ´x4

y« g(x)

This helps us guess that our critical point should be at a positive value of x.

The critical points of the function are the roots of its derivative. So, we set

f (x) = g1(x) = 1´2x´4x3

and use Newton’s Method to approximate the values of x that make f (x) close to 0. The formula for
refining our guess will be

xn+1 = xn´ f (xn)

f 1(xn)
= xn´ 1´2xn´4x3

n
´2´12x2

n
= xn +

1´2xn´4x3
n

2+ 12x2
n

This question doesn’t tell us where to start, so we have to figure that out on our own. From our
sketch, it seems small nonnegative values of x are good starting places. We’ll try a few to see which
are close to a root. (This is something we could also do without having first made the sketch.)

x f (x)

0 1

1 ´5

So it seems that x = 0 is a good starting point. (We also see that f changes from positive to negative
somewhere between x = 0 and x = 1, so we expect our root to be somewhere between those two
numbers.)

x0 = 0

x1 = 0+
1
2
=

1
2

x2 =
1
2
+

1´1´ 4
8

2+ 3
=

1
2
´ 1

10
=

2
5
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So, two iterations of Newton’s method gives us an approximate critical point of g(x) at x = 2
5 .

Since we know the root is between 0 and 1, we also could have started at x = 1/2, which would
have lead to the following:

x0 =
1
2

x1 =
1
2
+

1´1´ 4
8

2+ 3
=

2
5

x2 =
2
5
+

1´ 4
5 ´4

(2
5

)3

2+ 12 ¨ 4
25

=
2
5
´ 7

5 ¨98
=

27
70

Other starting points are possible, but don’t offer much benefit. Starting at x0 = 1 gives us an integer
starting point, which we usually go for, but it’s not as good at starting at x0 = 0, since f (0) is closer
to 0 than f (1) is.

S-4: Newton’s Method finds roots, so the first thing to do is to rephrase the question in terms of
root finding. So, we set

f (x) = arctanx´ x+ 10

and find where f (x) = 0.

Now, we need to find a starting place for Newton’s method. That is, we should find a (preferable
integer) value of x such that f (x) is reasonably close to 0. Rather than use a calculator to find exact
values of arctanx, recall lim

xÑ8
arctanx = π

2 . So, for large positive values of x, arctanx« π

2 . With

these ideas in mind, let’s start evaluating f (x) at different places:

f (0) = arctan0´0+ 10 = 10 This is pretty far from 0.

f (1) = arctan1´1+ 10 =
π

4
+ 9 Still pretty far from 0. Let’s try bigger x’s.

f (9) = arctan9´9+ 10« π

2
+ 1

f (10) = arctan10´10+ 10« π

2
f (11) = arctan11´11+ 10« π

2
´1

Two good candidates are x0 = 11 (since π

2 ´1« 0.5, which is relatively close to 0) and x0 = 10
(since f (10) is still relatively close to 0, but 10 is a ‘rounder’ number than 11.)

In both cases, the formula we’ll use to get an updated approximation is

xn+1 = xn´ f (xn)

f 1(xn)
= xn´ arctanxn´ xn + 10

1
1+x2

n
´1

= xn +
(1+ x2

n)(arctanxn´ xn + 10)
x2

n
.

• Starting with x0 = 11 would give us an approximate intersection point of

x1 = 11+
122(arctan11´1)

121
.
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• Starting with x0 = 10 would give us an approximate intersection point of

x1 = 10+
101(arctan10)

100
.

S-5: The formula we’ll use is

xn+1 = xn´ x3
n´12xn + 15

3x2
n´12

= xn´ 1
3
¨ x3

n´12xn + 15
x2

n´4
.

We know we want a root close to x = 2, so ordinarily, x0 = 2 would be our choice. However, x = 2
is not in the domain of the function above. Geometrically, the function f (x) has a horizontal tangent
line at x = 2. Newton’s method finds roots of tangent lines, but horizontal tangent lines either have
no roots (as is the case here) or infinitely many roots. So, we’ll need a different starting point.

The two obvious choices are x = 1 and x = 3. Note f (1) = 4 and f (3) = ´25, so x = 1 seems like
a better choice. But actually, if you start with x = 3, you get close to a different root. So, we’ll show
both below.

• Starting with x = 1:

x0 = 1

x1 = 1´ 1
3
¨ 1´12+ 15

1´4
=

13
9

x2 =
13
9
´ 1

3
¨
(13

9

)3´12
(13

9

)
+ 15(13

9

)2´4

• Starting with x = 3:

x0 = 3

x1 = 3´ 1
3
¨ 27´36+ 15

9´4
=

13
5

x2 =
13
5
´ 1

3
¨
(13

5

)3´12 ¨ 13
5 + 15(13

5

)2´4

Solutions to Exercises 11 — Jump to TABLE OF CONTENTS

Solutions to Exercises 12 — Jump to TABLE OF CONTENTS

516



S-21: To get from 0 to 0.03 in three steps, we use ∆t = 0.01 = 1
100 .

t y y1

0 0 0

0.01 0+(0.01)(0)
loooooomoooooon

y+∆x¨y1

= 0 0´0.01
looomooon

y´t

= ´0.01 = ´ 1
100

0.02 0+
1

100

(
´ 1

100

)
looooooooomooooooooon

y+∆x¨y1

= ´ 1
104 ´ 1

104 ´
2

100
loooooomoooooon

y´t

= ´201
104

0.03 ´ 1
104 +

1
100

(
´201

104

)
loooooooooooomoooooooooooon

y+∆x¨y1

= ´301
106

Note ´301
106 = ´0.000301.

S-22: To get from 0 to 0.03 in three steps, we use ∆t = 0.01 = 1
100 .

t y y1

0 0 0

0.01 0+(0.01)(0)
loooooomoooooon

y+∆x¨y1

= 0 0+ 0.01
looomooon

y+t

= 0.01 = 1
100

0.02 0+
1

100

(
1

100

)
loooooooomoooooooon

y+∆x¨y1

= 1
104

1
104 +

2
100

loooomoooon

y+t

+201
104

0.03
1

104 +
1

100

(
201
104

)
loooooooooomoooooooooon

y+∆x¨y1

= 301
106

Note 301
106 = 0.000301.

S-24: To get from x = 0 to x = 1 in two steps, we use ∆x = 1
2 .

t y y1

0 0 0

1
2 1+

1
2
(0)

looomooon

y+∆x¨y1

= 0

c

1
2

loomoon

?
t

1 0+
1
2
¨
c

1
2

looooomooooon

y+∆x¨y1

=
1

2
?

2
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S-25: To get from x = 0 to x = 1 in two steps, we’ll use ∆x = 1
2 .

t y y1

0 0 0
1
2 0+ 1

2(0) = 0 0

1 0+ 1
2(0) = 0

Note: what’s happened is that we chanced upon a steady state solution: the constant solution y = 0
is the solution to the initial value problem. So in this case, our approximation is actually exact.

S-26: To get from x = 2 to x = 3 in two steps, we’ll use ∆x = 1
2 .

t y y1

2 1 1

2.5 1+ 1
2(1) =

3
2

b

3
2

3 3
2 +

1
2 ¨
b

3
2

S-27: To get from x = 1.1 to x = 1.5 in three equal steps, each step should be
∆x = 1.5´1.1

3 = 0.4
3 = 4

30 .

t y y1

1.1 1
7

1/7
1.1

loomoon

y
t

=
1

7.7
=

10
77

1.1+ 2
15 = 3.7

3
1
7
+

2
15
¨ 1

7.7
looooomooooon

y+∆x¨y1

=
37

231
37/231
37/30
looomooon

y
t

=
30

231
=

10
77

1.1+ 0.8
3 = 4.1

3
37

231
+

2
15
¨ 30

231
looooooomooooooon

y+∆x¨y1

=
41

231
41/231
30/41
looomooon

y
t

=
30

231
=

10
77

1.1+ 1.2
3 = 1.5

41
231

+
2

15
¨ 30

231
looooooomooooooon

y+∆x+y1

=
45

231
=

15
77

Remark: the exact solution to this initial value problem is y(t) = 10
77t, which is a line (and so has

constant slope). Note the slopes in the table are constant as well. Furthermore, our ‘approximate’
value for y(1.5) turns out to be the exact value of y(1.5).

Solutions to Exercises 13 — Jump to TABLE OF CONTENTS
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Solutions to Exercises 14.1 — Jump to TABLE OF CONTENTS

S-1:

The xz plane is filled with vertical lines; the yz plane is crosshatched; and the xy plane is solid.

The left bottom triangle vertex is (1,0,0); the right bottom triangle vertex is (0,1,0); the top
triangle vertex is (0,0,1).

S-2: (a) The point (x,y,z) satisfies x2 + y2 + z2 = 2x´4y+ 4 if and only if it satisfies
x2´2x+ y2 + 4y+ z2 = 4, or equivalently (x´1)2 +(y+ 2)2 + z2 = 9. Since
a

(x´1)2 +(y+ 2)2 + z2 is the distance from (1,´2,0) to (x,y,z), our point satisfies the given
equation if and only if its distance from (1,´2,0) is three. So the set is the sphere of radius 3
centered on (1,´2,0).

(b) As in part (a), x2 + y2 + z2 ă 2x´4y+ 4 if and only if (x´1)2 +(y+ 2)2 + z2 ă 9. Hence our
point satifies the given inequality if and only if its distance from (1,´2,0) is strictly smaller than
three. The set is the interior of the sphere of radius 3 centered on (1,´2,0).

S-3: (a) x = y is a straight line and passes through the points (0,0) and (1,1). So it is the straight
line through the origin that makes an angle 45˝ with the x– and y–axes. It is sketched in the figure
on the left below.

x

y

y “ x

x

y

p1, 0q

p0, 1q
x ` y “ 1

(b) x+ y = 1 is the straight line through the points (1,0) and (0,1). It is sketched in the figure on
the right above.

(c) x2 + y2 is the square of the distance from (0,0) to (x,y). So x2 + y2 = 4 is the circle with centre
(0,0) and radius 2. It is sketched in the figure on the left below.

x

y

p2, 0q

x2 ` y2 “ 4

x

y

p0, 1q

x2 ` y2 “ 2y

(d) The equation x2 + y2 = 2y is equivalent to x2 +(y´1)2 = 1. As x2 +(y´1)2 is the square of
the distance from (0,1) to (x,y), x2 +(y´1)2 = 1 is the circle with centre (0,1) and radius 1. It is
sketched in the figure on the right above.
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(e) As in part (d),

x2 + y2 ă 2y ðñ x2 + y2´2yă 0 ðñ x2 + y2´2y+ 1ă 1 ðñ x2 +(y´1)2 ă 1

As x2 +(y´1)2 is the square of the distance from (0,1) to (x,y), x2 +(y´1)2 ă 1 is the set of
points whose distance from (0,1) is strictly less than 1. That is, it is the set of points strictly inside
the circle with centre (0,1) and radius 1. That set is the shaded region (not including the dashed
circle) in the sketch below.

x

y

p0, 1q

x2 ` y2 “ 2y

S-4: (a) For each fixed y0, z = x, y = y0 is a straight line that lies in the plane, y = y0 (which is
parallel to the plane containing the x and z axes and is a distance y0 from it). This line passes
through x = z = 0 and makes an angle 45˝ with the xy–plane. Such a line (with y0 = 0) is sketched
in the figure below. The set z = x is the union of all the lines z = x, y = y0 with all values of y0. As
y0 varies z = x, y = y0 sweeps out the plane which contains the y–axis and which makes an angle
45˝ with the xy–plane. Here is a sketch of the part of the plane that is in the first octant.

y

z

x

(b) x2 + y2 + z2 is the square of the distance from (0,0,0) to (x,y,z). So x2 + y2 + z2 = 4 is the set
of points whose distance from (0,0,0) is 2. It is the sphere with centre (0,0,0) and radius 2. Here is
a sketch of the part of the sphere that is in the first octant.

z

y

x

(c) x2 + y2 + z2 = 4, z = 1 or equivalently x2 + y2 = 3, z = 1, is the intersection of the plane z = 1
with the sphere of centre (0,0,0) and radius 2. It is a circle in the plane z = 1 that has centre (0,0,1)
and radius

?
3. The part of the circle in the first octant is the heavy quarter circle in the sketch
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z

y

x

(d) For each fixed z0, x2 + y2 = 4, z = z0 is a circle in the plane z = z0 with centre (0,0,z0) and
radius 2. So x2 + y2 = 4 is the union of x2 + y2 = 4, z = z0 for all possible values of z0. It is a
vertical stack of horizontal circles. It is the cylinder of radius 2 centered on the z–axis. Here is a
sketch of the part of the cylinder that is in the first octant.

z

y

x

(e) For each fixed z0 ě 0, the curve z = x2 + y2, z = z0 is the circle in the plane z = z0 with centre
(0,0,z0) and radius

?
z0. As z = x2 + y2 is the union of z = x2 + y2, z = z0 for all possible values of

z0 ě 0, it is a vertical stack of horizontal circles. The intersection of the surface with the yz–plane is
the parabola z = y2. Here is a sketch of the part of the paraboloid that is in the first octant.

z

y

x

z“y2

x“0z“x2

y“0

S-5: From the text, the distance from the point (x,y,z) to the point (x1,y1,z1) is
b

(x´ x1)2 +(y´ y1)2 +(z´ z1)2

So, our distance is
b

(1´4)2 +(2´ (´5))2 +(3´6)2 =
?

9+ 49+ 9 =
?

67

S-6: From the text, the distance from the point (x,y,z) to the xy-plane is |z|. In this case, 9.
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S-7: From the text, the distance from the point (x,y,z) to the xy-plane is |z|. Let the nest be the
origin (0,0,0) with the z-axis pointing north, the x-axis pointing south, and the y-axis pointing east.
Then the bird’s coordinates after flying are (´1,2,0.1). So, its distance from its nest is

b

(´1´0)2 +(2´0)2 +(0.1´0)2 =
?

1+ 4+ 0.01 =
?

5.01 km

S-8: Let the nest be the origin (0,0,0) with the z-axis pointing north, the x-axis pointing south, and
the y-axis pointing east. From the text, the distance from the point (x,y,z) to the xy-plane (which, in
this case, is the ground) is |z|. Then the bird’s coordinates after flying are (´2,2,z). So,

3 =
b

(´2´0)2 +(2´0)2 +(z´0)2 =
a

4+ 4+ z2

9 = 8+ z2

|z|= 1

So, the bird is 1 km above the ground. (Or, possibly, 1 km below it.)

S-9: The first 2 km of the journey bring you 2 km away from the wall. Walking parallel to the wall
neither increases nor decreases your distance to the wall. Similarly, moving vertically neither
increases nor decreases your distance to the wall. So, the murder hornets are 2 km from the wall.

If we wanted to impose a coordinate system, we could place the wall as the xz axis, with z being the
vertical direction, and the origin the place where you started walking. Then the murder hornets are
at the point (1,2,0.003). The distance from (x,y,z) to the xz axis is |y|. In this case, 2 km.

S-10: For each fixed c, the isobar p(x,y) = c is the curve x2´2cx+ y2 = 1, or equivalently,
(x´ c)2 + y2 = 1+ c2. This is a circle with centre (c,0) and radius

?
1+ c2, which for large c is

just a bit bigger than c.

x

y

p“1
p“2

p“3

S-11: Let (x,y,z) be a point in P. The distances from (x,y,z) to (3,´2,3) and to (3/2,1,0) are

b

(x´3)2 +(y+ 2)2 +(z´3)2 and
b

(x´3/2)2 +(y´1)2 + z2
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respectively. To be in P, (x,y,z) must obey
b

(x´3)2 +(y+ 2)2 +(z´3)2 = 2
b

(x´3/2)2 +(y´1)2 + z2

(x´3)2 +(y+ 2)2 +(z´3)2 = 4(x´3/2)2 + 4(y´1)2 + 4z2

x2´6x+ 9+ y2 + 4y+ 4+ z2´6z+ 9 = 4x2´12x+ 9+ 4y2´8y+ 4+ 4z2

3x2´6x+ 3y2´12y+ 3z2 + 6z´9 = 0

x2´2x+ y2´4y+ z2 + 2z´3 = 0

(x´1)2 +(y´2)2 +(z+ 1)2 = 9

This is a sphere of radius 3 centered on (1,2,´1).

S-12: Call the centre of the circumscribing circle (x̄, ȳ). This centre must be equidistant from the
three vertices. So

x̄2 + ȳ2 = (x̄´a)2 + ȳ2 = (x̄´b)2 +(ȳ´ c)2

or, subtracting x̄2 + ȳ2 from the three equal expressions,

0 = a2´2ax̄ = b2´2bx̄+ c2´2cȳ

which implies

x̄ =
a
2

ȳ =
b2 + c2´2bx̄

2c
=

b2 + c2´ab
2c

The radius is the distance from the vertex (0,0) to the centre (x̄, ȳ), which is
b(a

2

)2
+
(b2+c2´ab

2c

)2.

S-13: The distance from P to the point (0,0,1) is
a

x2 + y2 +(z´1)2. The distance from P to the
specified plane is |z+ 1|. Hence the equation of the surface is

x2 + y2 +(z´1)2 = (z+ 1)2 or x2 + y2 = 4z

All points on this surface have zě 0. The set of points on the surface that have any fixed value,
z0 ě 0, of z consists of a circle that is centred on the z–axis, is parallel to the xy-plane and has radius
2
?

z0. The surface consists of a stack of these circles, starting with a point at the origin and with
radius increasing vertically. The surface is a paraboloid and is sketched below.

z

y

x

Solutions to Exercises 14.2 — Jump to TABLE OF CONTENTS
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S-1: Any constant function will do. For example, f (x,y) = 0 or f (x,y) = 1.

S-2:

(a) The range of f (x) is [´10,10], since these are the y-values in the sketch.

(b) The range of g(x) is [0,1], since these are the y-values in the sketch.

(c) In order for f (g(x)) to be defined, we require ´1ď g(x) ď 1. That is, the range of g must be in
the domain of f . This is true for all values of g(x), so there is no extra domain restriction. The
domain of f (g(x)) is [´1,1].

(d) Since the range of g(x) is [0,1], the numbers that get plugged into f in the compound function
f (g(x)) are only the numbers [0,1]. So, the range of this function is [0,10]. g(x) never spits
out any negative values, so f (x) is restricted to the nonnegative part of its domain.

Remark: because we’re going off imprecise sketches, it wouldn’t be wrong to give open intervals,
rather than closed intervals, as your answers.

S-3: If x = 1 = y, and (x,y,z) is a point on the function, then:

1 = z2(13)+ z(13)+ (1)(1)

0 = z2 + z
0 = z or ´1 = z

So yes, (1,1) is in the domain.

There’s some fine print here. There are two different values of z corresponding to the input
(x,y) = (1,1). That means that globally, z isn’t a function of x and y, because a function should
only ever have at most one output for any one input. Implicitly-defined functions often have this
characteristic: it’s not possible to write z = f (x,y) for any single function f of x and y.

S-4: The only part of the function that could possibly limit the domain is the square root: we must
not try to take the square root of a negative number.

The expression 4x2 + y2 gives nonnegative numbers for any real values of x and y. So no matter
what (x,y) we input, there is no danger of taking the square root of a negative number. So, the
domain is all of R2.

We’ve already noted that 4x2 + y2 will give us numbers from [0,8), but we should check whether it
gives us all of those numbers. Indeed, if we set x = 0, we see

f (0,y) =
a

y2 = |y|
the range of which is [0,8).

So by choosing x = 0 and the appropriate y, we can indeed get f (x,y) to be any nonnegative
number we desire. So, the range of f is [0,8).

S-5: The only restriction on our domain is that we can’t divide by 0, and 1+ y2 is never 0. So, our
domain is all of R2.
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Since x2 ě 0 and 1+ y2 ě 0, we see first that h(x,y) is never negative. The question now is whether
it can actually achieve all nonnegative real values. If we set y = 0, then h(x,0) = x2, which has
range [0,8). So we can indeed find a point h(x,y) = h(x,0) equal to any nonnegative number our
hearts desire. That is, the range of h(x,y) is [0,8).

S-6: Recall the domain of the function arcsin(x) is [´1,1], and its range is
[´π

2 , π

2

]
.

Since we can only put numbers from [´1,1] into arcsine, we require for our domain

´1ď x2 + y2 ď 1

The left part of the inequality isn’t hard, since x2 + y2 is never negative. The right side tells us

x2 + y2 ď 1

i.e. (x,y) is inside (or on) the unit circle.

x

y

1

Subject to the constraint x2 + y2 ď 1, the domain of x2 + y2 is [0,1]. The range of arcsinx subject to
the constraint 0ď xď 1 is

[
0, π

2

]
.

x2 + y2

z

z = arcsin(x2 + y2)

1

π

2

Red dotted line: range of x2 + y2 subject to restrictions.
Blue solid line: range of arcsin(x2 + y2).
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S-7: To find the domain of g, there are two potential limiting issues: we can’t divide by 0, and we
can’t take the logarithm of a nonpositive number.

• Since we can’t divide by 0, log(xy) ‰ 0, which means xy‰ 1, or (equivalently) y‰ 1
x .

• Since we can’t take the logarithm of a nonpositive number, we need xyą 0. That is, x and y
must be both negative, or both positive.

Combining these two restrictions, the domain of g(x,y) is all points (x,y) such that x and y have the
same sign; they are nonzero; and y‰ 1

x . These points are graphed below. Dashed lines indicate
points that are not in the domain.

x

y

With these restrictions, xy can be any nonnegative number except 1; which means log(xy) can be
any real number except 0; and finally the range of the entire function is (´8,0)Y (0,8). (This is
illustrated in graphs below.)

xy

z

z = log(xy)

Red dotted line: values of xy. Blue dashed line: values of log(xy)
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log(xy)

z

z = 1
log(xy)

Blue dashed line: values of log(xy). Green solid line: values of 1
log(xy)

S-8: The only thing that might limit the domain of this function is dividing by zero; but since
x2 + 1ą 0 for all real values of x, we see the domain of f is the entire plane R2.

Since y doesn’t impact the value of f , we can consider the single-variable function

g(x) =
x2

x2 + 1

Since f (x,y) = g(x) for any (x,y), the range of g will be the same as the range of f . Note g(x) is
continuous over all real numbers. So, its range will be (global min)ď g(x) ď (global max). To help
picture how g(x) behaves, note further that z = g(x) has a horizontal asymptote at z = 1, and g(x)
is an even function. Let’s find the critical points of g(x).

g1(x) =
(x2 + 1)(2x)´ x2(2x)

(x2 + 1)2 =
2x

(x2 + 1)2

The only CP of this function is x = 0. Its horizontal asymptotes are 1 in both directions. So, the
basic shape of the function is:

x

z

1

So, its range is [0,1).

S-9: The domain of f (x,y) is all of R2: the only possible restriction is dividing by zero, but
x2 + 1ą 0 for all values of x.

We can write f (x,y) as
f (x,y) = f1(x)+ f2(y)
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where f1(x) = x
x2+1 and f2(y) = siny. Since there is not term depending on both x and y, the

maximum value of f will occur when x maximizes f1 and y maximizes f2. Similarly, the minimum
value of f will occur when x minimizes f1 and y minimizes f2. Since these two functions are both
continuous, we see that the range of f will be

(min of f1 + min of f2)ď f (x,y) ď (max of f1 + max of f2)

The range of f2(y) = siny is easy: it’s [´1,1]. Let’s consider f1(x) = x
x2+1 . Note its horizontal

asymptotes are 0 in both directions, and it’s an odd function. To find its extrema, let’s sketch it,
starting by finding its critical points.

f 11(x) =
(x2 + 1)(1)´ x(2x)

(x2 + 1)2 =
1´ x2

(x2 + 1)2 =
(1+ x)(1´ x)
(x2 + 1)2

The CPs of f1 are x = 1 and x = ´1.

f1(1) =
1

12 + 1
=

1
2

f1(´1) =
´1

(´1)2 + 1
= ´1

2

To sketch f1, let’s find the sign of its first derivative on the intervals between its critical points.

x

Sign of f1(x)

´1 1

+´ ´

Now we have enough information to sketch z = f1(x) :

x

y

1
2

´1
2

1´1

So, the range of f1(x) is
[´1

2 , 1
2

]
.

All together, the range of f (x,y) is
[´3

2 , 3
2

]
.

S-10: Some general assumptions might be that the amount of money spend on advertisements
shoudn’t be negative, so we should have aě 0. Similarly, it’s reasonable to assume that the
company is not giving away its product, nor paying people to take it, so pą 0. Finally, people won’t
demand a negative number of goods, so the range should be nonnegative.

That is one way of thinking about the problem, but different models might have different restrictions.
For example, from time to time (including a time in 2020) oil futures trade at negative values:

528



people were paying to give them away. So for certain models, negative prices and negative demands
do make sense.

For other models, also an upper bound of some sort probable makes sense. Maybe you aren’t able to
sell more than one million of your product, because you don’t have the capacity to manufacture
more. Maybe demand will never exceed one product per person in your area. Such restrictions
would further impact the domain and range that make sense for your model.

S-11: For this question, we solve two inequalities.

3ď 1
x2 + y2

ùñ 1
3
ě x2 + y2

5ě 1
x2 + y2

ùñ 1
5
ď x2 + y2

So, the points (x,y) must be both:

• inside or on the circle centred at the origin with radius 1?
3
, and

• not inside the circle centred at the origin with radius 1?
5
.

x

y

1?
5

1?
3

S-12: The bracketing in the definition of g(x,y) is suggestive. If we define t = x2´ y, then we get
the function

h(t) = 72t2´ t4

This is easy enough to graph using tools from last semester.

• h is an even function

• lim
tÑ8

h(t) = ´8
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• h1(t) = 144t´4t3 = 4t(36´ t2) = 5t(6+ t)(6´ t), so critical points are at t = 0 and t =˘6

• h1(t) is negative on (´6,0)Y (6,8) and positive on (´8,´6)Y (0,6).

• The absolute maximum of h(t) is h(´6) = h(6) = 64 = 1296, and h(0) = 0 is a local
minimum.

Sketched below is z = 72t2´ t4, with parts in the model range highlighted.

t

z

z = 72t2´ t4

z = 272

z = 1175

To find the t-values that correspond to the model range, we solve:

72t2´ t4 = 1175

0 = t4´72t2 + 1175

t2 =
72˘a

722´4(1)(1175)
2

=
72˘a

4(362)´4(1175)
2

=
72˘2

?
362´1175
2

= 36˘
a

362´1175

= 36˘?121
= 36˘11
= 25 or 47

t = ˘5 or ˘?47
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Similarly,

72t2´ t4 = 272

0 = t4´72t2 + 272

t2 =
72˘a

722´4(1)(272)
2

=
72˘a

4(362)´4(272)
2

=
72˘2

?
362´272
2

= 36˘
a

362´272

= 36˘?1024
= 36˘32
= 4 or 68

t = ˘2 or ˘?68

So, now we can fill in our sketch with t-values:

t

z

z = 72t2´ t4

z = 272

z = 1175

?
68

´?68
?

47
´?47

2´2 5´5

So we need to have t in [´?68,´?47]Y [´5,´2]Y [2,5]Y [
?

47,
?

68].

Now, recall we used t = x2´ y. So if we have aď t ď b, then this gives us two inequalities:

t ď b

ùñ x2´ yď b

ùñ x2´bď y
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and

t ě a

ùñ x2´ yě a

ùñ x2´aě y

So, t in the interval [a,b] implies that (x,y) must satisfy x2´bď yď x2´a:

x

y

y = x2´a y = x2´b

We have four such possible intervals. All together, the point (x,y) must be in one of the following
regions:

• x2´?68ď yď x2´?47

• x2´5ď yď x2´2

• x2 + 2ď yď x2 + 5

• x2 +
?

47ď yď x2 +
?

68
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x

y

?
68

?
47

´?68

´?47

5

2

´5

´2

Solutions to Exercises 14.3 — Jump to TABLE OF CONTENTS

S-1:

(a) Each constant z cross–section of x2 + y2 = z2 + 1 is a (horizontal) circle centred on the z–axis.
The radius of the circle is 1 when z = 0 and grows as z moves away from z = 0. So x2 + y2 = z2 +1
consists of a bunch of (horizontal) circles stacked on top of each other, with the radius increasing
with |z|. It is a hyperboloid of one sheet. The picture that corresponds to (a) is (B).
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(b) Every point of y = x2 + z2 has yě 0. Only (A) has that property. We can also observe that every
constant y cross–section is a circle centred on x = z = 0. The radius of the circle is zero when y = 0
and increases as y increases. The surface y = x2 + z2 is a paraboloid. The picture that corresponds
to (b) is (A).

(c) The only possibility left is that the picture that corresponds to (c) is (C).

S-2: We first add into the sketch of the graph the horizontal planes z =C, for C = 3, 2, 1, 0.5, 0.25.

z

y

x

z “ 3

z “ 2

z “ 1
z“0.5

To reduce clutter, for each C, we have drawn in only

• the (gray) intersection of the horizontal plane z =C with the yz–plane, i.e. with the vertical
plane x = 0, and

• the (blue) intersection of the horizontal plane z =C with the graph z = f (x,y).

We have also omitted the label for the plane z = 0.25.

The intersection of the plane z =C with the graph z = f (x,y) is line
 

(x,y,z)
ˇ

ˇ z = f (x,y), z =C
(

=
 

(x,y,z)
ˇ

ˇ f (x,y) =C, z =C
(

Drawing this line (which is parallel to the x-axis) in the xy-plane, rather than in the plane z =C,
gives a level curve. Doing this for each of C = 3, 2, 1, 0.5, 0.25 gives five level curves.

x

y
f“0.25

f“0.5

f“1

f“2

f“3

S-3: (a) For each fixed cą 0, the level curve x2 +2y2 = c is the ellipse centred on the origin with x
semi axis

?
c and y semi axis

?
c/2. If c = 0, the level curve x2 + 2y2 = c = 0 is the single point

(0,0).

534



x

y

f“1

f“2

f“0

(b) For each fixed c‰ 0, the level curve xy = c is a hyperbola centred on the origin with asymptotes
the x- and y-axes. If cą 0, any x and y obeying xy = cą 0 are of the same sign. So the hyperbola is
contained in the first and third quadrants. If că 0, any x and y obeying xy = cą 0 are of opposite
sign. So the hyperbola is contained in the second and fourth quadrants. If c = 0, the level curve
xy = c = 0 is the single point (0,0).

x

y

f“2

f“1

f“2 f“´2

f“´2

f“0

(c) For each fixed c‰ 0, the level curve xe´y = c is the logarithmic curve y = ´ ln c
x . Note that, for

cą 0, the curve

• is restricted to xą 0, so that c
x ą 0 and ln c

x is defined, and that
• as xÑ 0+, y goes to ´8, while
• as xÑ+8, y goes to +8, and
• the curve crosses the x-axis (i.e. has y = 0) when x = c.

and for că 0, the curve

• is restricted to xă 0, so that c
x ą 0 and ln c

x is defined, and that
• as xÑ 0´, y goes to ´8, while
• as xÑ´8, y goes to +8, and
• the curve crosses the x-axis (i.e. has y = 0) when x = c.

If c = 0, the level curve xe´y = c = 0 is the y-axis, x = 0.

535



x

y
f“1f“´1

f“2f“´2

f“0

S-4: If C = 0, the level curve f =C = 0 is just the line y = 0. If C ‰ 0 (of either sign), we may
rewrite the equation, f (x,y) = 2y

x2+y2 =C, of the level curve f =C as

x2´ 2
C

y+ y2 = 0 ðñ x2 +

(
y´ 1

C

)2

=
1

C2

which is the equation of the circle of radius 1
|C| centred on

(
0, 1

C

)
.

x

y

f = 2

f = 1

f = ´2

f = ´1

f = 0

Remark. To be picky, the function f (x,y) = 2y
x2+y2 is not defined at (x,y) = (0,0). The question

should have either specified that the domain of f excludes (0,0) or have specified a value for
f (0,0). In fact, it is impossible to assign a value to f (0,0) in such a way that f (x,y) is continuous
at (0,0), because limxÑ0 f (x,0) = 0 while limyÑ0 f (0, |y|) =8. So it makes more sense to have
the domain of f being R2 with the point (0,0) removed. That’s why there is a little hole at the
origin in the above sketch.

S-5: (a) We can rewrite the equation as

x2 + y2 = (z´1)2´1
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The right hand side is negative for |z´1| ă 1, i.e. for 0ă ză 2. So no point on the surface has
0ă ză 2. For any fixed z, outside that range, the curve x2 + y2 = (z´1)2´1 is the circle of radius
a

(z´1)2´1 centred on the z–axis. That radius is 0 when z = 0,2 and increases as z moves away
from z = 0,2. For very large |z|, the radius increases roughly linearly with |z|. Here is a sketch of
some level curves.

x

y

z“0,2

z“´1,3

z“´2,4

(b) The surface consists of two stacks of circles. One stack starts with radius 0 at z = 2. The radius
increases as z increases. The other stack starts with radius 0 at z = 0. The radius increases as z
decreases. This surface is a hyperboloid of two sheets. Here are two sketchs. The sketch on the left
is of the part of the surface in the first octant. The sketch on the right of the full surface.

z

y

x

S-6: For each fixed z, 4x2 + y2 = 1+ z2 is an ellipse. So the surface consists of a stack of ellipses
one on top of the other. The semi axes are 1

2

?
1+ z2 and

?
1+ z2. These are smallest when z = 0

(i.e. for the ellipse in the xy-plane) and increase as |z| increases. The intersection of the surface with
the xz-plane (i.e. with the plane y = 0) is the hyperbola 4x2´ z2 = 1 and the intersection with the
yz-pane (i.e. with the plane x = 0) is the hyperbola y2´ z2 = 1. Here are two sketches of the surface.
The sketch on the left only shows the part of the surface in the first octant (with axes).
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z

y

x

S-7: (a) The graph is z = sinx with (x,y) running over 0ď xď 2π , 0ď yď 1. For each fixed y0
between 0 and 1, the intersection of this graph with the vertical plane y = y0 is the same sin graph
z = sinx with x running from 0 to 2π . So the whole graph is just a bunch of 2-d sin graphs stacked
side-by-side. This gives the graph on the left below.

z

y

x

z

y

x

(b) The graph is z =
a

x2 + y2. For each fixed z0 ě 0, the intersection of this graph with the
horizontal plane z = z0 is the circle

a

x2 + y2 = z0. This circle is centred on the z-axis and has
radius z0. So the graph is the upper half of a cone. It is the sketch on the right above.

(c) The graph is z = |x|+ |y|. For each fixed z0 ě 0, the intersection of this graph with the horizontal
plane z = z0 is the square |x|+ |y|= z0. The side of the square with x,yě 0 is the straight line
x+ y = z0. The side of the square with xě 0 and yď 0 is the straight line x´ y = z0 and so on. The
four corners of the square are (˘z0,0,z0) and (0,˘z0,z0). So the graph is a stack of squares. It is an
upside down four-sided pyramid. The part of the pyramid in the first octant (that is, x,y,zě 0) is the
sketch below.

z

y

x

S-8: (a) For each fixed z0, the z = z0 cross-section (parallel to the xy-plane) of this surface is an
ellipse centered on the origin with one semiaxis of length 2 along the x-axis and one semiaxis of
length 4 along the y-axis. So this is an elliptic cylinder parallel to the z-axis. Here is a sketch of the
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part of the surface above the xy–plane.

y

z

x
p0, 4, 0qp2, 0, 0q

(b) This is a plane through (4,0,0), (0,4,0) and (0,0,2). Here is a sketch of the part of the plane in
the first octant.

p4, 0, 0q

p0, 4, 0q

p0, 0, 2q

y

x

z

(c) For each fixed x0, the x = x0 cross-section parallel to the yz-plane is an ellipse with semiaxes

3
b

1+ x2
0

16 parallel to the y-axis and 2
b

1+ x2
0

16 parallel to the z-axis. As you move out along the

x-axis, away from x = 0, the ellipses grow at a rate proportional to
b

1+ x2

16 , which for large x is

approximately |x|
4 . This is called a hyperboloid of one sheet. Its

z

y
x

(d) For each fixed y0, the y = x0 cross-section (parallel to the xz-plane) is a circle of radius |y|
centred on the y-axis. When y0 = 0 the radius is 0. As you move further from the xz-plane, in either
direction, i.e. as |y0| increases, the radius grows linearly. The full surface consists of a bunch of
these circles stacked sideways. This is a circular cone centred on the y-axis.
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y

z

(e) This is an ellipsoid centered on the origin with semiaxes 3,
?

12 = 2
?

3 and 3 along the x, y and
z-axes, respectively.

z

y
x p3, 0, 0q p0,?

12, 0q

p0, 0, 3q

p0,?
12, 0q

p0, 0, 3q

p3, 0, 0q

(f) Completing three squares, we have that x2 + y2 + z2 + 4x´by+ 9z´b = 0 if and only if
(x+ 2)2 +

(
y´ b

2

)2
+
(
z+ 9

2

)2
= b+ 4+ b2

4 + 81
4 . This is a sphere of radius rb =

1
2

?
b2 + 4b+ 97

centered on 1
2(´4,b,´9).

1
2
p´4, b ` 2rb,´9q

1
2
p´4, b,´9 ` 2rbq

1
2
p´4, b,´9q

1
2
p´4 ` 2rb, b,´9q

(g) There are no points on the surface with xă 0. For each fixed x0 ą 0 the cross-section x = x0
parallel to the yz-plane is an ellipse centred on the x–axis with semiaxes

?
x0 in the y-axis direction

and 3
2
?

x0 in the z–axis direction. As you increase x0, i.e. move out along the x-axis, the ellipses
grow at a rate proportional to

?
x0. This is an elliptic paraboloid with axis the x-axis.
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z

y

x

(h) This is called a parabolic cylinder. For any fixed y0, the y = y0 cross-section (parallel to the
xz-plane) is the upward opening parabola z = x2 which has vertex on the y-axis.

z

y

x

S-9: The level curves of z = 0 correspond to all points (x,y) such that 0 = sin(x+ y). The angles
that make sinθ equal to 0 are θ = πn for integer values of n. So, the level curves are lines of the
form

x+ y = πn

where n is any integer.

So, our level curve has the lines y = ´x, y = π´ x, y = 2π´ x, etc.
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x

y

π

π

π

2

π

2

The level curves of z = 1 correspond to all points (x,y) such that 1 = sin(x+ y). The angles that
make sinθ equal to 1 are θ = pi

2 + 2πn for integer values of n. So, the level curves are lines of the
form

x+ y =
π

2
+ 2πn

where n is any integer.

So, our level curve has the lines y = π

2 ´ x, y = π

2 + 2π´ x, y = π

2 + 4π´ x, etc.

x

y

π

π

π

2

π

2

The equation 2 = sin(x+ y) has no solutions, since no angle has sine greater than 1. So the level
curve at z = 2 has no points:
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x

y

π

π

π

2

π

2

S-10: Since the level curves are circles centred at the origin (in the xy-plane), when z is a constant,
the equation will have the form x2 + y2 = c for some constant. That is, our equation looks like

x2 + y2 = g(z),

where g(z) is a function depending only on z.

Because our cross-sections are so nicely symmetric, we know the intersection of the figure with the
left side of the yz-plane as well: z = 3(´y´1) = ´3(y+ 1) (when zě 0) and
z =´3(´y´1) = 3(y+1) (when ză 0). Below is the intersection of our surface with the yz plane.

z

y

z = 3(y´1)

z = ´3(y´1)

z = ´3(y+ 1)

z = 3(y+ 1)

Setting x = 0, our equation becomes y2 = g(z). Looking at the right side of the yz plane, this should
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lead to:

#

z = 3(y´1) if zě 0, yě 1
z = ´3(y´1) if ză 0, yě 1

+

. That is:

|z|= 3(y´1)
|z|
3
+ 1 = y( |z|

3
+ 1
)2

= y2 (˚)

A quick check: when we squared both sides of the equation in (˚), we added another solution,
|z|
3 + 1 = ´y. Let’s make sure we haven’t diverged from our diagram.

( |z|
3
+ 1
)2

= y2

ô |z|
3
+ 1

loomoon

positive

= ˘y

ô
#

|z|
3 + 1 = y yą 0
|z|
3 + 1 = ´y yă 0

ô
#

|z|
3 + 1 = y yě 1
|z|
3 + 1 = ´y yď´1

ô
#|z|= 3(y´1) yě 1

|z|= ´3(y+ 1) yď´1

ô

$

’

’

’

&

’

’

’

%

z = ˘3(y´1)
looomooon

positive

yě 1

z = ˘3(y+ 1)
looomooon

negative

yď´1

ô

$

’

’

’

&

’

’

’

%

z = 3(y´1) yě 1, zě 0
z = ´3(y´1) yě 1, zď 0
z = ´3(y+ 1) yď´1, zě 0
z = 3(y+ 1) yď´1, zď 0

This matches our diagram eactly. So, all together, the equation of the surface is

x2 + y2 =

( |z|
3
+ 1
)2
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Solutions to Exercises 15.1 — Jump to TABLE OF CONTENTS

S-1:

If fy(0,0) ă 0, then f (0,y) decreases as y increases from 0. Thus moving in the positive y direction
takes you downhill. This means you aren’t at the lowest point in a valley, since you can still move
downhill. On the other hand, as fy(0,0) ă 0, f (0,y) also decreases as y increases towards 0 from
slightly negative values. Thus if you move in the negative y-direction from y = 0, your height z will
increase. So you are not at a locally highest point—you’re not at a summit.

S-2: The definition of the derivative involves a limit at h goes to 0; we can approximate that limit
by choosing a value of h that’s close to 0; in our case, 0.1 or ´0.1 are the best we can do, using the
information on the table.

fx(x,y) = lim
hÑ0

f (x+ h,y)´ f (x,y)
h

« f (x+ 0.1,y)´ f (x,y)
0.1

fy(x,y) = lim
hÑ0

f (x,y+ h)´ f (x,y)
h

« f (x,y+ 0.1)´ f (x,y)
0.1

(a) To find fy(1.5,2.4), we keep x fixed at x = 1.5, and vary y. We don’t know what happens at
y = 2.5, but we do know what happens at y = 2.3:

fy(1.5,2.4) « f (1.5,2.3)´ f (1.5,2.4)
2.3´2.4

=
11.2´11.0
´0.1

= ´2

(b) To find fx(1.7,1.7), we keep y fixed at y = 1.7, and vary x. We can choose to use either x = 1.6
or x = 1.8.

fx(1.7,1.7) « f (1.8,1.7)´ f (1.7,1.7)
1.8´1.7

=
16.1´15.0

0.1
= 11

fx(1.7,1.7) « f (1.6,1.7)´ f (1.7,1.7)
1.6´1.7

=
13.9´15.0
´0.1

= 11

(c) To find fy(1.7,1.7), we keep x fixed at x = 1.7, and vary y. We can choose to use either y = 1.6
or y = 1.8.

fy(1.7,1.7) « f (1.7,1.8)´ f (1.7,1.7)
1.8´1.7

=
14.7´15.0

0.1
= ´3

fy(1.7,1.7) « f (1.7,1.6)´ f (1.7,1.7)
1.6´1.7

=
15.3´15.0
´0.1

= ´3

(d) To find fx(1.1,2), we keep y fixed at y = 2, and vary x. We can choose to use either x = 1.0 or
x = 1.2.

fx(1.1,2) « f (1.2,2)´ f (1.1,2)
1.2´1.1

=
9.1´8.2

0.1
= 9

fx(1.1,2) « f (1.0,2)´ f (1.1,2)
1.0´1.1

=
7.3´8.2
´0.1

= 9
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S-3: (a)

fx(x,y,z) = 3x2y4z5 fx(0,´1,´1) = 0

fy(x,y,z) = 4x3y3z5 fy(0,´1,´1) = 0

fz(x,y,z) = 5x3y4z4 fz(0,´1,´1) = 0

(b)

wx(x,y,z) =
yzexyz

1+ exyz wx(2,0,´1) = 0

wy(x,y,z) =
xzexyz

1+ exyz wy(2,0,´1) = ´1

wz(x,y,z) =
xyexyz

1+ exyz wz(2,0,´1) = 0

(c)

fx(x,y) = ´ x
(x2 + y2)3/2 fx(´3,4) =

3
125

fy(x,y) = ´ y
(x2 + y2)3/2 fy(´3,4) = ´ 4

125

S-4: By the quotient rule

Bz
Bx

(x,y) =
(1)(x´ y)´ (x+ y)(1)

(x´ y)2 =
´2y

(x´ y)2

Bz
By

(x,y) =
(1)(x´ y)´ (x+ y)(´1)

(x´ y)2 =
2x

(x´ y)2

Hence
x
Bz
Bx

(x,y)+ y
Bz
By

(x,y) =
´2xy+ 2yx
(x´ y)2 = 0

S-5: (a) We are told that z(x,y) obeys

z(x,y)y´ y+ x = log
(
xyz(x,y)

)
= logx+ logy+ log

(
z(x,y)

)
(˚)

for all (x,y) (near (´1,´2)). Recall the following derivatives:

• The partial derivative of z with respect to x is Bz
Bx

• The partial derivative of y with respect to x is 0 (since we treat y as a constant)

• The partial derivative of x with respect to x is 1
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Differentiating (˚) with respect to x gives

y
Bz
Bx

(x,y)+ 1 =
1
x
+
Bz
Bx(x,y)
z(x,y)

ùñ Bz
Bx

(x,y) =
1
x ´1

y´ 1
z(x,y)

or, dropping the arguments (x,y) and multiplying both the numerator and denominator by xz,

Bz
Bx

=
z´ xz

xyz´ x
=

z(1´ x)
x(yz´1)

Differentiating (˚) with respect to y gives

z(x,y)+ y
Bz
By

(x,y)´1 =
1
y
+
Bz
By(x,y)

z(x,y)
ùñ Bz

By
(x,y) =

1
y + 1´ z(x,y)

y´ 1
z(x,y)

or, dropping the arguments (x,y) and multiplying both the numerator and denominator by yz,

Bz
By

=
z+ yz´ yz2

y2z´ y
=

z(1+ y´ yz)
y(yz´1)

(b) When (x,y,z) = (´1,´2,1/2),

Bz
Bx

(´1,´2) =
1
x ´1

y´ 1
z

ˇ

ˇ

ˇ

ˇ

ˇ

(x,y,z)=(´1,´2,1/2)

=
1
´1 ´1
´2´2

=
1
2

Bz
By

(´1,´2) =
1
y + 1´ z

y´ 1
z

ˇ

ˇ

ˇ

ˇ

ˇ

(x,y,z)=(´1,´2,1/2)

=
1
´2 + 1´ 1

2

´2´2
= 0

S-6: We are told that the four variables T , U , V , W obey the the single equation
(TU ´V )2 log(W ´UV ) = log2. So they are not all independent variables. Roughly speaking, we
can treat any three of them as independent variables and solve the given equation for the fourth as a
function of the three chosen independent variables.

We are first asked to find BU
BT . This implicitly tells to treat T , V and W as independent variables and

to view U as a function U(T ,V ,W ) that obeys(
T U(T ,V ,W )´V

)2 log
(
W ´U(T ,V ,W )V

)
= log2 (E1)

for all (T ,U ,V ,W ) sufficiently near (1,1,2,4). Differentiating (E1) with respect to T gives

2
(
T U(T ,V ,W )´V

)[
U(T ,V ,W )+T

BU
BT

(T ,V ,W )

]
log
(
W ´U(T ,V ,W )V

)
´ (T U(T ,V ,W )´V

)2 1
W ´U(T ,V ,W )V

BU
BT

(T ,V ,W )V = 0
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In particular, for (T ,U ,V ,W ) = (1,1,2,4),

2
(
(1)(1)´2

)[
1+(1)

BU
BT

(1,2,4)
]

log
(
4´ (1)(2)

)
´ ((1)(1)´2

)2 1
4´ (1)(2)

BU
BT

(1,2,4) (2) = 0

This simplifies to

´2
[

1+
BU
BT

(1,2,4)
]

log(2)´ BUBT
(1,2,4) = 0 ùñ BU

BT
(1,2,4) = ´ 2log(2)

1+ 2log(2)

We are then asked to find BT
BV . This implicitly tells to treat U , V and W as independent variables and

to view T as a function T (U ,V ,W ) that obeys(
T (U ,V ,W )U ´V

)2 log
(
W ´U V

)
= log2 (E2)

for all (T ,U ,V ,W ) sufficiently near (1,1,2,4). Differentiating (E2) with respect to V gives

2
(
T (U ,V ,W )U ´V

) [BT
BV (U ,V ,W ) U ´1

]
log
(
W ´U V

)
´ (T (U ,V ,W )U ´V

)2 U
W ´U V

= 0

In particular, for (T ,U ,V ,W ) = (1,1,2,4),

2
(
(1)(1)´2

)[
(1)
BT
BV (1,2,4)´1

]
log
(
4´ (1)(2)

)
´ ((1)(1)´2

)2 1
4´ (1)(2)

= 0

This simplifies to

´2
[BT
BV (1,2,4)´1

]
log(2)´ 1

2
= 0 ùñ BT

BV (1,2,4) = 1´ 1
4log(2)

S-7: The function

u(ρ ,r,θ ) =
[
ρr cosθ

]2
+
[
ρr sinθ

]
ρr

= ρ
2r2 cos2

θ +ρ
2r2 sinθ

So
Bu
Br

(ρ ,r,θ ) = 2ρ
2r cos2

θ + 2ρ
2r sinθ

and
Bu
Br

(2,3,π/2) = 2(22)(3)(0)2 + 2(22)(3)(1) = 24
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S-8: By definition

fx(x0,y0) = lim
∆xÑ0

f (x0 +∆x,y0)´ f (x0,y0)

∆x
fy(x0,y0) = lim

∆yÑ0

f (x0,y0 +∆y)´ f (x0,y0)

∆y

Setting x0 = y0 = 0,

fx(0,0) = lim
∆xÑ0

f (∆x,0)´ f (0,0)
∆x

= lim
∆xÑ0

f (∆x,0)
∆x

= lim
∆xÑ0

((∆x)2´2ˆ02)/(∆x´0)
∆x

= lim
∆xÑ0

1 = 1

fy(0,0) = lim
∆yÑ0

f (0,∆y)´ f (0,0)
∆y

= lim
∆yÑ0

f (0,∆y)
∆y

= lim
∆yÑ0

(02´2(∆y)2)/(0´∆y)
∆y

= lim
∆yÑ0

2 = 2

S-9: As z(x,y) = f (x2 + y2)

Bz
Bx

(x,y) = 2x f 1(x2 + y2)

Bz
By

(x,y) = 2y f 1(x2 + y2)

by the (ordinary single variable) chain rule. So

y
Bz
Bx
´ x
Bz
By

= y(2x) f 1(x2 + y2)´ x(2y) f 1(x2 + y2) = 0

and the differential equation is always satisfied, assuming that f is differentiable, so that the chain
rule applies.

S-10: By definition

B f
Bx

(0,0) = lim
∆xÑ0

f (∆x,0)´ f (0,0)
∆x

= lim
∆xÑ0

(∆x+2ˆ0)2

∆x+0 ´0
∆x

= lim
∆xÑ0

∆x
∆x

= 1

and
B f
By

(0,0) = lim
∆yÑ0

f (0,∆y)´ f (0,0)
∆y

= lim
∆yÑ0

(0+2∆y)2

0+∆y ´0

∆y

= lim
∆yÑ0

4∆y
∆y

= 4
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(b) f (x,y) is not continuous at (0,0), even though both partial derivatives exist there. To see this,
make a change of coordinates from (x,y) to (X ,y) with X = x+ y (the denominator). Of course,
(x,y)Ñ (0,0) if and only if (X ,y)Ñ (0,0). Now watch what happens when (X ,y)Ñ (0,0) with
X a lot smaller than y. For example, X = ay2. Then

(x+ 2y)2

x+ y
=

(X + y)2

X
=

(ay2 + y)2

ay2 =
(1+ ay)2

a
Ñ 1

a

This depends on a. So approaching (0,0) along different paths gives different limits. (You can see
the same effect without changing coordinates by sending (x,y)Ñ (0,0) with x = ´y+ ay2.) Even
more dramatically, watch what happens when (X ,y)Ñ (0,0) with X = y3. Then

(x+ 2y)2

x+ y
=

(X + y)2

X
=

(y3 + y)2

y3 =
(1+ y2)

2

y
Ñ˘8

S-11: Solution 1
Let’s start by finding an equation for this surface. Every level curve is a horizontal circle of radius
one, so the equation should be of the form

(x´ f1)
2 +(y´ f2)

2 = 1

where f1 and f2 are functions depending only on z. Since the centre of the circle at height z is at
position x = 0, y = z, we see that the equation of our surface is

x2 +(y´ z)2 = 1

The height of the surface at the point (x,y) is the z(x,y) found by solving that equation. That is,

x2 +
(
y´ z(x,y)

)2
= 1 (˚)

We differentiate this equation implicitly to find zx(x,y) and zy(x,y) at the desired point
(x,y) = (0,´1). First, differentiating (˚) with respect to y gives

0+ 2
(
y´ z(x,y)

)(
1´ zy(x,y)

)
= 0

2(´1´0)
(
1´ zy(0,´1)

)
= 0 at (0,´1,0)

so that the slope looking in the positive y direction is zy(0,´1) = 1. Similarly, differentiating (˚)
with respect to x gives

2x+ 2
(
y´ z(x,y)

) ¨ (0´ zx(x,y)
)
= 0

2x = 2
(
y´ z(x,y)

) ¨ zx(x,y)

zx(x,y) =
x

y´ z(x,y)
zx(0,´1) = 0 at (0,´1,0)

The slope looking in the positive x direction is zx(0,´1) = 0.

Solution 2
Standing at (0,´1,0) and looking in the positive y direction, the surface follows the straight line that
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• passes through the point (0,´1,0), and

• is parallel to the central line z = y,x = 0 of the cylinder.

Shifting the central line one unit in the y-direction, we get the line z = y+ 1, x = 0. (As a check,
notice that (0,´1,0) is indeed on z = y+ 1, x = 0.) The slope of this line is 1.

Standing at (0,´1,0) and looking in the positive x direction, the surface follows the circle
x2 + y2 = 1, z = 0, which is the intersection of the cylinder with the xy-plane. As we move along
that circle our z coordinate stays fixed at 0. So the slope in that direction is 0.

S-12: (a) By definition

B f
Bx

(0,0) = lim
∆xÑ0

f (∆x,0)´ f (0,0)
∆x

= lim
∆xÑ0

(∆x2)(0)
∆x2+02 ´0

∆x
= 0

(b) By definition

B f
By

(0,0) = lim
∆yÑ0

f (0,∆y)´ f (0,0)
∆y

= lim
∆yÑ0

(02)(∆y)
02+∆y2 ´0

∆y
= 0

(c) By definition

d
dt

f (t, t)
ˇ

ˇ

ˇ

t=0
= lim

tÑ0

f (t, t)´ f (0,0)
t

= lim
hÑ0

(t2)(t)
t2+t2 ´0

t

= lim
tÑ0

t/2
t

=
1
2

Solutions to Exercises 15.2 — Jump to TABLE OF CONTENTS

S-1: From the example that “ fx” is the partial derivative of f with respect to x, we infer that the
notation for “take the partial derivative with respect to (variable)” is “write (variable) on the bottom
right.” Continuing this practice, to take the partial derivative with respect to y of fx, we should write
the y on the bottom right – that is, to the right of the x:

( fx)y
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Since x is to the left of y, we write the above as fxy, not fyx.

S-2: From the example that “ B
Bx f ” is the partial derivative of f with respect to x, we infer that the

notation for “take the partial derivative of a function with respect to (variable)” is “put the partial
derivative operator B

B(variable) to the left of the function.” Continuing this practice, to take the partial

derivative with respect to y of B f
Bx , we should write the operator B

By on the left.

B
By

[ B
Bx

f
]

In the above expression, By is to the left of the Bx. So we write B2 f
ByBx rather than B2 f

BxBy .

S-3: As in Question 2, if we want to differentiate B f
Bx with respect to x, we write:

B
Bx

[ B
Bx

f
]

or
B
Bx

[B f
Bx

]
In both cases:

• f shows up only once, so we don’t add an exponent to it.

• B shows up twice in the numerator, so we write B2 as shorthand for B[B].
• Bx shows up twice in the denominator, so we write Bx2 as shorthand for Bx[Bx].

S-4:

f (x,y) =
tan(xy)

lnx

fx =
lnx
(
ysec2(xy)

)´ tan(xy)
(1

x

)
ln2 x

=

(
1

lnx

)
ysec2(xy)´

(
1

x ln2 x

)
tan(xy)

We’ve separated out factors only depending on x, since these will act as constants when we
differentiate with respect to y. Differentiating sec2(xy) involves two layers of chain rule, so we’ll
figure that out on its own before we find fxy.

B
By

[
(sec(xy))2

]
= 2sec(xy) ¨ BBy

[sec(xy)]

= 2sec(xy) ¨ sec(xy) tan(xy) ¨ BBy
[xy]

= 2sec(xy) ¨ sec(xy) tan(xy) ¨ x
= 2xsec2(xy) ¨ tan(xy)

Now we differentiate fx with respect to y.

fxy =

(
1

lnx

)(
y ¨2xsec2(xy) ¨ tan(xy)+ sec2(xy)

)´( 1
x ln2 x

)
sec2(xy) ¨ x

=

(
sec2(xy)

lnx

)
(2xy tan(xy)+ 1)´ sec2(xy)

ln2 x

552



To find fyx, we first differentiate f with respect to y.

f (x,y) =
(

1
lnx

)
tan(xy)

fy =
1

lnx
¨ sec2(xy) ¨ x = xsec2(xy)

lnx

We can differentiate this using the quotient rule. When we do, we’ll need to find the derivative of
the numerator. Since that takes several steps, we do it first.

B
Bx

[
xsec2(xy)

]
= x

B
Bx

[
sec2(xy)

]
+ sec2(xy)

We already found B
Bx

[
sec2(xy)

]
= 2xsec2(xy) ¨ tan(xy). By an equivalent calculation,

B
By

[
sec2(xy)

]
= 2ysec2(xy) ¨ tan(xy)

= x ¨2ysec2(xy) ¨ tan(xy)+ sec2(xy)

= sec2(xy) (2xy tan(xy)+ 1)

Now, let’s differentiate fy with respect to x.

fyx =
lnx ¨ sec2(xy) (2xy tan(xy)+ 1)´ xsec2(xy)1

x

ln2 x

To show that this is equal to fxy, we rearrange.

=
lnx ¨ sec2(xy)

ln2 x
(2xy tan(xy)+ 1)´ xsec2(xy)1

x

ln2 x

=

(
sec2(xy)

lnx

)
(2xy tan(xy)+ 1)´ sec2(xy)

ln2 x
= fxy

S-5: (a) We have

fx(x,y) = 2xy3 fxx(x,y) = 2y3

fxy(x,y) = 6xy2 fyxy(x,y) = fxyy(x,y) = 12xy

(b) We have

fx(x,y) = y2exy2
fxx(x,y) = y4exy2

fxxy(x,y) = 4y3exy2
+ 2xy5exy2

fxy(x,y) = 2yexy2
+ 2xy3exy2

fxyy(x,y) =
(
2+ 4xy2 + 6xy2 + 4x2y4)exy2

=
(
2+ 10xy2 + 4x2y4)exy2
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(c) We have

B f
Bu

(u,v,w) = ´ 1
(u+ 2v+ 3w)2

B2 f
BvBu

(u,v,w) =
4

(u+ 2v+ 3w)3

B3 f
BwBvBu

(u,v,w) = ´ 36
(u+ 2v+ 3w)4

In particular,

B3 f
BwBvBu

(3,2,1) = ´ 36
(3+ 2ˆ2+ 3ˆ1)4 = ´ 36

104 = ´ 9
2500

S-6: Let f (x,y) =
a

x2 + 5y2. Then

fx =
x

a

x2 + 5y2
fxx =

1
a

x2 + 5y2
´ 1

2
(x)(2x)

(x2 + 5y2)3/2 fxy = ´1
2

(x)(10y)
(x2 + 5y2)3/2

fy =
5y

a

x2 + 5y2
fyy =

5
a

x2 + 5y2
´ 1

2
(5y)(10y)

(x2 + 5y2)3/2 fyx = ´1
2

(5y)(2x)
(x2 + 5y2)3/2

Simplifying, and in particular using that 1?
x2+5y2

= x2+5y2

(x2+5y2)3/2 ,

fxx =
5y2

(x2 + 5y2)3/2 fxy = fyx = ´ 5xy
(x2 + 5y2)3/2 fyy =

5x2

(x2 + 5y2)3/2

S-7: (a) As f (x,y,z) = arctan
(
e
?

xy) is independent of z, we have fz(x,y,z) = 0 and hence

fxyz(x,y,z) = fzxy(x,y,z) = 0

(b) Write u(x,y,z) = arctan
(
e
?

xy), v(x,y,z) = arctan
(
e
?

xz) and w(x,y,z) = arctan
(
e
?

yz). Then

• As u(x,y,z) = arctan
(
e
?

xy) is independent of z, we have uz(x,y,z) = 0 and hence
uxyz(x,y,z) = uzxy(x,y,z) = 0

• As v(x,y,z) = arctan
(
e
?

xz) is independent of y, we have vy(x,y,z) = 0 and hence
vxyz(x,y,z) = vyxz(x,y,z) = 0

• As w(x,y,z) = arctan
(
e
?

yz) is independent of x, we have wx(x,y,z) = 0 and hence
wxyz(x,y,z) = 0

As f (x,y,z) = u(x,y,z)+ v(x,y,z)+w(x,y,z), we have

fxyz(x,y,z) = uxyz(x,y,z)+ vxyz(x,y,z)+wxyz(x,y,z) = 0
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(c) In the course of evaluating fxx(x,0,0), both y and z are held fixed at 0. Thus, if we set
g(x) = f (x,0,0), then fxx(x,0,0) = g2(x). Now

g(x) = f (x,0,0) = arctan
(
e
?

xyz)ˇˇ
ˇ

y=z=0
= arctan(1) =

π

4

for all x. So g1(x) = 0 and g2(x) = 0 for all x. In particular,

fxx(1,0,0) = g2(1) = 0

S-8: As

ut(x,y,z, t) = ´3
2

1
t5/2 e´(x

2+y2+z2)/(4αt)+
1

4α t7/2 (x
2 + y2 + z2)e´(x

2+y2+z2)/(4αt)

ux(x,y,z, t) = ´ x
2α t5/2 e´(x

2+y2+z2)/(4αt)

uxx(x,y,z, t) = ´ 1
2α t5/2 e´(x

2+y2+z2)/(4αt)+
x2

4α2 t7/2 e´(x
2+y2+z2)/(4αt)

uyy(x,y,z, t) = ´ 1
2α t5/2 e´(x

2+y2+z2)/(4αt)+
y2

4α2 t7/2 e´(x
2+y2+z2)/(4αt)

uzz(x,y,z, t) = ´ 1
2α t5/2 e´(x

2+y2+z2)/(4αt)+
z2

4α2 t7/2 e´(x
2+y2+z2)/(4αt)

we have

α
(
uxx + uyy + uzz

)
= ´ 3

2 t5/2 e´(x
2+y2+z2)/(4αt)+

x2 + y2 + z2

4α t7/2 e´(x
2+y2+z2)/(4αt) = ut

S-9: The definition of the derivative involves a limit at h goes to 0; we can approximate that limit
by choosing a value of h that’s close to 0; in our case, 0.1 or ´0.1 are the best we can do, using the
information on the table.

fx(x,y) = lim
hÑ0

f (x+ h,y)´ f (x,y)
h

« f (x+ 0.1,y)´ f (x,y)
0.1

fy(x,y) = lim
hÑ0

f (x,y+ h)´ f (x,y)
h

« f (x,y+ 0.1)´ f (x,y)
0.1

The same holds for the second derivative:

fxy(x,y) = ( fx(x,y))y = lim
hÑ0

fx(x,y+ h)´ fx(x,y)
h

« fx(x,y+ 0.1)´ fx(x,y)
0.1

=

[
lim
hÑ0

f (x+h,y+0.1)´ f (x,y+0.1)
h

]
´
[

lim
hÑ0

f (x+h,y)´ f (x,y)
h

]
0.1

«
[

f (x+0.1,y+0.1)´ f (x,y+0.1)
0.1

]
´
[

f (x+0.1,y)´ f (x,y)
0.1

]
0.1
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These are the ideas we’ll use in the approximations below.

The second partial derivative fxy(x,y) of f is the partial derivative of fx(x,y) with respect to y. That
is:

fxy(1.8,2.0) = lim
hÑ0

fx(1.8,2.0+ h)´ fx(1.8,2.0)
h

For our approximation, we can choose h = 0.1 or h = ´0.1. There’s no compelling reason to
choose one over the other. Let’s use h = 0.1.

« fx(1.8,2.1)´ fx(1.8,2.0)
0.1

=

[
lim
hÑ0

f (1.8+h,2.1)´ f (1.8,2.1)
h

]
´
[

lim
hÑ0

f (1.8+h,2.0)´ f (1.8,2.0)
h

]
0.1

Once again, there’s no compelling reason to choose h = 0.1 over h = ´0.1. We could even choose
different signs for the two limits. We’ll just choose h = 0.1 again, because after all, we do have to
choose something.

«
[

f (1.9,2.1)´ f (1.8,2.1)
0.1

]
´
[

f (1.9,2.0)´ f (1.8,2.0)
0.1

]
0.1

= 100
[(

f (1.9,2.1)´ f (1.8,2.1)
)´ ( fx(1.9,2.0)´ fx(1.8,2.0)

)]
= 100

[(
16.0´14.9

)´ (16.3´15.2
)]

= 0

Remark: different choices of h all end up with the same approximation.

Solutions to Exercises 16.1 — Jump to TABLE OF CONTENTS

S-1: a) (i) ∇∇∇ f is zero or does not exist at critical points. The point T is a local maximum and the
point U is a saddle point. The remaining points P, R, S, are not critical points.

(a) (ii) Only U is a saddle point.

(a) (iii) We have fy(x,y) ą 0 if f increases as you move vertically upward through (x,y). Looking
at the diagram, we see

fy(P) ă 0 fy(Q) ă 0 fy(R) = 0 fy(S) ą 0 fy(T ) = 0 fy(U) = 0

So only S works.

(b) (i) The function z = F(x,2) is increasing at x = 1, because the y = 2.0 graph in the diagram has
positive slope at x = 1. So Fx(1,2) ą 0.

(b) (ii) The function z = F(x,2) is also increasing (though slowly) at x = 2, because the y = 2.0
graph in the diagram has positive slope at x = 2. So Fx(2,2)ą 0. So F does not have a critical point
at (2,2).
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(b) (iii) From the diagram the looks like Fx(1,1.9) ą Fx(1,2.0) ą Fx(1,2.1). That is, it looks like
the slope of the y = 1.9 graph at x = 1 is larger than the slope of the y = 2.0 graph at x = 1, which
in turn is larger than the slope of the y = 2.1 graph at x = 1. So it looks like Fx(1,y) decreases as y
increases through y = 2, and consequently Fxy(1,2) ă 0.

S-2: (a)

• The level curve z = 0 is y2´ x2 = 0, which is the pair of 45˝ lines y = ˘x.

• When C ą 0, the level curve z =C4 is (y2´ x2)
2
=C4, which is the pair of hyperbolae

y2´ x2 =C2, y2´ x2 = ´C2 or

y = ˘
a

x2 +C2 x = ˘
a

y2 +C2

The hyperbola y2´ x2 =C2 crosses the y–axis (i.e. the line x = 0) at (0,˘C). The hyperbola
y2´ x2 = ´C2 crosses the x–axis (i.e. the line y = 0) at (˘C,0).

Here is a sketch showing the level curves z = 0, z = 1 (i.e. C = 1), and z = 16 (i.e. C = 2).

x

y

f“0
f“1f“1

f“1

f“1

f“16f“16

f“16

f“16

3´3

3

´3

(b) As fx(x,y) = ´4x(y2´ x2) and fy(x,y) = 4y(y2´ x2), we have fx(0,0) = fy(0,0) = 0 so that
(0,0) is a critical point. Note that

• f (0,0) = 0,

• f (x,y) ě 0 for all x and y.

So (0,0) is a local (and also absolute) minimum.

(c) Note that

fxx(x,y) = ´4y2 + 12x2 fxx(x,y) = 0

fyy(x,y) = 12y2´4x2 fyy(x,y) = 0
fxy(x,y) = ´8xy fxx(x,y) = 0
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As fxx(0,0) fyy(0,0)´ fxy(0,0)2 = 0, the Second Derivative Test (Theorem 16.1.14 in the text) tells
us absolutely nothing.

S-3: Write f (x,y) = x2 + cxy+ y2. Then

fx(x,y) = 2x+ cy fx(0,0) = 0
fy(x,y) = cx+ 2y fy(0,0) = 0

fxx(x,y) = 2
fxy(x,y) = c
fyy(x,y) = 2

As fx(0,0) = fy(0,0) = 0, we have that (0,0) is always a critical point for f . According to the
Second Derivative Test, (0,0) is also a saddle point for f if

fxx(0,0) fyy(0,0)´ fxy(0,0)2 ă 0 ðñ 4´ c2 ă 0 ðñ |c| ą 2

As a remark, the Second Derivative Test provides no information when the expression
fxx(0,0) fyy(0,0)´ fxy(0,0)2 = 0, i.e. when c = ˘2. But when c = ˘2,

f (x,y) = x2˘2xy+ y2 = (x˘ y)2

and f has a local minimum, not a saddle point, at (0,0).

S-4: To find the critical points we will need the first order partial derivatives of f , and to apply the
second derivative test of Theorem 16.1.14 in the text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f = x3´ y3´2xy+ 6

fx = 3x2´2y fxx = 6x fxy = ´2

fy = ´3y2´2x fyy = ´6y fyx = ´2

The first order partial derivatives are defined everywhere so the critical points are the solutions of

fx = 3x2´2y = 0 fy = ´3y2´2x = 0

Substituting y = 3
2x2, from the first equation, into the second equation gives

´3
(

3
2

x2
)2

´2x = 0 ðñ ´2x
(

33

23 x3 + 1
)
= 0

ðñ x = 0, ´2
3

So there are two critical points: (0,0),
(´2

3 , 2
3

)
.

The classification is
critical
point fxx fyy´ f 2

xy fxx type

(0,0) 0ˆ0´ (´2)2 ă 0 saddle point(´2
3 , 2

3

)
(´4)ˆ (´4)´ (´2)2 ą 0 ´4 local max
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S-5: To find the critical points we will need the first order partial derivatives of f , and to apply the
second derivative test of Theorem 16.1.14 in the text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f = x3 + x2y+ xy2´9x

fx = 3x2 + 2xy+ y2´9 fxx = 6x+ 2y fxy = 2x+ 2y

fy = x2 + 2xy fyy = 2x fyx = 2x+ 2y

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to catch some
mechanical errors.)

fx and fy are polynomials (in two variables) and so they are defined everywhere. Therefore the
critical points are the solutions of

fx = 3x2 + 2xy+ y2´9 = 0 (E1)
fy = x(x+ 2y) = 0 (E2)

Equation (E2) is satisfied if at least one of x = 0, x = ´2y.

• If x = 0, equation (E1) reduces to y2´9 = 0, which is satisfied if y = ˘3.

• If x = ´2y, equation (E1) reduces to

0 = 3(´2y)2 + 2(´2y)y+ y2´9 = 9y2´9

which is satisfied if y = ˘1.

So there are four critical points: (0,3), (0,´3), (´2,1) and (2,´1). The classification is

critical
point fxx fyy´ f 2

xy fxx type

(0,3) (6)ˆ (0)´ (6)2 ă 0 saddle point

(0,´3) (´6)ˆ (0)´ (´6)2 ă 0 saddle point

(´2,1) (´10)ˆ (´4)´ (´2)2 ą 0 ´10 local max

(2,´1) (10)ˆ (4)´ (2)2 ą 0 10 local min

S-6: To find the critical points we will need the first order partial derivatives of f , and to apply the
second derivative test of Theorem 16.1.14 in the text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f = x2 + y2 + x2y+ 4
fx = 2x+ 2xy fxx = 2+ 2y fxy = 2x

fy = 2y+ x2 fyy = 2

The first partial derivatives are defined everywhere so the critical points are the solutions of

fx = 0 fy = 0

ðñ 2x(1+ y) = 0 2y+ x2 = 0

ðñ x = 0 or y = ´1 2y+ x2 = 0
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When x = 0, y must be 0. When y = ´1, x2 must be 2. So, there are three critical points: (0,0),(˘?2,´1
)
.

The classification is
critical
point fxx fyy´ f 2

xy fxx type

(0,0) 2ˆ2´02 ą 0 2ą 0 local min

(
?

2,´1) 0ˆ2´ (2
?

2)2 ă 0 saddle point

(´?2,´1) 0ˆ2´ (´2
?

2)2 ă 0 saddle point

S-7: To find the critical points we will need the first order partial derivatives of f , and to apply the
second derivative test of Theorem 16.1.14 in the text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f = x3 + x2´2xy+ y2´ x

fx = 3x2 + 2x´2y´1 fxx = 6x+ 2 fxy = ´2
fy = ´2x+ 2y fyy = 2 fyx = ´2

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to catch some
mechanical errors.)

The first order partial derivatives exist everywhere so the critical points are the solutions of

fx = 3x2 + 2x´2y´1 = 0 (E1)
fy = ´2x+ 2y = 0 (E2)

Substituting y = x, from (E2), into (E1) gives

3x2´1 = 0 ðñ x = ˘ 1?
3
= 0

So there are two critical points: ˘( 1?
3
, 1?

3

)
.

The classification is
critical
point fxx fyy´ f 2

xy fxx type( 1?
3
, 1?

3

)
(2
?

3+ 2)ˆ (2)´ (´2)2 ą 0 2
?

3+ 2ą 0 local min

´( 1?
3
, 1?

3

)
(´2

?
3+ 2)ˆ (2)´ (´2)2 ă 0 saddle point

S-8: To find the critical points we will need the first order partial derivatives of f and to apply the
second derivative test of Theorem 16.1.14 in the text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f = x3 + xy2´3x2´4y2 + 4

fx = 3x2 + y2´6x fxx = 6x´6 fxy = 2y
fy = 2xy´8y fyy = 2x´8 fyx = 2y
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(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to catch some
mechanical errors.)

The first partial derivatives exist everywhere so the critical points are the solutions of

fx = 3x2 + y2´6x = 0 fy = 2(x´4)y = 0

The second equation is satisfied if at least one of x = 4, y = 0 are satisfied.

• If x = 4, the first equation reduces to y2 = ´24, which has no real solutions.

• If y = 0, the first equation reduces to 3x(x´2) = 0, which is satisfied if either x = 0 or x = 2.

So there are two critical points: (0,0), (2,0).

The classification is
critical
point fxx fyy´ f 2

xy fxx type

(0,0) (´6)ˆ (´8)´ (0)2 ą 0 ´6 local max

(2,0) 6ˆ (´4)´ (0)2 ă 0 saddle point

S-9: (a) To find the critical points we will need the first order partial derivatives of f and to apply
the second derivative test of Theorem 16.1.14 in the text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f = x3 + 3xy+ 3y2´6x´3y´6

fx = 3x2 + 3y´6 fxx = 6x fxy = 3
fy = 3x+ 6y´3 fyy = 6 fyx = 3

The first partial derivatives exists everywhere (as they are polynomials with two variables) and so
the first order partial derivatives exist everywhere. So the critical points are the solutions of

fx = 3x2 + 3y´6 = 0 fy = 3x+ 6y´3 = 0

Subtracting the second equation from 2 times the first equation gives

6x2´3x´9 = 0 ðñ 3(2x´3)(x+ 1) = 0 ðñ x =
3
2

, ´1

Since y = 1´x
2 (from the second equation), the critical points are (3

2 ,´1
4), (´1,1) and the

classification is
critical
point fxx fyy´ f 2

xy fxx type

(3
2 ,´1

4) (9)ˆ (6)´ (3)2 ą 0 9 local min

(´1,1) (´6)ˆ (6)´ (3)2 ă 0 saddle point

(b) Notice that the lines x = y, x = ´y and y = 0 are all level curves of the function
f (x,y) = y(x+ y)(x´ y)+ 1 (i.e. of (iii)) with f = 1. So the first picture goes with (iii). And the
second picture goes with (i).

Here are the pictures with critical points marked on them. There are saddle points where level
curves cross and there are local max’s or min’s at “bull’s eyes”.
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(i) (ii)

S-10: To find the critical points we will need the first order partial derivatives of f , and to apply the
second derivative test of Theorem 16.1.14 in the text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f = x3 + 3xy+ 3y2´6x´3y´6

fx = 3x2 + 3y´6 fxx = 6x fxy = 3
fy = 3x+ 6y´3 fyy = 6 fyx = 3

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to catch some
mechanical errors.)

The first order partial derivatives are defined everywhere and so the critical points are the solutions
of

fx = 3x2 + 3y´6 = 0 (E1)
fy = 3x + 6y´3 = 0 (E2)

Subtracting equation (E2) from twice equation (E1) gives

6x2´3x´9 = 0 ðñ (2x´3)(3x+ 3) = 0

So we must have either x = 3
2 or x = ´1.

• If x = 3
2 , (E2) reduces to 9

2 + 6y´3 = 0 so y = ´1
4 .

• If x = ´1, (E2) reduces to ´3+ 6y´3 = 0 so y = 1.

So there are two critical points:
(3

2 ,´1
4

)
and (´1,1).

The classification is
critical
point fxx fyy´ f 2

xy fxx type(3
2 ,´1

4

)
(9)ˆ (6)´ (3)2 ą 0 9 local min

(´1,1) (´6)ˆ (6)´ (3)2 ă 0 saddle point

S-11: Thinking a little way ahead, to find the critical points we will need the first order partial
derivatives of f , and to apply the second derivative test of Theorem 16.1.14 in the text we will need
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all second order partial derivatives. So we need all partial derivatives of f up to order two. Here
they are.

f = 3x2y+ y3´3x2´3y2 + 4
fx = 6xy´6x fxx = 6y´6 fxy = 6x

fy = 3x2 + 3y2´6y fyy = 6y´6 fyx = 6x

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to catch some
mechanical errors.)

The first partial derivatives are defined everywhere and so the critical points are the solutions of

fx = 6x(y´1) = 0 fy = 3x2 + 3y2´6y = 0

The first equation is satisfied if at least one of x = 0, y = 1 are satisfied.

• If x = 0, the second equation reduces to 3y2´6y = 0, which is satisfied if either y = 0 or
y = 2.

• If y = 1, the second equation reduces to 3x2´3 = 0 which is satisfied if x = ˘1.

So there are four critical points: (0,0), (0,2), (1,1), (´1,1).

The classification is
critical
point fxx fyy´ f 2

xy fxx type

(0,0) (´6)ˆ (´6)´ (0)2 ą 0 ´6 local max

(0,2) 6ˆ6´ (0)2 ą 0 6 local min

(1,1) 0ˆ0´ (6)2 ă 0 saddle point

(´1,1) 0ˆ0´ (´6)2 ă 0 saddle point

S-12: We have

f (x,y) = x4 + y4´4xy+ 2 fx(x,y) = 4x3´4y fxx(x,y) = 12x2

fy(x,y) = 4y3´4x fyy(x,y) = 12y2

fxy(x,y) = ´4

The partial first derivatives are defined everywhere. So the critical point are the solutions of

fx(x,y) = fy(x,y) = 0 ðñ y = x3 and x = y3

ðñ x = x9 and y = x3

ðñ x(x8´1) = 0, y = x3

ðñ (x,y) = (0,0) or (1,1) or (´1,´1)

Here is a table giving the classification of each of the three critical points.

critical
point fxx fyy´ f 2

xy fxx type

(0,0) 0ˆ0´ (´4)2 ă 0 saddle point

(1,1) 12ˆ12´ (´4)2 ą 0 12 local min

(´1,´1) 12ˆ12´ (´4)2 ą 0 12 local min
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S-13: We have

f (x,y) = x4 + y4´4xy fx(x,y) = 4x3´4y fxx(x,y) = 12x2

fy(x,y) = 4y3´4x fyy(x,y) = 12y2

fxy(x,y) = ´4

The first partial derivatives are defined everywhere. So the critical points are the solution of

fx(x,y) = fy(x,y) = 0 ðñ y = x3 and x = y3 ðñ x = x9 and y = x3

ðñ x(x8´1) = 0, y = x3

ðñ (x,y) = (0,0) or (1,1) or (´1,´1)

Here is a table giving the classification of each of the three critical points.

critical
point fxx fyy´ f 2

xy fxx type

(0,0) 0ˆ0´ (´4)2 ă 0 saddle point

(1,1) 12ˆ12´ (´4)2 ą 0 12 local min

(´1,´1) 12ˆ12´ (´4)2 ą 0 12 local min

S-14: We have

f (x,y) = x3 + xy2´ x fx(x,y) = 3x2 + y2´1 fxx(x,y) = 6x
fy(x,y) = 2xy fyy(x,y) = 2x

fxy(x,y) = 2y

The first partial derivatives are defined everywhere. So the critical points are the solution of

fx(x,y) = fy(x,y) = 0 ðñ xy = 0 and 3x2 + y2 = 1

ðñ tx = 0 or y = 0u and 3x2 + y2 = 1

ðñ (x,y) = (0,1) or (0,´1) or
(

1?
3

,0
)

or
(
´ 1?

3
,0
)

Here is a table giving the classification of each of the four critical points.

critical
point fxx fyy´ f 2

xy fxx type

(0,1) 0ˆ0´22 ă 0 saddle point

(0,´1) 0ˆ0´ (´2)2 ă 0 saddle point( 1?
3
,0
)

2
?

3ˆ 2?
3
´02 ą 0 2

?
3 local min(´ 1?

3
,0
) ´2

?
3ˆ (´ 2?

3

)´02 ą 0 ´2
?

3 local max

S-15: We have

f (x,y) = x3´3xy2´3x2´3y2 fx(x,y) = 3x2´3y2´6x fxx(x,y) = 6x´6
fy(x,y) = ´6xy´6y fyy(x,y) = ´6x´6

fxy(x,y) = ´6y
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The first partial derivatives are defined everywhere. So the critical points are the solution of

fx(x,y) = fy(x,y) = 0 ðñ 3(x2´ y2´2x) = 0 and ´6y(x+ 1) = 0

ðñ tx = ´1 or y = 0u and x2´ y2´2x = 0

ðñ (x,y) = (´1,
?

3) or (´1,´?3) or (0,0) or (2,0)

Here is a table giving the classification of each of the four critical points.

critical
point fxx fyy´ f 2

xy fxx type

(0,0) (´6)ˆ (´6)´02 ą 0 ´6 local max

(2,0) 6ˆ (´18)´02 ă 0 saddle point

(´1,
?

3) (´12)ˆ0´ (´6
?

3)2 ă 0 saddle point

(´1,´?3) (´12)ˆ0´ (6
?

3)2 ă 0 saddle point

S-16: To find the critical points we will need the first order partial derivatives of f and to apply the
second derivative test of Theorem 16.1.14 in the text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f = 3kx2y+ y3´3x2´3y2 + 4
fx = 6kxy´6x fxx = 6ky´6 fxy = 6kx

fy = 3kx2 + 3y2´6y fyy = 6y´6 fyx = 6kx

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to catch some
mechanical errors.)

The first partial derivatives are defined everywhere. So the critical points are the solution of

fx = 6x(ky´1) = 0 fy = 3kx2 + 3y2´6y = 0

The first equation is satisfied if at least one of x = 0, y = 1/k are satisfied. (Recall that k ą 0.)

• If x = 0, the second equation reduces to 3y(y´2) = 0, which is satisfied if either y = 0 or
y = 2.

• If y = 1/k, the second equation reduces to 3kx2 + 3
k2 ´ 6

k = 3kx2 + 3
k2 (1´2k) = 0.

Case k ă 1
2 : If k ă 1

2 , then 3
k2 (1´2k) ą 0 and the equation 3kx2 + 3

k2 (1´2k) = 0 has no real
solutions. In this case there are two critical points: (0,0), (0,2) and the classification is

critical
point fxx fyy´ f 2

xy fxx type

(0,0) (´6)ˆ (´6)´ (0)2 ą 0 ´6 local max

(0,2) (12k´6)ˆ6´ (0)2 ă 0 saddle point

Case k = 1
2 : If k = 1

2 , then 3
k2 (1´2k) = 0 and the equation 3kx2 + 3

k2 (1´2k) = 0 reduces to
3kx2 = 0 which has as its only solution x = 0. We have already seen this third critical point, x = 0,
y = 1/k = 2. So there are again two critical points: (0,0), (0,2) and the classification is
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critical
point fxx fyy´ f 2

xy fxx type

(0,0) (´6)ˆ (´6)´ (0)2 ą 0 ´6 local max

(0,2) (12k´6)ˆ6´ (0)2 = 0 unknown

Case k ą 1
2 : If k ą 1

2 , then 3
k2 (1´2k) ă 0 and the equation 3kx2 + 3

k2 (1´2k) = 0 reduces to

3kx2 = 3
k2 (2k´1) which has two solutions, namely x = ˘

b

1
k3 (2k´1). So there are four critical

points: (0,0), (0,2),
(b

1
k3 (2k´1) , 1

k

)
and

(
´
b

1
k3 (2k´1) , 1

k

)
and the classification is

critical
point fxx fyy´ f 2

xy fxx type

(0,0) (´6)ˆ (´6)´ (0)2 ą 0 ´6 local max

(0,2) (12k´6)ˆ6´ (0)2 ą 0 12k´6ą 0 local min(b
1
k3 (2k´1) , 1

k

)
(6´6)ˆ (6

k ´6)´ (ą 0)2 ă 0 saddle point(
´
b

1
k3 (2k´1) , 1

k

)
(6´6)ˆ (6

k ´6)´ (ă 0)2 ă 0 saddle point

S-17: We wish to choose m and b so as to minimize the (square of the) rms error

E(m,b) =
n
ř

i=1
(mxi + b´ yi)2.

0 =
BE
Bm

=
n
ř

i=1
2(mxi + b´ yi)xi = m

[ n
ř

i=1
2x2

i

]
+ b
[ n
ř

i=1
2xi

]
´
[ n
ř

i=1
2xiyi

]
0 =

BE
Bb

=
n
ř

i=1
2(mxi + b´ yi) = m

[ n
ř

i=1
2xi

]
+ b
[ n
ř

i=1
2
]
´
[ n
ř

i=1
2yi

]
Here, the first partial derivatives BE

Bm and = BE
Bb are defined everywhere and the critical points are the

solution of

0 =
BE
Bm

=
n
ř

i=1
2(mxi + b´ yi)xi = m

[ n
ř

i=1
2x2

i

]
+ b
[ n
ř

i=1
2xi

]
´
[ n
ř

i=1
2xiyi

]
0 =

BE
Bb

=
n
ř

i=1
2(mxi + b´ yi) = m

[ n
ř

i=1
2xi

]
+ b
[ n
ř

i=1
2
]
´
[ n
ř

i=1
2yi

]
There are a lot of symbols in those two equations. But remember that only two of them, namely m
and b, are unknowns. All of the xi’s and yi’s are given data. We can make the equations look a lot
less imposing if we define Sx =

řn
i=1 xi, Sy =

řn
i=1 yi, Sx2 =

řn
i=1 x2

i and Sxy =
řn

i=1 xiyi. In terms
of this notation, the two equations are (after dividing by two)

Sx2 m+ Sx b = Sxy (1)
Sx m+ nb = Sy (2)

This is a system of two linear equations in two unknowns. One way1 to solve them, is to use one of
the two equations to solve for one of the two unknowns in terms of the other unknown. For example,
equation (2) gives that

b =
1
n

(
Sy´Sx m

)
1 This procedure is probably not the most efficient one. But it has the advantage that it always works, it does not

require any ingenuity on the part of the solver, and it generalizes easily to larger linear systems of equations.
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If we now substitute this into equation (1) we get

Sx2 m+
Sx

n

(
Sy´Sx m

)
= Sxy ùñ

(
Sx2´ S2

x
n

)
m = Sxy´ SxSy

n

which is a single equation in the single unkown m. We can easily solve it for m. It tells us that

m =
nSxy´SxSy

nSx2´S2
x

Then substituting this back into b = 1
n

(
Sy´Sx m

)
gives us

b =
Sy

n
´ Sx

n

(
nSxy´SxSy

nSx2´S2
x

)
=

SySx2´SxSxy

nSx2´S2
x

Solutions to Exercises 16.2 — Jump to TABLE OF CONTENTS

S-1: False. A common mistake is to think that the intercepts of a circle are somehow “endpoints,”
in the same way that the interval [´1,1] has endpoints ´1 and 1. But circles don’t have endpoints!

When2 we’re finding the extrema of a function over a closed curve, we use the equation of the curve
to get a function of one variable. Then we look for critical points and endpoints of that function.
These may or may not occur at x = ˘1 or y = ˘1.

Now, you might notice that school problems often end up having their extrema at the extreme values
of x and/or y in the boundary. This is a result of writing problems with relatively easy algebra, rather
than the result of some universal law.

S-2: The height
a

x2 + y2 at (x,y) is the distance from (x,y) to (0,0). So the minimum height is
zero at (0,0,0). The surface is a cone. The cone has a point at (0,0,0) and the derivatives zx and zy
do not exist there. The maximum height is achieved when (x,y) is as far as possible from (0,0).
The highest points are at (˘1,˘1,

?
2). There zx and zy exist but are not zero. These points would

not be the highest points if it were not for the restriction |x|, |y| ď 1.

S-3: The specified function and its first order derivatives are

f (x,y) = xy´ x3y2 fx(x,y) = y´3x2y2 fy(x,y) = x´2x3y

• First, we find the critical points. The first partial derivatives are defined everywhere and so the
critical points are the solution of

fx = 0 ðñ y(1´3x2y) = 0 ðñ y = 0 or 3x2y = 1

fy = 0 ðñ x(1´2x2y) = 0 ðñ x = 0 or 2x2y = 1

– If y = 0, we cannot have 2x2y = 1, so we must have x = 0.

2 At least in this section, this is how we do it.. but we’ll learn other ways that also don’t involve optimizing x and y
separately
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– If 3x2y = 1, we cannot have x = 0, so we must have 2x2y = 1. Dividing gives
1 = 3x2y

2x2y =
3
2 which is impossible.

So the only critical point in the square is (0,0). There f = 0.

• Next, we look at the part of the boundary with x = 0. There f = 0.

• Next, we look at the part of the boundary with y = 0. There f = 0.

• Next, we look at the part of the boundary with x = 1. There f = y´ y2. As
d
dy(y´ y2) = 1´2y, the max and min of y´ y2 for 0ď yď 1 must occur either at y = 0,
where f = 0, or at y = 1

2 , where f = 1
4 , or at y = 1, where f = 0.

• Next, we look at the part of the boundary with y = 1. There f = x´ x3. As
d
dx(x´ x3) = 1´3x2, the max and min of x´ x3 for 0ď xď 1 must occur either at x = 0,
where f = 0, or at x = 1?

3
, where f = 2

3
?

3
, or at x = 1, where f = 0.

All together, we have the following candidates for max and min.

point (0,0) x = 0 y = 0 (1,0) (1, 1
2) (1,1) (0,1) ( 1?

3
,1) (1,1)

value of f 0 0 0 0 1
4 0 0 2

3
?

3
0

min min min min min min max min

The largest and smallest values of f in this table are

min = 0 max =
2

3
?

3
« 0.385

S-4: (a) To find the critical points we will need the first order partial derivatives of h and to apply
the second derivative test of Theorem 16.1.14 in the text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

h = y(4´ x2´ y2)

hx = ´2xy hxx = ´2y hxy = ´2x

hy = 4´ x2´3y2 hyy = ´6y hyx = ´2x

(Of course, hxy and hyx have to be the same. It is still useful to compute both, as a way to catch some
mechanical errors.)

The first partial derivatives are defined everywhere and so the critical points are the solutions of

hx = ´2xy = 0 hy = 4´ x2´3y2 = 0

The first equation is satisfied if at least one of x = 0, y = 0 are satisfied.

• If x = 0, the second equation reduces to 4´3y2 = 0, which is satisfied if y = ˘ 2?
3
.

• If y = 0, the second equation reduces to 4´ x2 = 0 which is satisfied if x = ˘2.
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So there are four critical points:
(

0, 2?
3

)
,
(

0,´ 2?
3

)
, (2,0), (´2,0).

The classification is
critical
point hxxhyy´h2

xy hxx type(
0, 2?

3

) (
´4?

3

)
ˆ
(
´ 12?

3

)
´ (0)2 ą 0 ´4?

3
local max(

0,´ 2?
3

) (
4?
3

)
ˆ
(

12?
3

)
´ (0)2 ą 0 4?

3
local min

(2,0) 0ˆ0´ (´4)2 ă 0 saddle point

(´2,0) 0ˆ0´ (4)2 ă 0 saddle point

(b) The absolute max and min can occur either in the interior of the disk or on the boundary of the
disk. The boundary of the disk is the circle x2 + y2 = 1.

• Any absolute max or min in the interior of the disk must also be a local max or min and, must
also be a critical point of h. We found all of the critical points of h in part (a). Since 2ą 1 and

2?
3
ą 1 none of the critical points are in the disk.

• At each point of x2 + y2 = 1 we have h(x,y) = 3y with ´1ď yď 1. Clearly the maximum
value is 3 (at (0,1)) and the minimum value is ´3 (at (0,´1)).

So all together, the maximum and minimum values of h(x,y) in x2 + y2 ď 1 are 3 (at (0,1)) and ´3
(at (0,´1)), respectively.

S-5: The maximum and minimum must either occur at a critical point or on the boundary of R.

• The critical points are the points where the first order partial derivatives are zero or one does
not exist. Here fx(x,y) = 2´2x and fy(x,y) = ´8y and so they are defined everywhere.
Therefore, the critical points are the solutions of

0 = fx(x,y) = 2´2x
0 = fy(x,y) = ´8y

So the only critical point is (1,0).

• On the side x = ´1, ´1ď yď 1 of the boundary of R

f (´1,y) = 2´4y2

This function decreases as |y| increases. So its maximum value on ´1ď yď 1 is achieved at
y = 0 and its minimum value is achieved at y = ˘1.

• On the side x = 3, ´1ď yď 1 of the boundary of R

f (3,y) = 2´4y2

This function decreases as |y| increases. So its maximum value on ´1ď yď 1 is achieved at
y = 0 and its minimum value is achieved at y = ˘1.
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• On both sides y = ˘1, ´1ď xď 3 of the boundary of R

f (x,˘1) = 1+ 2x´ x2 = 2´ (x´1)2

This function decreases as |x´1| increases. So its maximum value on ´1ď xď 3 is achieved
at x = 1 and its minimum value is achieved at x = 3 and x =´1 (both of whom are a distance
2 from x = 1).

So we have the following candidates for the locations of the min and max

point (1,0) (´1,0) (1,˘1) (´1,˘1) (3,0) (3,˘1)

value of f 6 2 2 ´2 2 ´2

max min min

So the minimum is ´2 and the maximum is 6.

S-6: Since ∇∇∇h = 〈´4,´2〉 exists and is never zero, h has no critical points and the minimum of h
on the disk x2 + y2 ď 1 must be taken on the boundary, x2 + y2 = 1, of the disk.

To find the minimum on the boundary, we need to use the equation x2 + y2 ď 1 to turn h(x,y) into a
function of one variable. We can break the boundary up into two pieces: y =

?
1´ x2, ´1ď xď 1,

and y = ´?1´ x2, ´1ď xď 1.

x

y
y =

?
1´ x2

y = ´?1´ x2

• Define g1(x) as the value of h along the boundary curve y =
?

1´ x2, ´1ď xď 1.

g1(x) = h
(

x,
a

1´ x2
)
= ´4x´2

a

1´ x2
looomooon

y

+ 6

= ´4x´2
a

1´ x2 + 6

570



To find the minimum of g1(x), we first find its critical points.

g11(x) = ´4´2
( ´2x

2
?

1´ x2

)
= ´4+

2x?
1´ x2

0 = ´4+
2x?

1´ x2

4 =
2x?

1´ x2

2
a

1´ x2 = x (*)

Squaring both sides,

4(1´ x2) = x2

4 = 5x2

4
5
= x2

x = ˘ 2?
5

From line (*), we see x must be positive, so the only one of these roots that actually solves our
equation is the positive one

x =
2?
5

So, the minimum of g1(x) will occur at its CP x = 2?
5

or at an endpoint x = 1 or x = ´1.

g1(´1) = ´4(´1)´2
?

1´1+ 6 = 10

g1(1) = ´4(1)´2
?

1´1+ 6 = 2

g1

(
2?
5

)
= ´4

(
2?
5

)
´2

d

1´
(

2?
5

)2

+ 6

= ´ 8?
5
´2

c

1
5
+ 6

= ´ 10?
5
+ 6

= ´2
?

5+ 6« 1.53

So the minimum of g1(x) is g1 =
(

2?
5

)
= 6´2

?
5.

571



x

y

h(1,0) = g1(1) = 2h(´1,0) = g1(´1) = 10

g1

(
2?
5

)
= 6´2

?
5

• Define g2(x) as the value of h along the boundary curve y = ´?1´ x2, ´1ď xď 1.

g2(x) = h
(

x,´
a

1´ x2
)
= ´4x´2

(
´
a

1´ x2
)
+ 6

= ´4x+ 2
a

1´ x2 + 6

g12(x) = ´4+ 2
( ´2x

2
?

1´ x2

)
= ´4´ 2x?

1´ x2

4 = ´ 2x?
1´ x2

´2
a

1´ x2 = x (*)

4(1´ x2) = x2

4 = 5x2

x = ˘ 2?
5

From line (*), we see that x must be negative, so the only solution that works it the negative
one

x = ´ 2?
5

We see that the minimum of g2(x) will occur at its sole critical point x = ´ 2?
5
, or at its

endpoints x = ˘1.

g2(´1) = ´4(´1)+ 2
b

1´ (´1)2 + 6 = 4+ 6 = 10

g2(1) = ´4(1)+ 2
b

1´ (1)2 + 6 = ´4+ 6 = 2

g2

(
´ 2?

5

)
= ´4

(
´ 2?

5

)
+ 2

d

1´
(
´ 2?

5

)2

+ 6

=
8?
5
+ 2

c

1
5
+ 6 =

10?
5
+ 6

= 2
?

5+ 6« 10.47

572



So, the minimum of g2(x) is g2(1) = 2.

x

y

h(1,0) = g2(1) = 2h(´1,0) = g2(´1) = 10

g2

(
´ 2?

5

)
= 6+ 2

?
5

All together, the minimum value h achieves over the boundary x2 + y2 = 1 is 6´2
?

5. Since we
already decided the global minimum would occur on the boundary, that tells us our global minimum
is 6´2

?
5.

S-7: (a) Thinking a little way ahead, to find the critical points we will need the first order partial
derivatives of f and to apply the second derivative test of Theorem 16.1.14 in the text we will need
all second order partial derivatives. So we need all partial derivatives of f up to order two. Here
they are.

f = xy(x+ y´3)

fx = 2xy+ y2´3y fxx = 2y fxy = 2x+ 2y´3

fy = x2 + 2xy´3x fyy = 2x fyx = 2x+ 2y´3

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to catch some
mechanical errors.)

The first order partial derivatives are defined everywhere and so the critical points are the solutions
of

fx = y(2x+ y´3) = 0 fy = x(x+ 2y´3) = 0

The first equation is satisfied if at least one of y = 0, y = 3´2x are satisfied.

• If y = 0, the second equation reduces to x(x´3) = 0, which is satisfied if either x = 0 or
x = 3.

• If y = 3´2x, the second equation reduces to x(x+ 6´4x´3) = x(3´3x) = 0 which is
satisfied if x = 0 or x = 1.

So there are four critical points: (0,0), (3,0), (0,3), (1,1).

The classification is
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critical
point fxx fyy´ f 2

xy fxx type

(0,0) 0ˆ0´ (´3)2 ă 0 saddle point

(3,0) 0ˆ6´ (3)2 ă 0 saddle point

(0,3) 6ˆ0´ (3)2 ă 0 saddle point

(1,1) 2ˆ2´ (1)2 ą 0 2 local min

(b) The absolute max and min can occur either in the interior of the triangle or on the boundary of
the triangle. The boundary of the triangle consists of the three line segments.

L1 =
 

(x,y)
ˇ

ˇ x = 0, 0ď yď 8
(

L2 =
 

(x,y)
ˇ

ˇ y = 0, 0ď xď 8
(

L3 =
 

(x,y)
ˇ

ˇ x+ y = 8, 0ď xď 8
(

• Any absolute max or min in the interior of the triangle must also be a local max or min and,
must also be a critical point of f . We found all of the critical points of f in part (a). Only one
of them, namely (1,1) is in the interior of the triangle. (The other three critical points are all
on the boundary of the triangle.) We have f (1,1) = ´1.

• At each point of L1 we have x = 0 and so f (x,y) = 0.

• At each point of L2 we have y = 0 and so f (x,y) = 0.

• At each point of L3 we have f (x,y) = x(8´ x)(5) = 40x´5x2 = 5[8x´ x2] with 0ď xď 8.
As d

dx

(
40x´5x2)= 40´10x, the max and min of 40x´5x2 on 0ď xď 8 must be one of

5
[
8x´ x2]

x=0 = 0 or 5
[
8x´ x2]

x=8 = 0 or 5
[
8x´ x2]

x=4 = 80.

So all together, we have the following candidates for max and min, with the max and min indicated.

point(s) (1,1) L1 L2 (0,8) (8,0) (4,4)

value of f ´1 0 0 0 0 80

min max

x

y

p1, 1q

p4, 4q

p0, 8q

p8, 0q

L1

L2

L3

S-8: (a) Since

f = 2x3´6xy+ y2 + 4y

fx = 6x2´6y fxx = 12x fxy= ´6
fy = ´6x+ 2y+ 4 fyy = 2

the first order partial derivatives are defined everywhere and the critical points are the solutions of

fx = 0 fy = 0

ðñ y = x2 y´3x+ 2 = 0

ðñ y = x2 x2´3x+ 2 = 0

ðñ y = x2 x = 1 or 2
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So, there are two critical points: (1,1), (2,4).

critical
point fxx fyy´ f 2

xy fxx type

(1,1) 12ˆ2´ (´6)2 ă 0 saddle point

(2,4) 24ˆ2´ (´6)2 ą 0 24 local min

(b) There are no critical points in the interior of the allowed region, so both the maximum and the
minimum occur only on the boundary. The boundary consists of the line segments (i) x = 1,
0ď yď 1, (ii) y = 1, 0ď xď 1 and (iii) y = 1´ x, 0ď xď 1.

x

y

p1, 1q
p0, 1q

p1, 0q

• First, we look at the part of the boundary with x = 1. There f = y2´2y+ 2. As
d
dy(y

2´2y+ 2) = 2y´2 vanishes only at y = 1, the max and min of y2´2y+ 2 for
0ď yď 1 must occur either at y = 0, where f = 2, or at y = 1, where f = 1.

• Next, we look at the part of the boundary with y = 1. There f = 2x3´6x+ 5. As
d
dx(2x3´6x+ 5) = 6x2´6, the max and min of 2x3´6x+ 5 for 0ď xď 1 must occur either
at x = 0, where f = 5, or at x = 1, where f = 1.

• Next, we look at the part of the boundary with y = 1´ x. There
f = 2x3´6x(1´ x)+ (1´ x)2 + 4(1´ x) = 2x3 + 7x2´12x+ 5. As
d
dx(2x3 + 7x2´12x+ 5) = 6x2 + 14x´12 = 2

(
3x2 + 7x´6

)
= 2(3x´2)(x+ 3), the max

and min of 2x3 + 7x2´12x+ 5 for 0ď xď 1 must occur either at x = 0, where f = 5, or at
x = 1, where f = 2, or at x = 2

3 , where f = 2( 8
27)´6(2

3)(
1
3)+

1
9 +

4
3 = 16´36+3+36

27 = 19
27 .

So all together, we have the following candidates for max and min, with the max and min indicated.

point (1,0) (1,1) (0,1)
(2

3 , 1
3

)
value of f 2 1 5 19

27

max min

S-9: (a) We have

f (x,y) = xy(x+ 2y´6) fx(x,y) = 2xy+ 2y2´6y fxx(x,y) = 2y

fy(x,y) = x2 + 4xy´6x fyy(x,y) = 4x
fxy(x,y) = 2x+ 4y´6
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The first partial derivatives are defined everywhere. So the critical points are the solution of

fx(x,y) = fy(x,y) = 0 ðñ 2y(x+ y´3) = 0 and x(x+ 4y´6) = 0
ðñ ty = 0 or x+ y = 3u and tx = 0 or x+ 4y = 6u
ðñ tx = y = 0u or ty = 0, x+ 4y = 6u

or tx+ y = 3, x = 0u or tx+ y = 3, x+ 4y = 6u
ðñ (x,y) = (0,0) or (6,0) or (0,3) or (2,1)

Here is a table giving the classification of each of the four critical points.

critical
point fxx fyy´ f 2

xy fxx type

(0,0) 0ˆ0´ (´6)2 ă 0 saddle point

(6,0) 0ˆ24´62 ă 0 saddle point

(0,3) 6ˆ0´62 ă 0 saddle point

(2,1) 2ˆ8´22 ą 0 2 local min

(b) Observe that xy = 4 and x+ 2y = 6 intersect when x = 6´2y and

(6´2y)y = 4 ðñ 2y2´6y+ 4 = 0 ðñ 2(y´1)(y´2) = 0
ðñ (x,y) = (4,1) or (2,2)

The shaded region in the sketch below is D.

x

xy “ 4

x ` 2y “ 6

y

p4, 1q

p2, 2q

None of the critical points are in D. So the max and min must occur at either (2,2) or (4,1) or on
xy = 4, 2ă xă 4 (in which case F(x) = f

(
x, 4

x

)
= 4
(
x+ 8

x ´6) obeys
F 1(x) = 4´ 32

x2 = 0 ðñ x = ˘2
?

2) or on x+ 2y = 6, 2ă xă 4 (in which case f (x,y) is
identically zero). So the min and max must occur at one of

(x,y) f (x,y)

(2,2) 2ˆ2(2+ 2ˆ2´6) = 0

(4,1) 4ˆ1(4+ 2ˆ1´6) = 0

(2
?

2,
?

2) 4(2
?

2+ 2
?

2´6) ă 0

The maximum value is 0 and the minimum value is 4(4
?

2´6) «´1.37.
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S-10: The coldest point must be either on the boundary of the plate or in the interior of the plate.

• On the semi–circular part of the boundary 0ď yď 2 and x2 + y2 = 4 so that
T = ln

(
1+ x2 + y2)´ y = ln5´ y. The smallest value of ln5´ y is taken when y is as large

as possible, i.e. when y = 2, and is ln5´2«´0.391.

• On the flat part of the boundary, y = 0 and ´2ď xď 2 so that
T = ln

(
1+ x2 + y2)´y = ln

(
1+ x2). The smallest value of ln

(
1+ x2) is taken when x is as

small as possible, i.e. when x = 0, and is 0.

• If the coldest point is in the interior of the plate, it must be at a critical point of T (x,y). Since

Tx(x,y) =
2x

1+ x2 + y2 Ty(x,y) =
2y

1+ x2 + y2 ´1

a critical point must have x = 0 and 2y
1+x2+y2 ´1 = 0, which is the case if and only if x = 0

and 2y´1´ y2 = 0. So the only critical point is x = 0, y = 1, where T = ln2´1«´0.307.

Since ´0.391ă´0.307ă 0, the coldest temperature is ´0.391 and the coldest point is (0,2).

S-11: (a) We have

g(x,y) = x2´10y´ y2 gx(x,y) = 2x gxx(x,y) = 2
gy(x,y) = ´10´2y gyy(x,y) = ´2

gxy(x,y) = 0

The first partial derivatives are defined everywhere. So the critical points are the solution of

gx(x,y) = gy(x,y) = 0 ðñ 2x = 0 and ´10´2y = 0 ðñ (x,y) = (0,´5)

Since gxx(0,´5)gyy(0,´5)´gxy(0,´5)2 = 2ˆ (´2)´02 ă 0, the critical point is a saddle point.

(b) The extrema must be either on the boundary of the region or in the interior of the region.

• On the semi-elliptical part of the boundary ´2ď yď 0 and x2 + 4y2 = 16 so that
g = x2´10y´ y2 = 16´10y´5y2 = 21´5(y+ 1)2. This has a minimum value of 16 (at
y = 0,´2) and a maximum value of 21 (at y = ´1). You could also come to this conclusion
by checking the critical point of 16´10y´5y2 (i.e. solving d

dy(16´10y´5y2) = 0) and
checking the end points of the allowed interval (namely y = 0 and y = ´2).

• On the flat part of the boundary y = 0 and ´4ď xď 4 so that g = x2. The smallest value is
taken when x = 0 and is 0 and the largest value is taken when x = ˘4 and is 16.

• If an extremum is in the interior of the plate, it must be at a critical point of g(x,y). The only
critical point is not in the prescribed region.

Here is a table giving all candidates for extrema:

(x,y) g(x,y)

(0,´2) 16

(˘4,0) 16

(˘?12,´1) 21

(0,0) 0

577



From the table the smallest value of g is 0 at (0,0) and the largest value is 21 at (˘2
?

3,´1).

S-12: Suppose that the bends are made a distance x from the ends of the fence and that the bends
are through an angle θ . Here is a sketch of the enclosure.

x sin θx x

100 ´ 2x

θθ

It consists of a rectangle, with side lengths 100´2x and xsinθ , together with two triangles, each of
height xsinθ and base length xcosθ . So the enclosure has area

A(x,θ ) = (100´2x)xsinθ + 2 ¨ 1
2 ¨ xsinθ ¨ xcosθ

= (100x´2x2) sinθ + 1
2x2 sin(2θ )

The maximize the area, we need find the critical points.

Ax = (100´4x) sinθ + xsin(2θ )

Aθ = (100x´2x2)cosθ + x2 cos(2θ )

Note that Ax and Aθ are define everywhere in their domain and so to find the critical points we only
needed to find the points where the first order partial derivatives are zero.

0 = Ax = (100´4x) sinθ + xsin(2θ ) ùñ (100´4x)+ 2xcosθ = 0

0 = Aθ = (100x´2x2)cosθ + x2 cos(2θ ) ùñ (100´2x)cosθ + xcos(2θ ) = 0

Here we have used that the fence of maximum area cannot have sinθ = 0 or x = 0, because in either
of these two cases, the area enclosed will be zero. The first equation forces cosθ = ´100´4x

2x and

hence cos(2θ ) = 2cos2 θ ´1 = (100´4x)2

2x2 ´1. Substituting these into the second equation gives

´(100´2x)
100´4x

2x
+ x
[(100´4x)2

2x2 ´1
]
= 0

ùñ ´(100´2x)(100´4x)+ (100´4x)2´2x2 = 0

ùñ 6x2´200x = 0

ùñ x =
100

3
cosθ = ´´100/3

200/3
=

1
2

θ = 60˝

A =

(
100

100
3
´2

1002

32

)?
3

2
+

1
2

1002

32

?
3

2
=

2500?
3

S-13: Suppose that the box has side lengths x, y and z. Here is a sketch.

x
y

z
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Because the box has to have volume V we need that V = xyz. We wish to minimize the area
A = xy+ 2yz+ 2xz of the four sides and bottom. Substituting in z = V

xy ,

A = xy+ 2
V
x
+ 2

V
y

Ax = y´2
V
x2

Ay = x´2
V
y2

To minimize, we want Ax = Ay = 0, which is the case when yx2 = 2V , xy2 = 2V . This forces
yx2 = xy2. Since V = xyz is nonzero, neither x nor y may be zero. So x = y = (2V )1/3,
z = 2´2/3V 1/3.

S-14: (a) The maximum and minimum can occur either in the interior of the disk or on the
boundary of the disk. The boundary of the disk is the circle x2 + y2 = 4.

• Any absolute max or min in the interior of the disk must also be a local max or min and must
also be a critical point of h. Since Tx = ´8x and Ty = ´2y, the only critical point is
(x,y) = (0,0), where T = 20. Since 4x2 + y2 ě 0, we have T (x,y) = 20´4x2´ y2 ď 20. So
the maximum value of T (even in R2) is 20.

• At each point of x2 + y2 = 4 we have
T (x,y) = 20´4x2´ y2 = 20´4x2´ (4´ x2) = 16´3x2 with ´2ď xď 2. So T is a
minimum when x2 is a maximum. Thus the minimum value of T on the disk is
16´3(˘2)2 = 4.

So all together, the maximum and minimum values of T (x,y) in x2 + y2 ď 4 are 20 (at (0,0)) and 4
(at (˘2,0)), respectively.

(b) We are being asked to find the (x,y) = (x,2´ x2) which maximizes

T
(
x,2´ x2)= 20´4x2´ (2´ x2)2

= 16´ x4

The maximum of 16´ x4 is obviously 16 at x = 0. So the ant should go to
(
0,2´02)= (0,2).

S-15: The region of interest is

D =
 

(x,y,z)
ˇ

ˇ xě 0, yě 0, zě 0, 2x+ y+ z = 5
(

First observe that, on the boundary of this region, at least one of x, y and z is zero. So
f (x,y,z) = x2y2z is zero on the boundary. As f takes values which are strictly bigger than zero at
all points of D that are not on the boundary, the minimum value of f is 0 on

BD =
 

(x,y,z)
ˇ

ˇ xě 0, yě 0, zě 0, 2x+ y+ z = 5, at least one of x,y,z zero
(

The maximum value of f will be taken at a critical point. On D

f = x2y2(5´2x´ y) = 5x2y2´2x3y2´ x2y3
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So the critical points are the solutions of

0 = fx(x,y) = 10xy2´6x2y2´2xy3

0 = fy(x,y) = 10x2y´4x3y´3x2y2

(note that the first order partial derivatives are defined everywhere) or, dividing by the first equation
by xy2 and the second equation by x2y, (recall that x,y‰ 0)

10´6x´2y = 0 or 3x+ y = 5
10´4x´3y = 0 or 4x+ 3y = 10

Substituting y = 5´3x, from the first equation, into the second equation gives

4x+ 3(5´3x) = 10 ùñ ´5x+ 15 = 10 ùñ x = 1, y = 5´3(1) = 2

So the maximum value of f is (1)2(2)2(5´2´2) = 4 at (1,2,1).

S-16: (a) For x,yą 0, fx and fy are well-defined and so the critical points are the solutions of

fx = 2´ 1
x2y

= 0 ðñ y =
1

2x2

fy = 4´ 1
xy2 = 0

Substituting y = 1
2x2 , from the first equation, into the second gives 4´4x3 = 0 which forces x = 1,

y = 1
2 . At x = 1, y = 1

2 ,
f
(
1, 1

2

)
= 2+ 2+ 2 = 6

(b) The second derivatives are

fxx(x,y) =
2

x3y
fxy(x,y) =

1
x2y2 fyy(x,y) =

2
xy3

In particular
fxx
(
1, 1

2

)
= 4 fxy

(
1, 1

2

)
= 4 fyy

(
1, 1

2

)
= 16

Since fxx
(
1, 1

2

)
fyy
(
1, 1

2

)´ fxy
(
1, 1

2

)2
= 4ˆ16´42 = 48ą 0 and fxx

(
1, 1

2

)
= 4ą 0, the point(

1, 1
2

)
is a local minimum.

(c) As x or y tends to infinity (with the other at least zero), 2x+ 4y tends to +8. As (x,y) tends to
any point on the first quadrant part of the x- and y–axes, 1

xy tends to +8. Hence as x or y tends to
the boundary of the first quadrant (counting infinity as part of the boundary), f (x,y) tends to +8.
As a result

(
1, 1

2

)
is a global (and not just local) minimum for f in the first quadrant. Hence

f (x,y) ě f
(
1, 1

2

)
= 6 for all x,yą 0.

S-17: First, let’s visualize what’s going on. Our surface looks like a bowl, sitting on the origin,
opening upwards. It is radially symmetric about the z-axis, with circular level curves. That means
every point on a level curve is equidistant from the z-axis. Since the point (0,0,a) is on the z-axis, if
there is a point (x,y,z) that has minimum distance to the point, then its entire level curve has the
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same minimum distance. So we expect our answer to look like a circle (or possibly a single point –
a “circle” of radius 0). If a is a negative number, it seems natural that the closest point would be
(0,0,0).

The distance from (0,0,a) to an arbitrary point (x,y,z) is
a

x2 + y2 +(z´a)2. If the point (x,y,z)
is on our surface, then z = x2 + y2. Rather than deal with square roots, we’ll minimize the distance
squared:

f (x,y) = x2 + y2 +
(
x2 + y2´a

)2

From our observations above, there will be no global maximum; the global minimum will be a local
minimum; the global minimum will depend on a in a less-than-simple way; and there are likely to
be multiple points that are all minimum distance to (0,0,a).

We start by finding critical points.

fx(x,y) = 2x+ 2x ¨2(x2 + y2´a
)

= 2x
(
1+ 2

(
x2 + y2´a

))
= 4x

(
x2 + y2 +

1
2
´a
)

fy(x,y) = 2y+ 2y ¨2(x2 + y2´a
)

= 2y
(
1+ 2

(
x2 + y2´a

))
= 4y

(
x2 + y2 +

1
2
´a
)

• For any value of a, (x,y) = (0,0) is a critical point.

• If aă 1
2 , then the only critical point is (x,y) = (0,0).

• If aě 1
2 , then all points on the level curve x2 + y2 = a´ 1

2 are critical points.

So if aă 1
2 , we’re done: the single closest point on the surface is (0,0,0).

Suppose aě 1
2 . Now we need to decide whether (0,0,a) is closer to the origin or to a poitn on the

level curve x2 + y2 = a´ 1
2 .

• f (0,0) = 0+ 0+(0´a)2 = a2

• If x2 + y2 = a´ 1
2 , then:

f (x,y) = x2 + y2 +
(
x2 + y2´a

)2

=

(
a´ 1

2

)
+

(
a´ 1

2
´a
)2

=

(
a´ 1

2

)
+

1
4

= a´ 1
4
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• All together, the origin is closer than the level curve when:

a2 ă a´ 1
4

a2´a+
1
4
ă 0(

a´ 1
2

)2

ă 0

which never happens. So the origin is never closer than the level curve, again provided aě 1
2 .

So, all together: if aă 1
2 , then the closest point is the origin. If aě 1

2 , then the closest points are the
level curve where z = a´ 1

2 .

S-18:

(a) Let us first find the profit equations for each of the paper sizes separately and then we sum them
up to get the total profit function.

Π4(x) = f (x)(6)´ x(1) = 15x0.8´ x (profit for A4)

Π3(y) = g(y)(8)´ y(3) = 80y0.6´3y (profit for A3)

and therefore, the total profit equation is given by

Π(x,y) = Π4(x)+Π3(y)

= (15x0.8´ x)+ (80y0.6´3y)

Note that the production functions of the two paper types aren’t really linked. It’s as if one firm
is doing all the A4, and a different firm is doing all the A3. So to maximize Π(x,y), we can just
find the maximum value of Π4 and the maximum value of Π3 separately.

(b) Note that x4,x3,x2 ě 0 as we cannot produce negative amount of papers. (Maybe that would
mean turning papers into trees?) Note also:

Π4(0) = 0 lim
xÑ8

Π4(x) = ´8
Π3(0) = 0 lim

yÑ8
Π3(y) = ´8

Now let’s consider critical points of each function.

dΠ4

dx
= 15(0.8)x´0.2´1 = 12x´0.2´1 = 0 ùñ x = 125

Π4

(
125
)
= 15

(
125
)4/5´125 = 15

(
124)´125 = 3 ¨124

dΠ3

dy
= 80(0.6)y´0.4´3 = 48y´0.4´3 = 0 ùñ y = 210

Π3
(
210)= 80

(
210)6/10´3 ¨210 = 5 ¨210´3 ¨210 = 211
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(Also x = 0 and y = 0 are critical points, since the derivatives are undefined there, but we’ve
already considered them when we thought about endpoints.)

Since Π4
(
125)ąΠ4(0) and Π3

(
210)ąΠ3 (0), we see our maximum will occur when

x = 125 and y = 210. Then the number of reams produced will be:

f
(

125
)
=

5
2

(
125
)4/5

= 51840

g
(
210)= 10

(
210)6/10

= 640

(c) As we saw before, the two reams are optimized separately. So the optimal production of A3
isn’t affected by how much A4 is produced. That is, the branch should stick with y = 1,024
leading to 640 reams of A3.

S-19:

(a) To find Ayan’s profit equation, which we denote by ΠA, we just plug in the information we are
given in the general profit equation (revenue minus cost).

ΠA(qA) = qA [121´2(qA + qP)]
loooooooooooomoooooooooooon

revenue

´ qA(1)
loomoon

cost

= 121qA´2q2
A´2qAqP´qA

= ´2q2
A + 120qA´2qAqP

This is a parabola pointing down, so its maximum will be at its only critical point.

dΠa

dqA
= ´4qA + 120´2qP = 0

4qA = 120´2qP

q1 = 30´ 1
2

qP

So Ayan would maximize their profit by selling 30´ 1
2qP servings of lemonade.

(b) This is very similar to the last part. We find Pipe’s profit function.

ΠP(qP) = qP [121´2(qA + qP)]´qP(1)

= 121qP´2q2
P´2qPqA´qP

= ´2q2
P + 120qP´2qPqA

Note that this is ΠA if we switch the places of qA and qP. So Pipe would maximize their profit
by selling 30´ 1

2qA pitchers of lemonade.

(c) Ayan’s and Pipe’s cost and price for every pitcher of lemonade produced are the same. Their
businesses are identical. So we predict that they will sell the same amount of lemonade to
maximize their respective profits.
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(d) To find how much each seller will sell when they are working separately, find out which values
of qA and qP end up with both individual profit functions being maximized. Therefore we solve
the system of equations we get from (a) and (b).

#

qA = 30´ 1
2qP

qP = 30´ 1
2qA

ùñ qP = 30´ 1
2

(
30´ 1

2
qP

)
loooooomoooooon

qA

= 15+
1
4

qP

ùñ qP = 20

ùñ qA = 30´ 1
2

(20)
loomoon

qP

= 20

So, as predicted, both sellers sell the same number of pitchers.

(e) We need to plug in qP = qA = 20 in ΠA and ΠP:

ΠA(20)|qP=20 = ´2(20)2 + 120(20)´2(20)(20) = 800

And similarly, ΠP(20)|qA=20 = 800. So, they would each make 800 dollars in profit.

(f) The joint profit function is Π(qA,qP) = ΠA(qA)+ΠP(qP). Note that here, Ayan and Pipe are
helping each other to make the most profit, instead of competing. Using the same intuition as
before, we can conclude that qA = qP in this case too. (So they share the workload fairly!)

So to make things easier let us assume qA = qP and denote this quantity by q. Then
ΠA(q) = ΠP(q) = ´4q2 + 120q. This means

Πjoint(q) = ΠA(q)+ΠP(q) = 2ΠA(q)

= 2(´4q2 + 120q)

= ´8q2 + 240q

This is a parabola pointing down, so its global min is at its sole critical point, q = 15.

So q = qA = qP = 15 maximizes the joint profit. Let us compute the corresponding joint profit

Πjoint(15) = ´8(15)2 + 240(15) = 1,800

So their optimal joint profit will be 1,800 dollars. But, they need to share this profit among the
two of them. So if they collaborate, they will each earn 900 dollars. This is more than their
individual optimal profit in the scenario where they are competing found in part (e) (we found
this to be $800). So it is better for them to collaborate!

(g) When the two sellers collaborate, they sell fewer lemonades (30 pitchers total instead of 40
total) and the lemonade costs more ($60 instead of $40). So it’s better for consumers when the
sellers compete.

Solutions to Exercises 16.3 — Jump to TABLE OF CONTENTS
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S-1: (a) f (x,y) = x2 + y2 is the square of the distance from the point (x,y) to the origin. There are
points on the curve xy = 1 that have either x or y arbitrarily large and so whose distance from the
origin is arbitrarily large. So f has no maximum on the curve.

x

y

y = 1
x

On the other hand f will have a minimum, achieved at the points of xy = 1 that are closest to the
origin.

(b) On the curve xy = 1 we have y = 1
x and hence f = x2 + 1

x2 . As

d
dx

(
x2 +

1
x2

)
= 2x´ 2

x3 =
2
x3 (x

4´1)

and as no point of the curve has x = 0, the minimum is achieved when x = ˘1. So the minima are
at ˘(1,1), where f takes the value 2.

Remark: this is less a question specifically about Lagrange multipliers and more a question about
the existence of extrema on unbounded curves, as in section 16.3.3 in the text.

S-2: The easiest (cheapest?) way out is to think of a function z = k(x) with local but not absolute
extrema, then consider the constraint y = 0. This puts our function in the xz-plane, effectively
making it look just like the function of one-variable y = f (x).

For example, we can set f (x,y) = x3´ x, with constraint function g(x,y) = y = 0.

Using techniques from last semester, the function z = x3´ x has local max at x = ´ 1?
3

and local

min at x = 1?
3
; but it has no absolute extrema because lim

xÑ8
(x3´ x) =8 and lim

xÑ´8
(x3´ x) = ´8.

Similarly, f (x,y) has a local constrained max resp. min at
(
´ 1?

3
,0
)

resp.
(
´ 1?

3
,0
)

; but has no
absolute extrema.

S-3: There are none.

For any integer n, sin
(

π

2 + 2πn
)
= 1. So, f

(
π

2 + 2πn, π

2 + 2πn
)
= π

2 + 2πn. This satisfies the
constraint x = y and, since n can be arbitrarily large or small, has no absolute maximum or
minimum.
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Alternately, if we set x = y, then f (x,y) = f (x,x) = xsinx. This is easy enough to sketch, and then
it is easy enough to see that there are no absolute extrema.

x

y

S-4: So we are to minimize f (x,y) = x2 + y2 subject to the constraint g(x,y) = x2y´1 = 0.

The constraint is not a closed curve, so we need to be a little more careful than average. We can
interpret our objective function as the distance from the origin squared. So we’re trying to find the
point on the curve y = 1

x2 that is closest to the origin. The distance from points on that curve to the
origin can be arbitrarily large, so the system has no absolute maximum. It does have an absolute
minimum, which will also be a local minimum, so it will be a solution to the system of Lagrange
equations.

According to the method of Lagrange multipliers, we need to find all solutions to

fx = λgx 2x = λ (2xy) (E1)

fy = λgy 2y = λx2 (E2)

g(x,y) = 0 x2y = 1 (E3)

• If gx ‰ 0 and gy ‰ 0, then λ = 2x
2xy =

1
y by (E1) and λ = 2y

x2 by (E2).

1
y
=

2y
x2

x2 = 2y2

x = ˘?2y

Using (E3):

1 = x2y =
(
˘?2y

)2
y

= 2y3

y =
1
3
?

2

x = ˘?2 ¨ 1
3
?

2
= ˘2

1
2´

1
3 = ˘2

1
6
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This gives us two solutions:
(˘21/6,2´1/3).

• If gx = 0, then 0 = 2xy. By (E1), x = 0; then by(E2), y = 0. Then (E3) fails, so there are no
solutions of this type.

• If gy = 0, then 0 = x2, so 0 = x. By (E2), y = 0. Then (E3) fails, so there are no solutions of
this type.

So the two points to check are
(
2

1
6 , 2´

1
3
)

and
(´2

1
6 , 2´

1
3
)
. For both of these critical points,

x2 + y2 = 2
1
3 + 2´

2
3 = 2

1
3 +

1
2

2
1
3 =

3
2

3
?

2 =
3
3
?

4

S-5: For this problem the objective function is f (x,y) = xy and the constraint function is
g(x,y) = x2 + 2y2´1. To apply the method of Lagrange multipliers we start by computing the first
order derivatives of these functions.

fx = y fy = x gx = 2x gy = 4y

So, according to the method of Lagrange multipliers, we need to find all solutions to

y = λ (2x) (E1)
x = λ (4y) (E2)

x2 + 2y2´1 = 0 (E3)

• If gx ‰ 0 and gy ‰ 0, then λ = y
2x (E1) and λ = x

4y .

y
2x

=
x
4y

2y2 = x2

From (E3):

2y2 + 2y2´1 = 0

4y2 = 1

y = ˘1
2

x = ˘?2y = ˘ 1?
2

So four solutions to the system are
(
˘ 1?

2
,˘1

2

)
.

• If gx = 0 then x = 0; by (E1), y = 0; then (E3) fails.

• If gy = 0 then y = 0; by (E2), x = 0; then (E3) fails.

The method of Lagrange multipliers, Theorem 16.3.3 in the text, gives that the only possible
locations of the maximum and minimum of the function f are

(
˘ 1?

2
,˘1

2

)
.
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point
(

1?
2
, 1

2

) (
´ 1?

2
, 1

2

) (
1?
2
,´1

2

) (
´ 1?

2
,´1

2

)
f (x,y) 1

2
?

2
´ 1

2
?

2
´ 1

2
?

2
1

2
?

2

max min min max

So the maximum and minimum values of f are 1
2
?

2
and ´ 1

2
?

2
, respectively.

S-6: This is a constrained optimization problem with the objective function being f (x,y) = x2 + y2

and the constraint function being g(x,y) = x4 + y4´1. By Theorem 16.3.3 in the text, any
minimum or maximum (x,y) must obey the Lagrange multiplier equations

fx = gx 2x = 4λx3 (E1)

fy = gy 2y = 4λy3 (E2)

g(x,y) = 1 x4 + y4 = 1 (E3)

• If gx ‰ 0 and gy ‰ 0, then λ = 2x
4x3 =

1
2x2 (E2) and λ = 2y

4y3 =
1

2y2 (E2). So x2 = 1
2λ

= y2.
Then (E3) reduces to

2x4 = 1

so that x2 = y2 = 1?
2

and x = ˘2´1/4, y = ˘2´1/4. At all four of these points, we have

f =
?

2.

• If gx = 0, then x = 0. (E1) holds for any λ , so by choosing λ correctly we can make (E2)
hold as well. (E3) reduces to y4 = 1 or y = ˘1. At both

(
0,˘1

)
we have f

(
0,˘1

)
= 1.

• If gy = 0, then y = 0. (E2) holds for any λ , so by choosing λ correctly (E1) holds as well.
(E3) reduces to x4 = 1 or x = ˘1. At both

(˘1,0
)

we have f
(˘1,0

)
= 1.

So the minimum value of f on x4 + y4 = 1 is 1 and the maximum value of f on x4 + y4 = 1 is
?

2.

S-7:

fx = λgx 4x3 = λ ¨2x (E1)

fy = λgy 4y3 + 4y5 = λ ¨2y (E2)

g(x,y) = 1 x2 + y2 = 1 (E3)

• If gx ‰ 0 and gy ‰ 0, then λ = 4x3

2x = 2x2 (E1) and λ = 4y3+4y5

2y = (2y2 + 2y4) (E2). So,

x2 = λ

2 = y2 + y4. From (E3):

(y2 + y4)+ y2 = 1

y4 + 2y2´1 = 0

y2 =
´2˘a

4´4(´1)
2

= ´1˘?2

y2 =
?

2´1

In this case, x2 = 1´ y2 = 2´?2. So, we should check (˘
a

2´?2 , ˘
a?

2´1).
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• If gx = 0, then x=0. Then (E1) is true for any λ , which means we can make (E2) be true by
choosing λ accordingly. By (E3), x = 0 ùñ y = ˘1, so we should check (0,˘1)

• If gy = 0, then y = 0. Then (E2) is true for any λ , which means we can make (E1) be true by
choosing λ accordingly. By (E3), y = 0 ùñ x = ˘1, so we should check (˘1,0)

Comparing:

• f (0,˘1) = 0+ 1+ 2
3 = 5

3

• f (˘1,0) = 1+ 0+ 0 = 1

• When x2 = 2´?2 and y2 =
?

2´1, then

f (x,y) = (2´?2)2 +(
?

2´1)2 +
2
3
(
?

2´1)3

=
13´8

?
2

3

Since
?

2ą 5
4 , we see

13´8
?

2
3

ă 13´8(5/4)
3

=
13´10

3
= 1

So, our absolute min over the constraint is 13´8
?

2
3 , and our absolute max over the constraint

is 5
3 .

S-8: (It’s possible to solve this without Lagrange, but we were asked to use Lagrange to practice
the technique.)

We want to minimize
a

x2 + y2, the distance from the origin to a point (x,y). Note the minimum of
that function will occur at the same (x,y)-values as the minimum of its square, x2 + y2. Since that’s
easier to minimize, we use it as our objective function: f (x,y) = x2 + y2.

We only care about coordinates that are actually on the parabola, so our constraint function is
g(x,y) = y+ x2 = 3

2 .

Our constraint function is not a closed curve. We can keep travelling along the parabola to end up
arbitrarily far from the origin. So there’s no global maximum distance, but there is a global
minimum distance. The global minimum will also be a local minimum, so it will be a solution to the
Lagrange equations.

fx = λgx 2x = λ2x (E1)
fy = λgy 2y = λ (E2)

g(x,y) =
3
2

y+ x2 =
3
2

(E3)

• If gx ‰ 0 and gy ‰ 0, then λ = 1 from (E1) and λ = 2y from (E2), so 1 = 2y, i.e. y = 1
2 .

From (E3), then x = ˘1.
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• If gx = 0, then x = 0, so (E1) is true for any λ . Then we can make (E2) true by choosing the
appropriate λ ; from (E3), y = 3

2 . So another point solving the system is
(
0, 3

2

)
.

• There are no points corresponding to gy = 0.

f
(
0, 3

2

)
= 9

4 and f
(˘1, 1

2

)
= 5

4 . So, the closest points to the origin on the parabola are the points
(´1,1/2) and (1,1/2).

x

y

(
1, 1

2

)(´1, 1
2

)

(
0, 3

2

)

?
5

2

?
5

2

3
2

S-9:

To find extrema over a region, we check CPs and the boundary.
f (x,y) = xy, so fx = y and fy = x. Then the only CP is (0,0).

To check the boundary, we need to know the extreme values of f (x,y) = xy over the ellipse
x2´2xy+ 5y2 = 1. It seems tough to do this with plugging in, so we use Lagrange.

fx = λgx y = λ (2x´2y) (E1)
fy = λgy x = λ (´2x+ 10y) (E2)

g(x,y) = 1 x2´2xy+ 5y2 = 1 (E3)

• If gx ‰ 0 and gy ‰ 0, then λ = y
2(x´y) and λ = x

2(5y´x) :

y
2(x´ y)

=
x

2(5y´ x)

5y2´ xy = x2´ xy

x = ˘?5y

From (E3), if x =
?

5y:

1 = 5y2´2(
?

5y)y+ 5y2

= (10´2
?

5)y2

1
10´2

?
5
= y2

y = ˘ 1
a

10´2
?

5
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From (E3), if x = ´?5y:

1 = (10+ 2
?

5)y2

y = ˘ 1
a

10+ 2
?

5

This gives us four points to check:
(
b

5
10´2

?
5
,˘ 1?

10´2
?

5

)
and

(
b

5
10+2

?
5
,˘ 1?

10+2
?

5

)
.

• If gx = 0, then (E1) y = 0, so 0 = gx = 2x´2y = 2x, hence x = 0. But then (E3) fails.

• If gy = 0, then (E2) x = 0, so 0 = gy = ´2x+ 10y = 10y, hence y = 0. But then (E3) fails.

All together, we’ve identified 5 possible locations of extrema.

• f (0,0) = 0

• f
(
b

5
10´2

?
5
, 1?

10´2
?

5

)
=

?
5

10´2
?

5

• f
(
b

5
10´2

?
5
,´ 1?

10´2
?

5

)
= ´

?
5

10´2
?

5

• f
(
b

5
10+2

?
5
, 1?

10+2
?

5

)
=

?
5

10+2
?

5

• f
(
b

5
10+2

?
5
,´ 1?

10+2
?

5

)
= ´

?
5

10+2
?

5

The largest and smallest of these are
?

5
10´2

?
5

and ´
?

5
10´2

?
5
, respectively.

S-10: By way of preparation, we have

BT
Bx

(x,y) = 2xey BT
By

(x,y) = ey(x2 + y2 + 2y
)

(a) (i) For this problem the objective function is T (x,y) = ey(x2 + y2) and the constraint function is
g(x,y) = x2 + y2´100. According to the method of Lagrange multipliers, Theorem 16.3.3 in the
text, we need to find all solutions to

Tx = λgx 2xey = λ (2x) (E1)

Ty = λgy ey(x2 + y2 + 2y
)
= λ (2y) (E2)

g(x,y) = 100 x2 + y2 = 100 (E3)

(a) (ii)

• If gx ‰ 0 and gy ‰ 0, then (E1) λ = ey and (E2) λ = ey(x2+y2+2y)
2y .

ey =
ey(x2 + y2 + 2y)

2y
2y = x2 + y2 + 2y

0 = x2 + y2
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but this conflicts with (E3). So gx ‰ 0 and gy ‰ 0 doesn’t lead to any solutions.

• If gx = 0, then x = 0 and (E1) is true; then we can choose the appropriate l to make (E2) true.
From (E3), y = ˘10. So (0,˘10) gives a solution.

• If gy = 0, then y = 0. By (E2), x = 0, which conflicts with (E3).

So the only possible locations of the maximum and minimum of the function T are (0,10) and
(0,´10). To complete this part of the problem, we only have to compute T at those points.

point (0,10) (0,´10)

value of T 100e10 100e´10

max min

Hence the maximum value of T (x,y) = ey(x2 + y2) on x2 + y2 = 100 is 100e10 at (0,10) and the
minimum value is 100e´10 at (0,´10).

We remark that, on x2 + y2 = 100, the objective function T (x,y) = ey(x2 + y2)= 100ey. So of
course the maximum value of T is achieved when y is a maximum, i.e. when y = 10, and the
minimum value of T is achieved when y is a minimum, i.e. when y = ´10.

(b) (i) By definition, the point (x,y) is a critical point of T (x,y) if and only if the first order partial
derivatives at that point are both zero, or at least one does not exist. The first partial derivatives

Tx = 2xey

Ty = ey(x2 + y2 + 2y
)

are well defined everywhere and so the critical points are exactly the point where

Tx = 2xey = 0 (E1)

Ty = ey(x2 + y2 + 2y
)
= 0 (E2)

(b) (ii) Equation (E1) forces x = 0. When x = 0, equation (E2) reduces to

ey(y2 + 2y
)
= 0 ðñ y(y+ 2) = 0 ðñ y = 0 or y = ´2

So there are two critical points, namely (0,0) and (0,´2).

(c) Note that T (x,y) = ey(x2 + y2)ě 0 on all of R2. As T (x,y) = 0 only at (0,0), it is obvious that
(0,0) is the coolest point.

In case you didn’t notice that, here is a more conventional solution.

The coolest point on the solid disc x2 + y2 ď 100 must either be on the boundary, x2 + y2 = 100, of
the disc or be in the interior, x2 + y2 ă 100, of the disc.

In part (a) (ii) we found that the coolest point on the boundary is (0,´10), where T = 100e´10.

If the coolest point is in the interior, it must be a critical point and so must be either (0,0), where
T = 0, or (0,´2), where T = 4e´2.

So the coolest point is (0,0).
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S-11: Since xě 0 and yě 0, our constraint function has endpoints (x,y) = (0,400) and
(x,y) = (25,0). Absolute extrema will occur at these endpoints or at points that solve the system of
Lagrange equations.

fx = λgx 3x´
2
3 y

2
3 = 3200λ (E1)

fy = λgy 6x
1
3 y´

1
3 = 200λ (E2)

g(x,y) = 80,000 3200x+ 200y = 80,000 (E3)

Since gx and gy are always nonzero, we only have one of our usual three cases.

3x´
2
3 y

2
3 ¨ 1

3200
= 6x

1
3 y´

1
3 ¨ 1

200
x´

2
3 y

2
3 = 32x

1
3 y´

1
3

y
1
3 y

2
3 = 32x

1
3 x

2
3

y = 32x
3200x+ 200(32x) = 80,000

x =
25
3

y =
25 ¨32

3
=

800
3

Now we compare our three points of interest.

point (0,400) (25,0)
(25

3 , 800
3

)
f (x,y) 0 0 75 ¨210/3

min min max

S-12: The constraint tells us
g(a,b) = a+ 2b = 1

The triangle formed is a right triangle with area 1
2bh. Its base and height are the two intercepts of the

line. That is, its base is 1
a , and its height is 1

b . So, the area (which we want to minimize) is

f (x,y) =
1
2
¨ 1

a
¨ 1

b

x

y

1
a

1
b
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By choosing lines with slopes close to 0, or large negative slopes, we can make triangles with
arbitrarily large area. So the absolute minimum will occur somewhere in between at a local
minimum value. So we can find the absolute minimum using the method of Lagrange multipliers.

fa = λga ´ 1
2a2b

= λ (1) (E1)

fb = λgb ´ 1
2ab2 = λ (2) (E1)

Since ga and gb can’t be 0, we have only one of our usual three cases.

´ 1
2a2b

= ´1
2
¨ 1

2ab2

1
a
=

1
2b

a = 2b

Using our constraint,

2b+ 2b = 1

b =
1
4

a =
1
2

So the minimum area is achieved by the line 1
2x+ 1

4y = 1. That area is 1
2 ¨4 ¨2 = 4.

S-13: The ellipse x2

a2 +
y2

b2 = 1 passes through the point (1,2) if and only if 1
a2 +

4
b2 = 1. We are to

minimize

f (a,b) = πab

subject to the constraint that

g(a,b) =
1
a2 +

4
b2 ´1 = 0.

We can imagine ellipses centred at the origin passing through (1,2) of arbitrarily large size.
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x

y

For large values of a (and corresponding values of b approaching 2), we have a large area. Similarly,
for large values of b (and corresponding values of a approaching 2), we have a large area. So there’s
no absolute maximum, but there is a “sweet spot” where a and b are both not too large and we have
a global minimum. It will also be a local minimum.

According to the method of Lagrange multipliers, we need to find all solutions to the system:

fa = λga πb = ´2λ

a3 (E1)

fb = λgb πa = ´8λ

b3 (E2)

g(a,b) = 0
1
a2 +

4
b2 = 1 (E3)

• If ga ‰ 0 and gb ‰ 0, then (E1) λ = ´πa3b
2 and (E2) λ = ´πab3

8 .

´πa3b
2

= ´πab3

8
4a3b = ab3

4a3b´ab3 = 0

ab(4a2´b2) = 0

This last equation has solutions a = 0, b = 0, and 4a2 = b2. The first two aren’t in our model
domain, since a and b are positive. In the third case:

1 =
1
a2 +

4
4a2

=
1
a2 +

1
a2 =

2
a2
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Remember aą 0 and bą 0.

a =
?

2

b2 = 4a2 = 4 ¨2
b = 2

?
2

• If ga = 0 or gb = 0, then the constraint fails.

So, the only possible location of a local extremum is a =
?

2, b = 2
?

2. This is the location of our
absolute minimum.

S-14: Let r and h denote the radius and height, respectively, of the cylinder. We can always choose
our coordinate system so that the axis of the cylinder is parallel to the z–axis.

• If the axis of the cylinder does not lie exactly on the z–axis, we can enlarge the cylinder
sideways. (See the figure on the left below. It shows the y = 0 cross–section of the cylinder.)
So we can assume that the axis of the cylinder lies on the z–axis

• If the top and/or the bottom of the cylinder does not touch the sphere x2 + y2 + z2 = 1, we can
enlarge the cylinder vertically. (See the central figure below.)

• So we may assume that the cylinder is
 

(x,y,z)
ˇ

ˇ x2 + y2 ď r2, ´h/2ď zď h/2
(

with r2 +(h/2)2 = 1. See the figure on the right below.

x

z

x

z

x

z

x2 ` y2 ` z2 “ 1

pr , 0 , h{2q

pr , 0 ,´h{2q

So we are to maximize the volume, f (r,h) = πr2h, of the cylinder subject to the constraint
g(r,h) = r2 + h2

4 ´1 = 0. According to the method of Lagrange multipliers, we need to find all
solutions to

fr = gr 2πrh = 2λ r (E1)

fh = gh πr2 = λ
h
2

(E2)

g(r,h) = 1 r2 +
h2

4
= 1 (E3)

• If gr ‰ 0 and gh ‰ 0, then (E1) gives us λ = 2πrh
2r = πh and (E2) gives us λ = πr2

h/2 = 2πr2

h .

πh =
2πr2

h
h2

2
= r2
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Now from (E3):

1 = r2 +
h2

4
=

h2

2
+

h2

4

=
3
4

h2

h2 =
4
3

Since h and r are nonnegative,

h =
2?
3

r =

c

h2

2
=

h?
2
=

c

2
3

So one point to check is r =
b

2
3 , h = 2?

3
.

• If gr = 0, then r = 0. Then (E1) is true for any λ and any r. From (E2), h = 0. But then (E3)
fails.

• If gh = 0, then h = 0. From (E2), r = 0. But then (E3) fails.

So the only solution to all three equations with r ą 0 and hą 0 is r =
b

2
3 , h = 2?

3
. Since we

restricted our domain to non-negative values of r and h, the points with r = 0 or with h = 0 are
“endpoints” of the region we’re considering. At these points, our volume is 0, so they give us the
global minimum value over our model domain.

So, r =
b

2
3 , h = 2?

3
give the cylinder with maximum volume.

S-15:

The function we want to minimize is surface area, so this is our objective function:

f (x,y) = 2(2x ¨ x)+ 2(2x ¨ y)+ 2(x ¨ y) = 4x2 + 6xy

Our constraint is that the volume must be 72 cubic centimetres.

g(x,y) = x ¨2x ¨ y = 2x2y = 72

This is not a closed curve. If we think of y as a function of x, then our constraint gives us y = 36
x2 ,

xą 0, yą 0. So this curve has domain 0ă x. Note that as x approaches 0, then y approaches
infinity, and vice-versa. (That is: to have a very very short box with fixed volume, the box must be
very wide.) Then our objective function goes to infinity as well. So this system has no global
maximum, but it does have a global minimum. That global minimum will also be a local minimum,
so it will be a solution to the system of Lagrange equations.

fx = λgx 8x+ 6y = λ (4xy) (E1)

fy = λgy 6x = λ (2x2) (E2)

g(x,y) = 72 2x2y = 72 (E3)
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• If gx ‰ 0 and gy ‰ 0, then (E1) λ = 8x+6y
4xy = 4x+3y

2xy and (E2) λ = 6x
2x2 =

3
x :

4x+ 3y
2xy

=
3
x

ùñ 4x2 + 3xy = 6xy

ùñ 4x2´3xy = 0
ùñ x(4x´3y) = 0

ùñ x = 0 or (4x´3y) = 0

From (E3), we see x‰ 0, so the only point to consider is when 4x = 3y. Plugging this into our
constraint function,

72 = 2x2y = 2x2
(

4
3

x
)
= 3x3

ùñ 27 = x3

ùñ 3 = x

ùñ y =
4
3
¨3 = 4

So the point to consider is (3,4).

• If gx = 0, then x = 0 or y = 0, both of which make (E3) false.

• If gy = 0, then x = 0, which makes (E3) false.

So the only point to consider is (3,4).

We aren’t considering a region with a closed curve bounding it, so we’ll need some thought to
decide whether this is, in fact, a minimum. Note that our model domain is that x and y must both be
positive numbers. We see that as x or y goes to 0, while the other one stays constant, our surface
area function goes to infinity. Similarly as x or y goes to infinity, while the other one stays constant,
our surface area function goes to infinity. So the function must have a minimum somewhere well
away from its “boundaries” near and far from the x and y axes.

So, the dimensions of the box with smallest surface area are:
x = 3, 2x = 6, y = 4

S-16: Note that if (x,y) obeys g(x,y) = xy´1 = 0, then x is necessarily nonzero. So we may
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assume that x‰ 0. Then

There is a λ such that (x,y,λ ) obeys (E1)
ðñ there is a λ such that fx(x,y) = λgx(x,y), fy(x,y) = λgy(x,y), g(x,y) = 0
ðñ there is a λ such that fx(x,y) = λy, fy(x,y) = λx, xy = 1

ðñ there is a λ such that
1
y

fx(x,y) =
1
x

fy(x,y) = λ , xy = 1

ðñ 1
y

fx(x,y) =
1
x

fy(x,y), xy = 1

ðñ x fx

(
x,

1
x

)
=

1
x

fy

(
x,

1
x

)
, y =

1
x

ðñ F 1(x) =
d
dx

f
(
x,

1
x

)
= fx

(
x,

1
x

)
´ 1

x2 fy

(
x,

1
x

)
= 0, y =

1
x

S-17: Solution 1
Since f (x,y) is the square root of something, its unconstrained absolute minimum is 0, achieved
whenever 4x4 + y4 = 1. By choosing x and/or y to be large, we see f (x,y) will be large as well.
That is, f (x,y) has no unconstrained maximum.

By inspection (“staring at it”), we note the point (0,1) satisfies both our constraint and 4x4 + y4 = 1.
So the constrained absolute minimum is 0, and this is achieved at (0,1). Since x and y can have
arbitrarily large absolute values and still satisfy x3 + y3 = 1, we see that f (x,y) has no constrained
minimum.

Solution 2
First, let’s consider temporarily replacing f (x,y) with

h(x,y) = 4x4 + y4´1

When h(x,y) is large, then f (x,y) is large; when h(x,y) is small and positive, then f (x,y) is small.
So the extrema of f (x,y) should occur at extrema of h(x,y) or at points where h(x,y) = 0.

The benefit of this replacement is that h is much easier to differentiate. Let’s use the method of
Lagrange multipliers. First, we differentiate.

hx = 16x3 gx = 3x2

hy = 4x3 gy = 3y2

So, we solve

16x3 = λ ¨3x2 ùñ x = 0 or λ =
16
3

x

4y3 = λ ¨3y2 ùñ y = 0 or λ =
4
3

y

1. If x = 0, then from x3 + y3 = 1, we require y = 1. So the point (0,1) is a point to check.

h(0,1) = 0

599



2. If y = 0, then from x3 + y3 = 1, we require x = 1. So the point (1,0) is a point to check.

h(1,0) = 3

3. If neither x = 0 nor y = 0, then λ = 16
3 x = 4

3y, so y = 4x. Then from our constraint,

x3 + y3 = 1

x3 +(4x)3 = 1

65x3 = 1

x =
1

3
?

65

y = 4x =
4

3
?

65

So,
(

1
3?65

, 4
3?65

)
is a point to check.

h
(

1
3
?

65
,

4
3
?

65

)
= 4

(
1

3
?

65

)4

+

(
4

3
?

65

)4

´1

=
4+ 44

654/3 ´1

=
4(1+ 43)

(1+ 43)4/3 ´1

=
4

(1+ 43)1/3 ´1

ă 4

(43)1/3 ´1 = 0

So the point
(

1
3?65

, 4
3?65

)
is not in the domain of f (x,y).

Since f (x,y) can never be less than 0, and f (0,1) = 0, we see that this the absolute minimum
subject to the constraint.

If g(x,y) = 1 were a closed curve, such as an ellipse, then we would be guaranteed that a
constrained absolute maximum existed, and then that constrained absolute maximum would occur at
a point identified above: by process of elimination, (1,0). However, g(x,y) = 1 is not a closed
curve. For any value of x, g(x,y) = 1 has a solution. That means our constraint contains arbitrarily
large values of x. Huge values of x will lead to huge values of f (x,y), so there is no constrained
absolute maximum.

S-18: Both the objective and constraint functions are fairly straightforward to understand.

• If x and y are both large and positive, then f (x,y) is large and positive; if x and y are both
large and negative, then f (x,y) is large and negative.

• If |y| is large, then |x|=
a

1+ y2 is large as well.
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So if we take y to be arbitrarily large and positive, and x to be (positive)
a

1+ y2, then
f (x,y) = x+ yą y is arbitrarily large.

Similarly, if we take y to be arbitrarily large and negative, and x to be ´
a

1+ y2, then
f (x,y) = x+ yă y is arbitrarily large and negative.

So, there are no absolute extrema of f (x,y) subject to the constraint x2 = 1+ y2.

S-19:

(a) Note f (x,0) = x, which has no absolute extrema. So f (x,y) has no absolute extrema, either.

(b) The line y = x does not describe a closed curve: it’s a line that continues on forever without
“looping back” on itself.

(c) The plugging-in method of earlier times fits our functions well, so we won’t bother with
Lagrange. If x = y, then:

f (x,x) =
x

1+ x4

So, let’s consider a function of one variable, call it k.

k(x) =
x

1+ x4

To get a feel for k(x), first note its horizontal asymptotes:

lim
kÑ8

k(x) = lim
kÑ´8

k(x) = 0

(since k is rational and the degree of its numerator is smaller than the degree of its denominator).
So, far away from the origin, k(x) « 0. Also, we note that k(x) is defined for all real numbers.

x

y

???

Since k(x) is continuous, even without sketching the rest of its graph, we can already see k(x)
has absolute extrema. These will occur at critical points. So, we differentiate. Using the
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quotient rule:

k1(x) =
(1+ x4)(1)´ x(4x3)

(1+ x4)2 =
1´3x4

(1+ x4)2

0 =
1´3x4

(1+ x4)2

0 = 1´3x4

x = ˘ 1
4
?

3

k
(

1
4
?

3

)
=

1
4?3

1+ 1
3

=
3
4
¨ 1

4
?

3
=

33/4

4

k
(
´ 1

4
?

3

)
= ´33/4

4

The absolute maximum of k(x) is 33/4

4 and the absolute minimum of k(x) is ´33/4

4 . That is:

The absolute maximum of f (x,y) constrained to x = y is 33/4

4 and the absolute minimum of

f (x,y) constrained to x = y is ´33/4

4 .

Remark: the purpose of this exercise is to point out that, even when a constraint is not a closed curve,
it is still possible for a constrained function to have both an absolute max and an absolute min.
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