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HOW TO USE THIS BOOK

Ĳ Introduction

First of all, welcome back to Calculus!

This book is a companion question book for the main textbook.

§§ How to Work Questions

This book is organized into four sections: Questions, Hints, Answers, and Solutions. As
you are working problems, resist the temptation to prematurely peek at the back! It’s
important to allow yourself to struggle for a time with the material. Even professional
mathematicians don’t always know right away how to solve a problem. The art is in
gathering your thoughts and figuring out a strategy to use what you know to find out
what you don’t.

If you find yourself at a real impasse, go ahead and look for a hint in the Hints section.
Think about it for a while, and don’t be afraid to read back in the notes to look for a key
idea that will help you proceed. If you still can’t solve the problem, well, we included the
Solutions section for a reason! As you’re reading the solutions, try hard to understand
why we took the steps we did, instead of memorizing step-by-step how to solve that one
particular problem.

If you struggled with a question quite a lot, it’s probably a good idea to return to it in a few
days. That might have been enough time for you to internalize the necessary ideas, and
you might find it easily conquerable. Pat yourself on the back–sometimes math makes you
feel good! If you’re still having troubles, read over the solution again, with an emphasis
on understanding why each step makes sense.

One of the reasons so many students are required to study calculus is the hope that it will
improve their problem-solving skills. In this class, you will learn lots of concepts, and
be asked to apply them in a variety of situations. Often, this will involve answering one
really big problem by breaking it up into manageable chunks, solving those chunks, then
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HOW TO USE THIS BOOK

putting the pieces back together. When you see a particularly long question, remain calm
and look for a way to break it into pieces you can handle.

§§ Working with Friends

Study buddies are fantastic! If you don’t already have friends in your class, you can ask
your neighbours in lecture to form a group. Often, a question that you might bang your
head against for an hour can be easily cleared up by a friend who sees what you’ve missed.
Regular study times make sure you don’t procrastinate too much, and friends help you
maintain a positive attitude when you might otherwise succumb to frustration. Struggle
in mathematics is desirable, but suffering is not.

When working in a group, make sure you try out problems on your own before coming
together to discuss with others. Learning is a process, and getting answers to questions
that you haven’t considered on your own can rob you of the practice you need to master
skills and concepts, and the tenacity you need to develop to become a competent problem-
solver.

§§ Types of Questions

Q[1]: hint answer solution
Outlined questions make up the suggested question set. These questions are usually highly
typical of what you’d see on an exam, although some of them are atypical but carry an
important moral. If you find yourself unconfident with the idea behind one of these, it’s
probably a good idea to practice similar questions.
This suggested question set is a minimal selection of questions to work on. You are highly
encouraged to work on more.

Q[2](˚): hint answer solution
In addition to original problems, this book contains problems pulled from quizzes and
exams given at UBC for Math 101 and 105 (second-semester calculus), Math 121 (honours
second-semester calculus), and Math 317 (Calculus 4). These problems are marked with a
star. The authors would like to acknowledge the contributions of the many people who
collaborated to produce these exams over the years.

Instructions and other comments that are attached to more than one question are written in this font.

The questions are organized into Stage 1, Stage 2, and Stage 3.

§§ Stage 1

The first category is meant to test and improve your understanding of basic underlying
concepts. These often do not involve much calculation. They range in difficulty from
very basic reviews of definitions to questions that require you to be thoughtful about the
concepts covered in the section.
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§§ Stage 2

Questions in this category are for practicing skills. It’s not enough to understand the philo-
sophical grounding of an idea: you have to be able to apply it in appropriate situations.
This takes practice!

§§ Stage 3

The last questions in each section go a little farther than Stage 2. Often they will combine
more than one idea, incorporate review material, or ask you to apply your understanding
of a concept to a new situation.

§§ Open-Ended Questions

We’ve started adding a small number of open-ended questions. These are meant to have
paragraph-style answers, and solutions are not provided.

In exams, as in life, you will encounter questions of varying difficulty. A good skill to
practice is recognizing the level of difficulty a problem poses. Exams will have some easy
questions, some standard questions, and some harder questions.

§§ How to Read the Title

“Optimal, Integral, Likely” can be recited in your head with roughly the same energy as
an infomercial. “It’s optimal! It’s integral! And that’s not even all!”
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GEOMETRY IN THREE DIMENSIONS

Chapter 1

1.1Ĳ Points

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

2



GEOMETRY 1.1 POINTS

§§ Stage 1

Q[1]: hint answer solution
Part of R3 is sketched below, along with a triangle.

z

x y

Identify the following parts of the sketch:
(a) the xy-plane
(b) the yz-plane
(c) the xz-plane
(d) the vertex of the triangle lying on (1, 0, 0)
(e) the vertex of the triangle lying on (0, 1, 0)
(f) the vertex of the triangle lying on (0, 0, 1)

Q[2]: hint answer solution
Describe the set of all points (x, y, z) in R3 that satisfy

(a) x2 + y2 + z2 = 2x´ 4y + 4

(b) x2 + y2 + z2 ă 2x´ 4y + 4

Q[3]: hint answer solution
Describe and sketch the set of all points (x, y) in R2 that satisfy

(a) x = y

(b) x + y = 1

(c) x2 + y2 = 4

(d) x2 + y2 = 2y

(e) x2 + y2 ă 2y

Q[4]: hint answer solution
Describe the set of all points (x, y, z) in R3 that satisfy the following conditions. Sketch
the part of the set that is in the first octant. That is, sketch the part of the set with
non-negative values of x, y, and z.

(a) z = x

3



GEOMETRY 1.1 POINTS

(b) x2 + y2 + z2 = 4

(c) x2 + y2 + z2 = 4, z = 1

(d) x2 + y2 = 4

(e) z = x2 + y2

§§ Stage 2

Q[5]: hint answer solution
What is the distance from the point (1, 2, 3) to the point (4,´5, 6)?

Q[6]: hint answer solution
What is the distance from the point (´5,´1,´9) to the xy-plane?

Q[7]: hint answer solution
A bird sets off from its nest. It flies one kilometre due north, then two kilometres due east,
gaining 100 metres of altitude. How far is it from its nest?

Q[8]: hint answer solution
A bird sets off from its nest on the ground. It flies two kilometres due north, then two
kilometres due east, ending up at a point that is 3 km away from its nest. How high above
the ground is that point?

Q[9]: hint answer solution
A giant straight wall rises from the ground, reaching high in the sky, casting a cold
shadow as far as you can see. You walk straight out from the base of the wall for 2 km,
ash floating in the air, catching in your throat and stinging your eyes. Tired, you sit on
the ground to rest, and look around you. In the hazy distance, you see what at first you
think must be an illusion: a single tree. It’s the only thing standing in this desolate
flatness. Curiosity overcomes your fatigue, and you wobble onto blistered feet. (Not
your feet—ew. You kick them out of the way.) You turn at a right angle to your previous
course, walking 1 km parallel to the looming monolith, and reach the tree. Even at this
distance, the wall seems to emit a sinister hum. Except, no — you realize that sound isn’t
the wall at all. Three metres up the tree, a colony of murder hornets is busily expanding
their nest. For the first time today, you smile.

How far are the murder hornets from the wall?

Q[10]: hint answer solution
The pressure p(x, y) at the point (x, y) is determined by x2 ´ 2px + y2 = 1. An isobar is a
curve with equation p(x, y) = c for some constant c. Sketch several isobars.

Q[11]: hint answer solution
Show that the set of all points P that are twice as far from (3,´2, 3) as from (3/2, 1, 0) is a
sphere. Find its centre and radius.
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GEOMETRY 1.2 FUNCTIONS OF TWO VARIABLES

§§ Stage 3

Q[12]: hint answer solution
Consider any triangle. Pick a coordinate system so that one vertex is at the origin and a
second vertex is on the positive x–axis. Call the coordinates of the second vertex (a, 0) and
those of the third vertex (b, c). Find the circumscribing circle (the circle that goes through
all three vertices).

Q[13](˚): hint answer solution
Find an equation for the set of all points P = (x, y, z) such that the distance from P to the
point (0, 0, 1) is equal to the distance from P to the plane z + 1 = 0.

Sketch the set, and also describe it in words.

1.2Ĳ Functions of Two Variables

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Give an example of a function that has all of R2 in its domain, and whose range is a single
number.

Q[2]: hint answer solution
Single-variable functions f (x) and g(x) are sketched below. Both have domain [´1, 1].

x

y

1

´1

10

´10

x

y

1´1

1

y = f (x) y = g(x)

Based on the sketches, find the following.

(a) The range of f (x),

(b) the range of g(x),

(c) the domain of f (g(x)), and

(d) the range of f (g(x)).
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GEOMETRY 1.2 FUNCTIONS OF TWO VARIABLES

Q[3]: hint answer solution
Is the point (x, y) = (1, 1) in the domain of the implicitly defined function

z2y3 + zx3 + xy = 1 ?

§§ Stage 2

Q[4]: hint answer solution
Find the domain and range of the function

f (x, y) =
b

4x2 + y2

Q[5]: hint answer solution
Find the domain and range of the function

h(x, y) =
x2

1 + y2

Q[6]: hint answer solution
Find the domain and range of the function

k(x, y) = arcsin
(

x2 + y2
)

§§ Stage 3

Q[7]: hint answer solution
Find the domain and range of the function

g(x, y) =
1

ln(xy)

Q[8]: hint answer solution
Find the domain and range of the two-variable function

f (x, y) =
x2

x2 + 1

Q[9]: hint answer solution
Find the domain and range of the function

f (x, y) =
x

x2 + 1
+ sin y
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GEOMETRY 1.3 SKETCHING SURFACES IN 3D

Q[10]: hint answer solution
If a company spends a dollars on advertisements, and sells the advertised product at p
dollars each, then the number of units that will be sold is given as a function D(a, p).

Give a sensible model domain and range.

Q[11]: hint answer solution
You’re using the function

f (x, y) =
1

x2 + y2

to model some process. In your model, the only values of the range that make sense are

3 ď f (x, y) ď 5

What is your model domain?

Q[12]: hint answer solution
You’re using the function

g(x, y) = 72
[
x2 ´ y

]2 ´ [x2 ´ y
]4

to model some process. In your model, the only values of the range that make sense are

272 ď g(x, y) ď 1175

What is the corresponding model domain?

1.3Ĳ Sketching Surfaces in 3d

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): hint answer solution
Match the following equations and expressions with the corresponding pictures.

(A)

-1

-0.5

0

0.5

1

0
-0.5

-1

0.5

-1
-0.5

0.5
0

11

(B)

-2

-1

0

1

2

-1

-2

0

-1
-2

0
1

2

2

1

7



GEOMETRY 1.3 SKETCHING SURFACES IN 3D

(C)

-10

0

10

20

30

40

50

-1

-2

0

1 0
1

2

-1
-22

(a) x2 + y2 = z2 + 1 (b) y= x2 + z2 (c) z= x4 + y4 ´ 4xy

Q[2]: hint answer solution
Sketch a few level curves for the function f (x, y) whose graph z = f (x, y) is sketched
below.

z

y

x

§§ Stage 2

Q[3]: hint answer solution
Sketch some of the level curves of
(a) f (x, y) = x2 + 2y2

(b) f (x, y) = xy
(c) f (x, y) = xe´y

Q[4](˚): hint answer solution

Sketch the level curves of f (x, y) = 2y
x2+y2 .

8



GEOMETRY 1.3 SKETCHING SURFACES IN 3D

Q[5](˚): hint answer solution
A surface is given implicitly by

x2 + y2 ´ z2 + 2z = 0

(a) Sketch several level curves z =constant.
(b) Draw a rough sketch of the surface.

Q[6](˚): hint answer solution
Sketch the hyperboloid z2 = 4x2 + y2 ´ 1.

Q[7]: hint answer solution
Sketch the graphs of

(a) f (x, y) = sin x 0 ď x ď 2π, 0 ď y ď 1

(b) f (x, y) =
a

x2 + y2

(c) f (x, y) = |x|+ |y|
Q[8]: hint answer solution
Sketch and describe the following surfaces.

(a) 4x2 + y2 = 16

(b) x + y + 2z = 4

(c) y2

9 + z2

4 = 1 + x2

16

(d) y2 = x2 + z2

(e) x2

9 + y2

12 +
z2

9 = 1

(f) x2 + y2 + z2 + 4x´ by + 9z´ b = 0 where b is a constant.

(g) x
4 = y2

4 + z2

9

(h) z = x2

Q[9]: hint answer solution
Sketch the level curves of the function

f (x, y) = sin(x + y)

for z = 0, z = 1, and z = 2.

§§ Stage 3

Q[10]: hint answer solution
The surface below has circular level curves, centred along the z-axis. The lines given are
the intersection of the surface with the right half of the yz-plane. Give an equation for the
surface.

9
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z

y

x

z = 3(y´ 1)

z = ´3(y´ 1)

10



PARTIAL DERIVATIVES

Chapter 2

2.1Ĳ Partial Derivatives

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
You are traversing an undulating landscape. Take the z-axis to be straight up towards the
sky, the positive x-axis to be due south, and the positive y-axis to be due east. Then the
landscape near you is described by the equation z = f (x, y), with you at the point
(0, 0, f (0, 0)). The function f (x, y) is differentiable.
Suppose fy(0, 0) ă 0. Is it possible that you are at a summit? Explain.
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PARTIAL DERIVATIVES 2.1 PARTIAL DERIVATIVES

Q[2]: hint answer solution
The table below gives approximate value of f (x, y) at different values of x and y. (The
row gives the value of x, and the column gives the value of y.)

1.0

6.6

6.8

7.0

7.1

7.3

7.5

7.6

7.8

8.0

8.2

1.1

7.4

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.1

1.2

8.3

8.5

8.7

8.9

9.1

9.3

9.5

9.7

9.9

10.1

1.3

9.1

9.4

9.6

9.8

10.0

10.3

10.5

10.7

10.9

11.2

1.4

10.0

10.3

10.5

10.8

11.0

11.3

11.5

11.7

12.0

12.2

1.5

11.0

11.2

11.5

11.8

12.0

12.3

12.5

12.8

13.1

13.3

1.6

11.9

12.2

12.5

12.8

13.0

13.3

13.6

13.9

14.2

14.4

1.7

12.9

13.2

13.5

13.8

14.1

14.4

14.7

15.0

15.3

15.6

1.8

13.9

14.2

14.6

14.9

15.2

15.5

15.8

16.1

16.4

16.7

1.9

15.0

15.3

15.6

16.0

16.3

16.6

17.0

17.3

17.6

17.9

y Ó
x Ñ

2.4

2.3

2.2

2.1

2.0

1.9

1.8

1.7

1.6

1.5

Use the table to approximate the following partial derivatives.
(a) fy(1.5, 2.4)
(b) fx(1.7, 1.7)
(c) fy(1.7, 1.7)
(d) fx(1.1, 2)

§§ Stage 2

Q[3]: hint answer solution
Find all first partial derivatives of the following functions and evaluate them at the given
point.
(a) f (x, y, z) = x3y4z5 (0,´1,´1)
(b) w(x, y, z) = ln (1 + exyz) (2, 0,´1)
(c) f (x, y) = 1?

x2+y2 (´3, 4)

Q[4]: hint answer solution
Show that the function z(x, y) = x+y

x´y obeys

x
Bz
Bx

(x, y) + y
Bz
By

(x, y) = 0

12



PARTIAL DERIVATIVES 2.1 PARTIAL DERIVATIVES

Q[5](˚): hint answer solution
A surface z(x, y) is defined by zy´ y + x = ln(xyz).
(a) Compute Bz

Bx , Bz
By in terms of x, y, z.

(b) Evaluate Bz
Bx and Bz

By at (x, y, z) = (´1,´2, 1/2).

Q[6](˚): hint answer solution
Find BU

BT and BT
BV at (1, 1, 2, 4) if (T, U, V, W) are related by

(TU ´V)2 ln(W ´UV) = ln 2

Q[7](˚): hint answer solution
Suppose that u = x2 + yz, x = ρr cos(θ), y = ρr sin(θ) and z = ρr. Find Bu

Br at the point
(ρ0, r0, θ0) = (2, 3, π/2).

Q[8]: hint answer solution
Use the definition of the derivative to evaluate fx(0, 0) and fy(0, 0) for

f (x, y) =

#

x2´2y2

x´y if x ‰ y

0 if x = y

§§ Stage 3

Q[9]: hint answer solution
Let f be any differentiable function of one variable. Define z(x, y) = f (x2 + y2). Is the
equation

y
Bz
Bx

(x, y)´ x
Bz
By

(x, y) = 0

necessarily satisfied?

Q[10]: hint answer solution
Define the function

f (x, y) =

$

&

%

(x+2y)2

x+y if x + y ‰ 0

0 if x + y = 0

(a) Evaluate, if possible, B f
Bx (0, 0) and B f

By (0, 0).

(b) Is f (x, y) continuous at (0, 0)?

Q[11]: hint answer solution
Consider the cylinder whose base is the radius-1 circle in the xy-plane centred at (0, 0),
and which slopes parallel to the line in the yz-plane given by z = y.

13



PARTIAL DERIVATIVES 2.2 HIGHER ORDER DERIVATIVES

When you stand at the point (0,´1, 0), what is the slope of the surface if you look in the
positive y direction? The positive x direction?

Q[12](˚): hint answer solution
Let

f (x, y) =

$

&

%

x2y
x2+y2 if (x, y) ‰ (0, 0)

0 if (x, y) = (0, 0)

Compute, directly from the definitions,

(a) B f
Bx (0, 0)

(b) B f
By (0, 0)

(c) d
dt f (t, t)

ˇ

ˇ

ˇ

t=0

2.2Ĳ Higher Order Derivatives

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Questions 1 – 3 deal with the notation used for higher-order partial derivatives. Notation is only a conven-
tion, but conventions usually only catch on if they make some amount of sense. Understanding where the
conventions came from makes it easier to remember them.

Q[1]: hint answer solution
If the partial derivative of the function f with respect to x is written fx, then why should
the partial derivative of fx with respect to y be written as fxy, rather than as fyx?

Q[2]: hint answer solution

If the partial derivative of the function f with respect to x is written B
Bx f or B f

Bx , then why

should the partial derivative of B f
Bx with respect to y be written as B2 f

ByBx , rather than as B2 f
BxBy ?

Q[3]: hint answer solution

14



PARTIAL DERIVATIVES 2.2 HIGHER ORDER DERIVATIVES

If the first partial derivative of the function f with respect to x is written B
Bx f or B f

Bx , then

why should the partial derivative of B f
Bx with respect to x be written as B

2 f
Bx2 , rather than as

B f 2

B2x ?

Q[4]: hint answer solution

f (x, y) =
tan(xy)

ln x
Verify Clairaut’s theorem by showing fxy = fyx.

§§ Stage 2

Q[5]: hint answer solution
Find the specified partial derivatives.
(a) f (x, y) = x2y3; fxx(x, y), fxyy(x, y), fyxy(x, y)
(b) f (x, y) = exy2

; fxx(x, y), fxy(x, y), fxxy(x, y), fxyy(x, y)

(c) f (u, v, w) =
1

u + 2v + 3w
;

B3 f
BuBvBw

(u, v, w) ,
B3 f

BuBvBw
(3, 2, 1)

Q[6]: hint answer solution
Find all second partial derivatives of f (x, y) =

a

x2 + 5y2.

Q[7]: hint answer solution
Find the specified partial derivatives.
(a) f (x, y, z) = arctan

(
e
?xy); fxyz(x, y, z)

(b) f (x, y, z) = arctan
(
e
?xy)+ arctan

(
e
?

xz)+ arctan
(
e
?yz); fxyz(x, y, z)

(c) f (x, y, z) = arctan
(
e
?xyz); fxx(1, 0, 0)

§§ Stage 3

Q[8]: hint answer solution

Let α ą 0 be a constant. Show that u(x, y, z, t) =
1

t3/2 e´(x2+y2+z2)/(4αt) satisfies the heat
equation

ut = α
(
uxx + uyy + uzz

)
for all t ą 0.

Q[9]: hint answer solution
Economics consists of mathematical models that replicate how we interact with each
other and resources. When modelling demand, economists prefer the following
properties in utility functions. Suppose u is a utility function that depends on some
variable t with t ą 0 (for example it can signify the quantity of a good or a product).
Then we may wish:
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PARTIAL DERIVATIVES 2.3 LOCAL MAXIMUM AND MINIMUM VALUES

(i) ut ą 0 (for all values of the variables that u depends on).

(ii) utt ă 0 (for all values of the variables that u depends on).

(iii) ut Ñ 8 as t Ñ 8 (for all values of the rest of the variables that u depends on).

Determine which of the following utility functions follow or do not follow these
properties by checking them for x and y with x, y ą 0:

(a) u(x, y) = x0.5y0.5

(b) u(x, y) =
x0.5

y0.5

(c) u(x, y) = ln(x) + ln(y)

(d) u(x) =
x1´a

1´ a
, where a ‰ 1

Q[10]: hint answer solution
The table below gives approximate value of f (x, y) at different values of x and y. (The
row gives the value of y, and the column gives the value of x.)

1.0

6.6

6.8

7.0

7.1

7.3

7.5

7.6

7.8

8.0

8.2

1.1

7.4

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.1

1.2

8.3

8.5

8.7

8.9

9.1

9.3

9.5

9.7

9.9

10.1

1.3

9.1

9.4

9.6

9.8

10.0

10.3

10.5

10.7

10.9

11.2

1.4

10.0

10.3

10.5

10.8

11.0

11.3

11.5

11.7

12.0

12.2

1.5

11.0

11.2

11.5

11.8

12.0

12.3

12.5

12.8

13.1

13.3

1.6

11.9

12.2

12.5

12.8

13.0

13.3

13.6

13.9

14.2

14.4

1.7

12.9

13.2

13.5

13.8

14.1

14.4

14.7

15.0

15.3

15.6

1.8

13.9

14.2

14.6

14.9

15.2

15.5

15.8

16.1

16.4

16.7

1.9

15.0

15.3

15.6

16.0

16.3

16.6

17.0

17.3

17.6

17.9

y Ó
x Ñ

2.4

2.3

2.2

2.1

2.0

1.9

1.8

1.7

1.6

1.5

Use the table to approximate fxy(1.8, 2.0) .

2.3Ĳ Local Maximum and Minimum Values

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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PARTIAL DERIVATIVES 2.3 LOCAL MAXIMUM AND MINIMUM VALUES

§§ Stage 1

Q[1](˚): hint answer solution

(a) Some level curves of a function f (x, y) are plotted in the xy–plane below.

x

y

0

0

´1

1 12 2

´2

3 3

´3

4

´4

R T U

P

Q

S

For each of the four statements below, circle the letters of all points in the diagram
where the situation applies. For example, if the statement were “These points are on
the y–axis”, you would circle both P and U, but none of the other letters. You may
assume that a local maximum occurs at point T.

(i) ∇∇∇ f is zero P R S T U
(ii) f has a saddle point P R S T U

(iii) the partial derivative fy is positive P R S T U

(b) The diagram below shows three “y traces” of a graph z = F(x, y) plotted on xz–axes.
(Namely, the intersections of the surface z = F(x, y) with the three planes y = 1.9,
y = 2, and y = 2.1.) For each statement below, circle the correct word.

(i) the first order partial derivative Fx(1, 2) is positive/negative/zero (circle one)
(ii) F has a critical point at (2, 2) true/false (circle one)

(iii) the second order partial derivative Fxy(1, 2) is positive/negative/zero (circle one)
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PARTIAL DERIVATIVES 2.3 LOCAL MAXIMUM AND MINIMUM VALUES

x

z

1

2

3

1 2 3 4

y “ 1.9

y “ 2.0
y “ 2.1

§§ Stage 2

Q[2](˚): hint answer solution

Let z = f (x, y) = (y2 ´ x2)
2.

(a) Make a reasonably accurate sketch of the level curves in the xy–plane of z = f (x, y)
for z = 0, 1 and 16. Be sure to show the scales on the coordinate axes.

(b) Verify that (0, 0) is a critical point for z = f (x, y), and determine from part (a) or
directly from the formula for f (x, y) whether (0, 0) is a local minimum, a local
maximum or a saddle point.

(c) Can you use the Second Derivative Test to determine whether the critical point (0, 0)
is a local minimum, a local maximum or a saddle point? Give reasons for your
answer.

Q[3](˚): hint answer solution
Use the Second Derivative Test to find all values of the constant c for which the function
z = x2 + cxy + y2 has a saddle point at (0, 0).

Q[4](˚): hint answer solution
Find and classify all critical points of the function

f (x, y) = x3 ´ y3 ´ 2xy + 6.

Q[5](˚): hint answer solution
Find all critical points for f (x, y) = x(x2 + xy + y2 ´ 9). Also find out which of these
points give local maximum values for f (x, y), which give local minimum values, and
which give saddle points.
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PARTIAL DERIVATIVES 2.3 LOCAL MAXIMUM AND MINIMUM VALUES

Q[6]: hint answer solution
Find and classify all the critical points of f (x, y) = x2 + y2 + x2y + 4.

Q[7](˚): hint answer solution
Find all saddle points, local minima and local maxima of the function

f (x, y) = x3 + x2 ´ 2xy + y2 ´ x.

Q[8](˚): hint answer solution
For the surface

z = f (x, y) = x3 + xy2 ´ 3x2 ´ 4y2 + 4

Find and classify [as local maxima, local minima, or saddle points] all critical points of
f (x, y).

Q[9](˚): hint answer solution

(a) For the function z = f (x, y) = x3 + 3xy + 3y2 ´ 6x´ 3y´ 6. Find and classify as
[local maxima, local minima, or saddle points] all critical points of f (x, y).

(b) The images below depict level sets f (x, y) = c of the functions in the list at heights
c = 0, 0.1, 0.2, . . . , 1.9, 2. Label the pictures with the corresponding function and mark
the critical points in each picture. (Note that in some cases, the critical points might
not be drawn on the images already. In those cases you should add them to the
picture.)

(i) f (x, y) = (x2 + y2 ´ 1)(x´ y) + 1

(ii) f (x, y) = y(x + y)(x´ y) + 1

Q[10](˚): hint answer solution
Define the function

f (x, y) = x3 + 3xy + 3y2 ´ 6x´ 3y´ 6

Classify all critical points of f (x, y) as local maxima, local minima, or saddle points.

Q[11](˚): hint answer solution
Find and classify the critical points of f (x, y) = 3x2y + y3 ´ 3x2 ´ 3y2 + 4.
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Q[12](˚): hint answer solution
Find all critical points of the function f (x, y) = x4 + y4 ´ 4xy + 2, and for each determine
whether it is a local minimum, maximum or saddle point.

Q[13](˚): hint answer solution
Find all the critical points of the function

f (x, y) = x4 + y4 ´ 4xy

defined in the xy-plane. Classify each critical point as a local minimum, maximum or
saddle point.

Q[14](˚): hint answer solution
Find all the critical points of the function

f (x, y) = x3 + xy2 ´ x

defined in the xy-plane. Classify each critical point as a local minimum, maximum or
saddle point. Explain your reasoning.

Q[15](˚): hint answer solution
Find and classify all critical points of

f (x, y) = x3 ´ 3xy2 ´ 3x2 ´ 3y2

§§ Stage 3

Q[16](˚): hint answer solution
Consider the function

f (x, y) = 3kx2y + y3 ´ 3x2 ´ 3y2 + 4

where k ą 0 is a constant. Find and classify all critical points of f (x, y) as local minima,
local maxima, saddle points or points of indeterminate type. Carefully distinguish the
cases k ă 1

2 , k = 1
2 and k ą 1

2 .

Q[17]: hint answer solution
An experiment yields data points (xi, yi), i = 1, 2, ¨ ¨ ¨ , n. We wish to find the straight line
y = mx + b which “best” fits the data. The definition of “best” is “minimizes the root
mean square error”, i.e. minimizes

řn
i=1(mxi + b´ yi)

2. Find m and b.

2.4Ĳ Absolute Minima and Maxima

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Suppose you want to find the maximum value of a surface z = f (x, y) on the boundary
of the unit circle, x2 + y2 = 1.
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True or false: you should always check the points (0,˘1) and (˘1, 0), since these are the
endpoints of the circle.

Q[2]: hint answer solution
Find the high and low points of the surface z =

a

x2 + y2 with (x, y) varying over the
square |x| ď 1, |y| ď 1 . Discuss the values of zx, zy there. Do not evaluate any derivatives
in answering this question.

§§ Stage 2

Q[3]: hint answer solution
Find the maximum and minimum values of f (x, y) = xy´ x3y2 when (x, y) runs over the
square 0 ď x ď 1, 0 ď y ď 1.

Q[4](˚): hint answer solution
Let h(x, y) = y(4´ x2 ´ y2).
(a) Find and classify the critical points of h(x, y) as local maxima, local minima or saddle

points.
(b) Find the maximum and minimum values of h(x, y) on the disk x2 + y2 ď 1.

Q[5](˚): hint answer solution
Find the absolute maximum and minimum values of the function
f (x, y) = 5 + 2x´ x2 ´ 4y2 on the rectangular region

R =
 

(x, y)
ˇ

ˇ ´ 1 ď x ď 3, ´1 ď y ď 1
(

Q[6](˚): hint answer solution
Find the minimum of the function h(x, y) = ´4x´ 2y + 6 on the closed bounded domain
defined by x2 + y2 ď 1.

Q[7](˚): hint answer solution
Let f (x, y) = xy(x + y´ 3).
(a) Find all critical points of f , and classify each one as a local maximum, a local

minimum, or saddle point.
(b) Find the location and value of the absolute maximum and minimum of f on the

triangular region x ě 0, y ě 0, x + y ď 8.

Q[8](˚): hint answer solution
Consider the function

f (x, y) = 2x3 ´ 6xy + y2 + 4y

(a) Find and classify all of the critical points of f (x, y).

(b) Find the maximum and minimum values of f (x, y) in the triangle with vertices (1, 0),
(0, 1) and (1, 1).
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Q[9](˚): hint answer solution
Let

f (x, y) = xy(x + 2y´ 6)

(a) Find every critical point of f (x, y) and classify each one.
(b) Let D be the region in the plane between the hyperbola xy = 4 and the line

x + 2y´ 6 = 0. Find the maximum and minimum values of f (x, y) on D.

Q[10](˚): hint answer solution
A metal plate is in the form of a semi-circular disc bounded by the x-axis and the upper
half of x2 + y2 = 4. The temperature at the point (x, y) is given by

T(x, y) = ln
(
1 + x2 + y2)´ y.

Find the coldest point on the plate, explaining your steps carefully. (Note: ln 2 « 0.693,
ln 5 « 1.609)

Q[11](˚): hint answer solution
Consider the function g(x, y) = x2 ´ 10y´ y2.

(a) Find and classify all critical points of g.

(b) Find the absolute extrema of g on the bounded region given by

x2 + 4y2 ď 16, y ď 0

Q[12]: hint answer solution
Equal angle bends are made at equal distances from the two ends of a 100 metre long
fence, so that the resulting three segment fence can be placed along an existing wall to
make an enclosure of trapezoidal shape. What is the largest possible area for such an
enclosure?

Q[13]: hint answer solution
Find the most economical shape of a rectangular box that has a fixed volume V and that
has no top.

Q[14](˚): hint answer solution
The temperature T(x, y) at a point of the xy–plane is given by

T(x, y) = 20´ 4x2 ´ y2

(a) Find the maximum and minimum values of T(x, y) on the disk D defined by
x2 + y2 ď 4.

(b) Suppose the ant is constrained to stay on the curve y = 2´ x2. Where should the ant
go if it wants to be as warm as possible?
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§§ Stage 3

Q[15](˚): hint answer solution
Find the largest and smallest values of x2y2z in the part of the plane 2x + y + z = 5 where
x ě 0, y ě 0 and z ě 0. Also find all points where those extreme values occur.

Q[16](˚): hint answer solution

(a) Show that the function f (x, y) = 2x + 4y + 1
xy has exactly one critical point in the first

quadrant x ą 0, y ą 0, and find its value at that point.

(b) Use the second derivative test to classify the critical point in part (a).

(c) Explain why the inequality 2x + 4y + 1
xy ě 6 is valid for all positive real numbers x

and y.

Q[17]: hint answer solution
Let a be a constant real number. Find all points on the surface

z = f (x, y) = x2 + y2

that have minimum distance from the point (0, 0, a).

Q[18]: hint answer solution
The Scranton branch of a well-known paper company has two sizes of paper for sale - A4
and A3.

Each ream of A4 is sold at $6; each ream of A3 is sold at $8. Assume that every ream
produced is sold.

Suppose x is the quantity of materials that go into making A4 and y is the quantity of
materials that go into making A3. Then the costs involved in turning these materials into
paper are $1 ¨ x for A4 and $3 ¨ y for A3.

There are different production procedures to produce each paper size. The production
functions below give the number of reams of paper produced out of a given amount of
materials.

f (x) =
5
2

x0.8 (for A4)

g(y) = 10y0.6 (for A3)

(a) Build the (total) profit equation in terms of x and y. That is, find an equation Π(x, y)
that gives the total profit (revenue minus cost) over both paper types.

(b) Find the production quantities of both sizes of paper that maximizes profit.

(c) If the branch stops producing A4, what is the optimal production for A3 to maximize
profit?
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Q[19]: hint answer solution
Ayan and Pipe each have a lemonade boutique. Making each pitcher of lemonade costs
$1. If Ayan wants to sell qA lemonades, and Pipe want to sell qP lemonades, then each
pitcher of lemonade will be sold for this price:

p(qA, qP) = 121´ 2(qA + qP)

(a) Build the profit equation in terms of qA and qP for Ayan. Treating qP as a constant,
find the value of qA that maximizes Ayan’s profit. (Your answer will depend on qP.)

(b) Build the profit equation in terms of qA and qP for Pipe. Treating qA as a constant,
find the value of qP that maximizes Pipe’s profit. (Your answer will depend on qA.)

(c) Guess, using your intuition, how many pitchers are Ayan and Pipe are going to
produce proportional to one another so that both of them maximize their respective
profit functions.

(d) Verify your answer for (c) mathematically.

(e) Calculate the profit that each seller generates under these assumptions.

(f) What would be their joint profit if they collaborate? Build a new profit equation
where Ayan and Pipe are collaborating and find the optimal joint profit. Compare
this to their individual profit when they are competing and decide whether it would
be better for them to collaborate or compete.

(g) Is it better for thirsty consumers when the two sellers collaborate, or when they
compete?

2.5Ĳ Lagrange Multipliers

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): hint answer solution

(a) Does the function f (x, y) = x2 + y2 have a maximum or a minimum on the curve
xy = 1? Explain.

(b) Find all maxima and minima of f (x, y) on the curve xy = 1.

Q[2]: hint answer solution
Give an example of a continuous surface f (x, y) and a constraint function g(x, y) = 0 such
that f (x, y) has both a local max and a local min subject to the constraint, but no global
max or min.

Q[3]: hint answer solution
Find all absolute extrema of the function f (x, y) = x sin y subject to the constraint y = x.
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§§ Stage 2

Q[4](˚): hint answer solution
Use the method of Lagrange multipliers to find the minimum value of z = x2 + y2 subject
to x2y = 1. At which point or points does the minimum occur?

Q[5](˚): hint answer solution
Use the method of Lagrange multipliers to find the maximum and minimum values of

f (x, y) = xy

subject to the constraint
x2 + 2y2 = 1.

Q[6](˚): hint answer solution
Find the maximum and minimum values of f (x, y) = x2 + y2 subject to the constraint
x4 + y4 = 1.

Q[7]: hint answer solution
Find the absolute extrema of the function f (x, y) = x4 + y4 + 2

3 y6 given the constraint
g(x, y) = x2 + y2 = 1 using the method of Lagrange multipliers.

Q[8]: hint answer solution
Find the point(s) on the parabola y = 3

2 ´ x2 closest to the origin using the method of
Lagrange multipliers.

Q[9]: hint answer solution
What are the largest and smallest values of the product xy, for points (x, y) in the region

x2 ´ 2xy + 5y2 ď 1 ?

Q[10](˚): hint answer solution
The temperature in the plane is given by T(x, y) = ey(x2 + y2).
(a) (i) Give the system of equations that must be solved in order to find the warmest

and coolest point on the circle x2 + y2 = 100 by the method of Lagrange
multipliers.

(ii) Find the warmest and coolest points on the circle by solving that system.
(b) (i) Give the system of equations that must be solved in order to find the critical

points of T(x, y).
(ii) Find the critical points by solving that system.

(c) Find the coolest point on the solid disc x2 + y2 ď 100.
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Q[11]: hint answer solution
Use the method of Lagrange Multipliers to find the maximum and minimum values of
the utility function U = f (x, y) = 9x

1
3 y

2
3 , subject to the constraint

g(x, y) = 3200x + 200y = 80, 000, where x ě 0 and y ě 0.

§§ Stage 3

Q[12](˚): hint answer solution
Suppose that a and b are both greater than zero and let T be the triangle bounded by the
line ax + by = 1 and the two axes. Use the method of Lagrange multipliers to find the
smallest possible area of T if the line ax + by = 1 is required to pass through the point
(1, 2).

Q[13]: hint answer solution

Find a and b so that the area πab of an ellipse x2

a2 +
y2

b2 = 1 passing through the point (1, 2)
is as small as possible.

(We assume a, b are positive.)

Q[14](˚): hint answer solution
Use the method of Lagrange multipliers to find the radius of the base and the height of a
right circular cylinder of maximum volume which can be fit inside the unit sphere
x2 + y2 + z2 = 1.

Q[15]: hint answer solution
A rectangular box needs the following properties:

• 72 cubic centimetre volume,

• width twice its length, and

• minimum surface area.

What are the dimensions of the box?

2x
x

y

Use Lagrange multipliers to solve.

Q[16]: hint answer solution
Let f (x, y) have continuous partial derivatives. Consider the problem of finding local
minima and maxima of f (x, y) on the curve xy = 1.

• Define g(x, y) = xy´ 1. According to the method of Lagrange multipliers, if (x, y)
is a local minimum or maximum of f (x, y) on the curve xy = 1, then there is a real
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number λ such that

fx(x, y) = λgx(x, y), fy(x, y) = λgy(x, y), g(x, y) = 0 (E1)

• On the curve xy = 1, we have y = 1
x and f (x, y) = f

(
x, 1

x
)
. Define F(x) = f

(
x, 1

x
)
.

If x ‰ 0 is a local minimum or maximum of F(x), we have that

F1(x) = 0 (E2)

Show that (E1) is equivalent to (E2), in the sense that

there is a λ such that (x, y, λ) obeys (E1)
if and only if

x ‰ 0 obeys (E2) and y = 1/x.

Q[17]: hint answer solution
Find all absolute extrema of the function

f (x, y) =
b

4x4 + y4 ´ 1

subject to the constraint
x3 + y3 = 1

Q[18]: hint answer solution
Find all absolute extrema of the function

f (x, y) = x + y

subject to the constraint
x2 = 1 + y2

Q[19]: hint answer solution

f (x, y) =
x

1 + (xy)2

(a) Find all absolute extrema of f (x, y).

(b) Does the line y = x describe a closed curve?

(c) Find all absolute extrema of f (x, y) subject to the constraint y = x.

2.6Ĳ Utility and Demand Functions

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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§§ Stage 1

Q[1]: hint answer solution
Consumer A has a $100 gift card to a shoe store. They bring no other cash or cards,
determined to spend no money other than the gift card. In the store, they decide which
combination of items will be the most satisfying, without going over their budget.

Consumer B needs to buy a new pair of running shoes. They need to be of a
good-enough quality, so the consumer considers their arch support, heel padding,
durability, and visual appeal. They choose the pair of shoes meeting their quality
standards that costs as little as possible.

Which consumer is embodying Marshallian demand, and which is embodying Hicksian
demand?

Q[2]: hint answer solution
Products X and Y have prices px and py; and the Marshallian demand functions for
product X is

xm(px, py, I) =

$

’

’

&

’

’

%

I
2(px´py)

if px ě 2py

I
px

if px ă py

where I is the budget constraint.

Find the price effects of px and py on X.

Q[3]: hint answer solution
Products X and Y have prices px and py; and subject to the budget constraint
pxx + pyy = I, the Marshallian demand function of X is

xm(px, py, I) =
p2

y ´ Ipx

4p2
y ´ 2p2

x

when p2
x ď 2p2

y (and px, py, and I are in some appropriate model domain).

Is X a normal good or an inferior good?

§§ Stage 2

Q[4]: hint answer solution
Luiza is a microbiology student who wants to have breakfast before her 8 am class. Great
Dane, the university’s prime coffee shop, sells two goods: food ( f ) and coffee (c). Luiza
knows that to maximize her utility she must look at her preferences:

u( f , c) =
a

f +
c

10

Luiza then checks the prices of both goods and how much money she has in her pocket.
Coffee (c) is 1 dollar per unit, and food ( f ) is 3 dollars per unit. She has 10 dollars and
she is determined to use it all. Help her find:

(a) Optimal coffee consumption.
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(b) Optimal food consumption.

(c) How much money would she spent on food, and how much on coffee?

Q[5]: hint answer solution
Franco has 1,000 dollars and is looking to invest on two different Italian soccer teams:
Inter de Milan (m) and La Spezia (s). His utility function (representing his preferences)
is as follows:

u(m, s) = ln(m) +
s

16

The prices for each share are $80 for Milan and $20 for la Spezia.

Assuming that Franco wants to spend the entirety of his budget, how many shares of each
company should he buy?

Q[6]: hint answer solution
Laura is going to Whistler for the weekend. She is buying cheese (c) and strawberries
(s). Cheese is 5 dollars per unit, and strawberries are 10 dollars per unit. Laura wants to
spend 100 dollars and her utility function is as follows:

u(c, s) = 3 ln(2c) + 4 ln(s)

Find Laura’s optimal consumption.

Q[7]: hint answer solution
Alessio plays an online multiplayer game. In this game, each character has infinite
expansion packs that enhance the abilities of the character. Alessio likes playing with
two characters: Keitu (k), and Nefret (n). Alessio plans to spend 84 dollars on new
expansion packs. The prices per expansion pack are $4 for each of Keitu’s expansion
packs and $12 for each of Nefret’s expansion packs. Alessio’s utility function is:

u(k, n) = k0.5n0.2

Find how many packages Alessio will buy for each character given that Alessio wants to
maximize his utility function.

§§ Stage 3

Q[8]: hint answer solution
Coral is going to the cinema. She always buys popcorn (p) and soda (s). Popcorn is 4.50
dollars per 100 grams, and soda is 2 dollars per 100 millilitres. Coral has 20 dollars and
her utility function is as follows:

u(p, s) = p0.4(s + p)0.6

(a) What is Coral’s optimal consumption?

(b) Coral is offered a combo: 420 gm (grams) of popcorn and 160 ml of soda for only 20
dollars.
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(i) Could Coral afford 420 gm of popcorn and 160 ml of soda at the normal price
rate?

(ii) Is this a better deal for Coral?

Q[9]: hint answer solution
The gender distribution of police officers is likely to differ across cities and is likely to
depend on the hiring officials’ belief and preference (HR). HR’s valuation of the two
genders will determine the gender distribution of the workforce, and so would any
gender bias.

Please assume that the department has a fixed budget for new hires, denoted by I which
is measures in CAD per hour, and let us further assume that there is no gender bias in
wages 30 CAD per hour.

The utility function depicts a certain level of utility the hiring officers derive from
different combinations of male and female officers. Two hiring officers Mr. Blue and Ms.
Reed, both with budget I, have the following utility functions:

UB(m, f ) = m0.9 f 0.1 (for Mr. Blue)

UR(m, f ) = m0.5 f 0.5 (for Ms. Reed)

(a) What is the budget constraint for these officers?

(b) Sketch the level curves for Mr. Blue’s and Ms. Reed’s utility functions. Looking at the
shape of their indifference curves, who among the two, Ms. Reed or Mr. Blue, prefers
male to female police officers? Please explain and show your answer.

(c) Given the budget equation and the utility functions, use Lagrange multupliers to
find the number of male and female hires by Mr. Blue and Ms. Reed in terms of I
(remember both have budget I). Which officer hires a higher proportion of male
police officers?

(d) What if there was a gender gap in the wage structure? Assume a bias against female
officers such that the wage of a female police officer is now less than the wage of a
male police officer, given everything else is the same (education, training, ability).
Let’s assume the wages are 35 CAD per hour for male officers, and 30 CAD per hour
for female officers and budget I for both hiring managers. Explain your results.

Q[10]: hint answer solution
Recall Luiza, the microbiology student from question 4 that wants to have breakfast
before her 8 am class. Great Dane, the university’s prime coffee shop, sells two goods:
food ( f ) and coffee (c). Luiza knows that to maximize her utility she must look at her
preferences:

u( f , c) =
a

f +
c

10
Luiza’s budget and the price of both goods are constantly changing. Help her find:

(a) The optimal consumption of coffee for any budget or prices of the products (food
and coffee).
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(b) The optimal consumption of food for any budget or prices of the products.

Q[11]: hint answer solution
Recall Alessio from question 7, who plays an online multiplayer game. In this game, each
character has infinite expansion packs that enhance the abilities of the character. Alessio
likes playing with two characters: Keitu (k) and Nefret (n). Every month, Alessio likes to
add new packages to his characters. However, every month he has a different budget
and the packages vary in price.

Alessio’s utility function is:
u(k, j, n) = k0.5n0.2

Since the package prices are variable, let pk be the package price for Keitu, and let pn be
the package price for Nefret. You can assume in this scenario that buying fractions of
packages is fine. Let I be the amount of money Alessio has to spend.

Find how many packages Alessio will buy for each of the three characters in terms of pk,
pn, and I.

Q[12]: hint answer solution
A normal good is defined in economics as a product such that the demand increases as
income increases. An inferior good is a product such that the demand decreases as
income increases. You, being a student, have a limited budget. You can buy kraft dinner
or chicken which we denoted their quantities by k and c respectively. You have an
income of I dollars to spend on these two goods. Kraft dinner is pk dollars per unit and
chicken is pc dollars per unit. This is your utility function:

u(k, c) = ln(k´ 1)´ 2 ln(50´ c)

(a) What is the minimum and maximum that you can consume of each product?

(b) Find the Marshallian demand for each product. Remember that to find Marshallian
demand, you must use the utility function as the objective function, and your budget
as the constraint.

(c) Categorize the kraft dinner and chicken as normal or inferior goods. Note that, a
normal good is mathematically defined as a good such that the Marshallian demand
increases when income increases. An inferior good is a good such that the
Marshallian demand decreases as income increases. Write your answer as an
expression in terms of pk and pc. Explain this mathematically.

Q[13]: hint answer solution
Liam loves boxing. His favorite professional boxers are Lomachenko (l) and Anthony
Joshua (a). He has D dollars to buy tickets for the upcoming season. Tickets for
Lomachenko’s matches are pl dollars and for Anthony Joshua’s are pa dollars. Liam’s
utility function is as follows:

u(l, a) = (4l0.5 + 3a0.5)0.5

(a) Find Liam’s Marshallian demand. Remember that to find Marshallian demand, you
must use the utility function as the objective function, and the Liam’s budget as the
constraint.
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(b) Categorize Lomanchenko’s and Anthony Joshua’s tickets as normal or inferior
goods. Note that, a normal good is mathematically defined as a good such that the
Marshallian demand increases when income (here, D dollars) increases. An inferior
good is a good such that the Marshallian demand decreases as income increases

(c) What happens to the Marshallian demand for Lomanchenko’s tickets when pl
decreases? Right down your answer in terms of l, a, and D. Specify if the demand
would increase, decrease, or not change.

(d) Find Liam’s Hicksian demand. Remember that to find Hicksian demand, you must
use Liam’s budget as the objective function, and the utility function as the constraint
by fixing U = (4l0.5 + 3a0.5)0.5.

(e) What is the substitution effect for Anthony Joshua’s demand when pl changes?
Remember, the substitution effect is mathematically defined as the change in
Hicksian demand due to a change in price. In this case, how does Anthony’s
Hicksian demand change due to a change in pa?
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INTEGRATION

Chapter 3

3.1Ĳ Definition of the Integral

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

For Questions 1 through 3, we want you to develop an understanding of the model we are using to define
an integral: we approximate the area under a curve by bounding it between rectangles. Later, we will learn
more sophisticated methods of integration, but they are all based on this simple concept.

Q[1]: hint answer solution
Give a range of possible values for the shaded area in the picture below.

x

y

1 3

0.75
1.25

Q[2]: hint answer solution
Give a range of possible values for the shaded area in the picture below.
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x

y

1 2 3 4

0.75
1.25

0.25

2.25
1.75

Q[3]: hint answer solution

Using rectangles, find a lower and upper bound for
ż 3

1

1
2x dx that differ by at most 0.2

square units.

x

y

y = 1
2x

1 3

In Questions 4 through 8, we practice using sigma notation. There are many ways to write a given sum in
sigma notation. You can practice finding several, and deciding which looks the clearest.

Q[4]: hint answer solution
Express the following sums in sigma notation:

(a) 3 + 4 + 5 + 6 + 7

(b) 6 + 8 + 10 + 12 + 14

(c) 7 + 9 + 11 + 13 + 15

(d) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15

Q[5]: hint answer solution
Express the following sums in sigma notation:
(a) 1

3 +
1
9 +

1
27 +

1
81

(b) 2
3 +

2
9 +

2
27 +

2
81

(c) ´2
3 +

2
9 ´ 2

27 +
2

81
(d) 2

3 ´ 2
9 +

2
27 ´ 2

81
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Q[6]: hint answer solution
Express the following sums in sigma notation:

(a) 1
3 +

1
3 +

5
27 +

7
81 +

9
243

(b) 1
5 +

1
11 +

1
29 +

1
83 +

1
245

(c) 1000 + 200 + 30 + 4 + 1
2 +

3
50 +

7
1000

Q[7]: hint answer solution
Evaluate the following sums. You might want to use the formulas from Theorems 3.1.5
and 3.1.6 in the text.

(a)
100
ÿ

i=0

(
3
5

)i

(b)
100
ÿ

i=50

(
3
5

)i

(c)
10
ÿ

i=1

(
i2 ´ 3i + 5

)

(d)
b
ÿ

n=1

[(
1
e

)n
+ en3

]
, where b is some integer greater than 1.

Q[8]: hint answer solution
Evaluate the following sums. You might want to use the formulas from Theorem 3.1.6 in
the text.

(a)
100
ÿ

i=50

(i´ 50) +
50
ÿ

i=0

i

(b)
100
ÿ

i=10

(i´ 5)3

(c)
11
ÿ

n=1

(´1)n

(d)
11
ÿ

n=2

(´1)2n+1

Questions 9 through 12 are meant to give you practice interpreting the formulas in Definition 3.1.10 of the
text. The formulas might look complicated at first, but if you understand what each piece means, they are
easy to learn.
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Q[9]: hint answer solution
In the picture below, draw in the rectangles corresponding to the right Riemann sum

4
ÿ

i=1

b´ a
4

¨ f
(

a + i
b´ a

4

)
.

x

y

ba

y = f (x)

Q[10](˚): hint answer solution
4
ÿ

k=1

f (1 + k) ¨ 1 is a right Riemann sum for a function f (x) on the interval [a, b] with n

subintervals. Find the values of a, b and n.

Q[11]: hint answer solution
Draw a picture illustrating the area given by the following right Riemann sum.

3
ÿ

i=1

2 ¨ (5 + 2i)2

Q[12](˚): hint answer solution
Fill in the blanks with an interval and a value of n.

3
ř

k=0
f (1.5 + k) ¨ 1 is a right Riemann sum for f on the interval [ , ] with n = .

Q[13]: hint answer solution
Evaluate the following integral by interpreting it as a signed area, and using geometry:

ż 5

0
x dx
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Q[14]: hint answer solution
Evaluate the following integral by interpreting it as a signed area, and using geometry:

ż 5

´2
x dx

§§ Stage 2

Q[15](˚): hint answer solution
Use sigma notation to write the right Riemann sum for f (x) = x8 on [5, 15] with n = 50.
Do not evaluate the Riemann sum.

Q[16](˚): hint answer solution

Let f be a function on the whole real line. Express
ż 7

´1
f (x) dx as a limit of right Riemann

sums.

Q[17](˚): hint answer solution
The value of the following limit is equal to the area below a graph of y = f (x), integrated
over the interval [0, b]:

lim
nÑ8

n
ÿ

i=1

4
n

[
sin
(

2 +
4i
n

)]2

Find f (x) and b.

Q[18](˚): hint answer solution
For a certain function f (x), the following equation holds:

lim
nÑ8

n
ÿ

k=1

k
n2

c

1´ k2

n2 =

ż 1

0
f (x) dx

Find f (x).

Q[19](˚): hint answer solution

Express lim
nÑ8

n
ÿ

i=1

3
n

e´i/n cos
(

3i
n

)
as a definite integral.

Q[20](˚): hint answer solution

Let Rn =
n
ÿ

i=1

iei/n

n2 . Express lim
nÑ8

Rn as a definite integral. Do not evaluate this integral.

Q[21](˚): hint answer solution

Express lim
nÑ8

( n
ÿ

i=1

e´1´2i/n ¨ 2
n

)
as an integral in three different ways.
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Questions 22 and 23 use the formula for a geometric sum, Equation 3.1.3 in the text.

Q[22]: hint answer solution
Evaluate the sum 1 + r3 + r6 + r9 + ¨ ¨ ¨+ r3n.

Q[23]: hint answer solution
Evaluate the sum r5 + r6 + r7 + ¨ ¨ ¨+ r100.

Remember that a definite integral is a signed area between a curve and the x-axis. We’ll spend a lot of
time learning strategies for evaluating definite integrals, but we already know lots of ways to find area of
geometric shapes. In Questions 24 through 29, use your knowledge of geometry to find the signed areas
described by the integrals given.

Q[24](˚): hint answer solution

Evaluate
ż 2

´1
|2x| dx.

Q[25]: hint answer solution
Evaluate the following integral by interpreting it as a signed area, and using geometry:

ż 5

´3
|t´ 1|dt

Q[26]: hint answer solution
Evaluate the following integral by interpreting it as a signed area, and using geometry:

ż b

a
x dx

where 0 ď a ď b.

Q[27]: hint answer solution
Evaluate the following integral by interpreting it as a signed area, and using geometry:

ż b

a
x dx

where a ď b ď 0.

Q[28]: hint answer solution
Evaluate the following integral by interpreting it as a signed area, and using geometry:

ż 4

0

a

16´ x2 dx
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Q[29](˚): hint answer solution

Use elementary geometry to calculate
ż 3

0
f (x) dx, where

f (x) =

#

x, if x ď 1,
1, if x ą 1.

Q[30](˚): hint answer solution
A car’s gas pedal is applied at t = 0 seconds and the car accelerates continuously until
t = 2 seconds. The car’s speed at half-second intervals is given in the table below. Find
the best possible upper estimate for the distance that the car traveled during these two
seconds.

t (s) 0 0.5 1.0 1.5 2

v (m/s) 0 14 22 30 40

Q[31]: hint answer solution
True or false: the answer you gave for Question 30 is definitely greater than or equal to
the distance the car travelled during the two seconds in question.

§§ Stage 3

Q[32](˚): hint answer solution
(a) Express

lim
nÑ8

n
ÿ

i=1

2
n

d

4´
(
´2 +

2i
n

)2

as a definite integal.
(b) Evaluate the integral of part (a).
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Q[33](˚): hint answer solution
Consider the integral:

ż 3

0
(7 + x3) dx. (˚)

Write down the expression for the right Riemann sum with n intervals and calculate the
sum. Now take the limit n Ñ 8 in your expression for the Riemann sum, to evaluate the
integral (˚) exactly.
You may use the identity

n
ÿ

i=1

i3 =
n4 + 2n3 + n2

4

Q[34](˚): hint answer solution

Using a limit of right Riemann sums, evaluate
ż 4

2
x2 dx.

You may use the formulas
n
ř

i=1
i = n(n+1)

2 and
n
ř

i=1
i2 = n(n+1)(2n+1)

6 .

Q[35](˚): hint answer solution

Find
ż 2

0
(x3 + x) dx using the definition of the definite integral. You may use the summa-

tion formulas
n
ř

i=1
i3 = n4+2n3+n2

4 and
n
ř

i=1
i = n2+n

2 .

Q[36](˚): hint answer solution

Using a limit of right Riemann sums, evaluate
ż 4

1
(2x´ 1) dx. Do not use

anti-differentiation, except to check your answer.* You may use the formula
n
ř

i=1
i = n(n+1)

2 .

* You’ll learn about using anti-differentiation starting in Section 3.3 of the text. You can also check your
answer using geometry.

Q[37]: hint answer solution
Give a function f (x) that has the following expression as a right Riemann sum when
n = 10, ∆(x) = 10 and a = ´5:

10
ÿ

i=1

3(7 + 2i)2 sin(4i) .
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Q[38]: hint answer solution
Using the method of Example 3.1.2 in the text, evaluate

ż 1

0
2x dx

Q[39]: hint answer solution

(a) Using the method of Example 3.1.2 in the text, evaluate
ż b

a
10x dx

(b)

Using your answer from above, make a guess for
ż b

a
cx dx

where c is a positive constant. Does this agree with Question 38?

Q[40]: hint answer solution

Evaluate
ż a

0

a

1´ x2 dx using geometry, if 0 ď a ď 1.

Q[41]: hint answer solution
A square blanket is crocheted, starting from the centre and working out, with stitches
placed as perimeters of ever-increasing squares (called “rounds”). The first round has
one stitch on each side; the second round has three stitches on each side; the third round
has five stitches on each side; and so on, with side lengths increasing by 2 every time.

In the diagram below, each x represents one stitch.

x
xxx

xxxxx
xxxxxxx

xxxxxxxxx

x
x
x
x

x
x
x
x
x

x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x

x
x x x

x x x x x
x x x x x x x

x x x x x x x x x

x
x
x
x

x
x
x
x
x

x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x

A blanket is made in this manner, with the outside having a side length of 299 stitches.

(a) How many rounds are in the blanket?

(b) How many stitches are in the blanket?
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(c) During which round does the crocheter make reach the halfway point? That is,
during which round are there an equal number of stitches that have and have not
been made?

3.2Ĳ Basic properties of the definite integral

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
For each of the following properties of definite integrals, draw a picture illustrating the
concept, interpreting definite integrals as areas under a curve.
For simplicity, you may assume that a ď c ď b, and that f (x), g(x) give positive values.

(a)
ż a

a
f (x)dx = 0 (Theorem 3.2.3.a in the text)

(b)
ż b

a
f (x)dx =

ż c

a
f (x)dx +

ż b

c
f (x)dx (Theorem 3.2.3.c in the text)

(c)
ż b

a
( f (x) + g(x)) dx =

ż b

a
f (x)dx +

ż b

a
g(x)dx (Theorem 3.2.1.a in the text)

Q[2]: hint answer solution

If
ż b

0
cos x dx = sin b, then what is

ż b

a
cos x dx?

Q[3](˚): hint answer solution
Decide whether each of the following statements is true or false. If false, provide a
counterexample. If true, provide a brief justification. (Assume that f (x) and g(x) are
continuous functions.)

(a)
ż ´2

´3
f (x)dx = ´

ż 2

3
f (x)dx.

(b) If f (x) is an odd function, then
ż ´2

´3
f (x)dx =

ż 3

2
f (x)dx.

(c)
ż 1

0
f (x) ¨ g(x) dx =

ż 1

0
f (x) dx ¨

ż 1

0
g(x) dx.
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Q[4]: hint answer solution
Suppose we want to make a right Riemann sum with 100 intervals to approximate
0
ş

5
f (x) dx, where f (x) is a function that gives only positive values.

(a) What is ∆x?
(b) Are the heights of our rectangles positive or negative?
(c) Is our Riemann sum positive or negative?
(d) Is the signed area under the curve y = f (x) from x = 0 to x = 5 positive or negative?

Q[5]: hint answer solution
The function y = g(x) is sketched below, with the areas of different regions given. Use

the sketch to evaluate
ż b

a
g(x)dx.

x

y

a b

A1

A2

A3

A4

§§ Stage 2

Q[6](˚): hint answer solution

Suppose
ż 3

2
f (x)dx = ´1 and

ż 3

2
g(x)dx = 5. Evaluate

ż 3

2

(
6 f (x)´ 3g(x)

)
dx.

Q[7](˚): hint answer solution

If
ż 2

0
f (x)dx = 3 and

ż 2

0
g(x)dx = ´4, calculate

ż 2

0

(
2 f (x) + 3g(x)

)
dx.

Q[8](˚): hint answer solution
The functions f (x) and g(x) obey

ż ´1

0
f (x)dx = 1

ż 2

0
f (x)dx = 2

ż 0

´1
g(x)dx = 3

ż 2

0
g(x)dx = 4

Find
ş2
´1

[
3g(x)´ f (x)

]
dx.

Q[9]: hint answer solution
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In Question 40, Section 1.1, we found that
ż a

0

a

1´ x2 dx =
π

4
´ 1

2
arccos(a) +

1
2

a
a

1´ a2

when 0 ď a ď 1.

Using this fact, evaluate the following:

(a)
ż 0

a

a

1´ x2 dx, where ´1 ď a ď 0

(b)
ż 1

a

a

1´ x2 dx, where 0 ď a ď 1

Q[10](˚): hint answer solution

Evaluate
ż 2

´1
|2x| dx.

You may use the result from Example 3.2.5 in the text that
b
ş

a
x dx = b2´a2

2 .

Q[11]: hint answer solution
Use the inequality x2 ď x on the interval [0, 1], and Theorem 3.2.12, to give an upper
bound for the value

ş1
0 ex2

dx.

Q[12]: hint answer solution

Evaluate
ż 5

´5
x|x| dx .

Q[13]: hint answer solution

Suppose f (x) is an even function and
ż 2

´2
f (x)dx = 10. What is

ż 0

´2
f (x)dx?

§§ Stage 3

Q[14](˚): hint answer solution

Evaluate
ż 2

´2

(
5 +

a

4´ x2
)

dx.

Q[15]: hint answer solution
For nonnegative values of x, the following two inequalities hold:

(a) sin x ď x (b) sin x ď 1

On the interval [0, 1], it is additionally true that sin x ě 0.

Using (a), we see sin2 x = sin x ¨ sin x ď x sin x on the interval [0, 1]. Using (b), we see
sin2 x = sin x ¨ sin x ď sin x on [0, 1].

Which of the two inequalities above gives a more useful bound for the integral below?
ż 1

0
sin2 xdx
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Q[16](˚): hint answer solution

Evaluate
ż +2012

´2012

sin x
log(3 + x2)

dx.

Q[17](˚): hint answer solution

Evaluate
ż +2012

´2012
x1/3 cos x dx.

Q[18]: hint answer solution

Evaluate
ż 6

0
(x´ 3)3 dx .

Q[19]: hint answer solution
We want to compute the area of an ellipse, (ax)2 + (by)2 = 1 for some (let’s say positive)
constants a and b.

(a) Solve the equation for the upper half of the ellipse. It should have the form “y = ¨ ¨ ¨ ”
(b) Write an integral for the area of the upper half of the ellipse. Using properties of

integrals, make the integrand look like the upper half of a circle.

(c) Using geometry and your answer to part (b), find the area of the ellipse.

Q[20]: hint answer solution
Fill in the following table: the product of an (even/odd) function with an (even/odd)
function is an (even/odd) function. You may assume that both functions are defined for
all real numbers.

ˆ even odd
even
odd

Q[21]: hint answer solution
Suppose f (x) is an odd function and g(x) is an even function, both defined at x = 0. What
are the possible values of f (0) and g(0)?

Q[22]: hint answer solution
Suppose f (x) is a function defined on all real numbers that is both even and odd. What
could f (x) be?

Q[23]: hint answer solution
Is the derivative of an even function even or odd? Is the derivative of an odd function
even or odd?

§§ Open-Ended Questions

Q[24]: hint answer solution
Explain how you might use Theorem 3.2.12 to check your work, after computing a partic-
ularly difficult definite integral.
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Q[25]: hint answer solution

(a) Suppose a function is symmetric about the line x = c, for some constant c. Extend
Theorem 3.2.11 to include this case.

(b) Give a definition analogous to Definition 3.2.8 to describe a function that is
“symmetric but upside-down” across the line x = c, for some constant c. (When
c = 0, this simply described an odd function. When c ‰ 0, this looks like an odd
function that has been moved to the left or right.) Your definition should include the
constant c.

(c) Extend Theorem 3.2.11 to include the case from part (b) above.

3.3Ĳ The Fundamental Theorem of Calculus

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): hint answer solution

Suppose that f (x) is a function and F(x) = e(x2´3) + 1 is an antiderivative of f (x). Evalu-

ate the definite integral
ż

?
5

1
f (x)dx.

Q[2](˚): hint answer solution
For the function f (x) = x3 ´ sin 2x, find its antiderivative F(x) that satisfies F(0) = 1.

Q[3](˚): hint answer solution
Decide whether each of the following statements is true or false. Provide a brief
justification.

(a) If f (x) is continuous on [1, π] and differentiable on (1, π), then
ż π

1
f 1(x)dx = f (π)´ f (1).

(b)
ż 1

´1

1
x2 dx = 0.

(c) If f is continuous on [a, b] then
ż b

a
x f (x)dx = x

ż b

a
f (x)dx.

Q[4]: hint answer solution

True or false: an antiderivative of
1
x2 is ln(x2).

Q[5]: hint answer solution

True or false: an antiderivative of cos(ex) is sin(ex)
ex .
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Q[6]: hint answer solution

Suppose F(x) =

ż x

7
sin(t2) dt. What is the instantaneous rate of change of F(x) with

respect to x?

Q[7]: hint answer solution

Suppose F(x) =
ż x

2
e1/t dt. What is the slope of the tangent line to y = F(x) when x = 3?

Q[8]: hint answer solution
Suppose F1(x) = f (x). Give two different antiderivatives of f (x).

Q[9]: hint answer solution
In Question 40, Section 1.1, we found that

ż a

0

a

1´ x2 dx =
π

4
´ 1

2
arccos(a) +

1
2

a
a

1´ a2.

(a) Verify that
d
da

"

π

4
´ 1

2
arccos(a) +

1
2

a
a

1´ a2
*

=
a

1´ a2.

(b) Find a function F(x) that satisfies F1(x) =
?

1´ x2 and F(0) = π.

Q[10]: hint answer solution
Evaluate the following integrals using the Fundamental Theorem of Calculus Part 2, or
explain why it does not apply.

(a)
ż π

´π
cos x dx.

(b)
ż π

´π
sec2 x dx.

(c)
ż 0

´2

1
x + 1

dx.

Questions 11 through 14 are meant to help reinforce key ideas in the Fundamental Theorem of Calculus and
its proof.

Q[11]: hint answer solution
As in the proof of the Fundamental Theorem of Calculus, let F(x) =

şx
a f (t) dt. In the

diagram below, shade the area corresponding to F(x + h)´ F(x).

t

y

a x x + h

y = f (t)
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Q[12]: hint answer solution

Let F(x) =
ż x

0
f (t)dt, where f (t) is shown in the graph below, and 0 ď x ď 4.

(a) Is F(0) positive, negative, or zero?
(b) Where is F(x) increasing and where is it decreasing?

t

y

1 2 3 4

y = f (t)

Q[13]: hint answer solution

Let G(x) =
ż 0

x
f (t)dt, where f (t) is shown in the graph below, and 0 ď x ď 4.

(a) Is G(0) positive, negative, or zero?
(b) Where is G(x) increasing and where is it decreasing?

t

y

1 2 3 4

y = f (t)

Q[14]: hint answer solution

Let F(x) =
ż x

a
t dt. Using the definition of the derivative, find F1(x).

Q[15]: hint answer solution
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INTEGRATION 3.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Give a continuous function f (x) so that F(x) =
ż x

0
f (t)dt is a constant.

So far, we have been able to guess many antiderivatives. Often, however, antiderivatives are very difficult
to guess. In Questions 16 through 19, we will find some antiderivatives that might appear in a table of
integrals. Coming up with the antiderivative might be quite difficult (strategies to do just that will form a
large part of this semester), but verifying that your antiderivative is correct is as simple as differentiating.

Q[16]: hint answer solution
Evaluate and simplify d

dxtx ln(ax)´ xu, where a is some constant. What antiderivative does
this tell you?

Q[17]: hint answer solution
Evaluate and simplify d

dxtex (x3 ´ 3x2 + 6x´ 6
)u. What antiderivative does this tell you?

Q[18]: hint answer solution

Evaluate and simplify d
dx

!

ln
ˇ

ˇ

ˇ
x +

?
x2 + a2

ˇ

ˇ

ˇ

)

, where a is some constant. What antideriva-
tive does this tell you?

Q[19]: hint answer solution

Evaluate and simplify
d
dx

"

b

x(a + x)´ a ln
(?

x +
?

a + x
)*

, where a is some constant.

What antiderivative does this tell you?

§§ Stage 2

Q[20](˚): hint answer solution

Evaluate
ż 2

0

(
x3 + sin x)dx.

Q[21](˚): hint answer solution

Evaluate
ż 2

1

x2 + 2
x2 dx.

Q[22]: hint answer solution

Evaluate
ż

1
1 + 25x2 dx.

Q[23]: hint answer solution

Evaluate
ż

1?
2´ x2

dx.

Q[24]: hint answer solution

Evaluate
ż

tan2 x dx.
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Q[25]: hint answer solution

Evaluate
ż

3 sin x cos x dx.

Q[26]: hint answer solution

Evaluate
ż

cos2 x dx.

Q[27](˚): hint answer solution
If

F(x) =
ż x

0
ln(2 + sin t)dt and G(y) =

ż 0

y
ln(2 + sin t)dt

find F1
(

π
2

)
and G1

(
π
2

)
.

Q[28](˚): hint answer solution

Let f (x) =
ż x

1
100(t2 ´ 3t + 2)e´t2

dt. Find the interval(s) on which f is increasing.

Q[29](˚): hint answer solution

If F(x) =
ż cos x

0

1
t3 + 6

dt, find F1(x).

Q[30](˚): hint answer solution

Compute f 1(x) where f (x) =
ż 1+x4

0
et2

dt.

Q[31](˚): hint answer solution

Evaluate
d
dx

#

ż sin x

0
(t6 + 8)dt

+

.

Q[32](˚): hint answer solution

Let F(x) =
ż x3

0
e´t sin

(
πt
2

)
dt. Calculate F1(1).

Q[33](˚): hint answer solution

Find
d
du

#

ż 0

cos u

dt
1 + t3

+

.

Q[34](˚): hint answer solution

Find f (x) if x2 = 1 +
ż x

1
f (t) dt.

Q[35](˚): hint answer solution

If x sin(πx) =
ż x

0
f (t)dt where f is a continuous function, find f (4).
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Q[36](˚): hint answer solution

Consider the function F(x) =
ż x2

0
e´t dt +

ż 0

´x
e´t2

dt.

(a) Find F1(x).

(b) Find the value of x for which F(x) takes its minimum value.

Q[37](˚): hint answer solution

If F(x) is defined by F(x) =
ż x

x4´x3
esin t dt, find F1(x).

Q[38](˚): hint answer solution

Evaluate
d
dx

"
ż ´x2

x5
cos

(
et)dt

*

.

Q[39](˚): hint answer solution

Differentiate
ż ex

x

?
sin t dt.

Q[40](˚): hint answer solution

Evaluate
ż 5

1
f (x)dx, where f (x) =

#

3 if x ď 3
x if x ě 3

.

§§ Stage 3

Q[41](˚): hint answer solution

If f 1(1) = 2 and f 1(2) = 3, find
ż 2

1
f 1(x) f 2(x)dx.

Q[42](˚): hint answer solution
A car traveling at 30 m/s applies its brakes at time t = 0, its velocity (in m/s) decreasing
according to the formula v(t) = 30´ 10t. How far does the car go before it stops?

Q[43](˚): hint answer solution

Compute f 1(x) where f (x) =
ż 2x´x2

0
ln
(
1+ et)dt. Does f (x) have an absolute maximum?

Explain.

Q[44](˚): hint answer solution

Find the minimum value of
ż x2´2x

0

dt
1 + t4 . Express your answer as an integral.

Q[45](˚): hint answer solution

Define the function F(x) =

ż x2

0
sin(

?
t)dt on the interval 0 ă x ă 4. On this interval,

where does F(x) have a maximum?

Q[46](˚): hint answer solution
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Evaluate lim
nÑ8

π

n

n
ÿ

j=1

sin
(

jπ
n

)
by interpreting it as a limit of Riemann sums.

Q[47](˚): hint answer solution

Use Riemann sums to evaluate the limit lim
nÑ8

1
n

n
ÿ

j=1

1

1 + j
n

.

Q[48]: hint answer solution

Below is the graph of y = f (t), ´5 ď t ď 5. Define F(x) =
ż x

0
f (t) dt for any x in [´5, 5].

Sketch F(x).

x

y

y = f (x)

´5 ´3 ´1 1 3 5

Q[49](˚): hint answer solution

Define f (x) = x3
ż x3+1

0
et3

dt.

(a) Find a formula for the derivative f 1(x). (Your formula may include an integral sign.)

(b) Find the equation of the tangent line to the graph of y = f (x) at x = ´1.

Q[50]: hint answer solution
Two students calculate

ş

f (x) dx for some function f (x).

• Student A calculates
ş

f (x) dx = tan2 x + x + C

• Student B calculates
ş

f (x) dx = sec2 x + x + C

• It is a fact that d
dxttan2 xu = f (x)´ 1

Who ended up with the correct answer?
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Q[51]: hint answer solution

Let F(x) =
ż x

0
x3 sin(t) dt.

(a) Evaluate F(3).
(b) What is F1(x)?

Q[52]: hint answer solution
Let f (x) be an even function, defined everywhere, and let F(x) be an antiderivative of
f (x). Is F(x) even, odd, or not necessarily either one? (You may use your answer from
Section 1.2, Question 23. )

Q[53]: hint answer solution
The following graph portrays the supply and demand functions for the Canadian TV
market: S(q) = eq ´ 1 and D(q) = 10

q+1 . The price where the supply function and the
demand function meet is known as the equilibrium price, denoted by pe in this example.
The quantity where the supply function and the demand function meet is known as the
equilibrium quantity, denoted by qe in this example. We think of qe as the total amount of
products bought at pe dollars.

Quantity q

Price p

C

P

qe

pe

market for TVs in Canada

S(q) = eq ´ 1

D(q) = 10
q+1

(a) When TVs are each sold at a market price of pe, then consumers who would have
been willing to buy some of them at a higher price gain some benefit. They pay only
pe for a TV that, to them, is worth more than that.

The Consumer Surplus measures the difference between the price consumers are
willing to pay for the TV and the price they actually pay for it. It is calculated as the
area above the line p = pe and below the demand curve, from q = 0 to q = qe (area C
in the figure above).

Find the Consumer Surplus in the Canadian TV market. You may leave your answer
in terms of qe and pe.

(b) When TVs are each sold at a market price of pe, then producers who would have
been willing to sell some of them at a lower price gain some benefit.

The Producer Surplus measures the difference between the amount producers are
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willing to accept for a TV and the amount they actually receive. It is calculated as the
area above the supply curve and below the line p = pe, from q = 0 to q = qe (area P
in the figure above).

Find the Producer Surplus in the Canadian TV market. You may leave your answer
in terms of qe and pe.

(c) The Total Surplus is the sum of the Consumer Surplus and the Producer Surplus.
Find the Total Surplus in the Canadian TV Market. You may leave your answer in
terms of qe and pe.

Q[54]: hint answer solution
In this question, we’ll investigate the Gini coefficient. The Gini Coefficient helps
economists measure the level of inequality in a country (or, more generally, among a
population).

In the graphs below, the x-axis represents the population percentage, while the y-axis
represents the cumulative percentage wealth shared. The Lorenz curve L(x) represents a
country’s income distribution. Specifically, L(x) gives the percentage of the country’s
wealth belonging to the poorest x percent of the population. For example, L(0.6) = 0.2
means that the poorest 60% of the population possess only 20% of the total wealth.

In a situation of perfect equality, where every individual owns the same amount of
wealth, the distribution curve would be the straight line y = x.

Population Percentage

W
ea

lt
h

Pe
rc

en
ta

ge
Sh

ar
e

A

B

100%

100%

The Lorenz Curve

Equali
ty

Lin
e y =

x L(x)

Population Percentage

W
ea

lt
h

Pe
rc

en
ta

ge
Sh

ar
e

100%

100%

Peruvian Lorenz Curve

Equali
ty

Lin
e y =

x

L(x) = x6+x2

2

A is the area between the equality line y = x and the Lorenz curve L(x). B is the area

under L(x). The Gini coefficient is calculated by
A

A + B
. The higher the Gini coefficient,

the higher the inequality.

(a) Using integrals, define the general formula to find the Gini Coefficient. Refer to the
Lorenz curve as L(x). Use ratios instead of percentages (for example, 0.5 instead of
50%).

(b) If a country has perfect equality in wealth distribution, what is its Gini coefficient?

(c) Peru has a Lorenz curve of L(x) =
x6 + x2

2
. Find its Gini Coefficient.
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Q[55]: hint answer solution
Total Cost, TC(q), is the the cost of producing q of units. Total Cost is the sum of Fixed
Cost (FC) and Variable Cost (VC).

TC = FC + VC

The Fixed Cost is defined as all expenses that do not change with quantity (for example,
rent on a factory space, which is the same whether you make 1 or 1000 units). FC is a
(generally nonzero) constant, and is equal to TC(0), the costs incurred before before the
first unit is produced.

Variable Cost, VC(q) consists of expenses that depend on quantity (for example, raw
materials: producing more units means using more raw materials). Variable cost is a
function of the quantity of units that are made, q.

Marginal Cost is the cost of producing one extra unit of output. It includes, for example,
the costs of raw materials and labour that go into making each unit. We write Marginal
Cost as a function of the quantity q of units that have already been made, MC(q).
Thinking of MC as the rate of change of TC, we define

MC =
d
dq

TC

(a) If a company has MC = 1
q+1 + q + 2, and FC of 1, 000 dollars, find its TC function and

its Total Cost to produce 2, 000 units.

(b) If a company has MC = 40´ 10q + eq

10 , and FC of 50, 000 dollars, find its TC function
its Total Cost to produce 10 units.

Q[56]: hint answer solution
Marginal Revenue (MR) is the extra Total Revenue (TR) gained by producing one extra
unit of output. We define MR as:

MR =
d(TR)

dq

where the independent variable q gives units of output. If q = 0, then TR = 0, as no
products are being sold.

The unit price P of a product is TR divided by the amount of units sold, P = TR
q . Use this

information to solve the next two questions.

(a) If a company has MR = cos (q) +
q
5
+ 2, find the TR function and the price at which

each unit is sold.

(b) If a company has MR =
eq

1000
+

1
2
?q

, find the TR function and the price at which

each unit is sold.
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3.4Ĳ Substitution

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution

(a) True or False:
ż

sin(ex) ¨ ex dx =

ż

sin(u) du
ˇ

ˇ

ˇ

ˇ

u=ex
= ´ cos(ex) + C

(b) True or False:
ż 1

0
sin(ex) ¨ ex dx =

ż 1

0
sin(u) du = 1´ cos(1)

Q[2]: hint answer solution
Is the following reasoning sound? If not, fix it.

Problem: Evaluate
ż

(2x + 1)2dx.

Work: We use the substitution u = 2x + 1. Then:
ż

(2x + 1)2dx =

ż

u2 du

=
1
3

u3 + C

=
1
3
(2x + 1)3 + C

Q[3]: hint answer solution
Is the following reasoning sound? If not, fix it.

Problem: Evaluate
ż π

1

cos(ln t)
t

dt.

Work: We use the substitution u = ln t, so du = 1
t dt. Then:

ż π

1

cos(ln t)
t

dt =
ż π

1
cos(u)du

= sin(π)´ sin(1) = ´ sin(1) .

Q[4]: hint answer solution
Is the following reasoning sound? If not, fix it.

Problem: Evaluate
ż π/4

0
x tan(x2) dx.
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Work: We begin with the substitution u = x2, du = 2xdx:

ż π/4

0
x tan(x2) dx =

ż π/4

0

1
2

tan(x2) ¨ 2xdx

=

ż π2/16

0

1
2

tan u du

=
1
2

ż π2/16

0

sin u
cos u

du

Now we use the substitution v = cos u, dv = ´ sin u du:

=
1
2

ż cos(π2/16)

cos 0
´1

v
dv

= ´1
2

ż cos(π2/16)

1

1
v

dv

= ´1
2
[ln |v|]cos(π2/16)

1

= ´1
2

(
ln
(

cos(π2/16)
)
´ ln(1)

)
= ´1

2
ln
(

cos(π2/16)
)

Q[5](˚): hint answer solution
What is the integral that results when the substitution u = sin x is applied to the integral
ż π/2

0
f (sin x)dx?

Q[6]: hint answer solution
Let f and g be functions that are continuous and differentiable everywhere. Simplify

ż

f 1(g(x))g1(x) dx´ f (g(x)).

§§ Stage 2

Q[7](˚): hint answer solution

Use substitution to evaluate
ż 1

0
xex2

cos(ex2
)dx.

Q[8](˚): hint answer solution

Let f (t) be any function for which
ż 8

1
f (t)dt = 1. Calculate the integral

ż 2

1
x2 f (x3)dx.
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Q[9](˚): hint answer solution

Evaluate
ż

x2

(x3 + 1)101 dx.

Q[10](˚): hint answer solution

Evaluate
ż e4

e

dx
x ln x

.

Q[11](˚): hint answer solution

Evaluate
ż π/2

0

cos x
1 + sin x

dx.

Q[12](˚): hint answer solution

Evaluate
ż π/2

0
cos x ¨ (1 + sin2 x)dx.

Q[13](˚): hint answer solution

Evaluate
ż 3

1
(2x´ 1)ex2´x dx.

Q[14](˚): hint answer solution

Evaluate
ż

(x2 ´ 4)x?
4´ x2

dx.

Q[15]: hint answer solution

Evaluate
ż

e
?

ln x

2x
?

ln x
dx .

§§ Stage 3

Q[16](˚): hint answer solution

Calculate
ż 2

´2
xex2

dx.

Q[17](˚): hint answer solution

Calculate lim
nÑ8

n
ÿ

j=1

j
n2 sin

(
1 +

j2

n2

)
.
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Questions 18 through 22 can be solved by substitution, but it may not be obvious which substitution will
work. In general, when evaluating integrals, it is not always immediately clear which methods are appropri-
ate. If this happens to you, don’t despair, and definitely don’t give up! Just guess a method and try it. Even
if it fails, you’ll probably learn something that you can use to make a better guess.1

Q[18]: hint answer solution

Evaluate
ż 1

0

u3

u2 + 1
du.

Q[19]: hint answer solution

Evaluate
ż

tan3 θ dθ .

Q[20]: hint answer solution

Evaluate
ż

1
ex + e´x dx

Q[21]: hint answer solution

Evaluate
ż 1

0
(1´ 2x)

a

1´ x2 dx

Q[22]: hint answer solution

Evaluate
ż

tan x ¨ ln (cos x)dx

Q[23](˚): hint answer solution

Evaluate lim
nÑ8

n
ÿ

j=1

j
n2 cos

(
j2

n2

)
.

Q[24](˚): hint answer solution

Calculate lim
nÑ8

n
ÿ

j=1

j
n2

c

1 +
j2

n2 .

Q[25]: hint answer solution
Using Riemann sums, prove that

ż b

a
2 f (2x)dx =

ż 2b

2a
f (x)dx

Q[26]: hint answer solution
Total Cost, TC(q), is the the cost of producing q of units. Total Cost is the sum of Fixed
Cost (FC) and Variable Cost (VC).

TC = FC + VC

1 This is also pretty decent life advice.
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The Fixed Cost is defined as all expenses that do not change with quantity (for example,
rent on a factory space, which is the same whether you make 1 or 1000 units). FC is a
(generally nonzero) constant, and is equal to TC(0), the costs incurred before the first
unit is produced.

Variable Cost, VC(q) consists of expenses that depend on quantity (for example, raw
materials: producing more units means using more raw materials). Variable cost is a
function of the quantity of units that are made, q.

Marginal Cost is the cost of producing one extra unit of output. It includes, for example,
the costs of raw materials and labour that go into making each unit. We write Marginal
Cost as a function of the quantity q of units that have already been made, MC(q).
Thinking of MC as the rate of change of TC, we define

MC =
d
dq

TC

Marginal Revenue (MR) is the extra Total Revenue (TR) gained by producing one extra
unit of output. We define MR as:

MR =
d(TR)

dq

where the independent variable q gives units of output. If q = 0, then TR = 0, as no
products are being sold.

The unit price P of a product is TR divided by the amount of units sold, P = TR
q .

(a) A company has MC =
6q2 ´ 80

a

2q3 ´ 80q
and FC = 2, 000 dollars. Find the company’s TC

function.

(b) The same company has MR =
q3

a

q2 + 1
. Find the company’s TR function.

(c) Find the profit formula for this company.

(d) Why might this formula not apply for some small quantities q?

3.5Ĳ Integration by parts

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
The method of integration by substitution comes from the rule for
differentiation.
The method of integration by parts comes from the rule for differentiation.
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Q[2]: hint answer solution
Suppose you want to evaluate an integral using integration by parts. You choose part of
your integrand to be u, and part to be dv. The part chosen as u will be: (differentiated,
antidifferentiated). The part chosen as dv will be: (differentiated, antidifferentiated).

Q[3]: hint answer solution
Let f (x) and g(x) be differentiable functions. Using the quotient rule for differentiation,

give an equivalent expression to
ż

f 1(x)
g(x)

dx.

Q[4]: hint answer solution

Suppose we want to use integration by parts to evaluate
ż

u(x) ¨ v1(x)dx for some dif-

ferentiable functions u and v. We need to find an antiderivative of v1(x), but there are
infinitely many choices. Show that every antiderivative of v1(x) gives an equivalent final
answer.

Q[5]: hint answer solution

Suppose you want to evaluate
ż

f (x)dx using integration by parts. Explain why

dv = f (x)dx, u = 1 is generally a bad choice.

Note: compare this to Example 3.5.8 of the text, where we chose u = f (x), dv = 1dx.

§§ Stage 2

Q[6](˚): hint answer solution

Evaluate
ż

x ln x dx.

Q[7](˚): hint answer solution

Evaluate
ż

ln x
x7 dx.

Q[8](˚): hint answer solution

Evaluate
ż π

0
x sin x dx.

Q[9](˚): hint answer solution

Evaluate
ż π

2

0
x cos x dx.

Q[10]: hint answer solution

Evaluate
ż

x3exdx.

61
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Q[11]: hint answer solution

Evaluate
ż

x ln3 x dx.

Q[12]: hint answer solution

Evaluate
ż

x2 sin x dx.

Q[13]: hint answer solution

Evaluate
ż

(3t2 ´ 5t + 6) ln t dt.

Q[14]: hint answer solution

Evaluate
ż ?

se
?

sds.

Q[15]: hint answer solution

Evaluate
ż

ln2 xdx.

Q[16]: hint answer solution

Evaluate
ż

2xex2+1dx.

§§ Stage 3

Q[17](˚): hint answer solution

Evaluate
ż

4y arctan(2y)dy.

Q[18]: hint answer solution

Evaluate
ż

x2 arctan x dx.

Q[19]: hint answer solution

Evaluate
ż

2x+log2 xdx.

Q[20]: hint answer solution

Evaluate
ż

ecos x sin(2x)dx.

Q[21]: hint answer solution

Evaluate
ż

xe´x

(1´ x)2 dx.
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Q[22](˚): hint answer solution
Let R be the part of the first quadrant that lies below the curve y = arctan x and between
the lines x = 0 and x = 1.
Sketch the region R and determine its area.

Q[23](˚): hint answer solution
Let R be the region between the curves T(x) =

?
xe3x and B(x) =

?
x(1 + 2x) on the

interval 0 ď x ď 3. (It is true that T(x) ě B(x) for all 0 ď x ď 3.) Compute the volume of
the solid formed by rotating R about the x-axis.

Q[24](˚): hint answer solution

Let f (0) = 1, f (2) = 3 and f 1(2) = 4. Calculate
ż 4

0
f 2
(?

x
)

dx.

Q[25]: hint answer solution

Evaluate lim
nÑ8

n
ÿ

i=1

2
n

(
2
n

i´ 1
)

e
2
n i´1 .

Q[26]: hint answer solution
The price where the supply function and the demand function meet is known as the
equilibrium price, denoted by pe in this example. The quantity where the supply
function and the demand function meet is known as the equilibrium quantity, denoted
by qe in this example. We think of qe as the total amount of products bought at pe dollars.

When goods are each sold at a market price of pe, then consumers who would have been
willing to buy some of them at a higher price gain some benefit. They pay only pe for a
good that, to them, is worth more than that.

The Consumer Surplus measures the difference between the price consumers are willing
to pay for a product and the price they actually pay for it. It is calculated as the area
above the line p = pe and below the demand curve, from q = 0 to q = qe (area C in the
figure below).

Quantity q

Price p

C
pe

qe

Consumer Surplus

Supply

Demand
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Find the Consumer Surplus for a good whose demand function is

p(q) = 8´ 2 ln(2q + 1)

and whose equilibrium quantity is qe = 5.

Q[27]: hint answer solution
Total Cost, TC(q), is the the cost of producing q of units. Total Cost is the sum of Fixed
Cost (FC) and Variable Cost (VC).

TC = FC + VC

The Fixed Cost is defined as all expenses that do not change with quantity (for example,
rent on a factory space, which is the same whether you make 1 or 1000 units). FC is a
(generally nonzero) constant, and is equal to TC(0), the costs incurred before before the
first unit is produced.

Variable Cost, VC(q) consists of expenses that depend on quantity (for example, raw
materials: producing more units means using more raw materials). Variable cost is a
function of the quantity of units that are made, q.

Marginal Cost is the cost of producing one extra unit of output. It includes, for example,
the costs of raw materials and labour that go into making each unit. We write Marginal
Cost as a function of the quantity q of units that have already been made, MC(q).
Thinking of MC as the rate of change of TC, we define

MC =
d
dq

TC

Suppose a company has MC =
qe

q
10

100
´ q + 30 and FC of 1, 000 dollars.

(a) Find its TC function.

(b) What would be the average cost per unit when producing 10 units?

3.6Ĳ Numerical Integration

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Suppose we approximate an object to have volume 1.5m3, when its exact volume is
1.387m3. Give the relative error, absolute error, and percent error of our approximation.
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Q[2]: hint answer solution

Consider approximating
ż 10

2
f (x) dx, where f (x) is the function in the graph below.

x

y

2 10

Sketch the regions associated with Simpson’s rule approximation and n = 4.

Q[3]: hint answer solution

Let f (x) = ´ 1
12

x4 +
7
6

x3 ´ 3x2.

Find a reasonable value L such that | f (4)(x)| ď L for all 1 ď x ď 6.

Q[4]: hint answer solution
Find a reasonable value L such that |x sin x| ď L for all ´3 ď x ď 2.

Q[5]: hint answer solution

Consider the quantity A =

ż π

´π
cos x dx.

(a) Find the upper bound on the error using Simpson’s rule with n = 4 to approximate A
using Theorem 3.6.5 in the text.

(b) Find the Simpson’s rule approximation of A using n = 4.
(c) What is the (actual) absolute error in the Simpson’s rule approximation of A with

n = 4?

Q[6]: hint answer solution
Give a function f (x) such that:

• f (4)(x) ď 3 for every x in [0, 1], and

• the error using Simpson’s rule approximating
ż 1

0
f (x) dx with n = 2 intervals is

exactly
1

960
or explain why none exists.

Q[7]: hint answer solution

Give a polynomial f (x) with the property that the Simpson’s rule approximation of
ż b

a
f (x) dx
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is exact for all a, b, and n.

§§ Stage 2

Q[8]: hint answer solution

Write out the Simpson’s rule approximation of
ż 30

0

1
x3 + 1

dx with n = 6. You do not

need to simplify your expression.

Questions 9 though 13 ask you to approximate a quantity based on observed data.

Q[9](˚): hint answer solution
The solid V is 40 cm high and its horizontal cross sections are circular disks. The table
below gives the diameters of the cross sections in centimetres at 10 cm intervals. Use
Simpson’s rule to estimate the volume of V.

height 0 10 20 30 40
diameter 24 16 10 6 4

Q[10](˚): hint answer solution
A 6 metre long cedar log has cross sections that are approximately circular. The
diameters of the log, measured at one metre intervals, are given below:

metres from left end of log 0 1 2 3 4 5 6
diameter in metres 1.2 1 0.8 0.8 1 1 1.2

Use Simpson’s Rule to estimate the volume of the log.

Q[11](˚): hint answer solution
The circumference of an 8 metre high tree at different heights above the ground is given
in the table below. Assume that all horizontal cross–sections of the tree are circular disks.

height (metres) 0 2 4 6 8
circumference (metres) 1.2 1.1 1.3 0.9 0.2

Use Simpson’s rule to approximate the volume of the tree.

Q[12](˚): hint answer solution
By measuring the areas enclosed by contours on a topographic map, a geologist
determines the cross sectional areas A in m2 of a 60 m high hill. The table below gives the
cross sectional area A(h) at various heights h. The volume of the hill is V =

ş60
0 A(h)dh.

h 0 10 20 30 40 50 60
A 10,200 9,200 8,000 7,100 4,500 2,400 100

What will be the geologist’s estimate of the volume of the hill if they use Simpson’s Rule?

Q[13](˚): hint answer solution
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x

y

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7

Use Simpson’s Rule, with n = 4, to estimate the area under the graph between x = 2 and
x = 6.

In Questions 14 through 20, we practice finding error bounds for our approximations.

Q[14](˚): hint answer solution

The integral
ż 1

´1
sin(x2)dx is estimated using Simpson’s rule with 20 intervals. Show that

the absolute error in this approximation is less than 7ˆ 10´5

You may use the fact that when approximating
şb

a f (x)dx with Simpson’s Rule using n

points, the absolute value of the error is at most L(b´a)5

180n4 when
ˇ

ˇ

ˇ
f (4)(x)

ˇ

ˇ

ˇ
ď L for all x in

[a, b]. You may also use the fact that d4

dx4

[
sin(x2)

]
=
(
16x4 ´ 12

)
sin(x2)´ 48x2 cos(x2).

Q[15](˚): hint answer solution
The total error using Simpson’s rule with n subintervals to approximate the integral of

f (x) over [a, b] is bounded by
L(b´ a)5

(180n4)
, if | f (4)(x)| ď L for all a ď x ď b.

Using this bound, if the integral
ż 1

´2

1
15

x6 dx is approximated using Simpson’s rule with

60 subintervals, what is the largest possible error between the approximation and the true
value of the integral?

Q[16](˚): hint answer solution

Write down the Simpson’s Rule approximation to
ż 2

0
(x´ 3)5 dx with n = 6.

What is the error bound?

You may use the formula

|ES| ď L(b´ a)5

180n4
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where L is an upper bound for | f (4)(x)|, and ES is the absolute errors arising from
Simpson’s rule.

Q[17](˚): hint answer solution

Find a bound for the error in approximating
ż 5

1

1
x

dx using Simpson’s rule with n = 4.

Do not write down the Simpson’s rule approximation S4.

In general the error in approximating
şb

a f (x) dx using Simpson’s rule with n steps is

bounded by
L(b´ a)

180
(∆x)4 where ∆x =

b´ a
n

and L ě | f (4)(x)| for all a ď x ď b.

Q[18](˚): hint answer solution
Find a bound for the error in approximating

ż 1

0

(
e´2x + 3x3)dx

using Simpson’s rule with n = 6. Do not write down the Simpson’s rule approximation
Sn.

In general, the error in approximating
şb

a f (x) dx using Simpson’s rule with n steps is

bounded by
L(b´ a)

180
(∆x)4 where ∆x =

b´ a
n

and L ě | f (4)(x)| for all a ď x ď b.

Q[19](˚): hint answer solution

Let I =
ż 2

1
(1/x)dx.

(a) Write down the Simpson’s approximation S4 for I. You do not need to simplify your
answer.

(b) Without computing I, find an upper bound for |I ´ S4|. You may use the fact that if
ˇ

ˇ f (4)(x)
ˇ

ˇ ď L on the interval [a, b], then the error in using Sn to approximate
şb

a f (x)dx
has absolute value less than or equal to L(b´ a)5/180n4.

Q[20](˚): hint answer solution
A function s(x) satisfies s(0) = 1.00664, s(2) = 1.00543, s(4) = 1.00435, s(6) = 1.00331,

s(8) = 1.00233. Also, it is known to satisfy
ˇ

ˇs(k)(x)
ˇ

ˇ ď k
1000

for 0 ď x ď 8 and all positive
integers k.

(a) Find the best Simpson’s Rule approximation that you can for I =
ż 8

0
s(x) dx.

(b) Determine the maximum possible sizes of errors in the approximations you gave in
part (a). Recall that if a function f (x) satisfies

ˇ

ˇ f (k)(x)
ˇ

ˇ ď Kk on [a, b], then

ˇ

ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Sn

ˇ

ˇ

ˇ

ˇ

ď K4(b´ a)5

180n4
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Q[21](˚): hint answer solution

Consider Simpson’s rule for making numerical approximations to
ż b

a
f (x) dx. The error

for the Simpson’s rule satisfies |ES| ď L(b´ a)5

180n4 , where | f (4)(x)| ď L for a ď x ď b. If

´2 ă f (4)(x) ă 0 for 1 ď x ď 4, find a value of n to guarantee that Simpson’s rule will

give an approximation for
ż 4

1
f (x) dx with absolute error, |ES|, less than 0.001.

§§ Stage 3

Q[22](˚): hint answer solution
A swimming pool has the shape shown in the figure below. The vertical cross–sections of
the pool are semi–circular disks. The distances in feet across the pool are given in the
figure at 2–foot intervals along the sixteen–foot length of the pool. Use Simpson’s Rule to
estimate the volume of the pool.

10’
12’

10’
8’

6’
8’

10’

2’

Q[23](˚): hint answer solution

Simpson’s rule can be used to approximate ln 2, since ln 2 =

ż 2

1

1
x

dx.

(a) Use Simpson’s rule with 6 subintervals to approximate ln 2.
(b) How many subintervals are required in order to guarantee that the absolute error is

less than 0.00001?

Note that if En is the error using n subintervals, then |En| ď L(b´ a)5

180n4 where L is the
maximum absolute value of the fourth derivative of the function being integrated
and a and b are the end points of the interval.

Q[24](˚): hint answer solution

Let I =
ż 2

0
cos(x2) dx and let Sn be the Simpson’s rule approximation to I using n

subintervals.

(a) Estimate the maximum absolute error in using S8 to approximate I.
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(b) How large should n be in order to ensure that |I ´ Sn| ď 0.0001?

Note: The graph of f4(x), where f (x) = cos(x2), is shown below. The absolute error in

the Simpson’s rule approximation is bounded by
L(b´ a)5

180n4 when | f4(x)| ď L on the

interval [a, b].

0.5 1.0 1.5 2.0

−300

−200

−100

0

100

x

Q[25](˚): hint answer solution
Define a function f (x) and an integral I by

f (x) =
ż x2

0
sin(

?
t)dt, I =

ż 1

0
f (t)dt

Estimate how many subdivisions are needed to calculate I to five decimal places of
accuracy using Simpson’s rule.

Note that if En is the error using n subintervals, then |En| ď L(b´ a)5

180n4 , where L is the
maximum absolute value of the fourth derivative of the function being integrated and a
and b are the limits of integration.

Q[26]: hint answer solution

Let f (x) be a function2 with f (4)(x) =
x2

x + 1
.

(a) Show that | f (4)(x)| ď 1 whenever x is in the interval [0, 1].

(b) Find the maximum value of | f (4)(x)| over the interval [0, 1].

(c) Assuming L = 1, how many intervals should you use to approximate
ż 1

0
f (x) dx to

within 10´5?

(d) Using the value of L you found in (b), how many intervals should you use to

approximate
ż 1

0
f (x) dx to within 10´5?

2 For example, f (x) = 1
120 x5 ´ 1

24 x4 + (x+1)3

6 ln(x + 1) will do, but you don’t need to know what f (x) is
for this problem.
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Q[27]: hint answer solution
Approximate the function ln x with a rational function by approximating the integral
ż x

1

1
t

dt using Simpson’s rule. Your rational function f (x) should approximate ln x with

an error of not more than 0.1 for any x in the interval [1, 3].

Q[28]: hint answer solution

Using an approximation of the area under the curve
1

x2 + 1
, show that the constant

arctan 2 is in the interval
[π

4
+ 0.321,

π

4
+ 0.323

]
.

You may assume use without proof that
d4

dx4

"

1
1 + x2

*

=
24(5x4 ´ 10x2 + 1)

(x2 + 1)5 . You may

use a calculator, but only to add, subtract, multiply, and divide.

3.7Ĳ Improper Integrals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution

For which values of b is the integral
ż b

0

1
x2 ´ 1

dx improper?

Q[2]: hint answer solution

For which values of b is the integral
ż b

0

1
x2 + 1

dx improper?

Q[3]: hint answer solution

Below are the graphs y = f (x) and y = g(x). Suppose
ż 8

0
f (x) dx converges, and

ż 8

0
g(x) dx diverges. Assuming the graphs continue on as shown as x Ñ 8, which graph

is f (x), and which is g(x)?

x

y
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Note: one function is shown as a red dotted line, and the other is shown as a blue solid
line. Both functions are continuous – the dots are only there to distinguish the two
functions, not to imply discontinuities.

Q[4](˚): hint answer solution
Decide whether the following statement is true or false. If false, provide a
counterexample. If true, provide a brief justification. (Assume that f (x) and g(x) are
continuous functions.)

If
ż 8

1
f (x)dx converges and g(x) ě f (x) ě 0 for all x, then

ż 8

1
g(x)dx converges.

Q[5]: hint answer solution

Let f (x) = e´x and g(x) =
1

x + 1
. Note

ş8

0 f (x) dx converges while
ş8

0 g(x) dx diverges.

For each of the functions h(x) described below, decide whether
ş8

0 h(x) dx converges or
diverges, or whether there isn’t enough information to decide. Justify your decision.

(a) h(x), continuous and defined for all x ě 0, h(x) ď f (x).

(b) h(x), continuous and defined for all x ě 0, f (x) ď h(x) ď g(x).

(c) h(x), continuous and defined for all x ě 0, ´2 f (x) ď h(x) ď f (x).

§§ Stage 2

Q[6](˚): hint answer solution

Evaluate the integral
ż 1

0

x4

x5 ´ 1
dx or state that it diverges.

Q[7](˚): hint answer solution

Determine whether the integral
ż 2

´2

1
(x + 1)4/3 dx is convergent or divergent. If it is

convergent, find its value.

Q[8](˚): hint answer solution

Does the improper integral
ż 8

1

1?
4x2 ´ x

dx converge? Justify your answer.

Q[9](˚): hint answer solution

Does the integral
ż 8

0

dx
x2 +

?
x

converge or diverge? Justify your claim.
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Q[10]: hint answer solution

Does the integral
ż 8

´8

cos x dx converge or diverge? If it converges, evaluate it.

Q[11]: hint answer solution

Does the integral
ż 8

´8

sin x dx converge or diverge? If it converges, evaluate it.

Q[12]: hint answer solution

Evaluate
ż 8

10

x4 ´ 5x3 + 2x´ 7
x5 + 3x + 8

dx, or state that it diverges.

Q[13]: hint answer solution

Evaluate
ż 10

0

x´ 1
x2 ´ 11x + 10

dx, or state that it diverges.

Q[14](˚): hint answer solution
Determine (with justification!) which of the following applies to the integral
ż +8

´8

x
x2 + 1

dx:

(i)
ż +8

´8

x
x2 + 1

dx diverges

(ii)
ż +8

´8

x
x2 + 1

dx converges but
ż +8

´8

ˇ

ˇ

ˇ

ˇ

x
x2 + 1

ˇ

ˇ

ˇ

ˇ

dx diverges

(iii)
ż +8

´8

x
x2 + 1

dx converges, as does
ż +8

´8

ˇ

ˇ

ˇ

ˇ

x
x2 + 1

ˇ

ˇ

ˇ

ˇ

dx

Remark: these options, respectively, are that the integral diverges, converges condition-
ally, and converges absolutely. You’ll see this terminology used for series in Section 5.6 of
the text.

Q[15](˚): hint answer solution

Decide whether I =
ż 8

0

| sin x|
x3/2 + x1/2 dx converges or diverges. Justify.

§§ Stage 3

Q[16](˚): hint answer solution

What is the largest value of q for which the integral
ż 8

1

1
x5q dx diverges?

Q[17]: hint answer solution

For which values of p does the integral
ż 8

0

x
(x2 + 1)p dx converge?
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Q[18]: hint answer solution

Does the integral
ż 5

´5

(
1

a|x| +
1

a|x´ 1| +
1

a|x´ 2|

)
dx converge or diverge?

Q[19](˚): hint answer solution

Is the integral
ż 8

0

sin4 x
x2 dx convergent or divergent? Explain why.

Q[20]: hint answer solution

Does the integral
ż 8

0

x
ex +

?
x

dx converge or diverge?

Q[21](˚): hint answer solution

Let Mn,t be the Midpoint Rule approximation for
ż t

0

e´x

1 + x
dx with n equal subintervals.

Find a value of t and a value of n such that Mn,t differs from
ş8

0
e´x

1+x dx by at most 10´4.
Recall that the error En introduced when the Midpoint Rule is used with n subintervals
obeys

|En| ď M(b´ a)3

24n2

where M is the maximum absolute value of the second derivative of the integrand and a
and b are the end points of the interval of integration.

Q[22]: hint answer solution

Suppose f (x) is continuous for all real numbers, and
ż 8

1
f (x) dx converges.

(a) If f (x) is odd, does
ż ´1

´8

f (x) dx converge or diverge, or is there not enough

information to decide?

(b) If f (x) is even, does
ż 8

´8

f (x) dx converge or diverge, or is there not enough

information to decide?

Q[23]: hint answer solution

True or false: There is some real number x, with x ě 1, such that
ż x

0

1
et dt = 1.

3.8Ĳ Overview of Integration Techniques

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 2

Q[1]: hint answer solution

Evaluate
ż 8

0

x´ 1
ex dx.
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Q[2]: hint answer solution

Evaluate
ż 2

1
x2 ln x dx.

Q[3](˚): hint answer solution

Evaluate
ż

x
x2 ´ 3

dx.

Q[4](˚): hint answer solution

Evaluate the following integral.
ż π/2

0
x sin x dx

Q[5](˚): hint answer solution

Evaluate the following integral.
ż 2

0
xex dx

Q[6](˚): hint answer solution

Calculate the integral
ż 3

0

a

9´ x2 dx

Q[7](˚): hint answer solution

Evaluate
ż

x arctan x dx

Q[8](˚): hint answer solution

Calculate
ż 1

0
x ln(1 + x2)dx

Q[9](˚): hint answer solution

Evaluate
ż

x2

(x3 + 1)101 dx.

Q[10]: hint answer solution

Evaluate
ż π

π/2

cos x?
sin x

dx.

Q[11]: hint answer solution

Evaluate
ż

x
?

x´ 1 dx.

§§ Stage 3

Q[12]: hint answer solution

Evaluate
ż

(3x)2 arcsin x dx.

Q[13](˚): hint answer solution
Evaluate the following integrals.

(a)
ż

x ln x dx

(b)
ż

x2

1 + x6 dx
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Q[14](˚): hint answer solution
Evaluate
ż 2

´2

x4

x10 + 16
dx

Q[15]: hint answer solution

Evaluate
ż e

1

ln
?

x
x

dx.

Q[16]: hint answer solution

Evaluate
ż 0.2

0.1

tan x
ln(cos x)

dx.

Q[17](˚): hint answer solution
Evaluate (with justification).

ż 3

0
(x + 1)

a

9´ x2 dx

Q[18]: hint answer solution

Evaluate
ż 1

0
e2xeex

dx.

Q[19]: hint answer solution

Evaluate
ż

xex

(x + 1)2 dx.

Q[20]: hint answer solution

Evaluate
ż

x sin x
cos2 x

dx.

You may use that
ş

sec xdx = ln | sec x + tan x|+ C.

Q[21]: hint answer solution

Evaluate
ż π/2

0

?
cos t + 1 dt.

Q[22]: hint answer solution

Evaluate
ż

x(x + a)n dx, where a and n are constants.

3.9Ĳ Differential Equations

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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§§ Stage 1

Q[1]: hint answer solution
Below are pairs of functions y = f (x) and differential equations. For each pair, decide
whether the function is a solution of the differential equation.

function differential equation

(a) y = 5(ex ´ 3x2 ´ 6x´ 6)
dy
dx

= y + 15x2

(b) y =
´2

x2 + 1
y1(x) = xy2

(c) y = x3/2 + x
(

dy
dx

)2

+
dy
dx

= y

Q[2]: hint answer solution
Following Definition 3.9.3 in the text, a separable differential equation has the form

g
(
y(x)

)dy
dx

(x) = f (x).

Show that each of the following equations can be written in this form, identifying f (x)
and g(y).

(a) 3y dy
dx = x sin y

(b) dy
dx = ex+y

(c) dy
dx + 1 = x

(d)
(

dy
dx

)2 ´ 2x dy
dx + x2 = 0

Q[3]: hint answer solution
Suppose we have the following functions:

• y is a differentiable function of x

• f is a function of x, with
ş

f (x)dx = F(x)

• g is a nonzero function of y, with
ş

g(y)dy = G(y) = G(y(x)).

In the work below, we set up a solution to the separable differential equation

g(y)
dy
dx

= f (x)

without using the mnemonic in the text.

By deleting some portion of our work, we can create the solution as it would look using
the mnemonic. What portion can be deleted?

Remark: the purpose of this exercise is to illuminate what, exactly, the mnemonic is a
shortcut for. Despite its peculiar look, it agrees with what we already know about
integration.

77



INTEGRATION 3.9 DIFFERENTIAL EQUATIONS

g(y(x)) ¨ dy
dx

= f (x)

If these functions of x are the same, then they have the same antiderivative
with respect to x.

ż

g(y(x)) ¨ dy
dx

dx =

ż

f (x)dx

The left integral is in the correct form for a change of variables to y. To make
this easier to see, we’ll use a u-substitution, since it’s a little more familiar
than a y-substitution. If u = y, then du

dx = dy
dx , so du = dy

dx dx.
ż

g(u)du =

ż

f (x)dx

Since u was just the same as y, again for cosmetic reasons, we can swap it
back. (Formally, you could have skipped the step above–we just included it to
be extra clear that we’re not using any integration techniques we haven’t seen
before.)

ż

g(y)dy =

ż

f (x)dx

We’re given the antiderivatives in question.

G(y) + C1 = F(x) + C2

G(y) = F(x) + (C2 ´ C1)

where C1 and C2 are arbitrary constants. Then also C2 ´ C1 is an arbitrary
constant, so we might as well call it C.

G(y) = F(x) + C

Q[4]: hint answer solution

Suppose y = f (x) is a solution to the differential equation dy
dx = xy.

True or false: f (x) + C is also a solution, for any constant C.

Q[5]: hint answer solution
Suppose a function y = f (x) satisfies |y| = Cx, for some constant C ą 0.

(a) What is the largest possible domain of f (x), given the information at hand?

(b) Give an example of function y = f (x) with the following properties, or show that
none exists:

• |y| = Cx,

• dy
dx exists for all x ą 0, and
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• y ą 0 for some values of x, and y ă 0 for others.

Q[6]: hint answer solution
Express the following sentence* as a differential equation. You don’t have to solve the
equation.

About 0.3 percent of the total quantity of morphine in the bloodstream is
eliminated every minute.

* The sentence is paraphrased from the Pharmakokinetics website of Université de Lausanne, “Elimina-
tion Kinetics,” at https://sepia.unil.ch/pharmacology/index.php?id=94 . The half-life of
morphine is given on the same website at https://sepia.unil.ch/pharmacology/index.php?
id=85 . Accessed 12 August 2017.

Q[7]: hint answer solution
Suppose a particular change is occurring in a language, from an old form to a new form.*
Let p(t) be the proportion (measured as a number between 0, meaning none, and 1,
meaning all) of the time that speakers use the new form. Piotrowski’s law† predicts the
following.

Use of the new form over time spreads at a rate that is proportional to the
product of the proportion of the new form and the proportion of the old form.

Express this as a differential equation. You do not need to solve the differential equation.

* An example is the change in German from “wollt” to “wollst” for the second-person conjugation of
the verb “wollen.” This example is provided by the site Laws in Quantitative Linguistics, “Change in
Language” http://lql.uni-trier.de/index.php/Change_in_language accessed 18 August
2017.

† Piotrowski’s law is paraphrased from the page Piotrowski-Gesetz on Glottopedia, http://www.
glottopedia.org/index.php/Piotrowski-Gesetz, accessed 18 August 2017. According to this
source, the law was based on work by the married couple R. G. Piotrowski and A. A. Piotrowskaja,
later generalized by G. Altmann.

Q[8]: hint answer solution
Consider the differential equation y1 = y

2 ´ 1.

(a) When y = 0, what is y1?

(b) When y = 2, what is y1?

(c) When y = 3, what is y1?

(d) On the axes below, interpret the marks we have made, and use them to sketch a
possible solution to the differential equation.
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x

y

1

1

§§ Stage 2

Q[9]: hint answer solution
Find the function y(t) satisfying

dy
dt

= 5y´ 7

and y(0) = ´3.

Q[10]: hint answer solution
Find the function y(t) satisfying

dy
dt

= 1 + 2y

and y(0) = 0.

Q[11]: hint answer solution
Find the function y(t) satisfying

dy
dt

= 2y + 3

and y(1) = 1.

Q[12]: hint answer solution
What is the steady-state solution to the differential equation

dy
dt

= 3y´ 7 ?

Q[13]: hint answer solution
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What are the steady-state solutions to the differential equation

dy
dt

= y(y2 ´ 1) ?

Q[14](˚): hint answer solution
Find the solution to the separable initial value problem:

dy
dx

=
2x
ey , y(0) = ln 2

Express your solution explicitly as y = y(x).

Q[15](˚): hint answer solution

Find the solution y(x) of
dy
dx

=
xy

x2 + 1
, y(0) = 3.

Q[16](˚): hint answer solution

Solve the differential equation y1(t) = e
y
3 cos t. You should express the solution y(t) in

terms of t explicitly.

Q[17](˚): hint answer solution
Solve the differential equation

dy
dx

= xex2´ln(y2)

Q[18](˚): hint answer solution
Let y = y(x). Find the general solution of the differential equation y1 = xey.

Q[19](˚): hint answer solution

Find the solution to the differential equation
yy1

ex ´ 2x
=

1
y

that satisfies y(0) = 3. Solve

completely for y as a function of x.

Q[20](˚): hint answer solution
Find the function y = f (x) that satisfies

dy
dx

= ´xy3 and f (0) = ´1
4

Q[21](˚): hint answer solution
Find the function y = y(x) that satisfies y(1) = 4 and

dy
dx

=
15x2 + 4x + 3

y
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Q[22](˚): hint answer solution
Find the solution y(x) of y1 = x3y with y(0) = 1.

Q[23](˚): hint answer solution
A function f (x) is always positive, has f (0) = e and satisfies f 1(x) = x f (x) for all x.
Find this function.

Q[24](˚): hint answer solution

Find the solution of the differential equation
1 +

a

y2 ´ 4
tan x

y1 =
sec x

y
that satisfies y(0) = 2.

You don’t have to solve for y in terms of x.

Q[25](˚): hint answer solution
The fish population in a lake is attacked by a disease at time t = 0, with the result that the
size P(t) of the population at time t ě 0 satisfies

dP
dt

= ´k
?

P

where k is a positive constant. If there were initially 90,000 fish in the lake and 40,000
were left after 6 weeks, when will the fish population be reduced to 10,000?

Q[26](˚): hint answer solution
An object of mass m is projected straight upward at time t = 0 with initial speed v0.
While it is going up, the only forces acting on it are gravity (assumed constant) and a
drag force proportional to the square of the object’s speed v(t). It follows that the
differential equation of motion is

m
dv
dt

= ´(mg + kv2)

where g and k are positive constants. At what time does the object reach its highest point?

Q[27](˚): hint answer solution
A motor boat is traveling with a velocity of 40 ft/sec when its motor shuts off at time
t = 0. Thereafter, its deceleration due to water resistance is given by

dv
dt

= ´k v2

where k is a positive constant. After 10 seconds, the boat’s velocity is 20 ft/sec.
(a) What is the value of k?
(b) When will the boat’s velocity be 5 ft/sec?

Q[28](˚): hint answer solution
An object moving in a fluid has an initial velocity v of 400 m/min. The velocity is
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decreasing at a rate proportional to the square of the velocity. After 1 minute the velocity
is 200 m/min.

(a) Give a differential equation for the velocity v = v(t) where t is time.

(b) Solve this differential equation.

(c) When will the object be moving at 50 m/min?

Q[29](˚): hint answer solution
Let f (r, θ) = rm cos(mθ) be a function of r and θ, where m is a positive integer.

(a) Find the second order partial derivatives frr, frθ, fθθ and evaluate their respective
values at (r, θ) = (1, 0).

(b) Determine the value of the real number λ so that f (r, θ) satisfies the equation

frr +
λ

r
fr +

1
r2 fθθ = 0

§§ Stage 3

Q[30](˚): hint answer solution
An investor places some money in a mutual fund where the interest is compounded
continuously and where the interest rate fluctuates between 4% and 8%. Assume that the
amount of money B = B(t) in the account in dollars after t years satisfies the differential
equation

dB
dt

=
(
0.06 + 0.02 sin t

)
B

(a) Solve this differential equation for B as a function of t.
(b) If the initial investment is $1000, what will the balance be at the end of two years?

Q[31]: hint answer solution
Suppose f (t) is a continuous, differentiable function and the root mean square of f (t) on
[a, x] is equal to the average of f (t) on [a, x] for all x. That is,

1
x´ a

ż x

a
f (t)d(t) =

d

1
x´ a

ż x

a
f 2(t)dt (˚)

You may assume x ą a.

(a) Guess a function f (t) for which the average of f (t) is the same as the root mean
square of f (t) on any interval.

(b) Differentiate both sides of the given equation.

(c) Simplify your answer from (b) by using Equation (˚) to replace all terms containing
şx

a f 2(t)dt with terms containing
şx

a f (t)dt.
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(d) Let Y(x) =
şx

a f (t)dt, so the equation from (c) becomes a differential equation. Find
all functions that satisfy it.

(e) What is f (t)?
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Q[32]: hint answer solution
In the paper Mathematics of Marital Conflict: Qualitative Dynamic Mathematical Modeling of
Marital Interaction* the authors investigate the interactions between opposite-gender
married couples.
Qualitative aspects of interactions are coded as correlating positively or negatively with
marital success, as investigated in previous research, leading to a score that changes as
the interaction progresses. Denote the score as W(t) for wives and H(t) for husbands.
We’ll call these functions demeanours.
The proposed model was that the change in a person’s demeanour was dependent on
three things:

1. their emotional volatility (how easily they changed emotional states);
2. influence from their partner; and
3. a tendency to revert to a fixed neutral state over time in the absence of external

influence.
With this framework, they propose the following model:

#

dW
dt = rW + I(H) + a

dH
dt = sH + J(W) + b

where
• r resp. s is a measure of emotional volatility, related (but not equal) to how readily

an individual’s demeanour changes;
• I resp. J are influence functions describing how the individual’s demeanour is

affected by their partner’s; and
• a resp. b are constants related (but not necessarily equal) to the neutral demeanours

each individual reverts to over time.
(a) Suppose we are in an uninfluenced state, where I(H) = I(W) = 0. (For example, the

partners are in different locations.) Find when W resp. H are constant. (This
corresponds to the “personal neutral state” we expect each person to stay at, in the
absence of external influence.)

(b) Suppose the wife is in an uninfluenced state, where I(H) = I(W) = 0. If her
demeanour is higher than the personal neutral state you found in part (a), it will
decrease; if her demeanour is lower than the personal neutral state, it will increase.
What does that tell you about the signs of a and r?

(c) We don’t know how to solve systems of differential equations like this, so let’s make
some simplifying assumptions. Suppose that the husband and wife are perfectly
matched, with W(t) = H(t), and that I(H) = cH for some constant c. Find W(t) in
terms of r, a, and c.

* Cook et.al. Journal of Family Psychology 1995, Vol. 9, No. 2, 110-130. Accessed online Sept 21, 2020 at
https://pdfs.semanticscholar.org/b654/6eb6e02b0e6008d0966c9c09ab6ee7a31ee1.
pdf?_ga=2.104641033.825755858.1600723639-1520202967.1600723639 Some notation
from the article has been changed to fit our own conventions.

Q[33]: hint answer solution
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In Example 3.9.18 from the textbook, we approximated the sum
ř300

t=1 et/400 by
interpreting it as a right-hand Riemann sum. Unfortunately, when we talked about
numerical approximations in Section 3.6, we didn’t give a way of bounding the error in
that particular type of approximation.

If we’re going to be using an approximation, it’s best if we can bound the error. That way
we can define a range where the actual value definitely lies. In this problem, we will find
a range containing the actual value of the number

1875
e3/4 ´ 1

(
300 ¨ e3/4 ´

300
ÿ

t=1

et/400

)
(a) Equation A.10.5 gives the trapezoid rule as

ż b

a
f (x)dx «

[
1
2 f (x0) + f (x1) + f (x2) + ¨ ¨ ¨+ f (xn´1) +

1
2 f (xn)

]
∆x

where

∆x = b´a
n , x0 = a, x1 = a + ∆x, x2 = a + 2∆x, ¨ ¨ ¨ , xn´1 = b´ ∆x, xn = b

Write the trapezpoid rule approximation for the integral
ş300

0 et/400dt using n = 300.

(b) Theorem 3.6.5 says that the total error introduced by the trapezoidal rule is bounded

by M
12

(b´a)3

n2 when approximating
ż b

a
f (x)dx, where | f 2(x)| ď M for all x in [a, b].

Use this formula to bound the error on the approximation from (a).

(c) How does your answer from (a) differ from the sum
ř300

t=1 et/400?

(d) Use your work above to give an interval (as small as possible) that
1875

e3/4´1

(
300 ¨ e3/4 ´ř300

t=1 et/400
)

definitely lies in.

(e) The text gave the approximation 1875
e3/4´1

(
300 ¨ e3/4 ´ř300

t=1 et/400
)
« 316081.01. Using

your answer from (d), give a range for the absolute and relative error of that
approximation.

Q[34]: hint answer solution
A loan is made for P0 dollars. Every month, a portion of the loan is repaid, along with r
percent interest on the remaining portion of the loan. Your loan is paid off over a term of
N months.

Let P(t) be the amount of your loan remaining after t months. Your answers below will
depend on the constants given.

(a) In terms of P, what is the interest owed at time t?

(b) Interpret ´P1(t) in terms of this model.

(c) You want your monthly payments to be a constant value, say some constant C. Set
up a differential equation for P.
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(d) Solve your differential equation for P in terms of the constants given.

(e) What is C?

(f) Suppose your job gives you cost-of-living raises of 0.1% each month. Instead of
paying the constant rate of C dollars every month, you want to pay a rate that
increases in line with your salary. Say you want to pay C0 ¨ 1.001t dollars in month t.
Set up (but do not solve) a differential equation for P(t) in this new scenario,
assuming everything else is the same as before.
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PROBABILITY

Chapter 4

4.1Ĳ Introduction

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Let X be a random variable. Write, in our shorthand notation, “the probability that X
takes the value 5 is 10%.”

Q[2]: hint answer solution
Suppose the sample space of a random variable is t1, 2, 3u. Is the variable discrete?

Q[3]: hint answer solution
Suppose X is a discrete random variable taking whole-number values from 1 to 10, and Y
is a continuous random variable taking real values in the interval [1, 10].

Let A be the event that a variable is less than 5, and let B be the event that a variable is
greater than 4.5.

For which variable are these events disjoint?

Q[4]: hint answer solution
Suppose X is a random variable and Pr(X ď 5) = 99

100 . What is Pr(X ą 5)?
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Q[5]: hint answer solution
Suppose X is a random variable and Pr(X = x) = 78

93 for some number x. What is
Pr(X ‰ x)?

§§ Stage 2

Q[6]: hint answer solution
Let X be the random variable corresponding to throwing a fair six-sided dice. What is
Pr(X even OR X = 3)?

§§ Stage 3

Q[7]: hint answer solution
Let Y be a random variable with sample space S = t5, 10, 15, 20, 25, 30, 35, 40, 45, 50u,
where each value in S is equally likely. What is the probability that Y is divisible by 3 or
10?

(Recall we use “or” to mean “and/or.”)

4.2Ĳ Probability Mass Function (PMF)

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
What does the abbreviation PMF stand for?

Q[2]: hint answer solution
Is it discrete random variables or continuous random variables that have PMFs?

Q[3]: hint answer solution
A random variable X has PMF given below.

x Pr(X = x)
5 Pr(X = 5) = 0.7
6 Pr(X = 6) = 0.1
7 Pr(X = 7) = 0.1
8 Pr(X = 8) = 0.1

(a) What is sample space?

(b) Are all values equally likely?
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§§ Stage 2

Q[4]: hint answer solution
Z is a random variable with sample space S = t3.1, 3.2, 3.3, 3.4, 3.5u. Complete its PMF
below.

x Pr(X = x)
3.1 0.10
3.2 0.15
3.3 0.35
3.4 0.2
3.5 ?

Q[5]: hint answer solution
Given the PMF below of a variable X, which value in the sample space is the most likely?

x Pr(X = x)
3.7 1/15
8.1 1/5
8.2 1/3
9 1/5

10 1/5

§§ Stage 3

Q[6]: hint answer solution
A random variable X has PMF as below.

f (x) =

#

1
2x x = 1, 2, 3, 4, 5, . . .
0 else

(Note: you’ll see in Example 5.2.4 that 1
2 +

1
4 +

1
8 +

1
16 + ¨ ¨ ¨ = 1.)

What is the sample space of X? What is Pr(X ď 3)?

4.3Ĳ Cumulative Distribution Function (CDF)

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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§§ Stage 1

Q[1]: hint answer solution
Suppose T is the continuous random variable resulting from choosing a day at uniformly
random and finding the temperature in Vancouver at noon. 9 out of 10 days had a
temperature of more than 0 degrees; 1 out of 10 days had a temperature of higher than 30
degrees; and 4 out of 10 days had a temperature of at most 20 degrees.
Let F(x) be the CDF of T. What are F(0), F(20), and F(30)?

Q[2]: hint answer solution
Suppose X is a continuous random variable, uniformly distributed on its sample space,
the interval [a, b]. Sketch a density diagram for X.

Q[3]: hint answer solution
A continuous random variable X has sample space S = [0, 5]. X is most likely to be in the
middle of the interval, and less likely to be near the endpoints of the interval. Sketch a
density diagram for X.

Q[4]: hint answer solution
Let W be a random variable with CDF

F(x) =

$

’

&

’

%

0 x ă 0
x 0 ď x ď 1
1 1 ă x

Is W a continuous random variable?

Q[5]: hint answer solution
Let X be a random variable with CDF F(x). For each statement below, decide whether it
is always true, or whether it might be false in some cases. If the statement might be false,
give an example.
(a) lim

xÑ8
F(x) = 1

(b) F(1, 000, 000) « 1
(c) F(1) ą F(´1)
(d) F(1) ě 0

Q[6]: hint answer solution
Suppose F(x) is the CDF of a random variable, and F(10) = 1. What is F(11)?

§§ Stage 2

Q[7]: hint answer solution
Let X be a discrete random variable that takes the value ´1 half the time, and the value 1
the other half the time. Find the CDF for X.

Q[8]: hint answer solution
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Let D be the outcome of a roll of a fair 6-sided dice. Determine the CDF of D, and decide
whether D is continuous.

Q[9]: hint answer solution

Consider a random variable Z with the following PMF:

x Pr(Z = x)

-4 1
2

-2 1
3

-1 1
6

Give the CDF of Z.

Q[10]: hint answer solution
Consider the function

F(x) =

#

Ax3

x3+B x ě 0
0 x ď 0

For what values of A and B is F(X) a CDF?

§§ Stage 3

Q[11]: hint answer solution
For what values of A, B, C, and D is the function

F(x) =

#

A + Bx
x+1 x ě 0

C + Dx
1´x x ă 0

the CDF of a continuous random variable?

Q[12]: hint answer solution
A discrete random variable W has the following CDF:

F(x) =

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 x ă 5
1
4 5 ď x ă 6
1
3 6 ď x ă 8
1
2 8 ď x ă 12
1 12 ď x

Find its PMF.

Q[13]: hint answer solution
Below is a sketch of F(x), the CDF of a discrete random variable Y.
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x

y

1

1 2 3 4 5 6

Find the sample space of Y, and order its values from most likely to least likely.

4.4Ĳ Probability Density Function (PDF)

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Draw a density diagram for each PDF below.

(a) f (x) = 4x(x´ 1)(x´ 2), 0 ď x ď 1

(b) f (x) =

$

’

&

’

%

1
2 0 ă x ă 1
1
3 1 ă x ă 2
1
6 2 ă x ă 3

(c) f (x) = x2, 1 ď x ď 3
?

2

Q[2]: hint answer solution
For each function property below, decide whether the property holds for all PDFs, all
CDFs, both, or neither.
(a) limit at negative infinity is 1
(b) never negative
(c) nondecreasing
(d) never more than 1
(e) area under the curve gives a probability
(f) value of function gives a probability
(g) area under the curve from ´8 to8 is 1

Q[3]: hint answer solution
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Each sketch below is of a PDF or a CDF of a continuous random variable. Identify each
as either PDF or CDF.

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

x

y
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(f)

x

y

§§ Stage 2

Q[4]: hint answer solution
Each function sketched below is the CDF of a random variable. If the random variable is
continuous, sketch its PDF.

(a)

x

y

(b)

x

y

(c)

x

y

Q[5]: hint answer solution
Each function sketched below is the PDF of a continuous random variable. Sketch the
CDF for each variable.

(a)
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x

y

(b)

x

y

(c)

x

y

Q[6]: hint answer solution
Let W be a continuous random variable with PDF

f (x) =
10/π

1 + 100x2

Find Pr(4 ď W ď 17).

Q[7]: hint answer solution
Let Q be a continuous random variable with PDF

f (x) =

$

’

&

’

%

1
10 0 ă x ă 3
1
5 4 ă x ă 6
3

10 7 ă x ă 8

Find Pr(Q ě 4.5).
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Q[8]: hint answer solution
Let M be a continuous random variable with PDF

f (x) =
x

50
, 0 ď x ă 10

What is the probability that M is in the interval (0, 1) OR (9, 10)?

Q[9]: hint answer solution
Let M be a continuous random variable with PDF

f (x) =
x

50
, 0 ď x ă 10

Find the CDF of M.

Q[10]: hint answer solution
Let Q be a continuous random variable with PDF

f (x) =

$

’

&

’

%

1
10 0 ă x ă 3
1
5 4 ă x ă 6
3

10 7 ă x ă 8

Find the CDF of Q.

Q[11]: hint answer solution
Suppose a random variable X has cumulative distribution function (CDF)

F(x) =

#

ex x ď 0
1 x ą 0

(a) Is X a continuous random variable?
(b) Find the PMF of X if it is a discrete random variable, or find the PDF of X if it is a

continuous random variable.

Q[12]: hint answer solution
Suppose a random variable X has cumulative distribution function (CDF)

F(x) =

#

x
x+1 x ě 0
0 x ă 0

(a) Is X a continuous random variable?

(b) Find the PMF of X if it is a discrete random variable, or find the PDF of X if it is a
continuous random variable.
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Q[13]: hint answer solution
Suppose the function

f (x) =

#

ex ´1 ď x ď b
0 else

is a PDF. What is b?

Q[14]: hint answer solution
Suppose the function

f (x) =
A

x2 + 4
is a PDF. What is A?

Q[15]: hint answer solution
Let X be a continuous random variable with PDF

f (x) =

#

2x3 0 ă x ă 1
2(x´ 2)3 2 ă x ă 3

Find the CDF of X.

§§ Stage 3

Q[16]: hint answer solution
Let X be a random variable with PDF

f (x) =

#

|x| ´1 ď x ď 1
0 else

Find the CDF of X.

Q[17]: hint answer solution
A silviculturist is studying the growth of yellow cedar across Pacific Spirit Park. They
define the random variable M to be the mass of a tree, measured in 1000s of kg, at its
hundreth birthday, where the tree is chosen uniformly at random from all trees in the
park.

We can think of M as a continuous random variable, because the mass of a tree exists on
the continuum (0,8).

Suppose the PDF of M is
f (x) = cx2(200´ x)

over the sample space S = [0, 200], where c is a constant.

(a) Find c.

(b) Actually finding the mass of a tree is tough – not least because much of it is buried
underground. Suppose the measurements of the silviculturist are only accurate to
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within 5,000 kg, so in practice every measurement gets rounded to the nearest 10,000
kg. Let M1 be the discrete random variable where M1 is the rounded mass of our
randomly chosen tree. (So, for example, if M = 12, then M1 = 10.)

What is the sample space of M1?

(c) Evaluate Pr(M1 = m) if m is in the sample space of M1.
Hint 1: b3 ´ a3 = (b´ a)(b2 + ba + a2).

(d) Using a graphing program1, compare the graphs of f (x) (the PDF of M) and the PMF
of M1.

Q[18]: hint answer solution
A continuous random variable X has PDF

f (x) =

c

2
π

e´2x2

(There is a special name for this type of distribution: it’s the normal distribution with
expected value 0 and standard deviation 1

2 .)

The function f (x) is a tough one to antidifferentiate, so it’s hard to use f (x) to evaluate
probabilities exactly. Use Simpson’s Rule with 4 intervals to approximates Pr(0 ď X ď 1).
Your final answer doesn’t have to be simplified, but it should be calculator-ready.

§§ Open-Ended Questions

Q[19]: hint answer solution
PMFs (for discrete variables) and PDFs (for continuous variables) both serve to describe
how our random variables tend to behave. In the case of a continuous random variable,
the area under the curve of a PDF tells us the probability of a variable being in that range.
Can you use the area under the curve of a PMF in a similar manner? Why or why not?

Q[20]: hint answer solution
No function can be both a CDF and a PDF. Explain why.

4.5Ĳ Expected Value

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Problems 5, 6, 7, and 8 in this section are adapted from Ch 4.2 of Introductory Statistics by Barbara
Illowsky and Susan Dean, published on OpenStax under Creative Commons Attribution License
4.0.

§§ Stage 1

Q[1]: hint answer solution

1 or not – actually you can do these by hand
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Let X be a random variable. True or false: After one event, the most likely value of X to
take is E(X).

Q[2]: hint answer solution
Suppose we’ve rolled a 6-sided dice a large number of times – one million rolls. We aver-
aged the results of the million rolls, and got 4.16. Do you think the dice was fair? That is,
do you think each number 1 through 6 was equally likely?

Q[3]: hint answer solution
Suppose X is a random variable whose sample space is the single number S = tau. What
is E(X)?

Q[4]: hint answer solution
Suppose Z is a continuous random variable whose sample space is the interval [´1, 1],
and E(Z) = 0. True or false: Z must be uniformly distributed on [´1, 1].

§§ Stage 2

Q[5]: hint answer solution
A soccer team plays zero, one, or two days a week. The probability that they play zero
days is 0.2, the probability that they play one day is 0.5, and the probability that they play
two days is 0.3. Find the expected value of the number of days per week the men’s soccer
team plays soccer.

Q[6]: hint answer solution
A hospital researcher is interested in the number of times the average post-op patient will
ring the nurse during a 12-hour shift. For a random sample of 50 patients, the following
information was obtained, where X was the number of times the patient rang the nurse.

x Pr(X = x)
0 Pr(X = 0) = 4

50
1 Pr(X = 1) = 8

50
2 Pr(X = 2) = 16

50
3 Pr(X = 3) = 14

50
4 Pr(X = 4) = 6

50
5 Pr(X = 5) = 2

50

What is the expected value of X?

Q[7]: hint answer solution
You are playing a game of chance in which four cards are drawn from a standard deck of
52 cards. You guess the suit of each card before it is drawn. The cards are replaced in the
deck on each draw. That means every time you play, the probability of you winning is 1

4 .

You pay $1 to play. If you guess the right suit every time, you get your dollar back plus
$4. What is your expected profit of playing the game over the long term?

Q[8]: hint answer solution
A spinning contraption can land on red, blue, or green.
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You play a game by spinning the spinner once. It lands on red 2
5 of the time, on blue 2

5 of
the time, and on green 1

5 of the time. If you land on red, you pay $10. If you land on blue,
you win $1. If you land on green, you win $7.

If you play the game a lot of times, how much money do you expect to win?

Q[9]: hint answer solution
Let M be the continuous random variable with PDF

f (x) =
x

5000
, 0 ď x ď 100

Compute E(M), and check your answer as in Section 4.5.3.

Q[10]: hint answer solution
Let N be the continuous random variable with PDF

f (x) =
2/π

x2 + 1
, ´1 ď x ď 1

Compute E(N), and check your answer as in Section 4.5.3.

Q[11]: hint answer solution
Let P be the continuous random variable with PDF

f (x) =

#

2
3 x(1´ x) 0 ď x ď 1
2
3(x´ 2) 2 ď x ď 3

Compute E(P), and check your answer as in Section 4.5.3.

Q[12]: hint answer solution
Let Q be the continuous random variable with PDF

f (x) =
(

e
e´ 2

)
¨ ln x

x2 , 1 ď x ď e

Compute E(Q), and check your answer as in Section 4.5.3.

Q[13]: hint answer solution
Suppose Y is a random variable that is uniformly distributed on the interval [a, b]. What
is E(Y)?
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§§ Stage 3

Q[14]: hint answer solution
Let Xp be the continuous random variable with PDF

fp(x) =
ap

xp , 1 ă x

where p is some positive number and ap is some constant (possibly different constants
for different values of p).

(a) For which values of p does fp(x) actually have the characteristics of a PDF?

(b) For those values of p from a, what is ap?

(c) Which values of p from a give finite expected values for E(Xp)?

Q[15]: hint answer solution
Let A be the continuous random variable with PDF

f (x) = xex, 0 ď x ď 1

Find E(A).

Q[16]: hint answer solution
Let B be the continuous random variable with PDF

f (x) =
2

ln2 2

(
ln x

x

)
, 1 ď x ď 2

Find E(B).

Q[17]: hint answer solution
Let C be the continuous random variable with PDF

f (x) =
x

x2 ´ 1
, 2 ď x ď b

where b =
?

3e2 + 1. Find E(C). You may leave your answer in terms of b.

Q[18]: hint answer solution
Let D be the continuous random variable with PDF

f (x) =
4

4´ π
tan2 x, 0 ď x ď π

4

Find E(D).

Q[19]: hint answer solution
A random variable X has PDF

f (x) = cebx2
, ´8 ă x ă 8
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for a positive constant c and a negative constant b. (This is a type of “normal
distribution.”)

Find the expected value of X.

Q[20]: hint answer solution
Sonic is an insurance company in Vancouver. Fred has recently bought insurance from
Sonic for his whale-watching boat. The premium insurance is $ 1,000 per year. If Fred
crashes his boat, Sonic will pay Fred $ 15,000. If Fred crashes his boat again during the
same year, the insurance company will not cover it again. The probability that Fred
crashes his boat at least once during the first year is one in a thousand.

Calculate Sonic’s expected profit (how much money Fred paid, minus the expected sum
Sonic would pay for a crash) from Fred’s insurance purchase for the first year.

Q[21]: hint answer solution
Andrea is about to finish her master’s degree at UBC. She applied to jobs offering four
different monthly salaries. She estimates her odds of being offered each job, and comes
up with the table below describing the probability that, one year from graduation, she is
earning a given monthly salary.

x Pr(X = x)

0 15
100

2,500 20
100

3,000 30
100

3,500 20
100

4,000 15
100

(a) What is the probability that she is unemployed?

(b) Calculate her expected monthly salary.

Q[22]: hint answer solution
Riley is planning to invest in two assets. Asset A pays 20% after one year (investing $1
would return $1.20) with 100% certainty. Asset B pays 300% after one year (investing $1
would return $4) with a probability of 0.2, and 0% after one year (investing $1 would
return $1) with a probability of 0.8.

(a) What would be Riley’s expected monetary gain if she spends x dollars in A and y
dollars in B?

(b) Riley is somewhat risk-averse. She wants to invest $300 with a guarantee that, at the
end of the year, her return is at least $350. Subject to that constraint, how much
money should she allocate to each asset to maximize her expected return?
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4.6Ĳ Variance and Standard Deviation

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Match each term to its unofficial, intuitive description.

Terms:
A. expected value
B. variance
C. standard deviation
D. probability mass function
E. probability distribution function
F. cumulative distribution function

Descriptions:
1. description of how likely each outcome is
2. Pr(X ď x)
3. weights giving relative likelihood of X being in a particular region
4. long-term average
5. usual difference from the average
6. average squared difference from the average

Q[2]: hint answer solution
Bundles of firewood sold at a particular campground have an average (mean) mass of
10 kg, with a standard deviation of 1.5 kg. What range of masses would be “typical”
(within one standard deviation of the mean), and which would be “atypical” (more than
one standard deviation from the mean)?

Q[3]: hint answer solution
Two brands sell sunflower seeds in packages labelled 500 g. If you choose a bag at
random from Brand A, the expected value of the actual mass of the bag is 510 g. If you
choose a bag at random from Brand B, the expected value of the actual mass of the bag is
515 g. For both brands, the probability of a bag having mass less than 500 g is less than
one percent.

For Brand A, you notice that all bags have nearly identical masses. For Brand B, there is
greater diversity. Which brand has a higher standard deviation in the distribution of its
masses?

Q[4]: hint answer solution
Given an example of a random variable X that takes on values from [´100, 100] (maybe
not all of them) where σ(X) = 100, or explain why no such X exists.

Q[5]: hint answer solution
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Suppose X is a continuous random variable, uniformly distributed on its sample space,
the interval [a, b].

(a) Find the variance and standard deviation of X.

(b) On a number line from a to b, indicate which values are within one standard
deviation of E(X).

Q[6]: hint answer solution
Suppose X is a discrete random variable, and its sample space is the single number
S = tau. What are the variance and standard deviation of X?

Q[7]: hint answer solution
Suppose X is a continuous random variable with sample space [´a, a], and its PDF has
even symmetry. What is E(X)?

§§ Stage 2

Q[8]: hint answer solution
A continuous random variable X has PDF

f (x) = sin x, 0 ď x ď π

2

Find the following.
(a) CDF of X
(b) Var(X)
(c) σ(X)

Q[9]: hint answer solution
A continuous random variable W has PDF

f (x) = 1´ |x|, ´1 ď x ď 1

Find the expectation, variance, and standard deviation of W.
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Q[10]: hint answer solution
A random variable X has CDF

F(x) =

$

’

’

’

&

’

’

’

%

0 x ă ´1
1
3(x + 1)3 ´1 ď x ă 0
2
3(x´ 1)3 + 1 0 ď x ă 1
1 x ě 1

(a) Is X continuous?
(b) Find the expectation, variance, and standard deviation of X.

Q[11]: hint answer solution
A discrete random variable T has the following PMF.

x Pr(T = x)
1 1

2

2 1
4

3 1
4

Find the expected value, variance, and standard deviation of T.

Q[12]: hint answer solution
A discrete random variable S has the following PMF.

x Pr(S = x)
-5 1

9

-4 2
9

2 1
9

7 5
9

Find the expected value, variance, and standard deviation of S.

Q[13]: hint answer solution
A random variable U has CDF

F(x) =

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 x ă 0
1
2 x ă 2
2
3 x ă 3
3
4 x ă 4
1 x ě 4

Find the expected value, variance, and standard deviation of U.

§§ Stage 3

§§ Open-Ended Questions

Q[14]: hint answer solution
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When we motivated variance, we calculated “distance from the average” as

|E(X)´ X|
and then took the average of these values. What undesirable thing happens if we don’t
include the absolute value, and calculate “distance from the average” as (E(X)´ X)?
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SEQUENCES AND SERIES

Chapter 5

5.1Ĳ Sequences

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Assuming the sequences continue as shown, estimate the limit of each sequence from its
graph.

x

y

1
(a)

x

y

1
(b)
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SEQUENCES AND SERIES 5.1 SEQUENCES

x

y

1
(c)

Q[2]: hint answer solution
Suppose an and bn are sequences, and an = bn for all n ě 100, but an ‰ bn for n ă 100.
True or false: lim

nÑ8
an = lim

nÑ8
bn.

Q[3]: hint answer solution
Let tanu8n=1, tbnu8n=1, and tcnu8n=1, be sequences with lim

nÑ8
an = A, lim

nÑ8
bn = B, and

lim
nÑ8

cn = C. Assume A, B, and C are nonzero real numbers.

Evaluate the limits of the following sequences.

(a)
an ´ bn

cn

(b)
cn

n

(c)
a2n+5

bn

Q[4]: hint answer solution
Give an example of a sequence tanu8n=1 with the following properties:

• an ą 1000 for all n ď 1000,

• an+1 ă an for all n, and

• lim
nÑ8

an = ´2

Q[5]: hint answer solution
Give an example of a sequence tanu8n=1 with the following properties:

• an ą 0 for all even n,
• an ă 0 for all odd n,
• lim

nÑ8
an does not exist.

Q[6]: hint answer solution
Give an example of a sequence tanu8n=1 with the following properties:

• an ą 0 for all even n,
• an ă 0 for all odd n,
• lim

nÑ8
an exists.
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Q[7]: hint answer solution
The limits of the sequences below can be evaluated using the Squeeze Theorem. For each
sequence, choose an upper bounding sequence and lower bounding sequence that will
work with the Squeeze Theorem. You do not have to evaluate the limits.

(a) an =
sin n

n

(b) bn =
n2

en(7 + sin n´ 5 cos n)

(c) cn = (´n)´n

Q[8]: hint answer solution
Below is a list of sequences, and a list of functions.

(a) Match each sequence an to any and all functions f (x) such that f (n) = an for all
whole numbers n.

(b) Match each sequence an to any and all functions f (x) such that lim
nÑ8

an = lim
xÑ8

f (x).

an = 1 +
1
n

f (x) = cos(πx)

bn = 1 +
1
|n| g(x) =

cos(πx)
x

cn = e´n h(x) =

#

x+1
x x is a whole number

1 else

dn = (´1)n i(x) =

#

x+1
x x is a whole number

0 else

en =
(´1)n

n
j(x) =

1
ex

Q[9]: hint answer solution
Let tanu8n=1 be a sequence defined by an = cos n.

(a) Give three different whole numbers n that are within 0.1 of an odd integer multiple
of π, and find the corresponding values of an.

(b) Give three different whole numbers n such that an is close to 0. Justify your answers.

Remark: this demonstrates intuitively, though not rigorously, why lim
nÑ8

cos n is undefined.
We consistently find terms in the sequence that are close to ´1, and also consistently find
terms in the sequence that are close to 1. Contrast this to a sequence like

 

cos(2πn)
(

,
whose terms are always 1, and whose limit therefore is 1. It is possible to turn the ideas of
this question into a rigorous proof that lim

nÑ8
cos n is undefined. See the solution.
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Q[10]: hint answer solution
Below are a number of recurrence relations defining different sequences. Write out the
first five terms of each sequences.
(a) a0 = 4, an+1 = 10an ´ 6
(b) b0 = 1, bn+1 = bn

2
(c) c0 = 0, cn+1 = cn

2
(d) d0 = 1, d1 = ´1, dn+2 = dn ´ dn+1

Q[11]: hint answer solution
Below are a number of explicit definitions for different sequences. Write out the first five
terms of each sequences, starting with n = 0.
(a) an = 1
(b) bn = n + 1
(c) cn = tan(πn)
(d) dn = (´1)n

§§ Stage 2

Q[12]: hint answer solution
Below are a number of recurrence relations defining different sequences. Give an explicit
definition for each sequence.
(a) a0 = 2, an+1 = (an)2

(b) b0 = 5, bn+1 = ´bn
(c) c0 = 8, cn+1 = cn

2 + 4

Q[13]: hint answer solution
Below are a number of lists representing the first terms of a sequence. Give an explicit
definitions for each sequence.
(a) t0, 1, 4, 9, 16, . . .u
(b) t1,´2, 4,´8, 16,´32, . . .u
(c)

!

1
2 , 2

3 , 3
4 , 4

5 , . . .
)

(d) t1.5, 2, 2.5, 3, 3.5, 4, . . .u

Q[14]: hint answer solution
Determine the limits of the following sequences.

(a) an =
3n2 ´ 2n + 5

4n + 3

(b) bn =
3n2 ´ 2n + 5

4n2 + 3

(c) cn =
3n2 ´ 2n + 5

4n3 + 3
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Q[15]: hint answer solution

Determine the limit of the sequence an =
4n3 ´ 21
ne + 1

n
.

Q[16]: hint answer solution

Determine the limit of the sequence bn =
4
?

n + 1?
9n + 3

.

Q[17]: hint answer solution

Determine the limit of the sequence cn =
sin n

n
.

Q[18]: hint answer solution

Determine the limit of the sequence an =
nsin n

n2 .

Q[19]: hint answer solution
Determine the limit of the sequence dn = e´1/n.

Q[20]: hint answer solution

Determine the limit of the sequence an =
1 + 3 sin(n2)´ 2 sin n

n
.

Q[21]: hint answer solution

Determine the limit of the sequence bn =
en

2n + n2 .

Q[22](˚): hint answer solution
Find the limit, if it exists, of the sequence

 

ak
(

, where

ak =
k! sin3 k
(k + 1)!

Q[23](˚): hint answer solution

Consider the sequence
!

(´1)n sin
( 1

n
))

. State whether this sequence converges or di-
verges, and if it converges give its limit.

Q[24](˚): hint answer solution

Evaluate lim
nÑ8

[
6n2 + 5n

n2 + 1
+ 3 cos(1/n2)

]
.

§§ Stage 3

Q[25]: hint answer solution
Below are explicit definitions of several sequences. Give an explicit definition of a
different sequence has the same first three terms (starting at n = 0).
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(a) an = 9
2 n2 ´ 3

2 n + 1

(b) cn = n3 ´ 3n2 + 5n + 3

(c) en = n(n´ 1)(n´ 2)

Q[26]: hint answer solution
For which initial values a0 does the recurrence relation

an+1 = 5an ´ a2
n

generate a sequence that has only negative values?

Q[27](˚): hint answer solution

Find the limit of the sequence
"

ln
(

sin
1
n

)
+ ln(2n)

*

.

Q[28]: hint answer solution

Evaluate lim
nÑ8

[
a

n2 + 5n´
a

n2 ´ 5n
]
.

Q[29]: hint answer solution

Evaluate lim
nÑ8

[
a

n2 + 5n´
a

2n2 ´ 5
]
.

Q[30]: hint answer solution

Evaluate the limit of the sequence
"

n
[(

2 + 1
n

)100 ´ 2100
]*8

n=1
.

Q[31]: hint answer solution
Write a sequence tanu8n=1 whose limit is f 1(a) for a function f (x) that is differentiable at
the point a.

Your answer will depend on f and a.

Q[32]: hint answer solution
Let tAnu8n=3 be the area of a regular polygon with n sides, with the distance from the
centroid of the polygon to each corner equal to 1.

1

A(3) = 3
?

3
4

1

A(4) = 2

1

A(5) = 2.5 sin(0.4π)

(a) By dividing the polygon into n triangles, give a formula for An.

(b) What is lim
nÑ8

An?
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Q[33]: hint answer solution
The book The Mathematics of Behaviour by Earl Hunt1 has these two paragraphs towards
the end:

I have been told that an author loses half the readers with every equation. If
that is so, and if every person on the globe started to try to read this book, I
have a reader left! My thanks and congratulations, lonely reader.

Actually, I am not that pessimistic. It seems more likely to me that you lose
half your readers on the first, one-third on the second, and so on. Some hardy
souls will persevere. They may even expect mathematics. And we are at the
end.

Assuming there are 7 billion people in the world, how many equations were there in the
text? Assuming the attrition mentioned in the second paragraph, how many of those 7
billion people are left reading the book?

Q[34]: hint answer solution
Suppose we define a sequence t fnu, which depends on some constant x, as the following:

fn(x) =

#

1 n ď x ă n + 1
0 else

For a fixed constant x ě 1, t fnu is the sequence t0, 0, 0, . . . , 0, 1, 0, . . . , 0, 0, 0, . . .u. The sole
nonzero element comes in position k, where k is what we get when we round x down to a
whole number. If x ă 1, then the sequence consists of all zeroes.

Since we can plug in different values of x, we can think of fn(x) as a function of
sequences: a different x gives you a different sequence. On the other hand, if we imagine
fixing n, then fn(x) is just a function, where fn(x) gives the nth term in the sequence
corresponding to x.

(a) Sketch the curve y = f2(x).

(b) Sketch the curve y = f3(x).

(c) Define An =
ş8

0 fn(x)dx. Give a simple description of the sequence tAnu8n=1.

(d) Evaluate lim
nÑ8

An.

(e) Evaluate lim
nÑ8

fn(x) for a constant x, and call the result g(x).

(f) Evaluate
ż 8

0
g(x)dx.

Q[35]: hint answer solution

Determine the limit of the sequence bn =

(
1 +

3
n
+

5
n2

)n
.

1 Hunt, E. (2006). L’ENVOI. In The Mathematics of Behavior (pp. 325-327). Cam-
bridge: Cambridge University Press. doi:10.1017/CBO9780511618222.014, accessed online
at https://www.cambridge.org/core/books/mathematics-of-behavior/lenvoi/
01BDE784FC609A87928803587997DD77 on September 25, 2020
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Q[36]: hint answer solution

A sequence
 

an
(8

n=1 of real numbers satisfies the recursion relation an+1 =
an + 8

3
for

n ě 2.

(a) Suppose a1 = 4. What is lim
nÑ8

an?

(b) Find x if x =
x + 8

3
.

(c) Suppose a1 = 1. Show that lim
nÑ8

an = L, where L is the solution to equation above.

Q[37]: hint answer solution
Zipf’s Law applied to word frequency can be phrased as follows:

The most-used word in a language is used n times as frequently as the n-th
most word used in a language.

(a) Suppose the sequence tw1, w2, w3, . . .u is a list of all words in a language, where wn is
the word that is the nth most frequently used. Let fn be the frequency of word wn. Is
t f1, f2, f3, . . .u an increasing sequence or a decreasing sequence?

(b) Give a general formula for fn, treating f1 as a constant.

(c) Suppose in a language, w1 (the most frequently used word) has frequency 6%. If the
language follows Zipf’s Law, then what frequency does w3 have?

(d) Suppose f6 = 0.3% for a language following Zipf’s law. What is f10?

(e) The word “the” is the most-used word in contemporary American English. In a
collection of about 450 million words, “the” appeared 22,038,615 times. The
second-most used word is “be,” followed by “and.” About how many usages of these
words do you expect in the same collection of 450 million words?

Sources: Zipf’s word frequency law in natural language: A critical review and future directions,
Steven T. Piantadosi. Psychon Bull Rev. 2014 Oct; 21(5): 1112–1130. Accessed online 11
October 2017

Word Frequency Data, https://www.wordfrequency.info/free.asp?s=yAccessed
online 11 October 2017

Q[38]: hint answer solution
Binghao has a savings account. Every year, the bank pays him whatever was on the
account at the start of the year, P, plus a percentage rate r of P.

(So, for example, if the percentage rate is 10% and Binghao invests 1 dollar, at the end of
the year the bank will give him his dollar back plus 10% of 1 dollar. This will give a total
of 1.10 dollars in the account at the end of one year.)

Below is a table of expected return per year, assuming that Binghao does not withdraw
money from his account:
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Year Money Simplify
0 P P
1 P + Pr P(1 + r)
2 P(1 + r) + rP(1 + r) I
3 II III

(a) Complete the empty spaces in the table: I, II, and III

(b) If Binghao puts 100 dollars into his account at 10% rate, leaving in both the initial 100
dollars and the interest, how much money would he have in the account after two
years?

(c) Determine the formula for this sequence in terms of time t measured in year,
percentage rate r, and initial money (deposit) P.

(d) How much money does Binghao need to invest to have 300 dollars in 2 years? (For
your interest, in finance this amount is called the “present value.”)

5.1.1 §§ Geometric and harmonic sequences in musical scales

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Suppose we compose a 4-note ode to calculus using these four frequencies:

100, 110, 150, 200

A student from physics would like to sing the same song, but higher. The first note will
have frequency 150 Hz, rather than 100 Hz, but the intervals will be the same. (This is
called transposing a song.)

What frequencies should they use for the remaining three notes?

Q[2]: hint answer solution
Is the scale below even-tempered? How many intervals is an octave divided into?

100 Hz, 120 Hz, 140 Hz, 160 Hz, 180 Hz, 200 Hz

§§ Stage 2

Q[3]: hint answer solution
Some orchestras use 444 Hz to tune, rather than 440 Hz. Determine the note frequencies
of an even-tempered scale that divides the octave from 444 to 888 into 12 intervals.

Q[4]: hint answer solution
Suppose you want to divide the octave from 100 Hz to 200 Hz into ten intervals to make
an even-tempered scale. What are the frequencies of the notes in that scale?
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Q[5]: hint answer solution
An instrument is only able to play the following2 eight notes:

440, 495, 556.875, 586.66, 660, 742.5, 835.3125, 880

1. A song uses these notes: 440, 495, 556.875. Can the same instrument play this song
if it is transposed so that the lowest note is 586.66 Hz, rather than 440 Hz?

2. A song uses these notes: 440, 495, 556.875. Can the same instrument play this song
if it is transposed so that the lowest note is 495 Hz, rather than 440 Hz?

§§ Stage 3

Q[6]: hint answer solution
An instrument is only able to play notes from this (even-tempered) scale:

!

an = 100 ¨ 2 n
12

)8

n=0

(To make things easy on the math side – though this would be hard on the
instrumentalist – let’s assume the instrument can play every note in this scale.)

A song, named Ode to Question 6, uses these notes in particular:

a0, a2, a5, a7

A singer wants to sing along with Ode to Question 6, but finds it too low. So, they want to
replace the note a0 in the song (100 Hz) with some higher note on the instrument, ak. As
long as all the intervals are the same, the song will sound the same – only higher.

For which values of ak can the song still be played on the instrument?

Q[7]: hint answer solution
An instrument is only able to play notes from this (harmonic) scale:

!

bn = 100n
)8

n=1

(Again, let’s assume the instrument can play every note in this scale.)

A song, named Something Clever, uses these notes in particular:

b10, b11, b12

A singer wants to sing along with Something Clever, but finds it too high. So, they want to
replace the highest note in the song (1200 Hz) with some lower note on the instrument,
bk. As long as all the intervals are the same, the song will sound the same – only lower.

For which values of bk can the song still be played on the instrument?

2 This isn’t an entirely contrived example: the ratios follow Pythagorean tuning. See https://pages.
mtu.edu/˜suits/pythagorean.html.
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Q[8]: hint answer solution
In Question 3 and 4, the common ratio between consecutive notes was an integer root of
2 (12th root of 2 and 10th root of 2, respectively). Why did the number 2 appear this way
in both?

Q[9]: hint answer solution
On a guitar, different notes are played by the same string when a player pinches one end
of the string against the instrument, effectively shortening the length of the string. Let’s
assume the frequency played by that string is inversely proportional to its length. (This is
a reasonable assumption as long as the string is not very short or very thick.)

Suppose a string is shortened by pinching it at the different locations marked below. The
portion that vibrates is the part of the string to the right of the pinched location. The sting
at its longest (from position 0 to position 1) plays a tone of 330 Hz. What are the other
notes?

0 11/12 1/2 2/3

5.2Ĳ Series

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution

Write out the first five partial sums corresponding to the series
8
ÿ

n=1

1
n

.

You don’t need to simplify the terms.

Q[2]: hint answer solution
Every student who comes to class brings their instructor cookies, and leaves them on the
instructor’s desk. Let Ck be the total number of cookies on the instructor’s desk after the
kth student comes.

If C11 = 20, and C10 = 17, how many cookies did the 11th student bring to class?
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Q[3]: hint answer solution

Suppose the sequence of partial sums of the series
8
ÿ

n=1

an is tSNu =
"

N
N + 1

*

.

(a) What is tanu?
(b) What is lim

nÑ8
an?

(c) Evaluate
8
ÿ

n=1

an.

Q[4]: hint answer solution

Suppose the sequence of partial sums of the series
8
ÿ

n=1

an is tSNu =
"

(´1)N +
1
N

*

.

What is tanu?
Q[5]: hint answer solution

Let f (N) be a formula for the Nth partial sum of
8
ÿ

n=1

an. (That is, f (N) = SN.) If f 1(N) ă 0

for all N ą 1, what does that say about an?

Questions 6 through 8 invite you to explore geometric sums in a geometric way. This is complementary to
than the algebraic method discussed in the text.

Q[6]: hint answer solution
Suppose the triangle outlined in red in the picture below has area one.

(a) Express the combined area of the black triangles as a series, assuming the pattern
continues forever.

(b) Evaluate the series using the picture (not the formula from your book).

Q[7]: hint answer solution
Suppose the square outlined in red in the picture below has area one.
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(a) Express the combined area of the black square as a series, assuming the pattern
continues forever.

(b) Evaluate the series using the picture (not the formula from your book).

Q[8]: hint answer solution

In the style of Questions 6 and 7, draw a picture that represents
8
ÿ

n=1

1
3n as an area.

Q[9]: hint answer solution

Evaluate
100
ÿ

n=0

1
5n .

Q[10]: hint answer solution
Every student who comes to class brings their instructor cookies, and leaves them on the
instructor’s desk. Let Ck be the total number of cookies on the instructor’s desk after the
kth student comes.

If C20 = 53, and C10 = 17, what does C20 ´ C10 = 36 represent?

Q[11]: hint answer solution

Evaluate
100
ÿ

n=50

1
5n . (Note the starting index.)
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Q[12]: hint answer solution
(a) Starting on day d = 1, every day you give your friend $ 1

d+1 , and they give $1
d back to

you. After a long time, how much money have you gained by this arrangement?

(b) Evaluate
8
ÿ

d=1

(
1
d
´ 1

(d + 1)

)
.

(c) Starting on day d = 1, every day your friend gives you $(d + 1), and they take
$(d + 2) from you. After a long time, how much money have you gained by this
arrangement?

(d) Evaluate
8
ÿ

d=1

((d + 1)´ (d + 2)).

Q[13]: hint answer solution

Suppose
8
ÿ

n=1

an = A,
8
ÿ

n=1

bn = B, and
8
ÿ

n=1

cn = C.

Evaluate
8
ÿ

n=1

(an + bn + cn+1).

Q[14]: hint answer solution

Suppose
8
ÿ

n=1

an = A,
8
ÿ

n=1

bn = B ‰ 0, and
8
ÿ

n=1

cn = C.

True or false:
8
ÿ

n=1

(
an

bn
+ cn

)
=

A
B
+ C.

§§ Stage 2

Q[15](˚): hint answer solution

To what value does the series 1 +
1
3
+

1
9
+

1
27

+
1

81
+

1
243

+ ¨ ¨ ¨ converge?

Q[16](˚): hint answer solution

Evaluate
8
ÿ

k=7

1
8k

Q[17](˚): hint answer solution

Show that the series
8
ÿ

k=1

(
6
k2 ´

6
(k + 1)2

)
converges and find its limit.

Q[18](˚): hint answer solution
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Find the sum of the convergent series
8
ÿ

n=3

(
cos

(π

n

)
´ cos

( π

n + 1

))
.

Q[19](˚): hint answer solution

The nth partial sum of a series
8
ÿ

n=1

an is known to have the formula sn =
1 + 3n
5 + 4n

.

(a) Find an expression for an, valid for n ě 2.

(b) Show that the series
8
ÿ

n=1

an converges and find its value.

Q[20](˚): hint answer solution

Find the sum of the series
8
ÿ

n=2

3 ¨ 4n+1

8 ¨ 5n . Simplify your answer completely.

Q[21](˚): hint answer solution
Find the value of the convergent series

8
ÿ

n=2

(
2n+1

3n +
1

2n´ 1
´ 1

2n + 1

)

Simplify your answer completely.

Q[22](˚): hint answer solution
Evaluate

8
ÿ

n=1

[(1
3

)n
+
(
´ 2

5

)n´1]

Q[23](˚): hint answer solution

Find the sum of the series
8
ÿ

n=0

1 + 3n+1

4n .

Q[24]: hint answer solution

Evaluate
8
ÿ

n=5

ln
(

n´ 3
n

)
.

Q[25]: hint answer solution

Evaluate
8
ÿ

n=2

(
2
n
´ 1

n + 1
´ 1

n´ 1

)
.
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§§ Stage 3

Q[26]: hint answer solution
A random variable X has PMF

f (x) =

#

1
2x x = 1, 2, 3, 4, 5, . . .
0 else

Find the CDF of X.

Q[27]: hint answer solution
Find the combined volume of an infinite collection of spheres, where for each whole num-

ber n = 1, 2, 3, . . . there is exactly one sphere of radius
1

πn .

Q[28]: hint answer solution

Evaluate
8
ÿ

n=3

(
sin2 n

2n +
cos2(n + 1)

2n+1

)
.

Q[29]: hint answer solution
Theorem 3.1.6 claims the following:

•
n
ř

i=1
i = 1

2 n(n + 1), for all integers n ě 1.

•
n
ř

i=1
i2 = 1

6 n(n + 1)(2n + 1), for all integers n ě 1.

•
n
ř

i=1
i3 =

[
1
2 n(n + 1)

]2
, for all integers n ě 1.

The first equation was proved in the text. We can use telescoping series (actually -
telescoping partial sums) to prove3 the last two.

(a) Show that 3i2 + 3i = i(i + 1)(i + 2)´ (i´ 1)i(i + 1).

(b) From (a), and using the identity
n
ř

i=1
i = 1

2 n(n + 1), use the principal behind

telescoping series to show
n
ř

i=1
i2 = 1

6 n(n + 1)(2n + 1).

(c) Following the same proof technique as above, show that
n
ř

i=1
i3 =

[
1
2 n(n + 1)

]2
by first

showing that
i2(i + 1)2 ´ (i´ 1)2i2 = 4i3

3 There are many different ways to prove these identities; credit to https://proofwiki.
org/wiki/Sum_of_Sequence_of_Squares/Proof_by_Sum_of_Differences_
of_Cubes and https://math.stackexchange.com/questions/2938660/
prove-summation-k-1-to-n-k3-with-telescoping-rule for inspiring this problem by
discussing proofs that use ideas from calculus.
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Q[30]: hint answer solution

Suppose a series
8
ÿ

n=1

an has sequence of partial sums tSNu, and the series
8
ÿ

N=1

SN has

sequence of partial sums tSMu =
#

M
ÿ

N=1

SN

+

.

If SM =
M + 1

M
, what is an?

Q[31]: hint answer solution
The function f (x) sketched below only takes on values of f (x) = 0 and f (x) = 1

2 . The
pattern of “spikes” continues indefinitely. Determine whether f (x) could be a PDF by
deciding whether or not

ş8

´8
f (x) = 1.

x

y

¨ ¨ ¨

1
2

1
22

1
23

1
24

¨ ¨ ¨

1
2

1
22

1
23

1
24

1
2

Q[32]: hint answer solution
Evaluate

1000
ÿ

n=1

2
n(n + 1)(n + 2)

Q[33]: hint answer solution
Create a bullseye using the following method:

Starting with a red circle of area 1, divide the radius into thirds, creating two rings and a
circle. Colour the middle ring blue.

Continue the pattern with the inside circle: divide its radius into thirds, and colour the
middle ring blue.
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Step 1 Step 2

Continue in this way indefinitely: dividing the radius of the innermost circle into thirds,
creating two rings and another circle, and colouring the middle ring blue.

What is the area of the red portion?

5.3Ĳ The Integral and Divergence Tests

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Select the series below that diverge by the divergence test.

(A)
8
ÿ

n=1

1
n

(B)
8
ÿ

n=1

n2

n + 1
(C)

8
ÿ

n=1

sin n (D)
8
ÿ

n=1

sin(πn)

Q[2]: hint answer solution
Select the series below whose terms satisfy the conditions to apply the integral test.
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(A)
8
ÿ

n=1

1
n

(B)
8
ÿ

n=1

sin n (C)
8
ÿ

n=1

sin n + 1
n2

Q[3]: hint answer solution

Suppose an is a sequence with lim
nÑ8

an =
1
2

. Does
8
ÿ

n=7

an converge or diverge, or is it not

possible to determine this from the information given? Why?

Q[4]: hint answer solution
What flaw renders the following reasoning invalid?

Q: Determine whether
8
ÿ

n=1

(sin(πn) + 2) converges or diverges.

A: We use the integral test. Let f (x) = sin(πx) + 2. Note f (x) is always
positive, since sin(x) + 2 ě ´1 + 2 = 1. Also, f (x) is continuous.

ż 8

1
[sin(πx) + 2]dx = lim

bÑ8

ż b

1
[sin(πx) + 2]dx

= lim
bÑ8

[
´ 1

π
cos(πx) + 2x

ˇ

ˇ

ˇ

ˇ

b

1

]

= lim
bÑ8

[
´ 1

π
cos(πb) + 2b +

1
π
(´1)´ 2

]
= 8

By the integral test, since the integral diverges, also
8
ÿ

n=1

(sin(πn) + 2)

diverges.

Q[5]: hint answer solution

Give an example of a series
8
ÿ

n=a
an, with a function f (x) such that f (n) = an for all whole

numbers n, such that:

•
ż 8

a
f (x)dx diverges, while

•
8
ÿ

n=a
an converges.

§§ Stage 2

Q[6]: hint answer solution

Evaluate the following series, or show that it diverges:
8
ÿ

n=3

(´1
5

)n
.
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Q[7]: hint answer solution

Does the following series converge or diverge?
8
ÿ

n=7

sin(πn)

Q[8]: hint answer solution

Does the following series converge or diverge?
8
ÿ

n=7

cos(πn)

Q[9]: hint answer solution

Evaluate the following series, or show that it diverges:
8
ÿ

k=0

2k

3k+2 .

Q[10](˚): hint answer solution

Find the values of p for which the series
8
ÿ

n=2

1
n(ln n)p converges.

Q[11](˚): hint answer solution

Does
8
ÿ

n=1

e´
?

n
?

n
converge or diverge?

Q[12]: hint answer solution

Evaluate the following series, or show that it diverges:
8
ÿ

n=5

1
en .

Q[13](˚): hint answer solution

Determine whether the series
8
ÿ

n=2

6
7n is convergent or divergent. If it is convergent, find

its value.

§§ Stage 3

Q[14](˚): hint answer solution

Show that
8
ÿ

n=1

e´
?

n
?

n
converges and find an interval of length 0.05 or less that contains its

exact value.

Q[15](˚): hint answer solution

Suppose that the series
8
ř

n=0
(1´ an) converges, where an ą 0 for n = 0, 1, 2, 3, ¨ ¨ ¨ . Deter-

mine whether the series
8
ř

n=0
2nan converges or diverges.

127



SEQUENCES AND SERIES 5.4 COMPARISON TESTS

Q[16](˚): hint answer solution

Assume that the series
8
ÿ

n=1

nan ´ 2n + 1
n + 1

converges, where an ą 0 for n = 1, 2, ¨ ¨ ¨ . Is the

following series

´ ln a1 +
8
ÿ

n=1

ln
( an

an+1

)
convergent? If your answer is NO, justify your answer. If your answer is YES, evaluate

the sum of the series ´ ln a1 +
8
ř

n=1
ln
( an

an+1

)
.

A number of phenomena roughly follow a distribution called Zipf’s law. We discuss some of these in Ques-
tions 17 and 18.

Q[17]: hint answer solution
Suppose the frequency of word use in a language has the following pattern:

The n-th most frequently used word accounts for
α

n
percent of the total words

used.

So, in a text of 100 words, we expect the most frequently used word to appear α times,
while the second-most-frequently used word should appear about α

2 times, and so on.

If a text written in this language uses 20, 000 distinct words, then the most commonly
used word accounts for roughly what percentage of total words used?

Q[18]: hint answer solution
Suppose the sizes of cities in a country adhere to the following pattern: if the largest city
has population α, then the n-th largest city has population α

n .

If the largest city in this country has 2 million people, what do you expect the population
of the entire country is? Make your answer accurate to within 1 million people.

5.4Ĳ Comparison Tests

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Suppose there is some threshold after which a person is considered old, and before
which they are young.

Let Olaf be an old person, and let Yuan be a young person.

(a) Suppose I am older than Olaf. Am I old?

(b) Suppose I am younger than Olaf. Am I old?
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(c) Suppose I am older than Yuan. Am I young?

(d) Suppose I am younger than Yuan. Am I young?

Q[2]: hint answer solution
Below are graphs of two sequences with positive terms. Assume the sequences continue
as shown. Fill in the table with conclusions that can be made from the direct comparison
test, if any.

x

y

n

if
ř

an converges if
ř

an diverges

and if tanu is the red series then
ř

bn then
ř

bn

and if tanu is the blue series then
ř

bn then
ř

bn

Q[3]: hint answer solution
For each pair of series below, decide whether the second series is a valid comparison
series to determine the convergence of the first series, using the direct comparison test
and/or the limit comparison test.

(a)
8
ÿ

n=10

1
n´ 1

, compared to the divergent series
8
ÿ

n=10

1
n

.

(b)
8
ÿ

n=1

sin n
n2 + 1

, compared to the convergent series
8
ÿ

n=1

1
n2 .

(c)
8
ÿ

n=5

n3 + 5n + 1
n6 ´ 2

, compared to the convergent series
8
ÿ

n=5

1
n3 .

(d)
8
ÿ

n=5

1?
n

, compared to the divergent series
8
ÿ

n=5

1
4
?

n
.

Q[4]: hint answer solution
What flaw renders the following reasoning invalid?

Q: Determine whether
8
ÿ

n=1

sin n
n

converges or diverges.
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A: First, we will evaluate lim
nÑ8

sin n
n

.

• Note
´1
n
ď sin n

n
ď 1

n
for n ě 1.

• Note also that lim
nÑ8

´1
n

= lim
nÑ8

1
n
= 0.

• Therefore, by the Squeeze Theorem, lim
nÑ8

sin n
n

= 0 as well.

So, by the divergence test,
8
ÿ

n=1

sin n
n

converges.

Q[5]: hint answer solution
What flaw renders the following reasoning invalid?

Q: Determine whether the series
8
ÿ

n=1

2n+1n2

en + 2n
converges or diverges.

A: We want to compare this series to the series
8
ÿ

n=1

2n+1

en . Note both this series

and the series in the question have positive terms.

First, we find that
2n+1n2

en + 2n
ą 2n+1

en when n is sufficiently large. The

justification for this claim is as follows:

• We note that en(n2 ´ 1) ą n2 ´ 1 ą 2n for n sufficiently large.

• Therefore, en ¨ n2 ą en + 2n

• Therefore, 2n+1 ¨ en ¨ n2 ą 2n+1(en + 2n)

• Since en + 2n and en are both expressions that work out to be positive for
the values of n under consideration, we can divide both sides of the
inequality by these terms without having to flip the inequality. So,
2n+1n2

en + 2n
ą 2n+1

en .

Now, we claim
8
ÿ

n=1

2n+1

en converges.

Note
8
ÿ

n=1

2n+1

en = 2
8
ÿ

n=1

2n

en = 2
8
ÿ

n=1

(
2
e

)n
. This is a geometric series with r = 2

e .

Since 2/e ă 1, the series converges.

Now, by the Direct Comparison Test, we conclude that
8
ÿ

n=1

2n+1n2

en + 2n
converges.

Q[6](˚): hint answer solution

Suppose that you want to use the Limit Comparison Test on the series
8
ÿ

n=0

an where
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an =
2n + n
3n + 1

. Write down a sequence tbnu such that lim
nÑ8

an

bn
exists and is nonzero. (You

don’t have to carry out the Limit Comparison Test)

Q[7](˚): hint answer solution
Decide whether each of the following statements is true or false. If false, provide a
counterexample. If true provide a brief justification.

(a) If lim
nÑ8

an = 0, then
8
ř

n=1
an converges.

(b) If lim
nÑ8

an = 0, then
8
ř

n=1
(´1)nan converges.

(c) If 0 ď an ď bn and
8
ř

n=1
bn diverges, then

8
ř

n=1
an diverges.

§§ Stage 2

Q[8]: hint answer solution

Does the following series converge or diverge?
8
ÿ

k=1

1?
k
?

k + 1

Q[9](˚): hint answer solution

Show that the series
8
ÿ

n=3

5
n(ln n)3/2 converges.

Q[10](˚): hint answer solution

Does the series
8
ÿ

n=2

n2

3n2 +
?

n
converge?

Q[11](˚): hint answer solution
Use the comparison test (not the limit comparison test) to show whether the series
8
ÿ

n=2

?
3n2 ´ 7

n3 converges or diverges.

Q[12](˚): hint answer solution

Determine whether the series
8
ÿ

k=1

3
?

k4 + 1?
k5 + 9

converges.

Q[13](˚): hint answer solution
Determine whether the series

8
ÿ

k=1

k4 ´ 2k3 + 2
k5 + k2 + k

converges or diverges.

Q[14](˚): hint answer solution
Determine whether each of the following series converge or diverge.

131



SEQUENCES AND SERIES 5.5 THE RATIO TEST

(a)
8
ÿ

n=2

n2 + n + 1
n5 ´ n

(b)
8
ÿ

m=1

3m + sin
?

m
m2

Q[15](˚): hint answer solution

Determine whether the series
8
ÿ

n=1

n3 ´ 4
2n5 ´ 6n

is convergent or divergent.

Q[16](˚): hint answer solution

Determine whether the series
8
ÿ

n=0

1
n + 1

2

is convergent or divergent. If it is convergent, find

its value.

§§ Stage 3

Q[17](˚): hint answer solution

(a) Prove that
ż 8

2

x + sin x
1 + x2 dx diverges.

(b) Explain why you cannot conclude that
8
ÿ

n=1

n + sin n
1 + n2 diverges from part (a) and the

Integral Test.

(c) Determine, with explanation, whether
8
ÿ

n=1

n + sin n
1 + n2 converges or diverges.

Q[18](˚): hint answer solution

Suppose that the series
8
ÿ

n=1

an converges and that 1 ą an ě 0 for all n. Prove that the series

8
ÿ

n=1

an

1´ an
also converges.

Q[19](˚): hint answer solution

Prove that if an ě 0 for all n and if the series
8
ÿ

n=1

an converges, then the series
8
ÿ

n=1

a2
n also

converges.

5.5Ĳ The Ratio Test

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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§§ Stage 1

Q[1]: hint answer solution
Give an example of a convergent series for which the ratio test is inconclusive.

Q[2]: hint answer solution
Imagine you’re taking an exam, and you momentarily forget exactly how the inequality
in the ratio test works. You remember there’s a ratio, but you don’t remember which
term goes on top; you remember there’s something about the limit being greater than or
less than one, but you don’t remember which way implies convergence.

Explain why

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

ą 1

or, equivalently,

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an

an+1

ˇ

ˇ

ˇ

ˇ

ă 1

should mean that the sum
8
ř

n=1
an diverges (rather than converging).

§§ Stage 2

Q[3]: hint answer solution

Evaluate the following series, or show that it diverges:
8
ÿ

k=30

3(1.001)k.

Q[4]: hint answer solution

Does the following series converge or diverge?
8
ÿ

k=1

ek

k!
.

Q[5]: hint answer solution

Does the following series converge or diverge?
8
ÿ

n=1

n!n!
(2n)!

.

Q[6]: hint answer solution

Does the following series converge or diverge?
8
ÿ

n=1

n2 + 1
2n4 + n

.

133



SEQUENCES AND SERIES 5.6 ABSOLUTE AND CONDITIONAL CONVERGENCE

Q[7](˚): hint answer solution

Does
8
ÿ

n=1

n42n/3

(2n + 7)4 converge or diverge?

Q[8](˚): hint answer solution
Determine, with explanation, whether each of the following series converge or diverge.
(a) 1 + 1

3 +
1
5 +

1
7 +

1
9 + ¨ ¨ ¨ .

(b)
8
ÿ

n=1

2n + 1
22n+1

Q[9](˚): hint answer solution
Determine, with explanation, whether each of the following series converges or diverges.

(a)
8
ÿ

k=2

3
?

k
k2 ´ k

.

(b)
8
ÿ

k=1

k1010k(k!)2

(2k)!
.

(c)
8
ÿ

k=3

1
k(ln k)(ln ln k)

.

Q[10](˚): hint answer solution

Determine, with explanation, whether the series
8
ÿ

n=1

5k

4k + 3k converges or diverges.

§§ Stage 3

Q[11](˚): hint answer solution
Determine, with explanation, whether the following series converge or diverge.

(a)
8
ÿ

n=1

nn

9nn!

(b)
8
ÿ

n=1

1
nln n

5.6Ĳ Absolute and Conditional Convergence

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

134



SEQUENCES AND SERIES 5.6 ABSOLUTE AND CONDITIONAL CONVERGENCE

§§ Stage 1

Q[1](˚): hint answer solution
Decide whether the following statement is true or false. If false, provide a
counterexample. If true provide a brief justification.

If
8
ÿ

n=1

(´1)n+1bn converges, then
8
ÿ

n=1

bn also converges.

Q[2]: hint answer solution

Describe the sequence
8
ÿ

n=1

an based on whether
8
ÿ

n=1

an and
8
ÿ

n=1

|an| converge or diverge,

using vocabulary from this section where possible.

ř

an converges
ř

an diverges

ř |an| converges

ř |an| diverges

§§ Stage 2

Q[3](˚): hint answer solution

Determine whether the series
8
ÿ

n=1

(´1)n

9n + 5
is absolutely convergent, conditionally conver-

gent, or divergent; justify your answer.

Q[4](˚): hint answer solution

Determine whether the series
8
ÿ

n=1

(´1)2n+1

1 + n
is absolutely convergent, conditionally con-

vergent, or divergent.

Q[5](˚): hint answer solution

The series
8
ÿ

n=1

(´1)n´1 1 + 4n

3 + 22n either: converges absolutely; converges conditionally;

diverges; or none of the above. Determine which is correct.

Q[6](˚): hint answer solution

Does the series
8
ÿ

n=5

?
n cos n

n2 ´ 1
converge conditionally, converge absolutely, or diverge?

Q[7](˚): hint answer solution

Determine (with justification!) whether the series
8
ÿ

n=1

n2 ´ sin n
n6 + n2 converges absolutely, con-

verges but not absolutely, or diverges.
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Q[8](˚): hint answer solution

Determine (with justification!) whether the series
8
ÿ

n=0

(´1)n(2n)!
(n2 + 1)(n!)2 converges absolutely,

converges but not absolutely, or diverges.

Q[9](˚): hint answer solution

Determine (with justification!) whether the series
8
ÿ

n=2

(´1)n

n(ln n)101 converges absolutely, con-

verges but not absolutely, or diverges.

Q[10]: hint answer solution

Show that the series
8
ÿ

n=1

sin n
n2 converges.

Q[11]: hint answer solution

Show that the series
8
ÿ

n=1

(
sin n

4
´ 1

8

)n
converges.

Q[12]: hint answer solution

Show that the series
8
ÿ

n=1

sin2 n´ cos2 n + 1
2

2n converges.

§§ Stage 3

Q[13](˚): hint answer solution

Both parts of this question concern the series S =
8
ÿ

n=1

(´1)n´124n2e´n3
.

(a) Show that the series S converges absolutely.

(b) Suppose that you approximate the series S by its fifth partial sum S5. Give an upper
bound for the error resulting from this approximation.

Q[14]: hint answer solution
You may assume without proof the following:

8
ÿ

n=0

(´1)n

(2n)!
= cos(1)

Using this fact, approximate cos 1 as a rational number, accurate to within 1
1000 .

Check your answer against a calculator’s approximation of cos(1): what was your actual
error?

Q[15]: hint answer solution
Let an be defined as

an =

#

´en/2 if n is prime
n2 if n is not prime
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Show that the series
8
ÿ

n=1

an

en converges.
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POWER SERIES

Chapter 6

6.1Ĳ Radius of Convergence

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution

Let f (x) =
8
ÿ

n=a
An(x ´ c)n for some positive constants a and c, and some sequence of

constants tAnu. For which values of x does f (x) definitely converge?

Q[2]: hint answer solution
Let f (x) be a power series centred at c = 5. If f (x) converges at x = ´1, and diverges at
x = 11, what is the radius of convergence of f (x)?

§§ Stage 2

Q[3](˚): hint answer solution

Find the radius of convergence for the power series
8
ÿ

k=0

xk

10k+1(k + 1)!

Q[4](˚): hint answer solution

Find the radius of convergence for the power series
8
ÿ

n=0

(x´ 2)n

n2 + 1
.
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Q[5](˚): hint answer solution

Consider the power series
8
ÿ

n=1

(´1)n(x + 2)n
?

n
, where x is a real number. Find the radius of

convergence of this series.

Q[6](˚): hint answer solution
Find the radius of convergence of the series

8
ÿ

n=0

(´1)n

n + 1

(
x + 1

3

)n

Q[7](˚): hint answer solution
Find the radius of convergence for the power series

8
ÿ

n=1

(x´ 2)n

n4/5(5n ´ 4)
.

Q[8](˚): hint answer solution

Find the largest possible open interval of values of x for which the series
8
ÿ

n=1

(x + 2)n

n2

converges.

Q[9](˚): hint answer solution

Find the interval of convergence for
8
ÿ

n=1

4n

n
(x´ 1)n. Don’t worry about convergence at

the endpoints of the interval.

Q[10](˚): hint answer solution
Find, with explanation, the radius of convergence and the interval of convergence of the
power series

8
ÿ

n=0

(´1)n (x´ 1)n

2n(n + 2)

You don’t need to include the endpoints of the interval of convergence.

Q[11](˚): hint answer solution

Find the interval of convergence for the series
8
ÿ

n=1

(´1)nn2(x´ a)2n where a is a constant.

You don’t need to worry about the endpoints of the interval.

§§ Stage 3

Q[12](˚): hint answer solution
Find the intervals of convergence of the following series:
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(a)
8
ÿ

k=1

(x + 1)k

k29k .

(b)
8
ÿ

k=1

ak(x´ 1)k, where ak ą 0 for k = 1, 2, ¨ ¨ ¨ and
8
ÿ

k=1

( ak
ak+1

´ ak+1

ak+2

)
=

a1

a2
.

Don’t worry about the endpoints of the intervals.

Q[13](˚): hint answer solution
Determine the values of x for which the series

8
ÿ

n=2

xn

32n ln n

converges absolutely, converges conditionally, or diverges.

Q[14](˚): hint answer solution
Suppose that you have a sequence tbnu such that the series

ř8
n=0(1´ bn) converges. Using

the tests we’ve learned in class, prove that the radius of convergence of the power series
8
ÿ

n=0

bnxn is equal to 1.

Q[15](˚): hint answer solution
Assume

 

an
(

is a sequence such that nan decreases to C as n Ñ 8 for some real number
C ą 0

(a) Find the radius of convergence of
8
ÿ

n=1

anxn . Justify your answer carefully.

(b) Find the interval of convergence of the above power series, that is, find all x for which
the power series in (a) converges. Justify your answer carefully, but don’t bother with the
endpoints of the interval of convergence.

6.2Ĳ Working With Power Series

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution

Suppose f (x) =
8
ÿ

n=0

(
3´ x

4

)n
. What is f (1)?

Q[2]: hint answer solution
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Let f (x) be a function given by
8
ÿ

n=0

An(x´ 3)n for all x in the interval (´2, 8). Consider

the power series P:

8
ÿ

n=0

n ¨ An(x´ 3)n´1

(a) True or False: P definitely converges when x = 0.

(b) True or False: P definitely converges when x = 8.

Q[3]: hint answer solution

Let g(x) by a function given by
8
ÿ

n=0

Bn(x´ 3)n for all x in the interval (´3, 8). Consider

the power series Q:

8
ÿ

n=0

n ¨ Bn(x´ 3)n´1

(a) True or False: Q definitely converges when x = ´3.

(b) True or False: Q definitely converges when x = 8.

Q[4]: hint answer solution
In Example 6.1.7, we found the series

1+ 2x+ x2+ 2x3+ x4+ 2x5+ ¨ ¨ ¨

has radius of convergence R = 1.

What is the radius of convergence of the series

1+ 23x+ 24x2+ 27x3+ 28x4+ 211x5+ ¨ ¨ ¨ ?

§§ Stage 2

Q[5]: hint answer solution

Suppose f (x) =
8
ÿ

n=1

(x´ 5)n

n! + 2
. Give a power series representation of f 1(x).
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Q[6](˚): hint answer solution
(a) Find the radius of convergence of the series

8
ÿ

k=0

(´1)k2k+1xk

(b) You are given the formula for the sum of a geometric series, namely:

1 + r + r2 + ¨ ¨ ¨ = 1
1´ r

, |r| ă 1

Use this fact to evaluate the series in part (a).

Q[7](˚): hint answer solution

Find a power series representation for
x3

1´ x
.

Q[8]: hint answer solution

Suppose f 1(x) =
8
ÿ

n=0

(x´ 1)n

n + 2
, and

ż x

5
f (t)dt = 3x +

8
ÿ

n=1

(x´ 1)n+1

n(n + 1)2 .

Give a power series representation of f (x).

Q[9]: hint answer solution

Evaluate
8
ÿ

n=3

n
5n´1 .

§§ Stage 3

Q[10](˚): hint answer solution

(a) Show that
8
ÿ

n=0

nxn =
x

(1´ x)2 for ´1 ă x ă 1.

(b) Express
8
ÿ

n=0

n2xn as a ratio of polynomials. For which x does this series converge?

(Give the largest open interval.)

Q[11]: hint answer solution

Let f (x) =
8
ÿ

n=0

An(x´ c)n, for some constant c and a sequence of constants tAnu. Further,

let f (x) have a positive radius of covergence.

If A1 = 0, show that y = f (x) has a critical point at x = c. What is the relationship
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between the behaviour of the graph at that point and the value of A2?

6.3Ĳ Extending Taylor Polynomials

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Below is a graph of y = f (x), along with the constant approximation, linear
approximation, and quadratic approximation centred at a = 2. Which is which?

x

y

2

y = f (x)

A

B

C

Q[2]: hint answer solution
Suppose T(x) is the Taylor series for f (x) = arctan3 (ex + 7) centred at a = 5. What is
T(5)?
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Q[3]: hint answer solution
Below are a list of common functions, and their Taylor series representations. Match the
function to the Taylor series.

function series

A.
1

1´ x
I.

8
ÿ

n=0

(´1)n xn+1

n + 1

B. ln(1 + x) II.
8
ÿ

n=0

(´1)n x2n+1

(2n + 1)!

C. arctan x III.
8
ÿ

n=0

(´1)n x2n

(2n)!

D. ex IV.
8
ÿ

n=0

(´1)n x2n+1

2n + 1

E. sin x V.
8
ÿ

n=0

xn

F. cos x VI.
8
ÿ

n=0

xn

n!

§§ Stage 2

In Questions 4 through 7, you will create Taylor series from scratch. In practice, it is often preferable to
modify an existing series, rather than creating a new one, but you should understand both ways.

Q[4]: hint answer solution
Using the definition of a Taylor series, find the Taylor series for f (x) = ln(x) centred at
x = 1.

Q[5]: hint answer solution
Find the Taylor series for f (x) = sin x centred at a = π.

Q[6]: hint answer solution

Using the definition of a Taylor series, find the Taylor series for g(x) =
1
x

centred at
x = 10. What is the interval of convergence of the resulting series?

Q[7]: hint answer solution
Using the definition of a Taylor series, find the Taylor series for h(x) = e3x centred at
x = a, where a is some constant. What is the radius of convergence of the resulting series?
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POWER SERIES 6.3 EXTENDING TAYLOR POLYNOMIALS

In Questions 8 through 15, practice creating new Taylor series by modifying known Taylor series, rather
than creating your series from scratch.

Q[8](˚): hint answer solution

Find the Taylor series for f (x) =
1

2x´ 1
at a = 0.

Q[9](˚): hint answer solution

Let
8
ÿ

n=0

bnxn be the Maclaurin series for f (x) =
3

x + 1
´ 1

2x´ 1
,

i.e.
8
ÿ

n=0

bnxn =
3

x + 1
´ 1

2x´ 1
. Find bn.

Q[10](˚): hint answer solution

Find the coefficient c5 of the fifth degree term in the Maclaurin series
8
ÿ

n=0

cnxn for e3x.

Q[11](˚): hint answer solution
Express the Taylor series of the function

f (x) = ln(1 + 2x)

about x = 0 in summation notation.

Q[12](˚): hint answer solution
The first two terms in the Maclaurin series (i.e the Taylor series centred at a = 0) for
x2 sin(x3) are ax5 + bx11 , where a and b are constants. Find the values of a and b.

Q[13](˚): hint answer solution
Give the first two nonzero terms in the Maclaurin series (i.e the Taylor series centred at

a = 0) for
ż

e´x2 ´ 1
x

dx.

Q[14](˚): hint answer solution

Find the Maclaurin series (i.e. Taylor series with a = 0) for
ż

x4 arctan(2x)dx.

Q[15](˚): hint answer solution

Suppose that
d f
dx

=
x

1 + 3x3 and f (0) = 1. Find the Maclaurin series (i.e. Taylor series

with a = 0) for f (x).
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Q[16]: hint answer solution
Suppose you wanted to approximate the number e as a rational number using the
Maclaurin expansion of ex. How many terms would you need to add to get 10 decimal
places of accuracy? (That is, an absolute error less than 5ˆ 10´11.)
You may assume without proof that 2 ă e ă 3. Remember a Maclaurin expansion is a
Taylor expansion centred at a = 0.

Q[17]: hint answer solution
Suppose you wanted to approximate the number ln(0.9) as a rational number using the
Taylor expansion of ln(1´ x). Which partial sum should you use to get 10 decimal places
of accuracy? (That is, an absolute error less than 5ˆ 10´11.)

Q[18]: hint answer solution
Define the hyperbolic sine function as

sinh x =
ex ´ e´x

2
.

Suppose you wanted to approximate the number sinh(b) using the Maclaurin series of
sinh x, where b is some number in (´2, 1). Which partial sum should you use to
guarantee 10 decimal places of accuracy? (That is, an absolute error less than 5ˆ 10´11.)

You may assume without proof that 2 ă e ă 3. Remember a Maclaurin expansion is a
Taylor expansion centred at a = 0.

Q[19]: hint answer solution
Let f (x) be a function with

f (n)(x) =
(n´ 1)!

2

[
(1´ x)´n + (´1)n´1(1 + x)´n

]
for all n ě 1.

Give reasonable bounds (both upper and lower) on the error involved in approximating
f
(
´1

3

)
using the partial sum S6 of the Taylor series for f (x) centred at a = 1

2 .

Remark: One function with this quality is the inverse hyperbolic tangent function.1

§§ Stage 3

Q[20]: hint answer solution

(a) Find the Maclaurin series (i.e the Taylor series centred at a = 0) for
f (x) = (1´ x)´1/2. What is its radius of convergence?

(b) Manipulate the series you just found to find the Maclaurin series for g(x) = arcsin x.
What is its radius of convergence?

1 Of course it is! Actually, hyperbolic tangent is tanh(x) =
ex ´ e´x

ex + e´x , and inverse hyperbolic tangent is

its functional inverse.

146
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Q[21](˚): hint answer solution
Find the Taylor series for f (x) = ln(x) centred at a = 2. Find the interval of convergence
for this series. (You may include endpoints for the interval of convergence if you wish.)

Q[22](˚): hint answer solution

Let I(x) =
ż x

0

1
1 + t4 dt. Find the Maclaurin series (i.e the Taylor series centred at a = 0)

for I(x).

Q[23](˚): hint answer solution

Let I(x) =
ż x

0

e´t ´ 1
t

dt. Find the Maclaurin series (i.e the Taylor series centred at a = 0)

for I(x).

Q[24](˚): hint answer solution

The function Σ(x) is defined by Σ(x) =
ż x

0

sin t
t

dt.

(a) Find the Maclaurin series (i.e the Taylor series centred at a = 0) for Σ(x).

(b) It can be shown that Σ(x) has an absolute maximum which occurs at its smallest
positive critical point (see the graph of Σ(x) below). Find this critical point.

(c) Use the previous information to find the maximum value of Σ(x) to within ˘0.01.

x

y

Q[25](˚): hint answer solution

Let I(x) =
ż x

0

cos t´ 1
t2 dt.

Find the Maclaurin series (i.e the Taylor series centred at a = 0) for I(x).

Q[26](˚): hint answer solution

Let I(x) =
ż x

0

cos t + t sin t´ 1
t2 dt

Find the Maclaurin series (i.e the Taylor series centred at a = 0) for I(x).

Q[27](˚): hint answer solution

Define f (x) =
ż x

0

1´ e´t

t
dt.

(a) Show that the Maclaurin series (i.e the Taylor series centred at a = 0) for f (x) is
8
ÿ

n=1

(´1)n´1

n ¨ n!
xn.

(b) Use the ratio test to determine the values of x for which the Maclaurin series
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8
ÿ

n=1

(´1)n´1

n ¨ n!
xn converges.

Q[28](˚): hint answer solution

Show that
ż 1

0

x3

ex ´ 1
dx ď 1

3
.

Q[29](˚): hint answer solution

Let cosh(x) =
ex + e´x

2
.

(a) Find the power series expansion of cosh(x) about x0 = 0 and determine its interval
of convergence.

(b) Show that 11
3 ď cosh(2) ď 11

3 + 0.1.

(c) Show that cosh(t) ď e
1
2 t2

for all t.

Q[30]: hint answer solution
Consider the following function:

f (x) =

#

e´1/x2
x ‰ 0

0 x = 0

(a) Sketch y = f (x).

(b) Assume (without proof) that f (n)(0) = 0 for all whole numbers n. Find the Maclaurin
series (i.e the Taylor series centred at a = 0) for f (x).

(c) Where does the Maclaurin series for f (x) converge?

(d) For which values of x is f (x) equal to its Maclaurin series?

Q[31]: hint answer solution

Suppose f (x) is an odd function, and f (x) =
8
ÿ

n=0

f (n)(0)
n!

xn. Simplify
8
ÿ

n=0

f (2n)(0)
(2n)!

x2n.

Q[32]: hint answer solution

Write the function f (x) =
8
ÿ

n=0

(´1)nx2n+4

(2n + 1)(2n + 2)
explicitly (without a series).

Q[33]: hint answer solution
Suppose f (x) is represented by a Taylor series centred at c, converging for all x in the
interval (c´ R, c + R). Theorem 6.2.1 tells us that the Taylor series centred at c for f 1(x)
will also converge for all x in the interval (c´ R, c + R).

Find an example of a function f (x) and a constant a such that: the Maclaurin series of f (x)
converges to f (a) at a value x = a, but the Maclaurin series of f 1(x) does note converge to
f 1(a) at x = a.
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6.4Ĳ Computing with Taylor Series

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
True or false?

(a) sin
(π

4

)
=

8
ÿ

n=0

(´1)n 1
(2n)!

(π

4

)2n

(b) 1 =
8
ÿ

n=0

(´1)n (e´ 1)n+1

n + 1

(c)
π

4
=

8
ÿ

n=0

(´1)n 1
2n + 1

Q[2]: hint answer solution

(a) Suppose f (x) =
8
ÿ

n=0

n2

(n! + 1)
(x´ 3)n for all real x. What is f (20)(3) (the twentieth

derivative of f (x) at x = 3)?

(b) Suppose g(x) =
8
ÿ

n=0

n2

(n! + 1)
(x´ 3)2n for all real x. What is g(20)(3)?

(c) If h(x) =
arctan(5x2)

x4 , what is h(20)(0)? What is h(22)(0)?

§§ Stage 2

In past chapters, we were only able to exactly evaluate very specific types of series: geometric and telescoping.
In Questions 3 through 11, we expand our range by relating given series to Taylor series.

Q[3](˚): hint answer solution
The Maclaurin series (i.e. Taylor series with a = 0) for arctan x is given by

arctan x =
8
ÿ

n=0

(´1)n x2n+1

2n + 1

which has radius of convergence equal to 1. Use this fact to compute the exact value of
the series below:

8
ÿ

n=0

(´1)n

(2n + 1)3n

149



POWER SERIES 6.4 COMPUTING WITH TAYLOR SERIES

Q[4](˚): hint answer solution

Evaluate
8
ÿ

n=0

(´1)n

n!
.

Q[5](˚): hint answer solution

Evaluate
8
ÿ

k=0

1
ekk!

.

Q[6](˚): hint answer solution

Evaluate the sum of the convergent series
8
ÿ

k=1

1
πkk!

.

Q[7](˚): hint answer solution

Evaluate
8
ÿ

n=1

(´1)n´1

n 2n .

Q[8](˚): hint answer solution

Evaluate
8
ÿ

n=1

n + 2
n!

en .

Q[9]: hint answer solution

Evaluate
8
ÿ

n=1

2n

n
, or show that it diverges.

Q[10]: hint answer solution
Evaluate

8
ÿ

n=0

(´1)n

(2n + 1)!

(π

4

)2n+1 (
1 + 22n+1

)
or show that it diverges.

Q[11](˚): hint answer solution

(a) Show that the power series
8
ÿ

n=0

x2n

(2n)!
converges absolutely for all real numbers x.

(b) Evaluate
8
ÿ

n=0

1
(2n)!

.

§§ Stage 3

Q[12]: hint answer solution

Evaluate the series
8
ÿ

n=0

(n + 1)(n + 2)
7n or show that it diverges.
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6.5Ĳ Evaluating Limits using Taylor Expansions

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: hint answer solution
Explain why

lim
xÑ0

[ř8
n=c Anxn

ř8
n=c Bnxn

]
=

Ac

Bc

when Ac and Bc are nonzero and both series converge.

§§ Stage 2

Q[2](˚): hint answer solution

Use series to evaluate lim
xÑ0

1´ cos x
1 + x´ ex .

Q[3](˚): hint answer solution

Evaluate lim
xÑ0

sin x´ x + x3

6
x5 .

Q[4]: hint answer solution

Evaluate lim
xÑ0

(
1 + x + x2

)2/x
using a Taylor series for the natural logarithm.

Q[5]: hint answer solution
Use series to evaluate

lim
xÑ8

(
1 +

1
2x

)x
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Hints for Exercises 1.1. — Jump to TABLE OF CONTENTS.

H-1: The fill patterns are only included to distinguish different parts of the diagram.

H-2: Read the last page of Section A.2 describing spheres in R3.

H-3: This is a review question to get you thinking about R2 in a way that will help you
get used to R3.

H-4: Compare to Question 3. To visualize what’s going on, it can help to consider what
shapes you’d get if z were a constant.

If you’re struggling to visualize R3, Appendix A.1 in the text shows you how to fold a
model of its first octant.

H-5: From the text, the distance from the point (x, y, z) to the point (x1, y1, z1) is
b

(x´ x1)2 + (y´ y1)2 + (z´ z1)2

H-6: From the text, the distance from the point (x, y, z) to the xy-plane is |z|.
H-7: From the text, the distance from the point (x, y, z) to the point (x1, y1, z1) is

b

(x´ x1)2 + (y´ y1)2 + (z´ z1)2

100 metres is one-tenth of a kilometre.

H-8: From the text, the distance from the point (x, y, z) to the point (x1, y1, z1) is
b

(x´ x1)2 + (y´ y1)2 + (z´ z1)2

Given the distance and the x and y coordinates, you can solve for the z coordinate.

H-9: At which part of the journey are you actually getting farther away from the wall?

H-10: The isobar is a curve of the form x2 ´ 2cx + y2 = 1, where c is a constant. These
describe circles – figure out what their centres and radii are.

H-12: This centre must be equidistant from the three vertices.

H-13: From the text, the distance from the point (x, y, z) to the point (x1, y1, z1) is
b

(x´ x1)2 + (y´ y1)2 + (z´ z1)2

Also from the text, the distance from the point (x, y, z) to the xy-plane is |z|. Use a similar
thought process to find the distance from a point (x, y, z) to the plane z = ´1.

Hints for Exercises 1.2. — Jump to TABLE OF CONTENTS.

H-1: Once you pick the number for the range, you’re basically done....
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H-2: This is a review of high-school material, since we have functions of only one
variable. We want you to think about it to get in the right mindset.

H-3: If you set x = y = 1, is there a solution to the equation?

H-4: To find the range, consider all points in the domain with x = 0.

H-5: For the range, consider h(x, 0).

H-6: The domain of the function arcsin(x) is [´1, 1], and its range is
[´π

2 , π
2

]
.

H-7: One way of thinking of xy ą 0 is that x and y must have the same sign (and both be
nonzero).

H-8: y doesn’t impact the final value of f (x, y), so think of this as a problem from last
semester. What are the maximum and minimum values of the function f (x) = x2

x2+1? Can
you sketch its graph?

H-9: Consider the functions f1(x) = x
x2+1 and f2(y) = sin y separately.

H-10: Do you see any signs that might point you in the right direction?

H-11: The domain will look like a ring

H-12: First work with the function

h(t) = 72t2 ´ t4

Then, think about the implications of t = x2 ´ y.

Hints for Exercises 1.3. — Jump to TABLE OF CONTENTS.

H-1: Consider the traces. That is, if you set one variable equal to a constant, what will
the resulting cross-sections look like?

H-2: Draw in the plane z = C for several values of C.

H-3: Remember when you set f (x, y) equal to a constant, the result is a curve with only
x’s and y’s.

H-4: The circle centred at (0, a) with radius r has equation

x2 + (y´ a)2 = r2

Rearranged, this is
x2 + y2 ´ (2a)y = r2 = a2

Use this to describe the level curves of the function given.

H-5: If z is constant, then the entire expression ´z2 + 2z is one big constant.

H-6: For each fixed z, 4x2 + y2 = 1 + z2 is an ellipse. So the surface consists of a stack of
ellipses one on top of the other. The

H-7: Start by determining what convenient traces look like. For (a), the level curves are
less instructive at first than are the traces found by setting y equal to a constant.
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H-9: To solve (say) sin(x + y) = 0, you get lots of solutions: x + y = 0, x + y = π,
x + y = 2π, etc.

H-10: Since the level curves are circles centred at the origin (in the xy-plane), the
equation will have the form x2 + y2 = g(z), where g(z) is a function depending only on z.

Hints for Exercises 2.1. — Jump to TABLE OF CONTENTS.

H-1: What happens if you move “backwards,” in the negative y direction?

H-2: Use the definition of the derivative:

fx(x, y) = lim
hÑ0

f (x + h, y)´ f (x, y)
h

« f (x + 0.1, y)´ f (x, y)
0.1

H-4: Just evaluate x Bz
Bx (x, y) + y Bz

By (x, y).

H-5: This is an implicit differentiation question. Implicit differentiation, as you’ll recall
from first-semester calculus, is more-or-less just an application of the chain rule.

H-6: Differentiate implicitly.

H-9: Just evaluate y Bz
Bx (x, y) and x Bz

By (x, y).

H-11: You can find an equation for the surface, or just look at the diagram.

H-12: For (a) and (b), remember B f
Bx (x, y) = lim

hÑ0

f (x+h,y)´ f (x,y)
h and

B f
By (x, y) = lim

hÑ0

f (x,y+h)´ f (x,y)
h . For (c), you’re finding the derivative of a function of one

variable, say g(t), where

g(t) = f (t, t) =

#

t2t
t2+t2 if t ‰ 0
0 if t = 0

Hints for Exercises 2.2. — Jump to TABLE OF CONTENTS.

H-1: Try writing g = fx, and then writing the partial derivative of g with respect to y.

H-2: Try writing g = B f
Bx , and then writing the partial derivative of g with respect to y.

You aren’t asked about the power of the f ; only the order of x and y.

H-3: Look at the displayed equation in the answer to Question 2.

H-4: d
dx [tan x] = sec2 x, d

dx [sec x] = sec x tan x

H-5: Save yourself time by using Theorem 2.2.5.

H-6: Remember there are four second partial derivatives: fxx, fxy, fyx, and fyy.

H-7: (a) This higher order partial derivative can be evaluated extremely efficiently by
carefully choosing the order of evaluation of the derivatives.
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(b) This higher order partial derivative can be evaluated extremely efficiently by carefully
choosing a different order of evaluation of the derivatives for each of the three terms.

(c) Set g(x) = f (x, 0, 0). Then fxx(1, 0, 0) = g2(1).

H-9: Check whether the above utility functions satisfy all the properties mentioned in
the question for x and y (in place of t). If any of properties is not satisfied then you do not
need to check the rest.

H-10: A similar method as Question 3 in Section 2.1, but iterated.

Hints for Exercises 2.3. — Jump to TABLE OF CONTENTS.

H-2: Write down the equations of specified level curves.

H-3: Remember a2 ă 1 means |a| ă 1, i.e. ´1 ă a ă 1.

H-4: Use the Second Derivative Test

H-5: Use the Second Derivative Test

H-6: Use the Second Derivative Test

H-7: Use the second derivative test

H-8: Use the Second Derivative Test

H-9: When you’re looking for critical points, remember you need both fx = 0 and fy = 0.
So if it’s hard to solve (say) fx = 0, then first solve fy = 0; then you can narrow your
search of fx = 0.

H-14: “Explain your reasoning” is test-speak for “show your work.”

H-17: Check Example 2.3.11 in the text.

Hints for Exercises 2.4. — Jump to TABLE OF CONTENTS.

H-1: What is an endpoint of a circle?

H-2: Interpret the height
a

x2 + y2 geometrically.

H-3: Check the boundary of the square as well as critical points inside the square.

H-5: There are five places to check: the interior and four boundaries.

H-7: Since the region is a triangle, your boundary will have three separate parts to check.

H-9: There are two boundary lines. You’ll want to find their intersections.

H-10: Plugging in the boundaries should be quite easy if you choose your variables
wisely

H-11: When you see “classify critical points,” think “second derivative test.”
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H-12: Suppose that the bends are made a distance x from the ends of the fence and that
the bends are through an angle θ. Draw a sketch of the enclosure and figure out its area,
as a function of x and θ.

H-13: Suppose that the box has side lengths x, y and z.

H-15: If (x, y, z) is on the plane, then you know z = 5´ 2x´ y. So, you can write x2y2z
as a function of only x and y by eliminating z.

H-17: The answer will be piecewise, depending on what exactly a is.

H-18: Instead of maximizing the total profit function, maximize the profit functions of
each type of paper.

H-19: Profit is (revenue) minus (costs). If Ayan and Pipe work separately, then each
seller only sees the cost and revenue from the lemonade that they themselves sold.

To find how much each seller will sell when they are working separately, find out which
values of qA and qP end up with both individual profit functions being maximized.

To find out how much they’ll sell when they’re working together, use your assumption
from part (c) to make the solving smoother.

Hints for Exercises 2.5. — Jump to TABLE OF CONTENTS.

H-1: Interpret f (x, y) as a distance squared, and sketch xy = 1 in the xy-plane. You
might also want to review section 2.5.1 in the text.

H-2: The easiest way out is to find a function z = k(x) with local but not absolute
extrema, then affix that to the plane y = 0.

H-3: Not much calculation is necessary.

H-4: Find all solutions to

fx = λgx

fy = λgy

x2y = 1 (E3)

H-5: This is a straightforward application of the method of Lagrange multipliers,
Theorem 2.5.2 in the text.

H-6: This is a straightforward application of the method of Lagrange multipliers,
Theorem 2.5.2 in the text.

H-7: When you set your two equations for λ equal to one another, you should get
something that you can easily plug into the constraint function.

H-8: We want to minimize
a

x2 + y2; it’s easier to minimize f (x, y) = x2 + y2. The
minima will occur at the same point (x, y).

Note the system has no maximum, since we can keep travelling along the parabola to
end up arbitrarily far from the origin.
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H-9: To find extrema over a region, we check critical points and the boundary.

H-10: You can check your answer from (a) by using a method other than Lagrange
multipliers.

H-11: Since x ě 0 and y ě 0, our constraint function has endpoints (x, y) = (0, 400) and
(x, y) = (25, 0). Absolute extrema will occur at these endpoints or at points that solve the
system of Lagrange equations.

H-12: The constraint tells you a + 2b = 1. So, your variables are a and b.

H-13: The ellipse x2

a2 +
y2

b2 = 1 passes through the point (1, 2) if and only if 1
a2 +

4
b2 = 1.

H-14: You may choose your coordinate system so the cylinder is oriented vertically
along the z-axis. Then you can write the volume of the cylinder as a function of two
variables.

H-15: The volume is your constraint function.

H-17: The surface z = f (x, y) is similar to the quadric surface from Example 1.3.2.

H-18: No great amount of computation is needed

H-19: Although f (x, y) is unbounded, and x = y is not a closed curve, there are indeed
absolute extrema of f (x, y) subject to x = y. To find them, remember last semester’s
methods for finding extrema of functions of a single variable.

Hints for Exercises 2.6. — Jump to TABLE OF CONTENTS.

H-1: See Definitions 2.6.3 and 2.6.10, and Example 2.6.12, in the text.

H-2: See Definition 2.6.7 in the text.

H-3: See Definition 2.6.5 in the text.

H-4: You want to optimize utility, so that’s your objective function. Your constraint is
your budget. Lagrange multipliers are helpful but not strictly necessary.

H-5: You want to optimize utility, so that’s your objective function. Your constraint is
your budget. Lagrange multipliers are helpful but not strictly necessary.

H-6: u is the objective function

H-8: To determine if the combo is worth Coral’s money, check utility levels of each
option.

H-10: Use the Marshallian demand method explained in the Section 2.6 of the text.

H-11: You’re finding Marshallian demand

H-12:

(a) No need for optimization here. Look at the utility function and think about any
necessary domain constraints.
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Hints for Exercises 3.1. — Jump to TABLE OF CONTENTS.

H-1: Draw a rectangle that encompasses the entire shaded area, and one that is
encompassed by the shaded area. The shaded area is no more than the area of the bigger
rectangle, and no less than the area of the smaller rectangle.

H-2: We can improve on the method of Question 1 by using three rectangles that
together encompass the shaded region, and three rectangles that together are
encompassed by the shaded region.

H-3: Four rectangles suffice.

H-4: The ordering of the parts is intentional: each sum can be written by changing some
small part of the sum before it.

H-5: If we raise ´1 to an even power, we get +1, and if we raise it to an odd power, we
get ´1.

H-6: Sometimes a little anti-simplification can make the pattern more clear.

(a) Re-write as 1
3 +

3
9 +

5
27 +

7
81 +

9
243 .

(b) Compare to the sum in the hint for (a).

(c) Re-write as 1 ¨ 1000 + 2 ¨ 100 + 3 ¨ 10 + 4
1 +

5
10 +

6
100 +

7
1000 .

H-7: (a), (b) These are geometric sums.
(c) You can write this as three separate sums.
(d) You can write this as two separate sums. Remember that e is a constant. Don’t be
thrown off by the index being n instead of i.

H-8:

(a) Write out the terms of the two sums.

(b) A change of index is an easier option than expanding the cubic.

(c) Which terms cancel?

(d) Remember 2n + 1 is odd for every integer n. The index starts at n = 2, not n = 1.

H-9: Since the sum adds four pieces, there will be four rectangles. However, one might
be extremely small.

H-10: Write out the general formula for the right Riemann sum from Definition 3.1.10 in
the text and choose a, b and n to make it match the given sum.

H-11: Since the sum runs from 1 to 3, there are three intervals. Suppose 2 = ∆x = b´a
n .

H-12: Notice that the index starts at k = 0, instead of k = 1. Write out the given sum
explicitly without using summation notation, and sketch where the rectangles would fall
on a graph of y = f (x). Then try to identify b´ a, and n, followed by a.

H-13: The area is a triangle.
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H-14: There is one triangle of positive area, and one of negative area.

H-15: Review Definition 3.1.10 in the text.

H-16: You’ll want the limit as n goes to infinity of a sum with n terms. If you’re having a
hard time coming up with the sum in terms of n, try writing a sum with a finite number
of terms of your choosing. Then, think about how that sum would change if it had n
terms.

H-17: The main step is to express the given sum as the right Riemann sum,
n
ÿ

i=1

f (a + i∆x)∆x.

Don’t be afraid to guess ∆x and f (x) (review Definition 3.1.10 in the text). Then write out

explicitly
n
ř

i=1
f (a + i∆x)∆x with your guesses substituted in, and compare the result with

the given sum. Adjust your guesses if they don’t match.

H-18: The main step is to express the given sum as the right Riemann sum
n
ř

k=1
f (a + k∆x)∆x. Don’t be afraid to guess ∆x and f (x) (review Definition 3.1.10 in the

text). Then write out explicitly
n
ř

k=1
f (a + k∆x)∆x with your guesses substituted in, and

compare the result with the given sum. Adjust your guesses if they don’t match.

H-19: The main step is to express the given sum in the form
řn

i=1 f (a + i∆x)∆x. Don’t be
afraid to guess ∆x and f (x). Then write out explicitly

řn
i=1 f (a + i∆x)∆x with your guess

substituted in, and compare the result with the given sum. Adjust your guesses if they
don’t match.

H-20: The main step is to express the given sum in the form
n
ř

i=1
f (a + i∆x)∆x. Don’t be

afraid to guess ∆x and a. Then write out explicitly
n
ř

i=1
f (a + i∆x)∆x with your guesses

substituted in, and compare the result with the given sum. Adjust your guesses if they
don’t match.

H-21: Try several different choices of ∆x and a.

H-22: Let x = r3, and re–write the sum in terms of x.

H-23: Note the sum does not start at r0 = 1.

H-24: Draw a picture. See Example 3.1.15 in the text.

H-25: Draw a picture. Remember |x| =
"

x x ě 0
´x x ă 0 .

H-26: Draw a picture: the area we want is a trapezoid. If you don’t remember a formula
for the area of a trapezoid, think of it as the difference of two triangles.

H-27: You can draw a very similar picture to Question 26, but remember the areas are
negative.
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H-28: If y =
?

16´ x2, then y is nonnegative, and y2 + x2 = 16.

H-29: Sketch the graph of f (x).

H-30: At which time in the interval, for example, 0 ď t ď 0.5, is the car moving the
fastest?

H-31: What are the possible speeds the car could have reached at time t = 0.25?

H-32: Sure looks like a Riemann sum.

H-33: Don’t panic! Just take it one step at a time. The first step is to write down the
Riemann sum. The second step is to evaluate the sum, using the given identity. The third
step is to evaluate the limit n Ñ 8.

H-34: The first step is to write down the Riemann sum. The second step is to evaluate
the sum, using the given formulas. The third step is to evaluate the limit as n Ñ 8.

H-35: The first step is to write down the Riemann sum. The second step is to evaluate
the sum, using the given formulas. The third step is to evaluate the limit n Ñ 8.

H-36: You’ve probably seen this hint before. It is worth repeating. Don’t panic! Just take
it one step at a time. The first step is to write down the Riemann sum. The second step is
to evaluate the sum, using the given formula. The third step is to evaluate the limit
n Ñ 8.

H-37: Using the definition of a right Riemann sum, we can come up with an expression
for f (´5 + 10i). In order to find f (x), set x = ´5 + 10i.

H-38: Recall that for a positive constant a, d
dx taxu = ax log a, where log a is the natural

logarithm (base e) of a.

H-39: Part (a) follows the same pattern as Question 38–there’s just a little more algebra
involved, since our lower limit of integration is not 0.

H-40: Your area can be divided into a section of a circle and a triangle. Then you can use
geometry to find the area of each piece.

H-41: Let f (n) be the number of stitches in the nth round. Find a formula for f (n). Use
sigma notation to figure out how many stitches have been made after N rounds.

Hints for Exercises 3.2. — Jump to TABLE OF CONTENTS.

H-1:

(a) What is the length of this figure?

(b) Think about cutting the area into two pieces vertically.

(c) Think about cutting the area into two pieces another way.

H-2: Use the identity
b
ş

a
f (x) dx =

c
ş

a
f (x) dx +

b
ş

c
f (x) dx.
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H-4: Note that the limits of the integral given are in the opposite order from what we
might expect: the smaller number is the top limit of integration.

Recall ∆x = b´a
n .

H-5: Remember that a definite integral is the signed area

H-6: Split the “target integral” up into pieces that can be evaluated using the given
integrals.

H-7: Split the “target integral” up into pieces that can be evaluated using the given
integrals.

H-8: Split the “target integral” up into pieces that can be evaluated using the given
integrals.

H-9: For part (a), use the symmetry of the integrand. For part (b), the area
1
ş

0

?
1´ x2 dx is

easy to find–how is this useful to you?

H-10: The evaluation of this integral was also the subject of Question 10 in Section 1.1.
This time try using the method of Example 3.2.6 in the text.

H-11: If x2 ď x, then ex2 ď ex.

H-12: Use symmetry.

H-13: Check Theorem 3.2.11 in the text.

H-14: Split the integral into a sum of two integrals. Interpret each geometrically.

H-15: For example: if Student 1 finds that a value is less than 3, and Student 2 finds that
the same value is less than 4, which is more useful? With the information from Student 1,
we no longer need the information from Student 2. So, Student 1 gave a more useful
bound.

This is a situation where some thoughtfulness up front can save a lot of time.

H-16: Hmmmm. Looks like a complicated integral. It’s probably a trick question. Check
for symmetries.

H-17: Check for symmetries again.

H-18: What does the integrand look like to the left and right of x = 3?

H-19: In part (b), you’ll have to factor a constant out through a square root. Remember
the upper half of a circle looks like

?
r2 ´ x2.

H-20: For two functions f (x) and g(x), define h(x) = f (x) ¨ g(x). If h(´x) = h(x), then
the product is even; if h(´x) = ´h(x), then the product is odd.

The table will not be the same as if we were multiplying even and odd numbers.

H-21: Note f (0) = f (´0).

H-22: If f (x) is even and odd, then f (x) = ´ f (x) for every x.
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H-23: Think about mirroring a function across an axis. What does this do to the slope?

Hints for Exercises 3.3. — Jump to TABLE OF CONTENTS.

H-2: First find the general antiderivative by guessing and checking.

H-3: Be careful. Two of these make no sense at all.

H-4: Check by differentiating.

H-5: Check by differentiating.

H-6: Use the Fundamental Theorem of Calculus Part 1.

H-7: Use the Fundamental Theorem of Calculus, Part 1.

H-8: You already know that F(x) is an antiderivative of f (x).

H-9: (a) Recall d
dxtarccos xu = ´1?

1´x2
.

(b) All antiderivatives of
?

1´ x2 differ from one another by a constant. You already
know one antiderivative.

H-10: In order to apply the Fundamental Theorem of Calculus Part 2, the integrand
must be continuous over the interval of integration.

H-11: Use the definition of F(x) as an area.

H-12: F(x) represents net signed area.

H-13: Note G(x) = ´F(x), when F(x) is defined as in Question 12.

H-14: Using the definition of the derivative, F1(x) = lim
hÑ0

F(x + h)´ F(x)
h

.

The area of a trapezoid with base b and heights h1 and h2 is 1
2 b(h1 + h2).

H-15: There is only one!

H-16: If d
dxtF(x)u = f (x), that tells us

ş

f (x) dx = F(x) + C.

H-17: When you’re differentiating, you can leave the ex factored out.

H-18: After differentiation, you can simplify pretty far. Keep at it!

H-19: This derivative also simplifies considerably. You might need to add fractions by
finding a common denominator.

H-20: Guess a function whose derivative is the integrand, then use the Fundamental
Theorem of Calculus Part 2.

H-21: Split the given integral up into two integrals.

H-22: The integrand is similar to
1

1 + x2 , so something with arctangent seems in order.
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H-23: The integrand is similar to
1?

1´ x2
, so factoring out

?
2 from the denominator

will make it look like some flavour of arcsine.

H-24: We know how to antidifferentiate sec2 x, and there is an identity linking sec2 x
with tan2 x.

H-25: Recall 2 sin x cos x = sin(2x).

H-26: cos2 x =
1 + cos(2x)

2
H-28: There is a good way to test where a function is increasing, decreasing, or constant,
that also has something to do with topic of this section.

H-29: See Example 3.3.5 in the text.

H-30: See Example 3.3.5 in the text.

H-31: See Example 3.3.5 in the text.

H-32: See Example 3.3.5 in the text.

H-33: See Example 3.3.6 in the text.

H-34: Apply d
dx to both sides.

H-35: What is the title of this section?

H-36: See Example 3.3.6 in the text.

H-37: See Example 3.3.6 in the text.

H-38: See Example 3.3.6 in the text.

H-39: See Example 3.3.6 in the text.

H-40: Split up the domain of integration.

H-41: It is possible to guess an antiderivative for f 1(x) f 2(x) that is expressed in terms of
f 1(x).

H-42: When does the car stop? What is the relation between velocity and distance
travelled?

H-43: See Example 3.3.5 in the text. For the absolute maximum part of the question,
study the sign of f 1(x).

H-44: See Example 3.3.5 in the text. For the “minimum value” part of the question,
study the sign of f 1(x).

H-45: See Example 3.3.5 in the text. For the “maximum” part of the question, study the
sign of F1(x).

H-46: Review the definition of the definite integral and in particular Definitions 3.1.8
and 3.1.10 in the text.

H-47: Review the definition of the definite integral and in particular Definitions 3.1.8
and 3.1.10 in the text.

164



H-48: Carefully check the Fundamental Theorem of Calculus: as written, it only applies
directly to F(x) when x ě 0.

Is F(x) even or odd?

H-49: In general, the equation of the tangent line to the graph of y = f (x) at x = a is
y = f (a) + f 1(a) (x´ a).

H-50: Recall tan2 x + 1 = sec2 x.

H-51: Since the integration is with respect to t, the x3 term can be moved outside the
integral.

H-52: Remember that antiderivatives may have a constant term.

H-53: It’s actually quite hard to find qe and pe explicitly, so leave them as they are. The
objective of this exercise is for you to practice integration. Furthermore, you may want to
make use of the rectangle formed by pe and qe to find the areas required.

H-54: If you find B first, then you don’t need an integral to find A – you can just subtract.

H-55: Using the Fundamental Theorem of Calculus,
ż

MCdq = TC + C

for some constant C. To find C, remember TC(0) = FC.

H-56: By the Fundamental Theorem of Calculus,
ż

MR dq = TR + C

To find the constant of integration C, you must make sure that at q = 0 we have TR = 0.

Hints for Exercises 3.4. — Jump to TABLE OF CONTENTS.

H-1: One is true, the other false.

H-2: You can check whether the final answer is correct by differentiating.

H-3: Check the limits.

H-4: Check every step. Do they all make sense?

H-6: What is d
dxt f (g(x))u?

H-7: What is the derivative of the argument of the cosine?

H-8: What is the title of the current section?

H-9: What is the derivative of x3 + 1?

H-10: What is the derivative of ln x?

H-11: What is the derivative of 1 + sin x?
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H-12: cos x is the derivative of what?

H-13: What is the derivative of the exponent?

H-14: What is the derivative of the argument of the square root?

H-15: What is d
dx

!?
ln x

)

?

H-16: There is a short, slightly sneaky method — guess an antiderivative — and a really
short, still-more-sneaky method.

H-17: Review the definition of the definite integral and in particular Definitions 3.1.8
and 3.1.10 in the text.

H-18: If w = u2 + 1, then u2 = w´ 1.

H-19: Using a trigonometric identity, this is similar (though not identical) to
ş

tan θ ¨ sec2 θ dθ.

H-20: If you multiply the top and the bottom by ex, what does this look like the
antiderivative of?

H-21: You know methods other than substitution to evaluate definite integrals.

H-22: tan x =
sin x
cos x

H-23: Review the definition of the definite integral and in particular Definitions 3.1.8
and 3.1.10 in the text.

H-24: Review the definition of the definite integral and in particular Definitions 3.1.8
and 3.1.10 in the text.

H-25: Find the right Riemann sum for both definite integrals.

H-26:

(a) Remember to integrate in terms of q. Furthermore, do not forget to replace the
constant c with the value provided for FC.

(b) Remember that to find the constant c after integrating, you must make sure that at
q = 0 Ñ TR = 0.

(c) Profit equals revenue minus costs.

(d) Check the domain of the function.

Hints for Exercises 3.5. — Jump to TABLE OF CONTENTS.

H-1: Read back over Sections 3.4 and 3.5 of the text. When these methods are
introduced, they are justified using the corresponding differentiation rules.

H-2: Remember our rule:
ş

udv = uv´ ş

vdu. So, we take u and use it to make du, and
we take dv and use it to make v.
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H-3: According to the quotient rule,

d
dx

"

f (x)
g(x)

*

=
g(x) f 1(x)´ f (x)g1(x)

g2(x)
.

Antidifferentiate both sides of the equation, then solve for the expression in the question.

H-4: Remember all the antiderivatives differ only by a constant, so you can write them
all as v(x) + C for some C.

H-5: What integral do you have to evaluate, after you plug in your choices to the
integration by parts formula?

H-6: You’ll probably want to use integration by parts. (It’s the title of the section, after
all). You’ll break the integrand into two parts, integrate one, and differentiate the other.
Would you rather integrate ln x, or differentiate it?

H-7: This problem is similar to Question 6.

H-8: Example 3.5.5 in the text shows you how to find the antiderivative. Then the
Fundamental Theorem of Calculus Part 2 gives you the definite integral.

H-9: Compare to Question 8. Try to do this one all the way through without peeking at
another solution!

H-10: If at first you don’t succeed, try using integration by parts a few times in a row.
Eventually, one part will go away.

H-11: Similarly to Question 10, look for a way to use integration by parts a few times to
simplify the integrand until it is antidifferentiatable.

H-12: Use integration by parts twice to get an integral with only a trigonometric
function in it.

H-13: If you let u = ln t in the integration by parts, then du works quite nicely with the
rest of the integrand.

H-14: Those square roots are a little disconcerting– get rid of them with a substitution.

H-15: This can be solved using the same ideas as Example 3.5.8 in the text.

H-16: Not every integral should be evaluated using integration by parts.

H-17: After integrating by parts, do some algebraic manipulation to the integral until it’s
clear how to evaluate it.

H-18: After integration by parts, use a substitution.

H-19: Start by simplifying.

H-20: sin(2x) = 2 sin x cos x

H-21: What is the derivative of xe´x?

H-22: See Examples 3.5.9 in the text for refreshers on integrating arctangent.

Remember tan2 x + 1 = sec2 x, and sec2 x is easy to integrate.
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H-23: Your integral can be broken into two integrals, which yield to two different
integration methods.

H-24: Think, first, about how to get rid of the square root in the argument of f 2, and,
second, how to convert f 2 into f 1. Note that you are told that f 1(2) = 4 and f (0) = 1,
f (2) = 3.

H-25: Interpret the limit as a right Riemann sum.

H-26: Start by finding the value of pe. Proceed to find the area C, using the square
created by pe and qe.

H-27: Using the Fundamental Theorem of Calculus,

TC =

ż

MCdq + C

for some constant C.

Remember to integrate in terms of q. You might want to use substitution followed by
integration by parts. Be careful with your constants: you need TC(0) =FC.

The average cost per unit of producing 10 units is one-tenth the total cost of producing 10
units.

Hints for Exercises 3.6. — Jump to TABLE OF CONTENTS.

H-1: The absolute error is the difference of the two values; the relative error is the
absolute error divided by the exact value; the percent error is one hundred times the
relative error.

H-2: There will only be two parabolas.

H-3: Start by taking the fourth derivative.

H-4: You don’t have to find the actual, exact maximum the function achieves–you only
have to give a reasonable “ceiling” that it never breaks through.

H-5: To compute the upper bound on the error, find an upper bound on the fourth
derivative of cosine, then use Theorem 3.6.5 in the text.

To find the actual error, you need to find the actual value of A.

H-6: Find a function with f (4)(x) = 3 for all x.

H-7: The error bound for the approximation is given in Theorem 3.6.5 in the text. You
want this bound to be zero.

H-8: Follow formula 3.6.2 in the text.

H-9: Note the dimensions given for the cross sections are diameters, not radii.

Approximate the volume of the solid by slicing it horizontally into disks that look
somewhat like cylinders.
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H-10: See Section 3.6.1 in the text, and compare to Question 9. Note the table gives
diameters, not radii.

H-11: See §3.6.1 in the text for Simpson’s rule. To set up the volume integral, see
Question 10.

Note that the table gives the circumference, not radius, of the tree at a given height.

H-14: The main step is to find an appropriate value of L. It is not necessary to find the
smallest possible L. The method of Example 3.6.7 in the text is good enough.

H-15: The main step is to find L. This question is unusual in that its wording requires
you to find the smallest possible allowed L.

H-16: The main step is to find the smallest possible value of L.

H-17: As usual, the biggest part of this problem is finding L. Don’t be thrown off by the
error bound being given slightly differently from Theorem 3.6.5 in the text: these
expressions are equivalent, since ∆x = b´a

n .

H-18: The function e´2x =
1

e2x is positive and decreasing, so its maximum occurs when
x is as small as possible.

H-19: Since
1
x5 is a decreasing function when x ą 0, look for its maximum value when x

is as small as possible.

H-20: The “best ... approximation that you can” means using the maximum number of
intervals, given the information available.

The final sentence in part (b) is just a re-statement of the error bound we’re familiar with

from Theorem 3.6.5 in the text. The information
ˇ

ˇs(k)(x)
ˇ

ˇ ď k
1000

gives you L when you
set k = 4.

H-21: Set the error bound to be less than 0.001, then solve for n.

H-22: See Section 3.6.1 in the text for Simpson’s rule.

Since the cross-sections of the pool are semi-circular disks, a section that is d metres

across will have area 1
2 π
(

d
2

)2
square feet. Based on the drawing, you may assume the

very ends of the pool have distance 0 feet across.

H-23: See Example 3.6.7 in the text. You’ll want to use a calculator for the approximation
in (a), and for finding the appropriate number of intervals in (b). Remember that
Simpson’s rule requires an even number of intervals.

H-24: See Example 3.6.7 in the text.

Rather than calculating the fourth derivative of the integrand, use the graph to find the
largest absolute value it attains over our interval.

H-25: You’ll have to differentiate f (x). To that end, you may also want to review the
fundamental theorem of calculus and, in particular, Example 3.3.5 in the text.
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You don’t have to find the best possible value for L. A reasonable upper bound on
| f (4)(x)|will do.

To have five decimal places of accuracy, your error must be less than 0.000005. This
ensures that, if you round your approximation to five decimal places, they will all be
correct.

H-26: To find the maximum value of | f (4)(x)|, check its critical points and endpoints.

H-27: In using Simpson’s rule to approximate
ż x

1

1
t

dt with n intervals, a = 1, b = x, and

∆x =
x´ 1

n
.

H-28:

•
ş2

1
1

1+x2 dx = arctan(2)´ π
4 , so arctan(2) = π

4 +
ş2

1
1

1+x2 dx

• If an approximation A of the integral
ş2

1
1

1+x2 dx has error at most ε, then

A´ ε ď ş2
1

1
1+x2 dx ď A + ε.

• Looking at our target interval will tell you how small ε needs to be, which in turn
will tell you how many intervals you need to use.

• You can show, by considering the numerator and denominator separately, that
| f (4)(x)| ď 30.75 for every x in [1, 2].

• If you use Simpson’s rule to approximate
ş2

1
1

1+x2 dx, you won’t need very many
intervals to get the requisite accuracy.

Hints for Exercises 3.7. — Jump to TABLE OF CONTENTS.

H-1: There are two kinds of impropreity in an integral: an infinite discontinuity in the
integrand, and an infinite limit of integration.

H-2: The integrand is continuous for all x.

H-3: What matters is which function is bigger for large values of x, not near the origin.

H-4: Read both the question and Theorem 3.7.18 in the text very carefully.

H-5: (a) What if h(x) is negative? What if it’s not?
(b) What if h(x) is very close to f (x) or g(x), rather than right in the middle?
(c) Note |h(x)| ď 2 f (x).

H-6: First: is the integrand unbounded, and if so, where?

H-7: Is the integrand bounded?

H-8: See Example 3.7.22 in the text. Rather than antidifferentiating, you can find a nice
comparison.
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H-9: Which of the two terms in the denominator is more important when x « 0? Which
one is more important when x is very large?

H-10: Remember to break the integral into two pieces.

H-11: Remember to break the integral into two pieces.

H-12: The easiest test in this case is limiting comparison, Theorem 3.7.23 in the text.

H-13: Not all discontinuities cause an integral to be improper–only infinite
discontinuities.

H-14: Which of the two terms in the denominator is more important when x is very
large?

H-15: Which of the two terms in the denominator is more important when x « 0? Which
one is more important when x is very large?

H-16: Review Example 3.7.8 in the text. Remember the antiderivative of 1
x looks very

different from the antiderivative of other powers of x.

H-17: Compare to Example 3.7.15 in the text. You can antidifferentiate with a
u-substitution.

H-18: Break up the integral. The absolute values give you a nice even function, so you
can replace |x´ a|with x´ a if you’re careful about the limits of integration.

H-19: What is the limit of the integrand when x Ñ 0?

H-20: The only “source of impropriety” is the infinite domain of integration. Don’t be
afraid to be a little creative to make a comparison work.

H-21: There are two things that contribute to your error: using t as the upper bound
instead of infinity, and using n intervals for the approximation.

First, find a t so that the error introduced by approximating
ş8

0
e´x

1+x dx by
şt

0
e´x

1+x dx is at
most 1

210´4. Then, find your n.

H-22: Look for a place to use Theorem 3.7.21 of the text.

Examples 3.2.9 and 3.2.10 in the text have nice results about the area under an even/odd
curve.

H-23: x should be a real number

Hints for Exercises 3.8. — Jump to TABLE OF CONTENTS.

H-1: Notice the integral is improper. When you compute the limit, l’Hôpital’s rule might
help.

If you’re struggling to think of how to antidifferentiate, try writing
x´ 1

ex = (x´ 1)e´x.

H-2: It would be nice to replace logarithm with its derivative,
1
x

.
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H-3: Note the derivative of the denominator.

H-4: This is a classic example – re-read Section 3.5 in the text if you aren’t sure how to
proceed.

H-5: This is a classic example – re-read Section 3.5 in the text if you aren’t sure how to
proceed.

H-6: Use a little high-school geometry

H-7: Recall d
dx [arctan x] = 1

1+x2 .

H-8: Two functions multiplied together doesn’t always imply integration by parts. Then
again, sometimes it does.

H-9: The numerator is the derivative of a function that appears in the denominator.

H-10: The integral is improper.

H-11: Try a substitution.

H-12: You have the product of two quite dissimilar functions in the integrand–try
integration by parts.

H-13: For part (b), use a simple substitution to reach something like the derivative of
arctangent.

H-14: The numerator is the derivative of a function that is embedded in the
denominator.

H-15: Using logarithm rules can make the integrand simpler.

H-16: What is the derivative of the function in the denominator? How could that be
useful to you?

H-17: Split the integral in two. One part may be evaluated by interpreting it
geometrically, without doing any integration at all.

H-18: Use the substitution u = ex.

H-19: Use integration by parts. If you choose your parts well, the resulting integration
will be very simple.

H-20: sin x
cos2 x = tan x sec x

H-21: Use the identity cos(2x) = 2 cos2 x´ 1.

H-22: The cases n = ´1 and n = ´2 are different from all other values of n.

Hints for Exercises 3.9. — Jump to TABLE OF CONTENTS.

H-1: You don’t need to solve the differential equation from scratch, only verify whether
the given function y = f (x) makes it true. Find dy

dx and plug it into the differential
equation.
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H-2: For (d), note the equation given is quadratic in the variable dy
dx .

H-3: The step
ż

g(y)dy =

ż

f (x)dx shows up whether we’re using our mnemonic or

not.

H-4: Note d
dxt f (x)u = d

dxt f (x) + Cu. Plug in y = f (x) + C to the equation dy
dx = xy to see

whether it makes the equation is true.

H-5: If a function is differentiable at a point, it is also continuous at that point.

H-6: Let Q(t) be the quantity of morphine in a patient’s bloodstream at time t, where t is
measured in minutes.

Using the definition of a derivative,

dQ
dt

= lim
hÑ0

Q(t + h)´Q(t)
h

« Q(t + 1)´Q(t)
1

So, dQ
dt is roughly the change in the amount of morphine in one minute, from t to t + 1.

H-7: If p(t) is the proportion of the new form, then 1´ p(t) is the proportion of the old
form.

When we say two quantities are proportional, we mean that one is a constant multiple of
the other.

H-8: The red marks show the slope y(x) would have at a point if it crosses that point.
So, pick a value of y(0); based on the red marks, you can see how fast y(x) is increasing
or decreasing at that point, which leads you roughly to a value of y(1); again, the red
marks tell you how fast y(x) is increasing or decreasing, which leads you to a value of
y(2), etc (unless you’re already off the graph).

H-9: Use Theorem 3.9.10 in the text.

H-10: Use Theorem 3.9.10 in the text.

H-11: Use Theorem 3.9.10 in the text.

H-12: Use Definition 3.9.11 in the text.

H-13: Use Definition 3.9.11 in the text.

H-14: Start by multiplying both sides of the equation by ey and dx, pretending that dy
dx is

a fraction, according to our mnemonic.

H-15: You need to solve for your function y(x) explicitly. Be careful with absolute
values: if |y| = F, then y = F or y = ´F. However, y = ˘F is not a function. You have to
choose one: y = F or y = ´F.

H-16: If your answer doesn’t quite look like the answer given, try manipulating it with
logarithm rules: ln a + ln b = ln(ab), and a ln b = ln(ba).

H-17: Simplify the equation.

H-18: Be careful with the arbitrary constant.
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H-19: Start by cross-multiplying.

H-20: Be careful about signs. If y2 = F, then possibly y =
?

F, and possibly y = ´?F.
However, y = ˘?F is not a function.

H-21: Be careful about signs.

H-22: Be careful about signs. If ln |y| = F, then |y| = eF. Since you should give your
answer as an explicit function y(x), you need to decide whether y = eF or y = ´eF.

H-23: The unknown function f (x) satisfies an equation that involves the derivative of f .

H-24:
d
dx
tsec xu = sec x tan x

H-25: The general solution to the differential equation will contain the constant k and
one other constant. They are determined by the data given in the question.

H-26:

• When you’re solving the differential equation, you should have an integral that you
can massage to look something like arctangent.

• What is the velocity of the object at its highest point?

• Your final answer will depend on the (unspecified) constants v0, m, g and k.

H-27: The general solution to the differential equation will contain the constant k and
one other constant. They are determined by the data given in the question.

H-28: The general solution to the differential equation will contain a constant of
proportionality and one other constant. They are determined by the data given in the
question.

H-30: You do not need to know anything about investing or continuous compounding
to do this problem. You are given the differential equation explicitly. The whole first
sentence is just window dressing.

H-31: For (a), think of a very simple function.

The equation in the question statement is equivalent to the equation

1?
x´ a

ż x

a
f (t)d(t) =

d

ż x

a
f 2(t)dt

which is, in some cases, easier to use.

For (d), you’ll want to let Y(x) =
şx

a f (t)dt, and use the quadratic equation.

H-32:

(a) Find when the derivatives are zero.

(b) Start with the inequality dW
dt = rW + a ą 0, thinking about how it changed with r ą 0

vs. r ă 0.
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(c) With the given restrictions, you can re-write the first differential equation in terms of
W only.

H-33: This question reviews material from Section 3.6.

(a) Note ∆x = 1 and x0 = 0. That gives us the very nice relationship xi = i.

(b) f 2(x) is a positive, increasing function, so its max on the interval [a, b] will occur
when x = b.

(c) Subtract the two expressions

(d) The sum from (a) will be in the interval from (approx ´ error bound) to (approx +
error bound). Then use this to bound the entire expression.

(e) To find the max error, remember that the actual value is anywhere in the interval you
just found – take the worst-case scenario that gives the biggest error, and that’s your
bound.

H-34: Follow Example 3.9.18 from the textbook, replacing numbers with parameters P0,
r, and N.

Hints for Exercises 4.1. — Jump to TABLE OF CONTENTS.

H-1: Notation 4.1.4 in the text

H-2: see Definition 4.1.12

H-3: see Definition 4.1.16

H-4: Consider two disjoint outcomes.

H-5: Compare to Question 4

H-6: Out of the six values in the sample space, how many are we concerned with?

H-7: How many numbers in the sample space correspond to the desired outcome?

Hints for Exercises 4.2. — Jump to TABLE OF CONTENTS.

H-1: Look in the text if you’ve forgotten

H-2: Look in the text if you’ve forgotten

H-3: Values not in the sample space are not included in the table.

H-4: Check Theorem 4.2.3

H-5: find the value with the highest probability

H-6: Remember f (x) = Pr(X = x); so, for instance, f (2) = Pr(X = 2) = 1
4 .

Hints for Exercises 4.3. — Jump to TABLE OF CONTENTS.
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H-1: Pr(T ď x) = 1´ Pr(T ą x).

H-2: Remember “uniformly distributed” is the continuous analogue of “equally likely.”

H-3: marks should be most densely packed around x = 2.5, and sparse near x = 0 and
x = 5.

H-4: See Definition 4.3.6

H-5: review Corollary 4.3.10

H-6: Corollary 4.3.10,

H-7: This system is a simpler version of the random variable of Example 4.3.4 in the text.

H-8: This might be easier to sketch first – then use the sketch to find the function.

H-9: Compare to Question 8.

H-10: Properties of a CDF are given in Corollary 4.3.10 in the text. Multiple values of B
are possible.

H-11: Properties of a CDF are given in Corollary 4.3.10 in the text. Note

lim
xÑ8

Bx
x + 1

= B and lim
xÑ´8

Dx
1´ x

= ´D

H-12: Corollary 4.3.3 is helpful. For example: F(8)´ F(6) = Pr(6 ă W ď 8)

H-13: See Question 12.

Hints for Exercises 4.4. — Jump to TABLE OF CONTENTS.

H-1: First sketch the probability density function (PDF). Where the probability density
function (PDF) is higher, the marks are densest – remember, it’s the probability density
function.

H-2: See Corollaries 4.4.8 and 4.3.10

H-3: Use Question 2.

H-4: If the cumulative distribution function (CDF) F(x) is continuous, then the random
variable is continuous, and the probability density function (PDF) is f (x) = F1(x).

H-5: In each case, you’re plotting F(x) =
şx
´8

f (t)dt, where f (t) is the function shown in
the problem. In each case shown, since f (t) is zero when t ă 0, so F(x) is an
antiderivative of f (x) with F(0) = 0.

H-6: Try the substitution u = 10x

H-7: Use a sketch of f (x) to find the area under the curve. Remember that on all
non-specified intervals, f (x) = 0 or f (x) DNE.

H-8: Because the two events are disjoint,

Pr
(

0 ă M ă 1 OR 9 ă M ă 10
)
= Pr

(
0 ă M ă 1

)
+ Pr

(
9 ă M ă 10

)
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H-9: The cumulative distribution function (CDF) will have the form

F(x) =

$

’

&

’

%

F1(x) x ď 0
F2(x) 0 ă x ă 10
F3(x) x ě 10

H-10: The cumulative distribution function (CDF) will have the form

F(x) =

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

F1(x) x ď 0
F2(x) 0 ă x ď 3
F3(x) 3 ă x ď 4
F4(x) 4 ď x ă 6
F5(x) 6 ď x ă 7
F6(x) 7 ď x ă 8
F7(x) 8 ď x

It can be helpful to sketch y = f (t) when you’re finding F(x) for various values of x.

H-11: X is continuous if F(X) is continuous (Definition 4.3.6 in the text).

H-12: X is continuous if F(X) is continuous (Definition 4.3.6 in the text).

H-13: Properties of a PDF are given in Corollary 4.4.8 in the text.

H-14: Properties of a PDF are given in Corollary 4.4.8 in the text.

H-15: Very similar to Question 10.

H-16: Remember we define |x| =
#

x x ě 0
´x x ă 0

. So, you’ll be considering the intervals

[´1, 0] and (0, 1] separately.

H-17: For part c, treat the largest and smallest values in the sample space separately.

H-18: In the text, Simpson’s Rule is Equation 3.6.2. It says

ż b

a
f (x)dx «

[
f (x0)+ 4 f (x1)+ 2 f (x2)+ 4 f (x3)+ 2 f (x4)+ ¨ ¨ ¨

¨ ¨ ¨+ 2 f (xn´2)+ 4 f (xn´1)+ f (xn)
]

∆x
3

where ∆x = b´a
2 .

Hints for Exercises 4.5. — Jump to TABLE OF CONTENTS.

H-1: Imagine X results from a coin flip, where X = 0 when the flip is tails and X = 1
when the flip is heads. What is E(X)? Is this a likely outcome?

H-2: Let X be the random variable resulting in a dice roll. If the dice is fair, what is
E(X)?

H-3: If you ran X a lot of times and took the average, what would that average be?
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H-4: Can you make E(Z) = 1 if S = t´1, 1u?
H-5: Definition 4.5.1: Given a discrete random variable X, the expected value of X,
denoted E(X), is given by

ÿ

x ¨ Pr(X = x)

where the sum is taken over every possible value of X.

H-6: Compare to Question 5.

H-7: Let X be the amount of money you win after one round, where X = ´1 if you loose
(because your total money went down by one dollar).

Once you have the long-term average value of X, you can guess how much money you’ll
win after N plays, where N is some large number.

H-8: Let X be the amount of money won after one game, where X is negative if you lose.

Once you have the long-term average value of X, you can guess how much money you’ll
win after N plays, where N is some large number.

H-9: f (x) is increasing, so use both Theorems 4.5.7 and 4.5.8.

H-10: Make use of symmetry to avoid a long computation.

H-11: You’ll compute two integrals separately.

H-12: Use a substitution.

H-13: Create the probability density function (PDF) of Y.

H-14: See Example 3.7.10 in the text. Corollary 4.4.8 has properties of probability density
functions (PDFs).

H-15: Use integration by parts.

H-16: Use integration by parts to evaluate
ş

ln xdx.

H-17: Use long division to get the integrand into the correct form for partial fractions.

H-18: Start with tan2 x = sec2 x´ 1; then integration by parts.

H-19: Take advantage of symmetry, or use the substitution rule. Remember that b is
negative.

H-20: First, find the expected amount that Sonic will pay to Fred.

H-21: Employment insurance benefits don’t count towards “salary” in this scenario.

H-22: To get you started on (a), the expected return from the x dollars invested in Asset
A is 1.2x dollars.

For (b), first consider the worst case scenario. If Asset B has a bad-return year, how much
money does Riley have to have in safe Asset A to make sure her total return is at least
$350? Then, think about which asset leads to a higher expected return for each dollar
invested.
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Hints for Exercises 4.6. — Jump to TABLE OF CONTENTS.

H-1: “Weight giving relative likelihood” isn’t necessarily a probability, but “how likely”
is a probability.

H-2: The difference between two values, in this case, should be taken as an absolute
value. So account for bundles being both too big and too small.

H-3: The first paragraph can be disregarded.

H-4: Let S = t´100, 100u
H-5: f (x) = 1

b´a , a ď x ď b

H-6: Pr(X = s) = 1

H-7: If f (x) has even symmetry, then x f (x) has odd symmetry.

H-8: To find the cumulative distribution function (CDF), remember F(x) =
şx
´8

f (t)dt

H-9: See Question 7 for the expectation;

f (x) =

#

1 + x ´1 ď x ď 0
1´ x 0 ď x ď 1

H-10: The probability density function (PDF) of X is f (x) = F1(x).

H-11: start with E(T) =
3
ř

x=1
x ¨ Pr(T = x)

H-12: just like Question 11

H-13: U is discrete. Look to the locations of the jump discontinuities to find the sample
space; the height of the jumps gives you the probability mass function (PMF).

Hints for Exercises 5.1. — Jump to TABLE OF CONTENTS.

H-1: Not every limit exists.

H-2: 100 isn’t all that big when you’re contemplating infinity. (Neither is any other
number.)

H-3: lim
nÑ8

a2n+5 = lim
nÑ8

an

H-4: The sequence might be defined by different functions when n is large than when n
is small.

H-5: Recall (´1)n is positive when n is even, and negative when n is odd.

H-6: Modify your answer from Question 5, but make the terms approach zero.

H-7: (´n)´n =
(´1)n

nn

H-8: What might cause your answers in (a) and (b) to differ? Carefully read
Theorem 5.1.6 in the text about convergent functions and their corresponding sequences.
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H-9: You can use the fact that π is somewhat close to
22
7

, or you can use trial and error.

H-10: For part (d), you’re still writing out only five terms: d0, d1, d2, d3, and d4.

H-11: Recall tan 0 = tan π = 0

H-12: Writing out the first few terms and looking for a pattern is the usual way to start
these.

For the last part, you’re given that the formula will look like dn = pn + qn + r. You can
set up a system of equations with three equations and three unknowns.

H-13: These types of questions are a little dodgy, because different answers are always
possible. Just go for the simplest relationship you can find.

You can assume the indices start at 0.

H-14: You can compare the leading terms, or factor a high power of n from the
numerator and denominator.

H-15: This isn’t a rational expression, but you can treat it in a similar way. Recall e ă 3.

H-16: The techniques of evaluating limits of rational sequences are again useful here.

H-17: Use the Squeeze Theorem.

H-18:
1
n
ď nsin n ď n

H-19: e´1/n =
1

e1/n ; what happens to
1
n

as n grows?

H-20: Use the Squeeze Theorem.

H-21: L’Hôpital’s rule might help you decide what happens if you are unsure.

H-22: Simplify ak.

H-23: What happens to
1
n

as n gets very big?

H-24: cos 0 = 1

H-25: The first three terms of each follow a simple pattern.

H-26: 5x´ x2 is negative for values of x in (´8, 0)Y (5,8).

H-27: This is trickier than it looks. Write
1
n
= x and look at the limit as x Ñ 0.

H-28: Multiply and divide by the conjugate.

H-29: Compared to Question 28, there’s an easier path.

H-30: Consider f 1(x), when f (x) = x100.

H-31: Look to Question 30 for inspiration.

H-32: The area of an isosceles triangle with two sides of length 1, meeting at an angle θ,
is 1

2 sin θ.
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θ

si
n

θ

1

1

H-33: If you lose one-third of your readers, you’re left with two-thirds remaining.

H-34: Every term of An is the same, and g(x) is a constant function.

H-35: You’ll need to use a logarithm before you can apply l’Hôpital’s rule.

H-36: (a) Write out the first few terms of the sequence.
(c) Consider how an+1 ´ L relates to an ´ L. What should happen to these numbers if an
converges to L?

H-37: Your answer from (b) will help you a lot with the subsequent parts.

H-38: When simplifying, factor out P from all terms.

Hints for Exercises 5.1.1. — Jump to TABLE OF CONTENTS.

H-1: Remember an interval is the ratio between two frequencies. It’s the ratios that need
to stay the same.

H-2: The octave in question goes from 100 Hz to 200 Hz.

H-3: The common ratio between consecutive notes is 21/12

H-4: How will the common ratio between consecutive notes be differen from
Question 3?

H-5: Keep the ratios between notes the same to find out what notes should appear in the
song.

H-6: The interval from a0 to an is 2n/12.

H-7: What whole numbers n and m have m
n = 11

10?

H-8: What’s an octave?

H-9: Take care that the part of the string we’re measuring is the part to the right.

Hints for Exercises 5.2. — Jump to TABLE OF CONTENTS.

H-1: SN is the sum of the terms corresponding to n = 1 through n = N.

H-2: Note Ck is the cumulative number of cookies.

H-3: How is (a) related to Question 2?
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H-4: You’ll have to calculate a1 separately from the other terms.

H-5: When does adding a number decrease the total sum?

H-6: For (b), imagine cutting up the triangle into its black and white parts, then sharing
it equally among a certain number of friends. What is the easiest number of friends to
share with, making sure each has the same area in their pile?

H-7: Compare to Question 6.

H-8: Iteratively divide a shape into thirds.

H-9: Theorem 5.2.5 in the text tells us
N
ÿ

n=0

arn = a
1´ rN+1

1´ r
, for r ‰ 1.

H-10: Note Ck is the cumulative number of cookies.

H-11: To adjust the starting index, either factor out the first term in the series, or subtract
two series. For the subtraction option, consider Question 10.

H-12: Express your gains in (a) and (c) as series.

H-13: To find the difference between
8
ÿ

n=1

cn and
8
ÿ

n=1

cn+1, try writing out the first few

terms.

H-14: You might want to first consider a simpler true or false:
8
ÿ

n=1

an

bn

?
=

A
B

.

H-15: What kind of a series is this?

H-16: This is a special kind of series, that you should recognize.

H-17: When you see
ÿ

k

(
¨ ¨ ¨ k ¨ ¨ ¨ ´ ¨ ¨ ¨ k + 1 ¨ ¨ ¨

)
, you should think “telescoping

series.”

H-18: When you see
ÿ

n

(
¨ ¨ ¨ n ¨ ¨ ¨ ´ ¨ ¨ ¨ n + 1 ¨ ¨ ¨

)
, you should immediately think

“telescoping series”. But be careful not to jump to conclusions — evaluate the nth partial
sum explicitly.

H-19: Review Definition 5.2.3 in the text.

H-20: This is a special case of a general series whose sum we know.

H-21: Split the series into two parts.

H-22: Split the series into two parts.

H-23: Split the series into two parts.

H-24: Use logarithm rules to turn this into a more obvious telescoping series.

H-25: This is a telescoping series.
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H-26: See Definitions 4.2.1 and 4.3.1.

Helpful notation: rounding x down to the nearest integer is txu, and rounding x up to the
nearest integer is rxs.

H-27: The volume of a sphere of radius r is
4
3

πr3.

H-28: Use the properties of a telescoping series to simplify the terms.
Recall sin2 θ + cos2 θ = 1.

H-29:

(a) is straight algebra

(b) On the one hand,
ř

(3i2 + 3i) = 3
ř

i2 + 3
ř

i. On the other hand,
ř

(3i2 + 3i) =
ř
(
i(i + 1)(i + 2)´ (i´ 1)i(i + 1)

)
. Use telescoping sums to simplify

ř
(
i(i + 1)(i + 2)´ (i´ 1)i(i + 1)

)
, then solve for

ř

i2.

(c)
řn

i=1 i3 = 1
4
řn

i=1

(
i2(i + 1)2 ´ (i´ 1)2i2

)
, and this is a telescoping series.

H-30: Review Question 3 for using the sequence of partial sums.

H-31: Write the area under the curve as a geometric series. Be careful about the starting
index, and make use of symmetry.

H-32: Start with partial fractions.

H-33: What is the ratio of areas between the outermost (red) ring and the next (blue)
ring?

Hints for Exercises 5.3. — Jump to TABLE OF CONTENTS.

H-1: That is, which series have terms whose limit is not zero?

H-2: That is, if f (x) is a function with f (n) = an for all whole numbers n, is f (x)
nonnegative and decreasing?

H-3: The divergence test is Theorem 5.3.1 in the text.

H-4: It is true that f (x) is positive. What else has to be true of f (x) for the integral test to
apply?

H-5: If f (x) is positive and decreasing, then the integral test tells you that the integral
and the series either both increase or both decrease. So, in order to find an example with
the properties required in the question, you need f (x) to not be both positive and
decreasing.

H-6: Notice that the series is geometric, but it doesn’t start at n = 0.

H-7: Note n only takes integer values: what’s sin(πn) when n is an integer?

H-8: Note n only takes integer values: what’s cos(πn) when n is an integer?

H-9: This is a geometric series, but you’ll need to do a little algebra to figure out r.
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H-10: Combine the integral test with the results about p-series, Example 5.3.7 in the text.

H-11: Try the substitution u =
?

x.

H-12: This is a geometric series, but it doesn’t start at n = 0.

H-13: The series is geometric.

H-14: The truncation error arising from the approximation
8
ÿ

n=1

e´
?

n
?

n
«

N
ÿ

n=1

e´
?

n
?

n
is

precisely EN =
8
ÿ

n=N+1

e´
?

n
?

n
. You’ll want to find a bound on this sum using the integral

test.

A key observation is that, since f (x) =
e´
?

x
?

x
is decreasing, we can show that

e´
?

n
?

n
ď
ż n

n´1

e´
?

x
?

x
dx

for every n ě 1.

H-15: What does the fact that the series
8
ř

n=0
(1´ an) converges guarantee about the

behavior of an for large n?

H-16: What does the fact that the series
8
ÿ

n=1

nan ´ 2n + 1
n + 1

converges guarantee about the

behaviour of an for large n?

H-17: If we add together the frequencies of all the words, they should amount to 100%.
We can approximate this sum using ideas from Example 5.3.4 in the text.

H-18: No city has fewer than one person, so we are approximating a finite sum–not an
infinite series. To get greater accuracy, use exact values for the first several terms in the
sum, and use an integral to approximate the rest.

Hints for Exercises 5.4. — Jump to TABLE OF CONTENTS.

H-1: This isn’t a trick. It’s meant to give you intuition to the direct comparison test.

H-2: The comparison test is Theorem 5.4.1 in the text. However, rather than trying to
memorize which way the inequalities go in all cases, you can use the same reasoning as
Question 1.

H-3: Think about Question 2 to remind yourself which way the inequalities have to go
for direct comparison.

Note that all the comparison series have positive terms, so we don’t need to worry about
that part of the limit comparison test.

H-4: The limit is calculated correctly.
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H-5: Refer to Question 2.

H-6: Review Theorem 5.4.4 and Example 5.4.5 in the text.

H-7: Don’t jump to conclusions about properties of the an’s.

H-8: A comparison might be helpful–try some algebraic manipulation to find a likely
series to compare it to.

H-9: With the substitution u = ln x, the function
1

x(ln x)3/2 is easily integrable.

H-10: Always try the divergence test first (in your head).

H-11: Review Example 5.4.2 in the text for developing intuition about comparisons, and
Example 5.4.3 for an example where finding an appropriate comparison series calls for
some creativity.

H-12: What does the summand look like when k is very large?

H-13: What is the behaviour for large k?

H-14: When m is large, 3m + sin
?

m « 3m.

H-15: What does the summand look like when n is very large?

H-16: Review the integral test, which is Theorem 5.3.5 in the text.

H-17: For part (a), see Example 3.7.24 in the text.

For part (b), review Theorem 5.3.5 in the text.

For part (c), see Example 5.4.5 in the text.

H-18: What does the fact that the series
8
ř

n=0
an converges guarantee about the behaviour

of an for large n?

H-19: What does the fact that the series
ř8

n=1 an converges guarantee about the
behaviour of an for large n? When is x2 ď x?

Hints for Exercises 5.5. — Jump to TABLE OF CONTENTS.

H-1: For the ratio test to be inconclusive, lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

should be 1 or nonexistent.

H-2: By the divergence test, for a series
ř

an to converge, we need lim
nÑ8

an = 0. That is,
the magnitude (absolute value) of the terms needs to be getting smaller.

H-3: This is a geometric series.

H-4: Recall (k+1)!
k! = k + 1.

H-5: Be careful: (2n)! is not the same as 2(n!).

H-6: Try finding a nice comparison.
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H-7: What does the summand look like when n is very large?

H-8: The first series can be written as
8
ÿ

n=1

1
2n´ 1

.

H-10: Which test should you always try first (in your head)?

H-11: lim
nÑ8

(1 + 1/n)n = e

Hints for Exercises 5.6. — Jump to TABLE OF CONTENTS.

H-1: What is conditional convergence?

H-2: If
ř |an| converges, then

ř

an is guaranteed to converge as well.
(That’s Theorem 5.6.2 in the text.) So, one of the blank spaces describes an impossible
sequence.

H-4: Be careful about the signs.

H-5: Does the alternating series test really apply?

H-6: What does the summand look like when n is very large?

H-7: What does the summand look like when n is very large?

H-8: This is a trick question. Be sure to verify all of the hypotheses of any convergence
test you apply.

H-9: Try the substitution u = ln x.

H-10: Show that it converges absolutely.

H-11: Use a similar method to Queston 10.

H-12: Show it converges absolutely using a direct comparison test.

H-13: For part (a), replace n by x in the absolute value of the summand. Can you
integrate the resulting function?

H-14: You don’t need to add up very many terms for this level of accuracy.

H-15: Use the direct comparison test to show that the series converges absolutely.

Hints for Exercises 6.1. — Jump to TABLE OF CONTENTS.

H-1: There is only one.

H-2: Use Theorem 6.1.9 in the text.

H-3: Review the discussion immediately following Definition 6.1.1 in the text.

H-4: Review the discussion immediately following Definition 6.1.1 in the text.

H-5: use the ratio test
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H-6: Use the ratio test.

H-8: If a power series is centred at a and has radius of convergence R, then the largest
possible open interval of values for which it converges is (a´ R, a + R).

H-12: Start part (b) by computing the partial sums of
8
ÿ

k=1

( ak
ak+1

´ ak+1

ak+2

)
H-13: n ě ln n for all n ě 1.

H-14: First show that the fact that the series
ř8

n=0(1´ bn) converges guarantees that
limnÑ8 bn = 1.

H-15: What does an look like for large n?

Hints for Exercises 6.2. — Jump to TABLE OF CONTENTS.

H-1: f (1) is the sum of a geometric series.

H-2: Review Theorem 6.2.1 and note P is the derivative of f (x).

H-3: Review Question 2 and think carefully about radii of convergence (Theorem 6.1.9)

H-4: Use Theorem 6.2.6

H-5: Calculate
d
dx

"

(x´ 5)n

n! + 2

*

when n is a constant.

H-6: Review the discussion immediately following Definition 6.1.1 in the text.

H-7: You should know a power series representation for
1

1´ x
. Use it.

H-8: You can safely ignore one of the given equations, but not the other.

H-9: What function has
8
ÿ

n=1

nxn´1 as its power series representation?

H-10: You know the geometric series expansion of 1
1´x . What (calculus) operation(s) can

you apply to that geometric series to convert it into the given series?

H-11: Use the second derivative test.

Hints for Exercises 6.3. — Jump to TABLE OF CONTENTS.

H-1: Which of the functions are constant, linear, and quadratic?

H-2: You don’t have to actually calculate the entire series T(x) to answer the question.

H-3: If you don’t have these memorized, it’s good to be able to derive them. For

instance, ln(1 + x) is the antiderivative of
1

1 + x
, whose Taylor series can be found by

modifying the geometric series
ř

xn.
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H-4: The series will bear some resemblance to the Maclaurin series (i.e. Taylor series
with a = 0) for ln(1 + x).

H-5: The terms f (n)(π) are going to be similar to the terms f (n)(0) that we used in the
Maclaurin series (i.e. Taylor series with a = 0) for sine.

H-6: The Taylor series will look similar to a geometric series.

H-7: Your answer will depend on a.

H-8: You should know the Taylor series for
1

1´ x
at a = 0. Use it.

H-9: You should know the Maclaurin series (i.e. Taylor series with a = 0) for
1

1´ x
. Use

it.

H-10: You should know the Maclaurin series (i.e. Taylor series with a = 0) for ex. Use it.

H-11: Review Example 6.2.8 in the text.

H-12: You should know the Maclaurin series for sin x. Use it.

H-13: You should know the Maclaurin series for ex. Use it.

H-14: You should know the Maclaurin series for arctan(x). Use it.

H-15: You should know the Maclaurin series for
1

1´ x
. Use it.

H-16: Use Theorem 6.3.1-b in the text to bound the error in a partial-sum approximation.

H-17: Use Theorem 6.3.1-b in the text to bound the error in a partial-sum approximation.

H-18: Use Theorem 6.3.1-b in the text to bound the error in a partial-sum approximation.
This theorem requires you to consider values of c between x and x = 0; since x could be
anything from ´2 to 1, you should think about values of c between ´2 and 1.

H-19: Use Theorem 6.3.1-b in the text to bound the error in a partial-sum approximation.

To bound the derivative over the appropriate range, remember how to find absolute
extrema.

H-20: For simplification purposes, note (1)(3)(5)(7) ¨ ¨ ¨ (2n´ 1) =
(2n)!
2n n!

.

H-21: You know the Maclaurin series for ln(1 + y). Use it! You also know its interval of
convergence, endpoints and all.

Remember that you are asked for a series expansion in powers of x´ 2. So you want y to
be some constant times x´ 2.

H-22: See Example 6.2.9 in the text.

H-23: See Example 6.4.2 in the text.

H-24: See Example 6.4.2 in the text. For part (b), review the Fundamental Theorem of
Calculus in §3.3 of the text. For part (c), review §A.12.1 in the text.
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H-25: See Example 6.4.2 in the text.

H-26: See Example 6.4.2 in the text.

H-28: Use the Maclaurin series for ex and the fact that 1 + x ď ex for all x ě 0.

H-29: For part (c), compare two power series term-by-term.

H-30: Remember ex is never negative for any real number x.

H-31: Since f (x) is odd, f (´x) = ´ f (x) for all x in its domain. Consider the
even-indexed terms and odd-indexed terms of the Taylor series.

H-32: The series bears a resemblance to the Taylor series for arctangent.

H-33: Theorem 6.3.5 has lots of series to look at.

Hints for Exercises 6.4. — Jump to TABLE OF CONTENTS.

H-1: Check out the Maclaurin series in Theorem 6.3.5. Pay attention to where they
converge.

H-2: See Example 6.4.4 in the text.

H-3: Set (´1)n x2n+1

2n + 1
= C

(´1)n

(2n + 1)3n , for some constant C. What are x and C?

H-4: There is an important Taylor series, one of the series in Theorem 6.3.5 of the text,
that looks a lot like the given series.

H-5: There is an important Taylor series, one of the series in Theorem 6.3.5 of the text,
that looks a lot like the given series.

H-6: There is an important Taylor series, one of the series in Theorem 6.3.5 of the text,
that looks a lot like the given series. Be careful about the limits of summation.

H-7: There is an important Taylor series, one of the series in Theorem 6.3.5 of the text,
that looks a lot like the given series.

H-8: Split the series into a sum of two series. There is an important Taylor series, one of
the series in Theorem 6.3.5 of the text, that looks a lot like each of the two series.

H-9: Try the ratio test.

H-10: Write it as the sum of two Taylor series.

H-11: Can you think of a way to eliminate the odd terms from ex =
8
ÿ

n=0

xn

n!
?

H-12: Start by differentiating
8
ÿ

n=0

xn.

Hints for Exercises 6.5. — Jump to TABLE OF CONTENTS.
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H-1: These aren’t rational functions, but this looks a bit like our rule about rational
functions. We can prove it the same way.

H-2: See Example 6.5.2 in the text

H-3: See Example 6.5.2 in the text

H-4: Set f (x) =
(
1 + x + x2)2/x, and find lim

xÑ0
ln ( f (x)).

H-5: Use the substitution y =
1
x

, and compare to Question 4.

190



ANSWERS TO QUESTIONS

Part III
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Answers to Exercises 1.1 — Jump to TABLE OF CONTENTS

A-1:

The xz plane is filled with vertical lines; the yz plane is crosshatched; and the xy plane is
solid.

The left bottom triangle vertex is (1, 0, 0); the right bottom triangle vertex is (0, 1, 0); the
top triangle vertex is (0, 0, 1).

A-2: (a) The sphere of radius 3 centered on (1,´2, 0).

(b) The interior of the sphere of radius 3 centered on (1,´2, 0).

A-3: (a) x = y is the straight line through the origin that makes an angle 45˝ with the x–
and y–axes. It is sketched in the figure on the left below.

x

y

y “ x

x

y

p1, 0q

p0, 1q
x ` y “ 1

(b) x + y = 1 is the straight line through the points (1, 0) and (0, 1). It is sketched in the
figure on the right above.

(c) x2 + y2 = 4 is the circle with centre (0, 0) and radius 2. It is sketched in the figure on
the left below.

x

y

p2, 0q

x2 ` y2 “ 4

x

y

p0, 1q

x2 ` y2 “ 2y

(d) x2 + y2 = 2y is the circle with centre (0, 1) and radius 1. It is sketched in the figure on
the right above.

(e) x2 + y2 ă 2y is the set of points that are strictly inside the circle with centre (0, 1) and
radius 1. It is the shaded region (not including the dashed circle) in the sketch below.
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x

y

p0, 1q

x2 ` y2 “ 2y

A-4: (a) The set z = x is the plane which contains the y–axis and which makes an angle
45˝ with the xy–plane. Here is a sketch of the part of the plane that is in the first octant.

y

z

x

(b) x2 + y2 + z2 = 4 is the sphere with centre (0, 0, 0) and radius 2. Here is a sketch of the
part of the sphere that is in the first octant.

z

y

x

(c) x2 + y2 + z2 = 4, z = 1 is the circle in the plane z = 1 that has centre (0, 0, 1) and
radius

?
3. The part of the circle in the first octant is the heavy quarter circle in the sketch

z

y

x

(d) x2 + y2 = 4 is the cylinder of radius 2 centered on the z–axis. Here is a sketch of the
part of the cylinder that is in the first octant.

193



z

y

x

(e) z = x2 + y2 is a paraboloid consisting of a vertical stack of horizontal circles. The
intersection of the surface with the yz–plane is the parabola z = y2. Here is a sketch of
the part of the paraboloid that is in the first octant.

z

y

x

z“y2

x“0z“x2

y“0

A-5:
?

67

A-6: 9

A-7:
?

5.01 km

A-8: 1 km

A-9: 2 km

A-10:

x

y

p“1
p“2

p“3

A-11: The sphere has radius 3 and is centered on (1, 2,´1).

A-12: The circumscribing circle has centre (x̄, ȳ) and radius r with x̄ = a
2 , ȳ = b2+c2´ab

2c

and r =
b( a

2

)2
+
( b2+c2´ab

2c
)2.

A-13: x2 + y2 = 4z The surface is a paraboloid consisting of a stack of horizontal circles,
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starting with a point at the origin and with radius increasing vertically. The circle in the
plane z = z0 has radius 2

?
z0.

Answers to Exercises 1.2 — Jump to TABLE OF CONTENTS

A-1: Any constant function, for example f (x, y) = 0.

A-2:

(a) [´10, 10]

(b) [0, 1]

(c) [´1, 1]

(d) [0, 10]

A-3: yes

A-4: Domain: all of R2. Range: [0,8)

A-5: Domain: all of R2. Range: [0,8).

A-6: Domain: interior of the unit circle. Range: [0, π/2].

A-7: Domain: all points (x, y) such that x and y have the same sign; x and y are nonzero;
and y ‰ 1

x .

x

y

Range: (´8, 0)Y (0,8).

A-8: Domain: all of R2. Range: [0, 1).

A-9: Domain: all of R2. Range:
[´3

2 , 3
2

]
.

A-10: For example: domain should be all (a, p) where a ě 0 and p ą 0; range should be
[0,8).

A-11: 1
5 ď x2 + y2 ď 1

3 : that is, the points (x, y) that are inside or on the circle centred at
the origin with radius 1?

3
, but not inside the circle centred at the origin with radius 1?

5
.
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x

y

1?
5

1?
3

A-12:

The point (x, y) must be in one of the following regions:

• x2 ´?68 ď y ď x2 ´?47

• x2 ´ 5 ď y ď x2 ´ 2

• x2 + 2 ď y ď x2 + 5

• x2 +
?

47 ď y ď x2 +
?

68

x

y

?
68?

47

´?68
´?47

5

2

´5

´2

Answers to Exercises 1.3 — Jump to TABLE OF CONTENTS

A-1: (a)Ø (B) (b)Ø (A) (c)Ø (C)

A-2:
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x

y
f“0.25

f“0.5

f“1

f“2

f“3

A-3: (a)

x

y

f“1

f“2

f“0

(b)

x

y

f“2

f“1

f“2 f“´2

f“´2

f“0

(c)
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x

y
f“1f“´1

f“2f“´2

f“0

A-4:

x

y

f = 2

f = 1

f = ´2

f = ´1

f = 0

A-5: (a)

x

y

z“0,2

z“´1,3

z“´2,4

(b)
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z

y

x

A-6:

z

y

x

A-7: (a)

z

y

x

(b)

z

y

x

(c)
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z

y

x

A-8: (a) This is an elliptic cylinder parallel to the z-axis. Here is a sketch of the part of the
surface above the xy–plane.

y

z

x
p0, 4, 0qp2, 0, 0q

(b) This is a plane through (4, 0, 0), (0, 4, 0) and (0, 0, 2). Here is a sketch of the part of the
plane in the first octant.

p4, 0, 0q

p0, 4, 0q

p0, 0, 2q

y

x

z

(c) This is a hyperboloid of one sheet with axis the x-axis.

z

y
x

(d) This is a circular cone centred on the y-axis.
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y

z

(e) This is an ellipsoid centered on the origin with semiaxes 3,
?

12 = 2
?

3 and 3 along the
x, y and z-axes, respectively.

z

y
x p3, 0, 0q p0,?

12, 0q

p0, 0, 3q

p0,?
12, 0q

p0, 0, 3q

p3, 0, 0q

(f) This is a sphere of radius rb =
1
2

?
b2 + 4b + 97 centered on 1

2(´4, b,´9).

1
2
p´4, b ` 2rb,´9q

1
2
p´4, b,´9 ` 2rbq

1
2
p´4, b,´9q

1
2
p´4 ` 2rb, b,´9q

(g) This is an elliptic paraboloid with axis the x-axis.
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z

y

x

(h) This is an upward openning parabolic cylinder.

z

y

x

A-9: z = 0:

x

y

π

π

π
2

π
2

z = 1:
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x

y

π

π

π
2

π
2

z = 2:

x

y

π

π

π
2

π
2

A-10: x2 + y2 =

( |z|
3

+ 1
)2

Answers to Exercises 2.1 — Jump to TABLE OF CONTENTS

A-1: No: you can go higher by moving in the negative y direction.

A-2:

(a) fy(1.5, 2.4) « ´2

(b) fx(1.7, 1.7) « 11
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(c) fy(1.7, 1.7) « ´3

(d) fx(1.1, 2) « 9

A-3: (a)

fx(x, y, z) = 3x2y4z5 fx(0,´1,´1) = 0

fy(x, y, z) = 4x3y3z5 fy(0,´1,´1) = 0

fz(x, y, z) = 5x3y4z4 fz(0,´1,´1) = 0

(b)

wx(x, y, z) =
yzexyz

1 + exyz wx(2, 0,´1) = 0

wy(x, y, z) =
xzexyz

1 + exyz wy(2, 0,´1) = ´1

wz(x, y, z) =
xyexyz

1 + exyz wz(2, 0,´1) = 0

(c)

fx(x, y) = ´ x
(x2 + y2)3/2 fx(´3, 4) =

3
125

fy(x, y) = ´ y
(x2 + y2)3/2 fy(´3, 4) = ´ 4

125

A-4: By the quotient rule

Bz
Bx

(x, y) =
(1)(x´ y)´ (x + y)(1)

(x´ y)2 =
´2y

(x´ y)2

Bz
By

(x, y) =
(1)(x´ y)´ (x + y)(´1)

(x´ y)2 =
2x

(x´ y)2

Hence
x
Bz
Bx

(x, y) + y
Bz
By

(x, y) =
´2xy + 2yx
(x´ y)2 = 0

A-5: (a) Bz
Bx = z(1´x)

x(yz´1) , Bz
By = z(1+y´yz)

y(yz´1)

(b) Bz
Bx (´1,´2) = 1

2 , Bz
By (´1,´2) = 0.

A-6: BU
BT (1, 2, 4) = ´ 2 ln(2)

1+2 ln(2)
BT
BV (1, 2, 4) = 1´ 1

4 ln(2)

A-7: 24

A-8: fx(0, 0) = 1, fy(0, 0) = 2

A-9: Yes.

A-10: (a) B f
Bx (0, 0) = 1, B f

By (0, 0) = 4 (b) Nope.
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A-11: 1 resp. 0

A-12: (a) 0 (b) 0 (c) 1
2

Answers to Exercises 2.2 — Jump to TABLE OF CONTENTS

A-1: From the example that “ fx” is the partial derivative of f with respect to x, we infer
that the notation for “take the partial derivative with respect to (variable)” is “write
(variable) on the bottom right.” Continuing this practice, to take the partial derivative
with respect to y of fx, we should write the y on the bottom right – that is, to the right of
the x:

( fx)y

Since x is to the left of y, we write the above as fxy, not fyx.

A-2: From the example that “ B
Bx f ” is the partial derivative of f with respect to x, we infer

that the notation for “take the partial derivative of a function with respect to (variable)”
is “put the partial derivative operator B

B(variable) to the left of the function.” Continuing

this practice, to take the partial derivative with respect to y of B f
Bx , we should write the

operator B
By on the left.

B
By

[ B
Bx

f
]

In the above expression, By is to the left of the Bx. So we write B2 f
ByBx rather than B2 f

BxBy .

A-3: As in Question 2, if we want to differentiate B f
Bx with respect to x, we write:

B
Bx

[ B
Bx

f
]

or
B
Bx

[B f
Bx

]
In both cases:

• f shows up only once, so we don’t add an exponent to it.

• B shows up twice in the numerator, so we write B2 as shorthand for B[B].
• Bx shows up twice in the denominator, so we write Bx2 as shorthand for Bx[Bx].

A-4: see solution

A-5: (a) fxx(x, y) = 2y3 fyxy(x, y) = fxyy(x, y) = 12xy

(b) fxx(x, y) = y4exy2
fxy(x, y) =

(
2y + 2xy3)exy2

fxxy(x, y) =
(
4y3 + 2xy5)exy2

fxyy(x, y) =
(
2 + 10xy2 + 4x2y4)exy2

(c)
B3 f

Bu Bv Bw
(u, v, w) = ´ 36

(u + 2v + 3w)4
B3 f

Bu Bv Bw
(3, 2, 1) = ´0.0036 = ´ 9

2500

A-6: fxx = 5y2

(x2+5y2)3/2 fxy = fyx = ´ 5xy
(x2+5y2)3/2 fyy = 5x2

(x2+5y2)3/2

A-7: (a) fxyz(x, y, z) = 0 (b) fxyz(x, y, z) = 0 (c) fxx(1, 0, 0) = 0
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A-8: See the solution.

A-9: Only u(x, y) = x0.5y0.5 satisfies all of the properties described in the question.

A-10:

fxy(1.8, 2.0) « 0

Answers to Exercises 2.3 — Jump to TABLE OF CONTENTS

A-1: (a) (i) T, U

(a) (ii) U

(a) (iii) S

(b) (i) Fx(1, 2) ą 0

(b) (ii) F does not have a critical point at (2, 2).

(b) (iii) Fxy(1, 2) ă 0

A-2: (a)

x

y

f“0
f“1f“1

f“1

f“1

f“16f“16

f“16

f“16

3´3

3

´3

(b) (0, 0) is a local (and also absolute) minimum.

(c) No. See the solutions.

A-3: |c| ą 2

A-4:

critical
point type

(0, 0) saddle point(´2
3 , 2

3

)
local max

206



A-5:

critical
point type

(0, 3) saddle point

(0,´3) saddle point

(´2, 1) local max

(2,´1) local min

A-6:

critical
point type

(0, 0) local min

(
?

2,´1) saddle point

(´?2,´1) saddle point

A-7:

critical
point type( 1?
3
, 1?

3

)
local min

´( 1?
3
, 1?

3

)
saddle point

A-8:

critical
point type

(0, 0) local max

(2, 0) saddle point

A-9: (a)

critical
point type

(3
2 ,´1

4) local min

(´1, 1) saddle point

(b)

(i) (ii)

A-10:

critical
point type(3
2 ,´1

4

)
local min

(´1, 1) saddle point

A-11: (0,0) is a local max
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(0,2) is a local min

(1,1) and (-1,1) are saddle points

A-12: (0, 0) is a saddle point and ˘(1, 1) are local mins

A-13: (0, 0) is a saddle point and ˘(1, 1) are local mins

A-14: (0,˘1) are saddle points,
( 1?

3
, 0
)

is a local min and
(´ 1?

3
, 0
)

is a local max

A-15: (´1,˘?3) and (2, 0) are saddle points and (0, 0) is a local max.

A-16: Case k ă 1
2 :

critical
point type

(0, 0) local max

(0, 2) saddle point

Case k = 1
2 :

critical
point type

(0, 0) local max

(0, 2) unknown

Case k ą 1
2 :

critical
point type

(0, 0) local max

(0, 2) local min(b
1
k3 (2k´ 1) , 1

k

)
saddle point(

´
b

1
k3 (2k´ 1) , 1

k

)
saddle point

A-17: m =
nSxy´SxSy

nSx2´S2
x

and b =
SySx2´SxSxy

nSx2´S2
x

where Sy =
n
ř

i=1
yi, Sx2 =

n
ř

i=1
x2

i and Sxy =
n
ř

i=1
xiyi.

Answers to Exercises 2.4 — Jump to TABLE OF CONTENTS

A-1: false

A-2: The minimum height is zero at (0, 0, 0). The derivatives zx and zy do not exist there.
The maximum height is

?
2 at (˘1,˘1,

?
2). There zx and zy exist but are not zero —

those points would not be the highest points if it were not for the restriction |x|, |y| ď 1.

A-3: min = 0 max = 2
3
?

3
« 0.385

A-4: (a)

208



critical
point type(
0, 2?

3

)
local max(

0,´ 2?
3

)
local min

(2, 0) saddle point

(´2, 0) saddle point

(b) The maximum and minimum values of h(x, y) in x2 + y2 ď 1 are 3 (at (0, 1)) and ´3
(at (0,´1)), respectively.

A-5: The minimum is ´2 and the maximum is 6.

A-6: 6´ 2
?

5

A-7: (a) (0,0) and (3,0) and (0,3) are saddle points
(1,1) is a local min

(b) The minimum is ´1 at (1, 1) and the maximum is 80 at (4, 4).

A-8: (a) (1, 1) is a saddle point and (2, 4) is a local min

(b) The min and max are 19
27 and 5, respectively.

A-9: (a) (0, 0), (6, 0), (0, 3) are saddle points and (2, 1) is a local min

(b) The maximum value is 0 and the minimum value is 4(4
?

2´ 6) « ´1.37.

A-10: The coldest temperture is ´0.391 and the coldest point is (0, 2).

A-11: (a) (0,´5) is a saddle point

(b) The smallest value of g is 0 at (0, 0) and the largest value is 21 at (˘2
?

3,´1).

A-12: 2500?
3

A-13: The box has dimensions (2V)1/3 ˆ (2V)1/3 ˆ 2´2/3V1/3.

A-14: (a) The maximum and minimum values of T(x, y) in x2 + y2 ď 4 are 20 (at (0, 0))
and 4 (at (˘2, 0)), respectively.

(b) (0, 2)

A-15: The minimum value is 0 on
 

(x, y, z)
ˇ

ˇ x ě 0, y ě 0, z ě 0, 2x + y + z = 5, at least one of x, y, z zero
(

The maximum value is 4 at (1, 2, 1).

A-16: (a) x = 1, y = 1
2 , f
(
1, 1

2

)
= 6 (b) local minimum

(c) As x or y tends to infinity (with the other at least zero), 2x + 4y tends to +8. As (x, y)
tends to any point on the first quadrant part of the x- and y–axes, 1

xy tends to +8. Hence
as x or y tends to the boundary of the first quadrant (counting infinity as part of the
boundary), f (x, y) tends to +8. As a result

(
1, 1

2

)
is a global (and not just local)

minimum for f in the first quadrant. Hence f (x, y) ě f
(
1, 1

2

)
= 6 for all x, y ą 0.
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A-17: If a ă 1
2 , then the closest point is the origin. If a ě 1

2 , then the closest points are the
level curve where z = a´ 1

2 .

A-18:

(a) The total profit is given by

Π(x, y) = (15x0.8 ´ x) + (80y0.6 ´ 3y)

(b) The optimal production: x = 248, 832 leading to 51840 reams of A4 and y = 1, 024
leading to 640 reams of A3

(c) In this case, the optimal production is still 640 reams of A3

A-19:

(a) ΠA(qA) = ´2q2
A + 120qA ´ 2qAqP; maximum profit when qA = 30´ 1

2 qP

(b) ΠP(qP) = ´2q2
P + 120qP ´ 2qPqA; maximum profit when qP = 30´ 1

2 qA

(c) Their businesses are identical, so we predict they will sell the same amounts of
lemonade.

(d) If Ayan and Pipe sell 20 pitchers they will maximize their respective profit functions.

(e) They would each make 800 dollars in profit.

(f) Their optimal joint profit will be 1, 800 dollars. But, they need to share this profit
among the two of them. So if they collaborate, they will each earn 900 dollars. This is
more than their individual optimal profit in the scenario where they are competing
found in part (e) (we found this to be $800). So it is better for them to collaborate!

(g) Collaborating sellers lead to higher prices and fewer goods, so it’s better for
consumers with the sellers compete

Answers to Exercises 2.5 — Jump to TABLE OF CONTENTS

A-1: (a) f does not have a maximum. It does have a minimum.

(b) The minima are at ˘(1, 1), where f takes the value 2.

A-2: One possible answer: g(x, y) = y, f (x, y) = x3 ´ x.

A-3: There are none

A-4: The minimum value is 2
1
3 + 2´

2
3 = 3

2
3
?

2 = 3
3?4

at
(˘ 2

1
6 , 2´

1
3
)
.

A-5: The maximum and minimum values of f are 1
2
?

2
and ´ 1

2
?

2
, respectively.

A-6: min= 1, max=
?

2.

A-7: absolute min 13´8
?

2
3 , absolute max 5

3

A-8: (˘1, 1/2)
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A-9: Largest
?

5
10´2

?
5
, smallest ´

?
5

10´2
?

5

A-10: (a) (i)

2x ey = λ(2x)

ey(x2 + y2 + 2y
)
= λ(2y)

x2 + y2 = 100

(a) (ii) The warmest point is (0, 10) and the coolest point is (0,´10).

(b) (i)

2x ey = 0

ey(x2 + y2 + 2y
)
= 0

(b) (ii) (0, 0) and (0,´2)

(c) (0, 0)

A-11: Min 0; max 75 ¨ 210/3

A-12: 4

A-13: a = b =
?

5

A-14: radius =
b

2
3 and height = 2?

3
.

A-15: 3ˆ 6ˆ 4

A-16: See the solution.

A-17: Absolute minimum is 0, achieved at (0, 1). There is no absolute maximum.

A-18: There are none.

A-19:

(a) There are none

(b) No

(c) The absolute maximum of f (x, y) constrained to x = y is 33/4

4 and the absolute
minimum is ´33/4

4 .

Answers to Exercises 2.6 — Jump to TABLE OF CONTENTS

A-1: A: Marshallian; B: Hicksian

A-2:
Bxm(px, py, I)

Bpx
=

$

’

’

&

’

’

%

´I
2(px´py)2 if px ě 2py

´I
p2

x
if px ă py
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Bxm(px, py, I)
Bpy

=

$

’

&

’

%

I
2(px´py)2 if px ě 2py

0 if px ă py

A-3: inferior

A-4:

(a) c =
5
3

.

(b) f =
25
9

.

(c) She will spend $ 8.33 on food and $ 1.67 on coffee.

A-5: Four shares of Inter de Milan and thirty two shares of La Spezia.

m = 4, s = 34

A-6: Laura’s optimal consumption is 60
7 units of cheese and 40

7 units of strawberries.

A-7: Alessio will buy 15 packages for Keitu and 2 packages for Nefret.

A-8:

(a) 320 gm of popcorn and 280 ml of soda.

(b) (i) No, it would cost 22.1 dollars.

(ii) Yes! Her utility would be around 5.097 with the combo, and approximately
4.666 without it.

A-9:

(a) The budget constraint is given by

30m + 30 f = I

(b) Mr. Reed prefers male officers to female officers while Ms. Reed does not prefer one

to the other. m

f
Ms. Reed

UR = 1

UR = 2

UR = 3

m

f
Mr. Blue

UB = 3
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(c) We denote m and f that maximize UB by mB and fB (to avoid confusion):

fB =
I

300
mB =

9I
300

and m and f that maximize UR by mR and fR:

fR =
I

60
mR =

I
60

Mr. Blue will hire a higher proportion of male police officers than Ms. Reed as
mR ă mB for any value of I.

(d) We distinguish the new points (m, f ) that maximize UB and UR by (mB, mB) and
(mR, fR), respectively.

f ˚B =
I

300
f ˚R =

I
60

m˚B =
9I

350
m˚R =

I
70

Because it is cheaper to hire female officers, both hire a higher proportion of female
officers. However, Mr. Blue has such a strong bias that he still hires more male
officers than female officers.

A-10:

(a) c˚(pc, p f , I) =
Ip f ´ 25p2

c

p f pc
.

(b) f ˚(pc, p f , I) =

(
10pc

2p f

)2

.

A-11: the optimal consumption is buying 5I
7pk

expansion packs for Keitu, and 2I
7pn

for
Nefret.

A-12:

(a) 1 ď c ď 49 and k ě 2

(b) k˚(pk, pc, I) =
50pc ´ I

pk
´ 2 and c˚(pk, pc, I) =

6pk
pc

+
2I
pc
´ 50.

(c) kraft dinner is an inferior good while chicken is a normal good.

A-13:

(a)

l˚(pl, pa, D) =
16paD

pl (16pa + 9pl))
a˚(pl, pa, D) =

9plD
pa (16pa + 9pl)

(b) Both of them are normal goods.
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(c)
B
Bpl

l˚(pl, pa, D) =
´(16paD)(16pa + 18pl)

(16pa pl + 9p2
l )

2

If the price for Lomachenko’s tickets pl decreases, then the demand for
Lomachenko’s tickets l˚ increases.

(d)

ah(pl, pa, U) =

(
3U2pl

16pa + 9pl

)2

lh(pl, pa, U) =

(
4U2pa

16pa + 9pl

)2

(e)
Bah

Bpa
=

´96U2pl
(16pa + 9pl)3

As the price for Anthony Joshua’s tickets pa increases, Anthony’s Hicksian demand
function ah decreases.

Answers to Exercises 3.1 — Jump to TABLE OF CONTENTS

A-1: The area is between 1.5 and 2.5 square units.

A-2: The shaded area is between 2.75 and 4.25 square units. (Other estimates are
possible, but this is a reasonable estimate, using methods from this chapter.)

A-3: The area under the curve is a number in the interval
(

3
8

[
1
2 +

1?
2

]
, 3

8

[
1 + 1?

2

])
.

A-4: Some of the possible answers are given, but more exist.

(a)
7
ÿ

i=3

i ;
5
ÿ

i=1

(i + 2)

(b)
7
ÿ

i=3

2i ;
5
ÿ

i=1

(2i + 4)

(c)
7
ÿ

i=3

(2i + 1) ;
5
ÿ

i=1

(2i + 5)

(d)
8
ÿ

i=1

(2i´ 1) ;
7
ÿ

i=0

(2i + 1)

A-5: Some answers are below, but others are possible.

(a)
4
ÿ

i=1

1
3i ;

4
ÿ

i=1

(
1
3

)i

(b)
4
ÿ

i=1

2
3i ;

4
ÿ

i=1

2
(

1
3

)i
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(c)
4
ÿ

i=1

(´1)i 2
3i ;

4
ÿ

i=1

2
(´3)i

(d)
4
ÿ

i=1

(´1)i+1 2
3i ;

4
ÿ

i=1

´ 2
(´3)i

A-6:

(a)
5
ÿ

i=1

2i´ 1
3i

(b)
5
ÿ

i=1

1
3i + 2

(c)
7
ÿ

i=1

i ¨ 104´i ;
7
ÿ

i=1

i
10i´4

A-7:

(a)
5
2

[
1´

(
3
5

)101
]

(b)
5
2

(
3
5

)50
[

1´
(

3
5

)51
]

(c) 270

(d)
1´

(
1
e

)b

e´ 1
+

e
4
[b(b + 1)]2

A-8:

(a) 50 ¨ 51 = 2550

(b)
[

1
2(95)(96)

]2 ´
[

1
2(4)(5)

]2

(c) ´1

(d) ´10

A-9:
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x

y

ba

y = f (x)

A-10: n = 4, a = 1, and b = 5

A-11:

One answer is below, but other interpretations exist.

x

y

5 7 9 11

49

81

121

y = x2

A-12: It is a right Riemann sum for f on the interval [0.5, 4.5] with n = 4.

A-13:
25
2

A-14:
21
2

A-15:
50
ÿ

i=1

(
5 +

i
5

)8
¨ 1

5
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A-16:
ż 7

´1
f (x) dx = lim

nÑ8

[
n
ÿ

i=1

f
(
´1 +

8i
n

)
8
n

]

A-17: f (x) = sin2(2 + x) and b = 4

A-18: f (x) = x
?

1´ x2

A-19:
ş3

0 e´x/3 cos(x) dx

A-20:
ż 1

0
xex dx

A-21: Possible answers include:
2
ż

0

e´1´x dx,

3
ż

1

e´x dx, 2
ż 3/2

1/2
e´2x dx, and 2

1
ż

0

e´1´2x dx.

A-22:
r3n+3 ´ 1

r´ 1

A-23: r5
(

r96 ´ 1
r´ 1

)
A-24: 5

A-25: 16

A-26:
b2 ´ a2

2

A-27:
b2 ´ a2

2
A-28: 4π

A-29:
ż 3

0
f (x) dx = 2.5

A-30: 53 m

A-31: true

A-32: (a) There are many possible answers. Two are
ş0
´2

?
4´ x2 dx and

ş2
0

a

4´ (´2 + x)2 dx. (b) π

A-33: 41 + 1
4

A-34:
56
3

A-35: 6

A-36: 12

A-37: f (x) =
3

10

(x
5
+ 8
)2

sin
(

2x
5

+ 2
)
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A-38:
1

log 2

A-39: (a)
1

log 10
(
10b ´ 10a)

(b)
1

log c
(
cb ´ ca); yes, it agrees.

A-40: π
4 ´ 1

2 arccos(a) + 1
2 a
?

1´ a2

A-41:

(a) There are 150 rounds in the blanket.

(b) There are 4 ¨ 1502 stitches in the blanket.

(c) The crocheter is halfway finished some time during the 107th round.

Answers to Exercises 3.2 — Jump to TABLE OF CONTENTS

A-1: Possible drawings:

x

y

a

y = f (x)

x

y

a c b

y = f (x)

x

y

a b

y = f (x)

y = f (x) + g(x)

A-2: sin b´ sin a

A-3: (a) False. For example, the function

f (x) =

#

0 for x ă 0
1 for x ě 0

provides a counterexample.

(b) False. For example, the function f (x) = x provides a counterexample.

(c) False. For example, the functions

f (x) =

#

0 for x ă 1
2

1 for x ě 1
2

and g(x) =

#

0 for x ě 1
2

1 for x ă 1
2

provide a counterexample.

A-4: (a) ´ 1
20

(b) positive (c) negative (d) positive
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A-5: A1 ´ A2 + A3 = A4

A-6: ´21

A-7: ´6

A-8: 20

A-9:

(a) π
4 ´ 1

2 arccos(´a)´ 1
2 a
?

1´ a2

(b) 1
2 arccos(a)´ 1

2 a
?

1´ a2

A-10: 5

A-11:
ş1

0 ex2
dx ď e´ 1

A-12: 0

A-13: 5

A-14: 20 + 2π

A-15: sin2 x ď x sin x

A-16: 0

A-17: 0

A-18: 0

A-19: (a) y =
1
b

a

1´ (ax)2 (b)
a
b

ż 1
a

´ 1
a

c

1
a2 ´ x2 dx (c)

π

ab

A-20:

ˆ even odd

even even odd

odd odd even

A-21: f (0) = 0; g(0) can be any real number

A-22: f (x) = 0 for every x

A-23: The derivative of an even function is odd, and the derivative of an odd function is
even.

Answers to Exercises 3.3 — Jump to TABLE OF CONTENTS

A-1: e2 ´ e´2

A-2: F(x) =
x4

4
+

1
2

cos 2x +
1
2

.

A-3: (a) True (b) False (c) False, unless
şb

a f (x)dx =
şb

a x f (x)dx = 0.
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A-4: false

A-5: false

A-6: sin(x2)

A-7: 3
?

e

A-8: For any constant C, F(x) + C is an antiderivative of f (x). So, for example, F(x) and
F(x) + 1 are both antiderivatives of f (x).

A-9:

(a) We differentiate with respect to a. Recall d
dxtarccos xu = ´1?

1´x2
. To differentiate

1
2 a
?

1´ a2, we use the product and chain rules.

d
da

"

π

4
´ 1

2
arccos(a) +

1
2

a
a

1´ a2
*

= 0´ 1
2
¨ ´1?

1´ a2
+

(
1
2

a
)
¨ ´2a

2
?

1´ a2
+

1
2

a

1´ a2

=
1

2
?

1´ a2
´ a2

2
?

1´ a2
+

1´ a2

2
?

1´ a2

=
1´ a2 + 1´ a2

2
?

1´ a2

=
2(1´ a2)

2
?

1´ a2

=
a

1´ a2

(b) F(x) =
5π

4
´ 1

2
arccos(x) +

1
2

x
?

1´ x2

A-10: (a) 0 (b),(c) The FTC does not apply, because the integrand is not continuous
over the interval of integration.

A-11:

t

y

a x x + h

y = f (t)

A-12: (a) zero (b) increasing when 0 ă x ă 1 and 3 ă x ă 4; decreasing when
1 ă x ă 3

A-13: (a) zero (b) G(x) is increasing when 1 ă x ă 3, and it is decreasing when
0 ă x ă 1 and when 3 ă x ă 4.
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A-14: Using the definition of the derivative,

F1(x) = lim
hÑ0

F(x + h)´ F(x)
h

= lim
hÑ0

şx+h
a t dt´ şx

a t dt
h

= lim
hÑ0

şx+h
x t dt

h

The numerator describes the area of a trapezoid with base h and heights x and x + h.

= lim
hÑ0

1
2 h(x + x + h)

h

= lim
hÑ0

(
x +

1
2

h
)

= x

t

y

x x + h

x

x + h

y = t

şx+h
x t dt

So, F1(x) = x.

A-15: f (t) = 0

A-16:
ş

ln(ax) dx = x ln(ax)´ x + C, where a is a given constant, and C is any constant.

A-17:
ş

x3ex dx = ex (x3 ´ 3x2 + 6x´ 6
)
+ C

A-18:
ż

1?
x2 + a2

dx = ln
ˇ

ˇ

ˇ
x +

a

x2 + a2
ˇ

ˇ

ˇ
+ C when a is a given constant. As usual, C is

an arbitrary constant.

A-19:
ż

x
a

x(a + x)
dx =

b

x(a + x)´ a ln
(?

x +
?

a + x
)
+ C

A-20: 5´ cos 2

A-21: 2

A-22:
1
5

arctan(5x) + C

A-23: arcsin
(

x?
2

)
+ C
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A-24: tan x´ x + C

A-25: ´3
4

cos(2x) + C, or equivalently,
3
2

sin2 x + C

A-26:
1
2

x +
1
4

sin(2x) + C

A-27: F1
(

π
2

)
= ln(3) G1

(
π
2

)
= ´ ln(3)

A-28: f (x) is increasing when ´8 ă x ă 1 and when 2 ă x ă 8.

A-29: F1(x) = ´ sin x
cos3 x + 6

A-30: 4x3e(1+x4)2

A-31:
(

sin6 x + 8) cos x

A-32: F1(1) = 3e´1

A-33:
sin u

1 + cos3 u

A-34: f (x) = 2x

A-35: f (4) = 4π

A-36: (a) (2x + 1)e´x2
(b) x = ´1/2

A-37: esin x ´ esin(x4´x3)
(
4x3 ´ 3x2)

A-38: ´2x cos
(
e´x2)´ 5x4 cos

(
ex5)

A-39: ex
a

sin(ex)´a

sin(x)

A-40: 14

A-41:
5
2

A-42: 45 m

A-43: f 1(x) = (2´ 2x) ln
(
1 + e2x´x2)

and f (x) achieves its absolute maximum at x = 1,
because f (x) is increasing for x ă 1 and decreasing for x ą 1.

A-44: The minimum is
ş´1

0
dt

1+t4 . As x runs from ´8 to8, the function f (x) =
şx2´2x

0
dt

1+t4

decreases until x reaches 1 and then increases all x ą 1. So the minimum is achieved for
x = 1. At x = 1, x2 ´ 2x = ´1.

A-45: F achieves its maximum value at x = π.

A-46: 2

A-47: ln 2
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A-48: In the sketch below, open dots denote inflection points, and closed dots denote

extrema.

x

y

y = F(x)

y = f (x)

´5 ´3 ´1 1 3 5

A-49: (a) 3x2
ż x3+1

0
et3

dt + 3x5e(x3+1)3
(b) y = ´3(x + 1)

A-50: Both students.

A-51: (a) 27(1´ cos 3) (b) x3 sin(x) + 3x2[1´ cos(x)]

A-52: If f (x) = 0 for all x, then F(x) is even and possibly also odd.

If f (x) ‰ 0 for some x, then F(x) is not even. It might be odd, and it might be neither
even nor odd.

(Perhaps surprisingly, every antiderivative of an odd function is even.)

A-53:

(a) CS: 10 ln(qe + 1)´ pe ¨ qe

(b) PS: pe ¨ qe ´ eqe + qe + 1

(c) TS: 10 ln(qe + 1)´ eqe + qe + 1

A-54: (a) 1´ 2
ş2

0 L(x)dx (b) 0 (c) 11
21 « 0.52

A-55:

(a) TC = ln(q + 1) + 1
2 q2 + 2q + 1000 and TC(2000) = ln(2001) + 2, 005, 000

(b) TC = 40q´ 5q2 + eq

10 + 49, 999.90 and TC(10) = 50, 379.90 + e10

10

A-56:

(a) TR = sin q + q2

10 + 2q and P = sin q
q + q

10 + 2

(b) TR = eq´1
1000 +

?q and P = eq+1
1000q +

1?q
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Answers to Exercises 3.4 — Jump to TABLE OF CONTENTS

A-1: (a) true (b) false

A-2: The reasoning is not sound: when we do a substitution, we need to take care of the
differential (dx). Remember the method of substitution comes from the chain rule: there
should be a function and its derivative. Here’s the way to do it:

Problem: Evaluate
ż

(2x + 1)2dx.

Work: We use the substitution u = 2x + 1. Then du = 2dx, so dx = 1
2du:

ż

(2x + 1)2dx =

ż

u2 ¨ 1
2

du

=
1
6

u3 + C

=
1
6
(2x + 1)3 + C

A-3: The problem is with the limits of integration, as in Question 1. Here’s how it ought
to go:

Problem: Evaluate
ż π

1

cos(ln t)
t

dt.

Work: We use the substitution u = ln t, so du = 1
t dt. When t = 1, we have

u = ln 1 = 0 and when t = π, we have u = ln(π). Then:

ż π

1

cos(ln t)
t

dt =
ż ln(π)

ln 1
cos(u)du

=

ż ln(π)

0
cos(u)du

= sin(ln(π))´ sin(0) = sin(ln(π)).

A-4: This one is OK.

A-5:
ż 1

0

f (u)?
1´ u2

du

A-6: some constant C

A-7:
1
2
(

sin(e)´ sin(1)
)

A-8:
1
3

A-9: ´ 1

300(x3 + 1)100 + C

A-10: ln 4

A-11: ln 2

224



A-12:
4
3

A-13: e6 ´ 1

A-14:
1
3
(4´ x2)3/2 + C

A-15: e
?

ln x + C

A-16: 0

A-17:
1
2
[cos 1´ cos 2] « 0.478

A-18:
1
2
´ 1

2
ln 2

A-19: 1
2 tan2 θ ´ ln | sec θ|+ C

A-20: arctan(ex) + C

A-21:
π

4
´ 2

3

A-22: ´1
2 (ln(cos x))2 + C

A-23: 1
2 sin(1)

A-24:
1
3
[2
?

2´ 1] « 0.609

A-25: Using the definition of a definite integral with right Riemann sums:

ż b

a
2 f (2x)dx = lim

nÑ8

n
ÿ

i=1

∆x ¨ 2 f (2(a + i∆x)) ∆x =
b´ a

n

= lim
nÑ8

n
ÿ

i=1

(
b´ a

n

)
¨ 2 f

(
2
(

a + i
(

b´ a
n

)))

= lim
nÑ8

n
ÿ

i=1

(
2b´ 2a

n

)
¨ f
(

2a + i
(

2b´ 2a
n

))
ż 2b

2a
f (x)dx = lim

nÑ8

n
ÿ

i=1

∆x ¨ f (2a + i∆x) ∆x =
2b´ 2a

n

= lim
nÑ8

n
ÿ

i=1

(
2b´ 2a

n

)
¨ f
(

2a + i
(

2b´ 2a
n

))
Since the Riemann sums are exactly the same,

ż b

a
2 f (2x)dx =

ż 2b

2a
f (x)dx

A-26:

(a) TC = 2
a

2q3 ´ 80q + 2000
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(b) TR = 1
3

(
q2 + 1

)3/2 ´ (q2 + 1
)1/2

+ 2
3

(c)
(

1
3

(
q2 + 1

)3/2 ´
(

q2 + 1
)1/2

+
2
3

)
´
(

2
b

2q3 ´ 80q + 2000
)

(d) For 0 ď q ď ?40, q is a number that makes sense as a quantity of production (i.e. q
isn’t negative), but it isn’t in the domain of our cost functions.

Answers to Exercises 3.5 — Jump to TABLE OF CONTENTS

A-1: chain; product

A-2: The part chosen as u will be differentiated. The part chosen as dv will be
antidifferentiated.

A-3:
ż

f 1(x)
g(x)

dx =
f (x)
g(x)

+

ż

f (x)g1(x)
g2(x)

dx + C

A-4: All the antiderivatives differ only by a constant, so we can write them all as
v(x) + C for some C. Then, using the formula for integration by parts,

ż

u(x) ¨ v1(x)dx = u(x)
loomoon

u

[
v(x) + C

]
looooomooooon

v

´
ż [

v(x) + C
]

looooomooooon

v

u1(x)dx
looomooon

du

= u(x)v(x) + Cu(x)´
ż

v(x)u1(x)dx´
ż

Cu1(x)dx

= u(x)v(x) + Cu(x)´
ż

v(x)u1(x)dx´ Cu(x) + D

= u(x)v(x)´
ż

v(x)u1(x)dx + D

where D is any constant.

Since the terms with C cancel out, it didn’t matter what we chose for C–all choices end
up the same.

A-5: Suppose we choose dv = f (x)dx, u = 1. Then v =

ż

f (x)dx, and du = dx. So, our

integral becomes:
ż

(1)
loomoon

u

f (x)dx
loomoon

dv

= (1)
loomoon

u

ż

f (x)dx
loooomoooon

v

´
ż
(
ż

f (x)dx
)

loooooomoooooon

v

dx
loomoon

du

In order to figure out the first product (and the second integrand), you need to know the
antiderivative of f (x)–but that’s exactly what you’re trying to figure out!

A-6:
x2 ln x

2
´ x2

4
+ C

A-7: ´ ln x
6x6 ´

1
36x6 + C
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A-8: π

A-9:
π

2
´ 1

A-10: ex (x3 ´ 3x2 + 6x´ 6
)
+ C

A-11:
x2

2
ln3 x´ 3x2

4
ln2 x +

3x2

4
ln x´ 3x2

8
+ C

A-12: (2´ x2) cos x + 2x sin x + C

A-13:
(
t3 ´ 5

2 t2 + 6t
)

ln t´ 1
3 t3 + 5

4 t2 ´ 6t + C

A-14: e
?

s (2s´ 4
?

s + 4) + C

A-15: x ln2 x´ 2x ln x + 2x + C

A-16: ex2+1 + C

A-17: 2y2 arctan(2y)´ y + 1
2 arctan(2y) + C

A-18:
x3

3
arctan x´ 1

6
(1 + x2) +

1
6

ln(1 + x2) + C

A-19:
2x

ln 2

(
x´ 1

ln 2

)
+ C

A-20: 2ecos x[1´ cos x] + C

A-21:
ż

xe´x

(1´ x)2 dx =
xe´x

1´ x
+ e´x + C =

e´x

1´ x
+ C

A-22: Area:
π

4
´ ln 2

2

x = 1

y = tan−1 x

x

y

A-23: π

(
17e18 ´ 4373

36

)
A-24: 12

A-25:
2
e

A-26: 10´ ln 11

A-27: (a) TC =
( q

10 ´ 1
)

eq/10 ´ 1
2 q2 + 30q + 1001 (b) $125.10

Answers to Exercises 3.6 — Jump to TABLE OF CONTENTS
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A-1: Relative error: « 0.08147; absolute error: 0.113; percent error: « 8.147%.

A-2:

x

y

2 4 6 8 10

A-3: L = 2

A-4: One reasonable answer is L = 3.

A-5: (a)
π5

180 ¨ 8 (b) 0 (c) 0

A-6: One possible answer: f (x) = 1
8 x4.

More possible answers: f (x) = 1
8 x4 + Cx3 + Dx2 + Ex + F for any constants C, D, E, and

F.

A-7: Any polynomial of degree at most 3 will do. For example, f (x) = 5x3 ´ 27, or
f (x) = x2.

A-8:
ż 30

0

1
x3 + 1

dx «
[ 1

03 + 2
+

4
53 + 1

+
2

103 + 1
+

4
153 + 1

+
2

203 + 1
+

4
253 + 1

+
1

303 + 1

]5
3

A-9: 4900
3 π « 5131 cm3

A-10:
π

12
(16.72) « 4.377 m3

A-11:
12.94

6π
« 0.6865 m3

A-12: 367,000

A-13:
77
3

A-14: For x between ´1 and 1:

0 ďx4 ď 1

ùñ 0 ď 16x4 ď 16

ùñ ´12 ď 16x4 ´ 12 ď 4

so, since ´1 ď sin(x2) ď 1, ´12 ď (16x4 ´ 12) sin(x2) ď 12

228



Similarly,

0 ďx2 ď 1

ùñ 0 ď48x2 ď 48

so, since ´1 ď cos(x2) ď 1, ´48 ď48x2 cos(x2) ď 48

Combining these two,

´12´ 48 ď (16x4 ´ 12) sin(x2)´ 48x2 cos(x2) ď 12 + 48
ˇ

ˇ(16x4 ´ 12) sin(x2)´ 48x2 cos(x2)
ˇ

ˇ ď 60

So, if L = 60, then | f (4)(x)| ď L for every x in the interval [´1, 1].

Let a = ´1, b = 1, L = 60, and n = 20. Then the error in the Simpson’s rule

approximation of
ż 1

´1
sin(x2)dx is at most:

L(b´ a)5

180n4 =
60 ¨ 25

180 ¨ 204 =
25

3 ¨ 24 ¨ 104

=
2
3
ˆ 10´4

« 0.667ˆ 10´4

ă 0.7ˆ 10´4

= 7ˆ 10´5

A-15: 8.1ˆ 10´4

A-16: Approximation:
1/3

3

(
(´3)5 + 4

(
1
3 ´ 3

)5
+ 2
(

2
3 ´ 3

)5
+ 4(´2)5 + 2

(
4
3 ´ 3

)5
+ 4
(

5
3 ´ 3

)5
+ (´1)5

)
Error bound: 4

81

A-17:
8

15

A-18:
1

180ˆ 34 =
1

14580

A-19: (a) S4 =
1

12

[
1 +

(
4ˆ 4

5

)
+

(
2ˆ 2

3

)
+

(
4ˆ 4

7

)
+

1
2

]
(b)

ˇ

ˇ

ˇ
I ´ S4

ˇ

ˇ

ˇ
ď 24

180ˆ 44 =
1

1920
A-20: (a) S4 « 8.03509

(b)
ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Sn

ˇ

ˇ

ˇ
ď 4

1000
85

180(4)4 ď 0.00284

A-21: Any even n ě 8 works.
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A-22:
472
3
« 494 ft3

A-23: (a) « 0.6931698 (b) n ě 12 with n even

A-24: (a) 0.01345 (b) n ě 28 with n even

A-25: n = 10 suffices

A-26: (a) When 0 ď x ď 1, then x2 ď 1 and x + 1 ě 1, so | f (4)(x)| = x2

|x + 1| ď
1
1
= 1.

(b)
1
2

(c) n ě 6 (d) n ě 6

A-27:
x´ 1

12

[
1 +

16
x + 3

+
4

x + 1
+

16
3x + 1

+
1
x

]

A-28: Note: for more detail, see the solutions.

First, we use Simpson’s rule with n = 4 to approximate
ş2

1
1

1+x2 dx. The choice of this
method (what we’re approximating, why n = 4, etc.) is explained in the solutions–here,
we only show that it works.

ż 2

1

1
1 + x2 dx « 1

12

[
1
2
+

64
41

+
8

13
+

64
65

+
1
5

]
« 0.321748

For ease of notation, define A = 0.321748.

Now, we bound the error associated with this approximation. Define
N(x) = 24(5x4 ´ 10x2 + 1) and D(x) = (x2 + 1)5, so N(x)/D(x) gives the fourth
derivative of 1

1+x2 . When 1 ď x ď 2, |N(x)| ď N(2) = 984 (because N(x) is increasing
over that interval) and |D(x)| ě D(1) = 25 (because D(x) is also increasing over that
interval), so

ˇ

ˇ

ˇ

d4

dx4

!

1
1+x2

)
ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

N(x)
D(x)

ˇ

ˇ

ˇ
ď 984

25 = 30.75. Now we find the error bound for
Simpson’s rule with L = 30.75, b = 2, a = 1, and n = 4.

ˇ

ˇ

ˇ

ˇ

ˇ

ż 2

1

1
1 + x2 dx´ A

ˇ

ˇ

ˇ

ˇ

ˇ

= |error| ď L(b´ a)5

180 ¨ n4 =
30.75

180 ¨ 44 ă 0.00067
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So,

´0.00067 ă
ż 2

1

1
1 + x2 dx´ A ă 0.00067

A´ 0.0067 ă
ż 2

1

1
1 + x2 dx ă A + 0.00067

A´ 0.00067 ă arctan(2)´ arctan(1) ă A + 0.00067

A´ 0.00067 ă arctan(2)´ π

4
ă A + 0.00067

π

4
+ A´ 0.00067 ă arctan(2) ă π

4
+ A + 0.00067

π

4
+ 0.321748´ 0.00067 ă arctan(2) ă π

4
+ 0.321748 + 0.00067

π

4
+ 0.321078 ă arctan(2) ă π

4
+ 0.322418

π

4
+ 0.321 ă arctan(2) ă π

4
+ 0.323

This was the desired bound.

Answers to Exercises 3.7 — Jump to TABLE OF CONTENTS

A-1: Any real number in [1,8) or (´8,´1], and b = ˘8.

A-2: b = ˘8
A-3: The red dotted function is f (x), and the blue solid function is g(x).

A-4: False. For example, the functions f (x) = e´x and g(x) = 1 provide a
counterexample.

A-5:

(a) Not enough information to decide. For example, consider h(x) = 0 versus h(x) = ´1.

(b) Not enough information to decide. For example, consider h(x) = f (x) versus
h(x) = g(x).

(c)
ż 8

0
h(x) dx converges by the comparison test, since |h(x)| ď 2 f (x) and

ż 8

0
2 f (x) dx

converges.

A-6: The integral diverges.

A-7: The integral diverges.

A-8: The integral does not converge.

A-9: The integral converges.

A-10: The integral diverges.

A-11: The integral diverges.
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A-12: The integral diverges.

A-13: The integral diverges.

A-14: The integral diverges.

A-15: The integral converges.

A-16: q = 1
5

A-17: p ą 1

A-18: The integral converges.

A-19: The integral converges.

A-20: The integral converges.

A-21: t = 10 and n = 2042 will do the job. There are many other correct answers.

A-22: (a) The integral converges. (b) The interval converges.

A-23: false

Answers to Exercises 3.8 — Jump to TABLE OF CONTENTS

A-1: 0

A-2:
8
3

ln 2´ 7
9

A-3:
1
2

ln
ˇ

ˇx2 ´ 3
ˇ

ˇ+ C

A-4: 1

A-5: e2 + 1

A-6:
9
4

π

A-7:
1
2
[
x2 arctan x´ x + arctan x

]
+ C

A-8: ln 2´ 1
2
« 0.193

A-9: ´ 1
300(x3 + 1)100 + C

A-10: -2

A-11:
2
5
(x´ 1)5/2 +

2
3
(x´ 1)3/2 + C

A-12: 3x3 arcsin x + 3
?

1´ x2 ´ (1´ x2)3/2 + C

A-13: (a)
1
2

x2 ln x´ 1
4

x2 + C (b)
1
3

arctan x3 + C
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A-14:
1

10
arctan 8 « 0.1446

A-15:
1
4

A-16: ln
(

ln(cos(0.1))
ln(cos(0.2))

)
A-17:

9
4

π + 9

A-18: ee(e´ 1)

A-19:
ex

x + 1
+ C

A-20: x sec x´ ln | sec x + tan x|+ C

A-21: 2

A-22:
ż

x(x + a)n dx =

$

’

&

’

%

(x+a)(n+2)

n+2 ´ a (x+a)n+1

n+1 + C if n ‰ ´1,´2
(x + a)´ a ln |x + a|+ C if n = ´1
ln |x + a|+ a

x+a + C if n = ´2

Answers to Exercises 3.9 — Jump to TABLE OF CONTENTS

A-1: (a) yes (b) yes (c) no

A-2:

(a) One possible answer: f (x) = x, g(y) =
3y

sin y
.

(b) One possible answer: f (x) = ex, g(y) = e´y.

(c) One possible answer: f (x) = x + 1, g(y) = 1.

(d) The given equation is equivalent to the equation dy
dx = x, which fits the form of a

separable equation with f (x) = x, g(y) = 1.

A-3: The mnemonic allows us to skip from the separable differential equation we want
to solve (very first line) to the equation

ż

g(y)dy =

ż

f (x)dx

We also generally skip the explanation about C1 and C2 being replaced with C.

A-4: false

A-5: (a) [0,8)
(b) No such function exists. If | f (x)| = Cx and f (x) switches from f (x) = Cx to
f (x) = ´Cx at some point, then that point is a jump discontinuity. Where f (x) contains a
discontinuity, dy

dx does not exist.
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A-6:
dQ
dt

= ´0.003Q(t)

A-7: dp
dt = αp(t)

(
1´ p(t)

)
, for some constant α.

A-8: (a) ´1 (b) 0 (c) 0.5
(d) Two possible answers are shown below:

x

y

1

1

x

y

1

1

Another possible answer is the constant function y = 2.

A-9: y(t) = 7
5 ´ 22

5 e5t

A-10: y(t) = 1
2 e2t ´ 1

2

A-11: y(t) = 5
2 e2(t´1) ´ 3

2

A-12: y = 7
3

A-13: y = 0, y = 1, y = ´1

A-14: y = ln(x2 + 2)

A-15: y(x) = 3
?

1 + x2

A-16: y(t) = 3 ln
( ´3

C + sin t

)
A-17: y = 3

b

3
2 ex2 + C.

A-18: y = ´ ln
(

C´ x2

2

)
The solution only exists for C´ x2

2 ą 0, i.e. C ą 0 and the function has domain
 

x : |x| ă ?2C
(

.

A-19: y = (3ex ´ 3x2 + 24)1/3
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A-20: y = f (x) = ´ 1?
x2 + 16

A-21: y =
?

10x3 + 4x2 + 6x´ 4

A-22: y(x) = ex4/4

A-23: f (x) = e ¨ ex2/2

A-24: y2 +
2
3
(y2 ´ 4)3/2 = 2 sec x + 2

A-25: 12 weeks

A-26: t =
c

m
kg

arctan

(d
k

mg
v0

)
A-27: (a) k = 1

400 (b) t = 70sec

A-28: (a)
dv
dt

= ´kv2 (b) v =
400

t + 1
(c) t = 7

A-29: (a) frr(1, 0) = m(m´ 1), frθ(1, 0) = 0, fθθ(1, 0) = ´m2 (b) λ = 1

A-30: (a) B(t) = C e0.06t´0.02 cos t with the arbitrary constant C ě 0. (b) $1159.89

A-31:

(a) One possible answer: f (t) = 0

(b)
1?

x´ a

[
f (x)´ 1

2(x´ a)

ż x

a
f (t)dt

]
=

f 2(x)

2
b

şx
a f 2(t)dt

(c)
2

x´ a

ż x

a
f (t)dt

[
f (x)´ 1

2(x´ a)

ż x

a
f (t)dt

]
= f 2(x)

(d) Y(x) = D(x´ a), where D is any constant

(e) f (t) = D, for any nonnegative constant D

A-32:

(a) ´ a
r , ´ b

r

(b) r ă 0, but the sign of a is not restricted

(c) W(t) =
(
W(0) + a

r+c
)

e(r+c)t ´ a
r+c

A-33:

(a) 1
2 ´ 1

2 e3/4 +
ř300

i=1 ei/400

(b) |error| ď e3/4

6400

(c) 1
2 ´ 1

2 e3/4

(d)
[
315342.95, 315144.07

]
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(e) absolute error of less than $938, and a relative error of less than 0.24%.

A-34:

(a) r
100 P(t)

(b) ´P1(t) is the amount paid towards the loan

(c) r
100 P(t)´ P1(t) = C

(d) P(t) =
(

P0 ´ 100
r C
)

e
r

100 t + 100
r C

(e) C = r
100

(
P0erN/100

erN/100´1

)
(f) r

100 P(t)´ P1(t) = C0 ¨ 1.001t

Answers to Exercises 4.1 — Jump to TABLE OF CONTENTS

A-1: Pr(X = 5) = 0.1

A-2: Yes

A-3: X

A-4: 1
100

A-5: 15
93

A-6: 2
3

A-7: 7
10

Answers to Exercises 4.2 — Jump to TABLE OF CONTENTS

A-1: Probability Mass Function

A-2: Discrete

A-3:

(a) S = t5, 6, 7, 8u
(b) No

A-4: 0.2

A-5: 8.2

A-6: S = t1, 2, 3, . . .u (all whole numbers); Pr(X ď 3) = 7
8 .

Answers to Exercises 4.3 — Jump to TABLE OF CONTENTS

A-1: F(0) = 1
10 , F(20) = 2

5 , and F(30) = 9
10 .
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A-2: a b

A-3: 0 5

A-4: yes

A-5:

(a) True, Corollary 4.3.10, part 3.

(b) False, for examples a variable X that takes the value 1, 000, 001 with probability 1.

(c) True, Corollary 4.3.10, part 2.

(d) True, Corollary 4.3.10, part 1.

A-6: F(11) = 1

A-7:

F(x) =

$

’

&

’

%

0 x ă ´1
1
2 ´1 ď x ă 1
1 1 ď x

A-8:

F(x) =

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 x ă 1
1
6 1 ď x ă 2
1
3 2 ď x ă 3
1
2 3 ď x ă 4
2
3 4 ď x ă 5
5
6 5 ď x ă 6

1 x ě 6

A-9:

F(x) =

$

’

’

’

&

’

’

’

%

0 x ă ´4
1
2 ´4 ď x ă ´2
5
6 ´2 ď x ă ´1
1 ´1 ď x

A-10: A = 1; B can be any nonnegative number.

A-11: 0 ď A ď 1, A = C = D, and B = 1´ A
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A-12:

x Pr(W = x)

5 1
4

6 1
12

8 1
6

12 1
2

A-13: S = t1, 2, 4u, and Pr(x = 2) ą Pr(x = 4) ą Pr(x = 1).

Answers to Exercises 4.4 — Jump to TABLE OF CONTENTS

A-1:

(a) 0 1

(b) 0 1 2 3

(c) 1 3
√
2

A-2:

(a) limit at negative infinity is 1: neither

(b) never negative: both

(c) nondecreasing: CDFs

(d) never more than 1: CDFs

(e) area under the curve gives a probability: PDFs

(f) value of function gives a probability: CDFs

(g) area under the curve from ´8 to8 is 1: PDFs

A-3: b, c, and e: CDF
a, d, and f: PDF

A-4:

(a)
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x

y

(b)

x

y

(c) The CDF of this random variable is not a continuous function, so the variable is not
continuous.

A-5:

(a)
x

y

F(x)

(b)
x

y

F(x)

(c)
x

y

F(x)

A-6: arctan(170)´arctan(40)
π « 0.006

A-7: 0.6
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A-8: 2
10

A-9: F(x) =

$

’

&

’

%

0 x ď 0
x2

100 0 ă x ă 10
1 x ě 10

A-10: F(x) =

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

0 x ď 0
x

10 0 ă x ď 3
3

10 3 ă x ď 4
x
5 ´ 1

2 4 ď x ă 6
7

10 6 ď x ă 7
3x
10 ´ 7

5 7 ď x ă 8
1 8 ď x

A-11: X is a continuous random variable, and its PDF is

f (x) =

#

ex x ă 0
0 x ą 0

A-12: Yes, X is continuous. It has PDF

f (x) =

#

1
(x+1)2 x ą 0

0 x ă 0

A-13: ln
(

1 + 1
e

)
A-14: 2

π

A-15: F(x) =

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 x ă 0
x4

2 0 ď x ď 1
1
2 1 ă x ă 2
1
2 +

(x´2)4

2 2 ď x ď 3
1 x ą 3

A-16: F(x) =

$

’

’

’

’

&

’

’

’

’

%

0 x ă ´1
1
2 ´ x2

2 ´1 ď x ď 0
1
2 +

x2

2 0 ă x ď 1
1 x ą 1

A-17:

(a) c = 12
2004

(b) S1 = t0, 10, 20, . . . , 200u

(c) Pr(M1 = m) =

$

’

’

&

’

’

%

157
404 m = 0
12

2004

[
´10m3 + 2, 000m2 ´ 250m + 50,000

3

]
m = 10, 20, . . . , 180

3595
404 m = 200
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(d) They are nearly identical, except for y-scale

A-18: 1
3

[b
2
π + 4

(b
2
π e´1/8

)
+ 2

(b
2
π e´1/2

)
+ 4

(b
2
π e´9/8

)
+
(b

2
π e´2

)]

Answers to Exercises 4.5 — Jump to TABLE OF CONTENTS

A-1: false

A-2: I don’t ... but I guess I can’t speak for you.

A-3: a

A-4: false

A-5: 1.1

A-6: 2.32

A-7: If you play N times, where N is a large number, you expect to make about N
4

dollars.

A-8: You expect to lose 11
5 N dollars after N games. Equivalently, you expect to win ´11

5 N
dollars.

A-9: E(M) = 66 + 2
3 . From Section 4.5.3, we see 50 ă E(M) ď 100, and this is true of

66 + 2
3 , so it passes the checks.

A-10: E(N) = 0. From Section 4.5.3, we see ´1 ď E(M) ď 1, and this is true of 0, so it
passes the check.

A-11: E(P) = 17
18 . This accords with 0 ď E(P) ď 3 from Theorem 4.5.7

A-12: E(Q) = 1
2

( e
e´2

)
. As a check, we expect 1 ď E(Q) ď e, and this is true.

A-13: b+a
2

A-14:

(a) p ą 1

(b) ap = p´ 1

(c) p ą 2

A-15: e´ 2

A-16: 2
ln2 2

(2 ln 2´ 1)

A-17: (b´ 2) + 1
2 ln

(
4 b´1

b+2

)
A-18: 1

4´π

(
π ´ 2 ln 2´ π2

8

)
A-19: 0

A-20: $985
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A-21: (a) 15% (b) $2700

A-22: (a) 1.2x + 1.6y (b) $250 in Asset A, $50 in Asset B

Answers to Exercises 4.6 — Jump to TABLE OF CONTENTS

A-1: A - 4 B -6 C -5 D -1 E -3 F -2

A-2: Bundles of 8.5 to 11.5 kg are typical; bundles less than 8.5 kg or more than 11.5 kg
are atypical.

A-3: Brand B

A-4: X has sample space S = t´100, 100u and is equally likely to take either value.

A-5: Var(X) = (b´a)2

12 , σ(X) = b´a
2
?

3

a bb+a
2

(
b+a

2 + b´a
2
?

3

)(
b+a

2 ´ b´a
2
?

3

)
A-6: 0 and 0

A-7: 0

A-8:

(a) F(x) =

$

’

&

’

%

0 x ă 0
1´ cos x 0 ď x ď π

2
1 x ą π

2

(b) Var(X) = π ´ 3

(c) σ(X) =
?

π ´ 3

A-9: E(X) = 0, Var(X) = 1
6 , σ(X) = 1?

6

A-10:

(a) Yes, X is continuous

(b) E(X) = 1
12 , Var(V) = 67

720 , σ(X) =
?

67
12
?

5

A-11: E(T) = 7
4 , Var(T) = 11

16 , σ(T) =
?

11
4

A-12: E(S) = 8
3 , Var(S) = 242

9 , σ(S) = 11
?

2
3

A-13:

Answers to Exercises 5.1 — Jump to TABLE OF CONTENTS

A-1: (a) ´2 (b) 0 (c) the limit does not exist
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A-2: true

A-3: (a)
A´ B

C
(b) 0 (c)

A
B

A-4: Two possible answers, of many:

• an =

#

3000´ n if n ď 1000
´2 + 1

n if n ą 1000

• an =
1, 002, 001

n
´ 2

A-5: One possible answer is an = (´1)n = t´1, 1,´1, 1,´1, 1,´1, . . .u.
Another is an = n(´1)n = t´1, 2,´3, 4,´5, 6,´7, . . .u.

A-6: One sequence of many possible is an =
(´1)n

n
=

"

´1,
1
2

, ´1
3

,
1
4

, ´1
5

,
1
6

, . . .
*

.

A-7: Some possible answers:

(a)
´1
n
ď sin n

n
ď 1

n

(b)
n2

13en ď
n2

en(7 + sin n´ 5 cos n)
ď n2

en

(c)
´1
nn ď (´n)´n ď 1

nn

A-8: (a) an = bn = h(n) = i(n), cn = j(n), dn = f (n), en = g(n)
(b) lim

nÑ8
an = lim

nÑ8
bn = lim

xÑ8
h(x) = 1, lim

nÑ8
cn = lim

nÑ8
en = lim

xÑ8
g(x) = lim

xÑ8
j(x) = 0,

lim
nÑ8

dn, lim
xÑ8

f (x) and lim
xÑ8

i(x) do not exist.

A-9: (a) Some possible answers: a22 « ´0.99996, a66 « ´0.99965, and a110 « ´0.99902.

(b) Some possible answers: a11 « 0.0044, a33 « ´0.0133, and a55 « 0.0221.

The integers 11, 33, and 55 were found by approximating π by
22
7

and finding when an

odd multiple of
11
7

(which is the corresponding approximation of
π

2
) is an integer.

A-10:

(a) t4, 34, 334, 3334, 33334, . . .u
(b)

!

1, 1
2 , 1

4 , 1
8 , 1

16 , . . .
)

(c) t0, 0, 0, 0, 0, . . .u
(d) t1,´1, 2,´3, 5, . . .u
A-11:

(a) t1, 1, 1, 1, 1, . . .u
(b) t1, 2, 3, 4, 5, . . .u
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(c) t0, 0, 0, 0, 0, . . .u
(d) t1,´1, 1,´1, 1, . . .u
A-12:

(a) an = 22n

(b) bn = (´1)n ¨ 5
(c) cn = 8

A-13: Here are possible answers, assuming our indices start from n = 0.

(a) n2

(b) (´2)n

(c) n+1
n+2

(d) 1.5 + n
2

A-14: (a)8 (b)
3
4

(c) 0

A-15: 8
A-16: 0

A-17: 0

A-18: 0

A-19: 1

A-20: 0

A-21: 8
A-22: lim

kÑ8
ak = 0.

A-23: The sequence converges to 0.

A-24: 9

A-25: There are infinitely many potential answers to these questions. Only several are
given below.

(a) an = 9
2 n2 ´ 3

2 n + 1: bn = 4n;

(b) cn = n3 ´ 3n2 + 5n + 3: dn = 3(n + 1)

(c) en = n(n´ 1)(n´ 2): fn = 0

A-26: any negative value

A-27: ln 2

A-28: 5

A-29: ´8
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A-30: 100 ¨ 299.

A-31: Possible answers are tanu =
"

n
[

f
(

a +
1
n

)
´ f (a)

]*
or tanu =

"

n
[

f (a)´ f
(

a´ 1
n

)]*
.

A-32: (a) An =
n
2

sin
(

2π

n

)
(b) π

A-33: There are 32 or 33 equation in the text, and around 212 million to 219 million
remaining readers under the assumptions of the second paragraph.

A-34:

(a)

x

y

1

2 3

(b)

x

y

1

43

(c) An = 1 for all n

(d) lim
nÑ8

An = 1.

(e) g(x) = 0

(f)
ż 8

0
g(x)dx = 0.

A-35: e3

A-36: (a) 4 (b) x = 4 (c) see solution

A-37: (a) decreasing (b) fn = 1
n f1 (c) 2% (d) 0.18%

(e) “be”: 11,019,308; “and”: 7,346,205

A-38:

(a) I: P(1 + r)2 II: P(1 + r)2 + r ¨ P(1 + r)2 II: P(1 + r)3

(b) $121

245



(c) about $225.40

Answers to Exercises 5.1.1 — Jump to TABLE OF CONTENTS

A-1: 165, 225, and 300

A-2: It’s not even-tempered. The octave is divided into 5 intervals.

A-3:

0. 444

1. 444 ¨ 21/12 « 470.40

2. 444 ¨ 22/12 « 498.37

3. 444 ¨ 23/12 « 528.01

4. 444 ¨ 24/12 « 559.40

5. 444 ¨ 25/12 « 592.67

6. 444 ¨ 26/12 « 627.91

7. 444 ¨ 27/12 « 665.25

8. 444 ¨ 28/12 « 704.81

9. 444 ¨ 29/12 « 746.72

10. 444 ¨ 210/12 « 791.12

11. 444 ¨ 211/12 « 838.16

12. 444 ¨ 212/12 = 888

A-4:

0. 100

1. 100 ¨ 21/10 « 107.12

2. 100 ¨ 22/10 « 114.87

3. 100 ¨ 23/10 « 1213.11

4. 100 ¨ 24/10 « 131.95

5. 100 ¨ 25/10 « 141.42

6. 100 ¨ 26/10 « 151.57

7. 100 ¨ 27/10 « 162.45

8. 100 ¨ 28/10 « 174.11

9. 100 ¨ 29/10 « 186.61

10. 100 ¨ 210/10 = 200
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A-5:

1. yes

2. no

A-6: The transposition can be played for any lowest note ak.

A-7: none

A-8: In each question, we specified subdivisions of an octave. An octave has ratio 2. So,
in both cases, we had a geometric series

an = arn

where ak = 2a0 was specified. That’s where the 2 comes from.

A-9: 360, 660, 990

Answers to Exercises 5.2 — Jump to TABLE OF CONTENTS

A-1:

N SN

1 1

2 1 + 1
2

3 1 + 1
2 +

1
3

4 1 + 1
2 +

1
3 +

1
4

5 1 + 1
2 +

1
3 +

1
4 +

1
5

A-2: 3

A-3: (a) an =

$

&

%

1
2 if n = 1

1
n(n + 1)

else
(b) 0 (c) 1

A-4: an =

#

0 if n = 1
2(´1)n ´ 1

n(n´1) else

A-5: an ă 0 for all n ě 2

A-6: (a)
8
ÿ

n=1

2
4n (b)

2
3

A-7: (a)
8
ÿ

n=1

1
9n (b)

1
8

A-8: Two possible pictures:

247



A-9:
5101 ´ 1
4 ¨ 5100

A-10: All together, there were 36 cookies brought by Student 11 through Student 20.

A-11:
551 ´ 1
4 ¨ 5100

A-12: (a) As time passes, your gains increase, approaching $1. (b) 1
(c) As time passes, you lose more and more money, without bound. (d) ´8
A-13: A + B + C´ c1

A-14: in general, false

A-15:
3
2

A-16:
1

7ˆ 86

A-17: 6

A-18: cos
(π

3

)
´ cos(0) = ´1

2

A-19: (a) an =
11

16n2 + 24n + 5
(b)

3
4
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A-20:
24
5

A-21: 3

A-22:
1
2
+

5
7
=

17
14

A-23:
40
3

A-24: The series diverges to ´8.

A-25: ´1
2

A-26:

F(x) =

#

0 x ă 1
1´ 1

2txu x ě 1

where txu is the integer obtained from x by rounding down. Sketched:

x

y

1/2

3/4

7/8
15/16

1 2 3 4 5 6

¨ ¨ ¨

A-27:
4π

3 (π3 ´ 1)

A-28:
sin2 3

8
+ 32 « 32.0025

A-29:

(a)

i(i + 1)(i + 2)´ (i´ 1)i(i + 1) = i(i2 + 3i + 2)´ i(i2 ´ 1)

= i(i2 ´ i2 + 3i + 2 + 1)

= i(3i + 3) = 3i2 + 3i

(b) We’ll start by evaluating the telescoping sum
ÿ (

i(i + 1)(i + 2)´ (i´ 1)i(i + 1)
)
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We can use tables, but this is actually a simpler relationship than some of the other
examples we’ve seen.

n i(i + 1)(i + 2) ´(i´ 1)i(i + 1) sn

1 1 ¨ 2 ¨ 3 ´0 ¨ 1 ¨ 2 1 ¨ 2 ¨ 3

2 2 ¨ 3 ¨ 4 ´1 ¨ 2 ¨ 3 2 ¨ 3 ¨ 4

3 3 ¨ 4 ¨ 5 ´2 ¨ 3 ¨ 4 3 ¨ 4 ¨ 5

4 4 ¨ 5 ¨ 6 ´3 ¨ 4 ¨ 5 4 ¨ 5 ¨ 6
...

n n ¨ (n + 1) ¨ (n + 2)

So:

n
ÿ

i=1

(3i2 + 3i) =
ÿ (

i(i + 1)(i + 2)´ (i´ 1)i(i + 1)
)
= n(n + 1)(n + 2)

3
n
ÿ

i=1

i2 + 3
n
ÿ

i=1

i = n(n + 1)(n + 2)

n
ÿ

i=1

i2 =
1
3

n(n + 1)(n + 2)´
n
ÿ

i=1

=
1
3

n(n + 1)(n + 2)´ n(n + 1)
2

= n(n + 1)
(

n + 2
3

´ 1
2

)
= n(n + 1)

(
2(n + 2)´ 3

6

)
=

n(n + 1)(2n + 1)
6

(c) First, note:

i2(i + 1)2 ´ (i´ 1)2i2 = i2
(

i2 + 2i + 1´ (i2 ´ 2i + 1)
)

= i2
(

4i
)
= 4i3
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So,

n
ÿ

i=1

4i3 =
n
ÿ

i=1

(
i2(i + 1)2 ´ (i´ 1)2i2

)
n
ÿ

i=1

i3 =
1
4

n
ÿ

i=1

(
i2(i + 1)2 ´ (i´ 1)2i2

)

This is a telescoping series.

n i2(i + 1)2 ´(i´ 1)2i2 sn

1 12 ¨ 22 ´02 ¨ 12 12 ¨ 22

2 22 ¨ 32 ´12 ¨ 22 22 ¨ 32

3 32 ¨ 42 ´22 ¨ 32 32 ¨ 42

4 42 ¨ 52 ´32 ¨ 42 42 ¨ 52

...

n n2 ¨ (n + 1)2

All together,
n
ÿ

i=1

i3 =
1
4
¨ n2 ¨ (n + 1)2

A-30: an =

$

’

&

’

%

2
n(n´1)(n´2) if n ě 3,

´5
2 if n = 2,

2 if n = 1

A-31: Yes, f (x) could be a PDF.

A-32: 1
2 ´ 1

1001 +
1

1002

A-33:
5
8

Answers to Exercises 5.3 — Jump to TABLE OF CONTENTS

A-1: (B), (C)

A-2: (A)

A-3: It diverges by the divergence test, because lim
nÑ8

an ‰ 0.
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A-4: The integral test does not apply because f (x) is not decreasing.

A-5: One possible answer: f (x) = sin(πx), an = 0 for every n.

By the integral test, any answer will use a function f (x) that is not both positive and
decreasing.

A-6: The series converges to ´ 1
50

.

A-7: The series converges.

A-8: It diverges.

A-9: The series converges to
1
3

.

A-10: p ą 1

A-11: It converges.

A-12:
1

e5 ´ e4

A-13: 1
7

A-14: The sum is between 0.9035 and 0.9535.

A-15: It diverges.

A-16: It converges to ´ ln 2 = ln 1
2 ,

A-17: About 9% to 10%

A-18: The total population is between 29,820,091 and 29,244,727 people.

Answers to Exercises 5.4 — Jump to TABLE OF CONTENTS

A-1: (a) I am old (b) not enough information to tell
(c) not enough information to tell (d) I am young

A-2:

if
ř

an converges if
ř

an diverges

and if tanu is the red series then
ř

bn CONVERGES inconclusive

and if tanu is the blue series inconclusive then
ř

bn DIVERGES

A-3: (a) both direct comparison and limit comparison (b) direct comparison
(c) limit comparison (d) neither
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A-4: We cannot use the divergence test to show that a series converges. It is inconclusive
in this case.

A-5: The inequality goes the wrong way, so the direct comparison test (with this
comparison series) is inconclusive.

A-6: One possible answer: bn =
2n

3n

A-7: (a) In general false. The harmonic series
8
ř

n=1

1
n provides a counterexample.

(b) In general false. If an = (´1)n 1
n , then

8
ř

n=1
(´1)nan is again the harmonic series

8
ř

n=1

1
n ,

which diverges.

(c) In general false. Take, for example, an = 0 and bn = 1.

A-8: It diverges.

A-9: Let f (x) =
5

x(ln x)3/2 . Then f (x) is positive and decreases as x increases. So the

sum
8
ÿ

3

f (n) and the integral
ż 8

3
f (x)dx either both converge or both diverge, by the

integral test, which is Theorem 5.3.5 in the text. For the integral, we use the substitution
u = ln x, du = dx

x to get
ż 8

3

5 dx
x(ln x)3/2 =

ż 8

ln 3

5 du
u3/2

which converges by the p–test (which is Example 3.7.8 in the text) with p = 3
2 ą 1.

A-10: No. It diverges.

A-11: The series
8
ÿ

n=2

?
3

n2 converges by the p–test with p = 2.

Note that

0 ă an =

?
3n2 ´ 7

n3 ă
?

3n2

n3 =

?
3

n2

for all n ě 2. As the series
8
ř

n=2

?
3

n2 converges, the comparison test says that
8
ř

n=2

?
3n2´7
n3

converges too.

A-12: The series converges.

A-13: The series diverges.

A-14: (a) converges (b) diverges

A-15: It converges.

A-16: The series diverges.
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A-17: (a) See the solution.

(b) f (x) =
x + sin x

1 + x2 is not a decreasing function.

(c) See the solution.

A-18: Since lim
nÑ8

an = 0, there must be some integer N such that 1
2 ą an ě 0 for all n ą N.

Then, for n ą N,

an

1´ an
ď an

1´ 1/2
= 2an

From the information in the problem statement, we know

8
ÿ

n=N+1

2an = 2
8
ÿ

n=N+1

an converges.

So, by the direct comparison test,

8
ÿ

n=N+1

an

1´ an
converges as well.

Since the convergence of a series is not affected by its first N terms, as long as N is finite,
we conclude

8
ÿ

n=1

an

1´ an
converges.

A-19: See the solution.

Answers to Exercises 5.5 — Jump to TABLE OF CONTENTS

A-1: One possible answer:
8
ÿ

n=1

1
n2 .

A-2: By the divergence test, for a series
ř

an to converge, we need lim
nÑ8

an = 0. That is, the

magnitude (absolute value) of the terms needs to be getting smaller. If lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an

an+1

ˇ

ˇ

ˇ

ˇ

ă 1 or

(equivalently) lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

ą 1, then |an+1| ą |an| for sufficiently large n, so the terms are

actually growing in magnitude. That means the series diverges, by the divergence test.

A-3: This is a geometric series with r = 1.001. Since |r| ą 1, it is divergent.

A-4: The series converges.

A-5: The series converges.

A-6: It converges.
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A-7: It diverges.

A-8: (a) diverges by limit comparison with the harmonic series

(b) converges by the ratio test

A-9: (a) Converges by the limit comparison test with b = 1
k5/3 .

(b) Diverges by the ratio test.

(c) Diverges by the integral test.

A-10: It diverges.

A-11: (a) converges (b) converges

Answers to Exercises 5.6 — Jump to TABLE OF CONTENTS

A-1: False. For example, bn = 1
n provides a counterexample.

A-2:
ř

an converges
ř

an diverges

ř |an| converges converges absolutely not possible

ř |an| diverges converges conditionally diverges

A-3: conditionally convergent

A-4: The series diverges.

A-5: It diverges.

A-6: It converges absolutely.

A-7: It converges absolutely.

A-8: It diverges.

A-9: It converges absolutely.

A-10: See solution.

A-11: See solution.

A-12: See solution.

A-13: (a) See the solution. (b) |S´ S5| ď 24ˆ 36e´63

A-14: cos 1 « 389
720 ; the actual associated error (using a calculator) is about 0.000025.

A-15: See solution.

Answers to Exercises 6.1 — Jump to TABLE OF CONTENTS
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A-1: only x = c

A-2: R = 6

A-3: R = 8
A-4: 1

A-5: The radius of convergence is 1

A-6: The radius of convergence is 3.

A-7: 5

A-8: (´3,´1)

A-9: The interval of convergence is from 3
4 to 5

4 ; we don’t need to find out whether the
endpoints are included or not.

A-10: The radius of convergence is 2. The interval of convergence is from ´1 to 3; we
don’t know whether or not the endpoints are included.

A-11: The interval of convergence is from a´ 1 to a + 1. We don’t know which
endpoints are included.

A-12: (a) from ´10 to 8 (b) This series converges only for x = 1.

A-13: The series converges absolutely for |x| ă 9, converges conditionally for x = ´9
and diverges otherwise.

A-14: See the solution.

A-15: (a) 1. (b) The series converges for x between ´1 and 1.

Answers to Exercises 6.2 — Jump to TABLE OF CONTENTS

A-1: 2

A-2:

(a) True

(b) False

A-3:

(a) False

(b) True

A-4: 1
4

A-5: f (x) =
8
ÿ

n=1

n(x´ 5)n´1

n! + 2

A-6: (a) R =
1
2

(b)
2

1 + 2x
for all |x| ă 1

2
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A-7:
8
ÿ

n=0

xn+3 =
8
ÿ

n=3

xn

A-8: f (x) = 3 +
8
ÿ

n=1

(x´ 1)n

n(n + 1)

A-9:
13
80

A-10: (a) See the solution.

(b)
8
ÿ

n=0

n2xn =
x(1 + x)
(1´ x)3 . The series converges for ´1 ă x ă 1.

A-11: The point x = c corresponds to a local maximum if A2 ă 0 and a local minimum if
A2 ą 0.

Answers to Exercises 6.3 — Jump to TABLE OF CONTENTS

A-1: A: linear B: constant C: quadratic

A-2: T(5) = arctan3 (e5 + 7
)

A-3: A - V B - I C - IV D - VI E - II F - III

A-4:
8
ÿ

n=1

(´1)n´1

n
(x´ 1)n

A-5:
8
ÿ

n=0

(´1)n+1

(2n + 1)!
(x´ π)2n+1

A-6:
1

10

8
ÿ

n=0

(
10´ x

10

)n
with interval of convergence (0, 20).

A-7:
8
ÿ

n=0

3ne3a

n!
(x´ a)n, with infinite radius of convergence

A-8: ´
8
ÿ

n=0

2nxn

A-9: bn = 3(´1)n + 2n

A-10: c5 =
35

5!

A-11:
8
ÿ

n=0

(´1)n 2n+1xn+1

n + 1
for all |x| ă 1

2

A-12: a = 1, b = ´ 1
3!

= ´1
6

.
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A-13:
ż

e´x2 ´ 1
x

dx = C´ x2

2
+

x4

8
+ ¨ ¨ ¨ .

It is not clear from the wording of the question whether or not the arbitrary constant C is
to be counted as one of the “first two nonzero terms”.

A-14:
8
ÿ

n=0

(´1)n 22n+1x2n+6

(2n + 1)(2n + 6)
+ C =

8
ÿ

n=0

(´1)n 22nx2n+6

(2n + 1)(n + 3)
+ C

A-15: f (x) = 1 +
8
ÿ

n=0

(´1)n 3n

3n + 2
x3n+2

A-16: S13 or higher

A-17: S9 or higher

A-18: S18 or higher

A-19: The error is in the interval
( ´57

14 ¨ 37

[
1 +

1
37

]
,

´57

7 ¨ 67

)
« (´0.199,´0.040)

A-20: (a) the Maclaurin series for f (x) is
8
ÿ

n=0

(2n)!
22n (n!)2 xn, and its radius of convergence is

R = 1.

(b) the Maclaurin series for arcsin x is
8
ÿ

n=0

(2n)!
22n (n!)2(2n + 1)

x2n+1, and its radius of

convergence is R = 1.

A-21: ln(x) = ln 2 +
8
ÿ

n=1

(´1)n´1

n 2n (x´ 2)n. It converges when 0 ă x ď 4.

A-22:
8
ÿ

n=0

(´1)n x4n+1

4n + 1

A-23:
8
ÿ

n=1

(´1)n xn

n n!

A-24: (a) Σ(x) =
8
ÿ

n=0

(´1)n x2n+1

(2n + 1)(2n + 1)!
(b) x = π (c) 1.8525

A-25: I(x) =
8
ÿ

n=1

(´1)n x2n´1

(2n)!(2n´ 1)

A-26: I(x) =
8
ÿ

n=1

(´1)n+1 x2n´1

(2n)!
=

1
2!

x´ 1
4!

x3 +
1
6!

x5 ´ 1
8!

x8 + ¨ ¨ ¨

A-27: (a) See the solution. (b) The series converges for all x.

A-28: See the solution.
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A-29: (a) cosh(x) =
8
ÿ

n=0
n even

xn

n!
=

8
ÿ

n=0

x2n

(2n)!
for all x.

A-30: (a)

x

y

1

´?2/3
?

2/3

y = f (x)

(b) the constant function 0 (c) everywhere (d) only at x = 0

A-31: 0

A-32:
8
ÿ

n=0

(´1)n x2n+4

(2n + 1)(2n + 2)
= x3 arctan x´ x2

2
ln(1 + x2)

A-33: One of many possible answers: f (x) = arctan x, a = 1.

Answers to Exercises 6.4 — Jump to TABLE OF CONTENTS

A-1:

(a) True

(b) False

(c) True

A-2: (a) f (20)(3) = 202
(

20!
20! + 1

)
(b) g(20)(3) = 102

(
20!

10! + 1

)
(c) h(20)(0) = 0; h(22)(0) =

22! ¨ 513

13

A-3:
π

2
?

3

A-4:
1
e

A-5: e1/e

A-6: e1/π ´ 1

A-7: ln(3/2)

A-8: (e + 2)ee ´ 2

A-9: The sum diverges–see the solution.

A-10:
1 +

?
2?

2
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A-11: (a) See the solution. (b)
1
2

(
e +

1
e

)
A-12:

2
(6/7)3 =

343
108

Answers to Exercises 6.5 — Jump to TABLE OF CONTENTS

A-1: see solution

A-2: ´1

A-3:
1
5!

=
1

120

A-4: e2

A-5:
?

e
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SOLUTIONS TO QUESTIONS

Part IV
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Solutions to Exercises 1.1 — Jump to TABLE OF CONTENTS

S-1:

The xz plane is filled with vertical lines; the yz plane is crosshatched; and the xy plane is
solid.

The left bottom triangle vertex is (1, 0, 0); the right bottom triangle vertex is (0, 1, 0); the
top triangle vertex is (0, 0, 1).

S-2: (a) The point (x, y, z) satisfies x2 + y2 + z2 = 2x´ 4y + 4 if and only if it satisfies
x2 ´ 2x + y2 + 4y + z2 = 4, or equivalently (x´ 1)2 + (y + 2)2 + z2 = 9. Since
a

(x´ 1)2 + (y + 2)2 + z2 is the distance from (1,´2, 0) to (x, y, z), our point satisfies the
given equation if and only if its distance from (1,´2, 0) is three. So the set is the sphere of
radius 3 centered on (1,´2, 0).

(b) As in part (a), x2 + y2 + z2 ă 2x´ 4y + 4 if and only if (x´ 1)2 + (y + 2)2 + z2 ă 9.
Hence our point satifies the given inequality if and only if its distance from (1,´2, 0) is
strictly smaller than three. The set is the interior of the sphere of radius 3 centered on
(1,´2, 0).

S-3: (a) x = y is a straight line and passes through the points (0, 0) and (1, 1). So it is the
straight line through the origin that makes an angle 45˝ with the x– and y–axes. It is
sketched in the figure on the left below.

x

y

y “ x

x

y

p1, 0q

p0, 1q
x ` y “ 1

(b) x + y = 1 is the straight line through the points (1, 0) and (0, 1). It is sketched in the
figure on the right above.

(c) x2 + y2 is the square of the distance from (0, 0) to (x, y). So x2 + y2 = 4 is the circle
with centre (0, 0) and radius 2. It is sketched in the figure on the left below.

x

y

p2, 0q

x2 ` y2 “ 4

x

y

p0, 1q

x2 ` y2 “ 2y
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(d) The equation x2 + y2 = 2y is equivalent to x2 + (y´ 1)2 = 1. As x2 + (y´ 1)2 is the
square of the distance from (0, 1) to (x, y), x2 + (y´ 1)2 = 1 is the circle with centre (0, 1)
and radius 1. It is sketched in the figure on the right above.

(e) As in part (d),

x2 + y2 ă 2y ðñ x2 + y2 ´ 2y ă 0 ðñ x2 + y2 ´ 2y + 1 ă 1 ðñ x2 + (y´ 1)2 ă 1

As x2 + (y´ 1)2 is the square of the distance from (0, 1) to (x, y), x2 + (y´ 1)2 ă 1 is the
set of points whose distance from (0, 1) is strictly less than 1. That is, it is the set of points
strictly inside the circle with centre (0, 1) and radius 1. That set is the shaded region (not
including the dashed circle) in the sketch below.

x

y

p0, 1q

x2 ` y2 “ 2y

S-4: (a) For each fixed y0, z = x, y = y0 is a straight line that lies in the plane, y = y0
(which is parallel to the plane containing the x and z axes and is a distance y0 from it).
This line passes through x = z = 0 and makes an angle 45˝ with the xy–plane. Such a
line (with y0 = 0) is sketched in the figure below. The set z = x is the union of all the
lines z = x, y = y0 with all values of y0. As y0 varies z = x, y = y0 sweeps out the plane
which contains the y–axis and which makes an angle 45˝ with the xy–plane. Here is a
sketch of the part of the plane that is in the first octant.

y

z

x

(b) x2 + y2 + z2 is the square of the distance from (0, 0, 0) to (x, y, z). So x2 + y2 + z2 = 4
is the set of points whose distance from (0, 0, 0) is 2. It is the sphere with centre (0, 0, 0)
and radius 2. Here is a sketch of the part of the sphere that is in the first octant.

z

y

x
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(c) x2 + y2 + z2 = 4, z = 1 or equivalently x2 + y2 = 3, z = 1, is the intersection of the
plane z = 1 with the sphere of centre (0, 0, 0) and radius 2. It is a circle in the plane z = 1
that has centre (0, 0, 1) and radius

?
3. The part of the circle in the first octant is the heavy

quarter circle in the sketch

z

y

x

(d) For each fixed z0, x2 + y2 = 4, z = z0 is a circle in the plane z = z0 with centre (0, 0, z0)
and radius 2. So x2 + y2 = 4 is the union of x2 + y2 = 4, z = z0 for all possible values of
z0. It is a vertical stack of horizontal circles. It is the cylinder of radius 2 centered on the
z–axis. Here is a sketch of the part of the cylinder that is in the first octant.

z

y

x

(e) For each fixed z0 ě 0, the curve z = x2 + y2, z = z0 is the circle in the plane z = z0
with centre (0, 0, z0) and radius

?
z0. As z = x2 + y2 is the union of z = x2 + y2, z = z0

for all possible values of z0 ě 0, it is a vertical stack of horizontal circles. The intersection
of the surface with the yz–plane is the parabola z = y2. Here is a sketch of the part of the
paraboloid that is in the first octant.

z

y

x

z“y2

x“0z“x2

y“0

S-5: From the text, the distance from the point (x, y, z) to the point (x1, y1, z1) is

b

(x´ x1)2 + (y´ y1)2 + (z´ z1)2
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So, our distance is

b

(1´ 4)2 + (2´ (´5))2 + (3´ 6)2 =
?

9 + 49 + 9 =
?

67

S-6: From the text, the distance from the point (x, y, z) to the xy-plane is |z|. In this case,
9.

S-7: From the text, the distance from the point (x, y, z) to the xy-plane is |z|. Let the nest
be the origin (0, 0, 0) with the z-axis pointing north, the x-axis pointing south, and the
y-axis pointing east. Then the bird’s coordinates after flying are (´1, 2, 0.1). So, its
distance from its nest is

b

(´1´ 0)2 + (2´ 0)2 + (0.1´ 0)2 =
?

1 + 4 + 0.01 =
?

5.01 km

S-8: Let the nest be the origin (0, 0, 0) with the z-axis pointing north, the x-axis pointing
south, and the y-axis pointing east. From the text, the distance from the point (x, y, z) to
the xy-plane (which, in this case, is the ground) is |z|. Then the bird’s coordinates after
flying are (´2, 2, z). So,

3 =
b

(´2´ 0)2 + (2´ 0)2 + (z´ 0)2 =
a

4 + 4 + z2

9 = 8 + z2

|z| = 1

So, the bird is 1 km above the ground. (Or, possibly, 1 km below it.)

S-9: The first 2 km of the journey bring you 2 km away from the wall. Walking parallel
to the wall neither increases nor decreases your distance to the wall. Similarly, moving
vertically neither increases nor decreases your distance to the wall. So, the murder
hornets are 2 km from the wall.

If we wanted to impose a coordinate system, we could place the wall as the xz axis, with
z being the vertical direction, and the origin the place where you started walking. Then
the murder hornets are at the point (1, 2, 0.003). The distance from (x, y, z) to the xz axis
is |y|. In this case, 2 km.

S-10: For each fixed c, the isobar p(x, y) = c is the curve x2 ´ 2cx + y2 = 1, or
equivalently, (x´ c)2 + y2 = 1 + c2. This is a circle with centre (c, 0) and radius

?
1 + c2,

which for large c is just a bit bigger than c.
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x

y

p“1
p“2

p“3

S-11: Let (x, y, z) be a point in P. The distances from (x, y, z) to (3,´2, 3) and to
(3/2, 1, 0) are

b

(x´ 3)2 + (y + 2)2 + (z´ 3)2 and
b

(x´ 3/2)2 + (y´ 1)2 + z2

respectively. To be in P, (x, y, z) must obey
b

(x´ 3)2 + (y + 2)2 + (z´ 3)2 = 2
b

(x´ 3/2)2 + (y´ 1)2 + z2

(x´ 3)2 + (y + 2)2 + (z´ 3)2 = 4(x´ 3/2)2 + 4(y´ 1)2 + 4z2

x2 ´ 6x + 9 + y2 + 4y + 4 + z2 ´ 6z + 9 = 4x2 ´ 12x + 9 + 4y2 ´ 8y + 4 + 4z2

3x2 ´ 6x + 3y2 ´ 12y + 3z2 + 6z´ 9 = 0

x2 ´ 2x + y2 ´ 4y + z2 + 2z´ 3 = 0

(x´ 1)2 + (y´ 2)2 + (z + 1)2 = 9

This is a sphere of radius 3 centered on (1, 2,´1).

S-12: Call the centre of the circumscribing circle (x̄, ȳ). This centre must be equidistant
from the three vertices. So

x̄2 + ȳ2 = (x̄´ a)2 + ȳ2 = (x̄´ b)2 + (ȳ´ c)2

or, subtracting x̄2 + ȳ2 from the three equal expressions,

0 = a2 ´ 2ax̄ = b2 ´ 2bx̄ + c2 ´ 2cȳ

which implies

x̄ =
a
2

ȳ =
b2 + c2 ´ 2bx̄

2c
=

b2 + c2 ´ ab
2c

The radius is the distance from the vertex (0, 0) to the centre (x̄, ȳ), which is
b( a

2

)2
+
( b2+c2´ab

2c
)2.

S-13: The distance from P to the point (0, 0, 1) is
a

x2 + y2 + (z´ 1)2. The distance from
P to the specified plane is |z + 1|. Hence the equation of the surface is

x2 + y2 + (z´ 1)2 = (z + 1)2 or x2 + y2 = 4z
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All points on this surface have z ě 0. The set of points on the surface that have any fixed
value, z0 ě 0, of z consists of a circle that is centred on the z–axis, is parallel to the
xy-plane and has radius 2

?
z0. The surface consists of a stack of these circles, starting

with a point at the origin and with radius increasing vertically. The surface is a
paraboloid and is sketched below.

z

y

x

Solutions to Exercises 1.2 — Jump to TABLE OF CONTENTS

S-1: Any constant function will do. For example, f (x, y) = 0 or f (x, y) = 1.

S-2:

(a) The range of f (x) is [´10, 10], since these are the y-values in the sketch.

(b) The range of g(x) is [0, 1], since these are the y-values in the sketch.

(c) In order for f (g(x)) to be defined, we require ´1 ď g(x) ď 1. That is, the range of g
must be in the domain of f . This is true for all values of g(x), so there is no extra
domain restriction. The domain of f (g(x)) is [´1, 1].

(d) Since the range of g(x) is [0, 1], the numbers that get plugged into f in the compound
function f (g(x)) are only the numbers [0, 1]. So, the range of this function is [0, 10].
g(x) never spits out any negative values, so f (x) is restricted to the nonnegative part
of its domain.

Remark: because we’re going off imprecise sketches, it wouldn’t be wrong to give open
intervals, rather than closed intervals, as your answers.

S-3: If x = 1 = y, and (x, y, z) is a point on the function, then:

1 = z2(13) + z(13) + (1)(1)

0 = z2 + z
0 = z or ´ 1 = z

So yes, (1, 1) is in the domain.

There’s some fine print here. There are two different values of z corresponding to the
input (x, y) = (1, 1). That means that globally, z isn’t a function of x and y, because a
function should only ever have at most one output for any one input. Implicitly-defined
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functions often have this characteristic: it’s not possible to write z = f (x, y) for any single
function f of x and y.

S-4: The only part of the function that could possibly limit the domain is the square root:
we must not try to take the square root of a negative number.

The expression 4x2 + y2 gives nonnegative numbers for any real values of x and y. So no
matter what (x, y) we input, there is no danger of taking the square root of a negative
number. So, the domain is all of R2.

We’ve already noted that 4x2 + y2 will give us numbers from [0,8), but we should check
whether it gives us all of those numbers. Indeed, if we set x = 0, we see

f (0, y) =
b

y2 = |y|

the range of which is [0,8).

So by choosing x = 0 and the appropriate y, we can indeed get f (x, y) to be any
nonnegative number we desire. So, the range of f is [0,8).

S-5: The only restriction on our domain is that we can’t divide by 0, and 1 + y2 is never
0. So, our domain is all of R2.

Since x2 ě 0 and 1 + y2 ě 0, we see first that h(x, y) is never negative. The question now
is whether it can actually achieve all nonnegative real values. If we set y = 0, then
h(x, 0) = x2, which has range [0,8). So we can indeed find a point h(x, y) = h(x, 0)
equal to any nonnegative number our hearts desire. That is, the range of h(x, y) is [0,8).

S-6: Recall the domain of the function arcsin(x) is [´1, 1], and its range is
[´π

2 , π
2

]
.

Since we can only put numbers from [´1, 1] into arcsine, we require for our domain

´1 ď x2 + y2 ď 1

The left part of the inequality isn’t hard, since x2 + y2 is never negative. The right side
tells us

x2 + y2 ď 1

i.e. (x, y) is inside (or on) the unit circle.
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x

y

1

Subject to the constraint x2 + y2 ď 1, the domain of x2 + y2 is [0, 1]. The range of arcsin x
subject to the constraint 0 ď x ď 1 is

[
0, π

2

]
.

x2 + y2

z

z = arcsin(x2 + y2)

1

π
2

Red dotted line: range of x2 + y2 subject to restrictions.
Blue solid line: range of arcsin(x2 + y2).

S-7: To find the domain of g, there are two potential limiting issues: we can’t divide by 0,
and we can’t take the logarithm of a nonpositive number.

• Since we can’t divide by 0, ln(xy) ‰ 0, which means xy ‰ 1, or (equivalently) y ‰ 1
x .

• Since we can’t take the logarithm of a nonpositive number, we need xy ą 0. That is,
x and y must be both negative, or both positive.

Combining these two restrictions, the domain of g(x, y) is all points (x, y) such that x and
y have the same sign; they are nonzero; and y ‰ 1

x . These points are graphed below.
Dashed lines indicate points that are not in the domain.
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x

y

With these restrictions, xy can be any nonnegative number except 1; which means ln(xy)
can be any real number except 0; and finally the range of the entire function is
(´8, 0)Y (0,8). (This is illustrated in graphs below.)

xy

z

z = ln(xy)

Red dotted line: values of xy. Blue dashed line: values of ln(xy)

ln(xy)

z

z = 1
ln(xy)

Blue dashed line: values of ln(xy). Green solid line: values of 1
ln(xy)
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S-8: The only thing that might limit the domain of this function is dividing by zero; but
since x2 + 1 ą 0 for all real values of x, we see the domain of f is the entire plane R2.

Since y doesn’t impact the value of f , we can consider the single-variable function

g(x) =
x2

x2 + 1

Since f (x, y) = g(x) for any (x, y), the range of g will be the same as the range of f . Note
g(x) is continuous over all real numbers. So, its range will be (global min)ď g(x) ď
(global max). To help picture how g(x) behaves, note further that z = g(x) has a
horizontal asymptote at z = 1, and g(x) is an even function. Let’s find the critical points
of g(x).

g1(x) =
(x2 + 1)(2x)´ x2(2x)

(x2 + 1)2 =
2x

(x2 + 1)2

The only CP of this function is x = 0. Its horizontal asymptotes are 1 in both directions.
So, the basic shape of the function is:

x

z

1

So, its range is [0, 1).

S-9: The domain of f (x, y) is all of R2: the only possible restriction is dividing by zero,
but x2 + 1 ą 0 for all values of x.

We can write f (x, y) as
f (x, y) = f1(x) + f2(y)

where f1(x) = x
x2+1 and f2(y) = sin y. Since there is not term depending on both x and y,

the maximum value of f will occur when x maximizes f1 and y maximizes f2. Similarly,
the minimum value of f will occur when x minimizes f1 and y minimizes f2. Since these
two functions are both continuous, we see that the range of f will be

(min of f1 + min of f2) ď f (x, y) ď (max of f1 + max of f2)

The range of f2(y) = sin y is easy: it’s [´1, 1]. Let’s consider f1(x) = x
x2+1 . Note its

horizontal asymptotes are 0 in both directions, and it’s an odd function. To find its
extrema, let’s sketch it, starting by finding its critical points.

f 11(x) =
(x2 + 1)(1)´ x(2x)

(x2 + 1)2 =
1´ x2

(x2 + 1)2 =
(1 + x)(1´ x)

(x2 + 1)2
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The CPs of f1 are x = 1 and x = ´1.

f1(1) =
1

12 + 1
=

1
2

f1(´1) =
´1

(´1)2 + 1
= ´1

2

To sketch f1, let’s find the sign of its first derivative on the intervals between its critical
points.

x

Sign of f1(x)

´1 1

+´ ´

Now we have enough information to sketch z = f1(x) :

x

y

1
2

´1
2

1´1

So, the range of f1(x) is
[
´1

2 , 1
2

]
.

All together, the range of f (x, y) is
[´3

2 , 3
2

]
.

S-10: Some general assumptions might be that the amount of money spend on
advertisements shoudn’t be negative, so we should have a ě 0. Similarly, it’s reasonable
to assume that the company is not giving away its product, nor paying people to take it,
so p ą 0. Finally, people won’t demand a negative number of goods, so the range should
be nonnegative.

That is one way of thinking about the problem, but different models might have different
restrictions. For example, from time to time (including a time in 2020) oil futures trade at
negative values: people were paying to give them away. So for certain models, negative
prices and negative demands do make sense.

For other models, also an upper bound of some sort probable makes sense. Maybe you
aren’t able to sell more than one million of your product, because you don’t have the
capacity to manufacture more. Maybe demand will never exceed one product per person
in your area. Such restrictions would further impact the domain and range that make
sense for your model.
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S-11: For this question, we solve two inequalities.

3 ď 1
x2 + y2

ùñ 1
3
ě x2 + y2

5 ě 1
x2 + y2

ùñ 1
5
ď x2 + y2

So, the points (x, y) must be both:

• inside or on the circle centred at the origin with radius 1?
3
, and

• not inside the circle centred at the origin with radius 1?
5
.

x

y

1?
5

1?
3

S-12: The bracketing in the definition of g(x, y) is suggestive. If we define t = x2 ´ y,
then we get the function

h(t) = 72t2 ´ t4

This is easy enough to graph using tools from last semester.

• h is an even function

• lim
tÑ8

h(t) = ´8

• h1(t) = 144t´ 4t3 = 4t(36´ t2) = 5t(6 + t)(6´ t), so critical points are at t = 0 and
t = ˘6

• h1(t) is negative on (´6, 0)Y (6,8) and positive on (´8,´6)Y (0, 6).

• The absolute maximum of h(t) is h(´6) = h(6) = 64 = 1296, and h(0) = 0 is a local
minimum.

Sketched below is z = 72t2 ´ t4, with parts in the model range highlighted.
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t

z

z = 72t2 ´ t4

z = 272

z = 1175

To find the t-values that correspond to the model range, we solve:

72t2 ´ t4 = 1175

0 = t4 ´ 72t2 + 1175

t2 =
72˘a

722 ´ 4(1)(1175)
2

=
72˘a

4(362)´ 4(1175)
2

=
72˘ 2

?
362 ´ 1175
2

= 36˘
a

362 ´ 1175

= 36˘
?

121
= 36˘ 11
= 25 or 47

t = ˘5 or ˘
?

47
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Similarly,

72t2 ´ t4 = 272

0 = t4 ´ 72t2 + 272

t2 =
72˘a

722 ´ 4(1)(272)
2

=
72˘a

4(362)´ 4(272)
2

=
72˘ 2

?
362 ´ 272
2

= 36˘
a

362 ´ 272

= 36˘
?

1024
= 36˘ 32
= 4 or 68

t = ˘2 or ˘?68

So, now we can fill in our sketch with t-values:

t

z

z = 72t2 ´ t4

z = 272

z = 1175

?
68

´?68
?

47
´?47

2´2 5´5

So we need to have t in [´?68,´?47]Y [´5,´2]Y [2, 5]Y [
?

47,
?

68].

Now, recall we used t = x2 ´ y. So if we have a ď t ď b, then this gives us two
inequalities:

t ď b

ùñ x2 ´ y ď b

ùñ x2 ´ b ď y

275



and

t ě a

ùñ x2 ´ y ě a

ùñ x2 ´ a ě y

So, t in the interval [a, b] implies that (x, y) must satisfy x2 ´ b ď y ď x2 ´ a:

x

y

y = x2 ´ a y = x2 ´ b

We have four such possible intervals. All together, the point (x, y) must be in one of the
following regions:

• x2 ´?68 ď y ď x2 ´?47

• x2 ´ 5 ď y ď x2 ´ 2

• x2 + 2 ď y ď x2 + 5

• x2 +
?

47 ď y ď x2 +
?

68
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x

y

?
68

?
47

´?68

´?47

5

2

´5

´2

Solutions to Exercises 1.3 — Jump to TABLE OF CONTENTS

S-1:

(a) Each constant z cross–section of x2 + y2 = z2 + 1 is a (horizontal) circle centred on the
z–axis. The radius of the circle is 1 when z = 0 and grows as z moves away from z = 0.
So x2 + y2 = z2 + 1 consists of a bunch of (horizontal) circles stacked on top of each other,
with the radius increasing with |z|. It is a hyperboloid of one sheet. The picture that
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corresponds to (a) is (B).

(b) Every point of y = x2 + z2 has y ě 0. Only (A) has that property. We can also observe
that every constant y cross–section is a circle centred on x = z = 0. The radius of the
circle is zero when y = 0 and increases as y increases. The surface y = x2 + z2 is a
paraboloid. The picture that corresponds to (b) is (A).

(c) The only possibility left is that the picture that corresponds to (c) is (C).

S-2: We first add into the sketch of the graph the horizontal planes z = C, for C = 3, 2, 1,
0.5, 0.25.

z

y

x

z “ 3

z “ 2

z “ 1
z“0.5

To reduce clutter, for each C, we have drawn in only

• the (gray) intersection of the horizontal plane z = C with the yz–plane, i.e. with the
vertical plane x = 0, and

• the (blue) intersection of the horizontal plane z = C with the graph z = f (x, y).

We have also omitted the label for the plane z = 0.25.

The intersection of the plane z = C with the graph z = f (x, y) is line
 

(x, y, z)
ˇ

ˇ z = f (x, y), z = C
(

=
 

(x, y, z)
ˇ

ˇ f (x, y) = C, z = C
(

Drawing this line (which is parallel to the x-axis) in the xy-plane, rather than in the plane
z = C, gives a level curve. Doing this for each of C = 3, 2, 1, 0.5, 0.25 gives five level
curves.

x

y
f“0.25

f“0.5

f“1

f“2

f“3
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S-3: (a) For each fixed c ą 0, the level curve x2 + 2y2 = c is the ellipse centred on the
origin with x semi axis

?
c and y semi axis

?
c/2. If c = 0, the level curve

x2 + 2y2 = c = 0 is the single point (0, 0).

x

y

f“1

f“2

f“0

(b) For each fixed c ‰ 0, the level curve xy = c is a hyperbola centred on the origin with
asymptotes the x- and y-axes. If c ą 0, any x and y obeying xy = c ą 0 are of the same
sign. So the hyperbola is contained in the first and third quadrants. If c ă 0, any x and y
obeying xy = c ą 0 are of opposite sign. So the hyperbola is contained in the second and
fourth quadrants. If c = 0, the level curve xy = c = 0 is the single point (0, 0).

x

y

f“2

f“1

f“2 f“´2

f“´2

f“0

(c) For each fixed c ‰ 0, the level curve xe´y = c is the logarithmic curve y = ´ ln c
x . Note

that, for c ą 0, the curve

• is restricted to x ą 0, so that c
x ą 0 and ln c

x is defined, and that
• as x Ñ 0+, y goes to ´8, while
• as x Ñ +8, y goes to +8, and
• the curve crosses the x-axis (i.e. has y = 0) when x = c.

and for c ă 0, the curve

• is restricted to x ă 0, so that c
x ą 0 and ln c

x is defined, and that
• as x Ñ 0´, y goes to ´8, while
• as x Ñ ´8, y goes to +8, and
• the curve crosses the x-axis (i.e. has y = 0) when x = c.

If c = 0, the level curve xe´y = c = 0 is the y-axis, x = 0.
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x

y
f“1f“´1

f“2f“´2

f“0

S-4: If C = 0, the level curve f = C = 0 is just the line y = 0. If C ‰ 0 (of either sign), we
may rewrite the equation, f (x, y) = 2y

x2+y2 = C, of the level curve f = C as

x2 ´ 2
C

y + y2 = 0 ðñ x2 +

(
y´ 1

C

)2

=
1

C2

which is the equation of the circle of radius 1
|C| centred on

(
0 , 1

C

)
.

x

y

f = 2

f = 1

f = ´2

f = ´1

f = 0

Remark. To be picky, the function f (x, y) = 2y
x2+y2 is not defined at (x, y) = (0, 0). The

question should have either specified that the domain of f excludes (0, 0) or have
specified a value for f (0, 0). In fact, it is impossible to assign a value to f (0, 0) in such a
way that f (x, y) is continuous at (0, 0), because limxÑ0 f (x, 0) = 0 while
limyÑ0 f (0, |y|) = 8. So it makes more sense to have the domain of f being R2 with the
point (0, 0) removed. That’s why there is a little hole at the origin in the above sketch.
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S-5: (a) We can rewrite the equation as

x2 + y2 = (z´ 1)2 ´ 1

The right hand side is negative for |z´ 1| ă 1, i.e. for 0 ă z ă 2. So no point on the
surface has 0 ă z ă 2. For any fixed z, outside that range, the curve x2 + y2 = (z´ 1)2 ´ 1
is the circle of radius

a

(z´ 1)2 ´ 1 centred on the z–axis. That radius is 0 when z = 0, 2
and increases as z moves away from z = 0, 2. For very large |z|, the radius increases
roughly linearly with |z|. Here is a sketch of some level curves.

x

y

z“0,2

z“´1,3

z“´2,4

(b) The surface consists of two stacks of circles. One stack starts with radius 0 at z = 2.
The radius increases as z increases. The other stack starts with radius 0 at z = 0. The
radius increases as z decreases. This surface is a hyperboloid of two sheets. Here are two
sketchs. The sketch on the left is of the part of the surface in the first octant. The sketch
on the right of the full surface.

z

y

x

S-6: For each fixed z, 4x2 + y2 = 1 + z2 is an ellipse. So the surface consists of a stack of
ellipses one on top of the other. The semi axes are 1

2

?
1 + z2 and

?
1 + z2. These are

smallest when z = 0 (i.e. for the ellipse in the xy-plane) and increase as |z| increases. The
intersection of the surface with the xz-plane (i.e. with the plane y = 0) is the hyperbola
4x2 ´ z2 = 1 and the intersection with the yz-pane (i.e. with the plane x = 0) is the
hyperbola y2 ´ z2 = 1. Here are two sketches of the surface. The sketch on the left only
shows the part of the surface in the first octant (with axes).
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z

y

x

S-7: (a) The graph is z = sin x with (x, y) running over 0 ď x ď 2π, 0 ď y ď 1. For each
fixed y0 between 0 and 1, the intersection of this graph with the vertical plane y = y0 is
the same sin graph z = sin x with x running from 0 to 2π. So the whole graph is just a
bunch of 2-d sin graphs stacked side-by-side. This gives the graph on the left below.

z

y

x

z

y

x

(b) The graph is z =
a

x2 + y2. For each fixed z0 ě 0, the intersection of this graph with
the horizontal plane z = z0 is the circle

a

x2 + y2 = z0. This circle is centred on the z-axis
and has radius z0. So the graph is the upper half of a cone. It is the sketch on the right
above.

(c) The graph is z = |x|+ |y|. For each fixed z0 ě 0, the intersection of this graph with the
horizontal plane z = z0 is the square |x|+ |y| = z0. The side of the square with x, y ě 0 is
the straight line x + y = z0. The side of the square with x ě 0 and y ď 0 is the straight
line x´ y = z0 and so on. The four corners of the square are (˘z0, 0, z0) and (0,˘z0, z0).
So the graph is a stack of squares. It is an upside down four-sided pyramid. The part of
the pyramid in the first octant (that is, x, y, z ě 0) is the sketch below.

z

y

x

S-8: (a) For each fixed z0, the z = z0 cross-section (parallel to the xy-plane) of this surface
is an ellipse centered on the origin with one semiaxis of length 2 along the x-axis and one
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semiaxis of length 4 along the y-axis. So this is an elliptic cylinder parallel to the z-axis.
Here is a sketch of the part of the surface above the xy–plane.

y

z

x
p0, 4, 0qp2, 0, 0q

(b) This is a plane through (4, 0, 0), (0, 4, 0) and (0, 0, 2). Here is a sketch of the part of the
plane in the first octant.

p4, 0, 0q

p0, 4, 0q

p0, 0, 2q

y

x

z

(c) For each fixed x0, the x = x0 cross-section parallel to the yz-plane is an ellipse with

semiaxes 3
b

1 + x2
0

16 parallel to the y-axis and 2
b

1 + x2
0

16 parallel to the z-axis. As you move

out along the x-axis, away from x = 0, the ellipses grow at a rate proportional to
b

1 + x2

16 ,

which for large x is approximately |x|
4 . This is called a hyperboloid of one sheet. Its

z

y
x

(d) For each fixed y0, the y = x0 cross-section (parallel to the xz-plane) is a circle of radius
|y| centred on the y-axis. When y0 = 0 the radius is 0. As you move further from the
xz-plane, in either direction, i.e. as |y0| increases, the radius grows linearly. The full
surface consists of a bunch of these circles stacked sideways. This is a circular cone
centred on the y-axis.
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y

z

(e) This is an ellipsoid centered on the origin with semiaxes 3,
?

12 = 2
?

3 and 3 along the
x, y and z-axes, respectively.

z

y
x p3, 0, 0q p0,?

12, 0q

p0, 0, 3q

p0,?
12, 0q

p0, 0, 3q

p3, 0, 0q

(f) Completing three squares, we have that x2 + y2 + z2 + 4x´ by + 9z´ b = 0 if and only
if (x + 2)2 +

(
y´ b

2

)2
+
(
z + 9

2

)2
= b + 4 + b2

4 + 81
4 . This is a sphere of radius

rb =
1
2

?
b2 + 4b + 97 centered on 1

2(´4, b,´9).

1
2
p´4, b ` 2rb,´9q

1
2
p´4, b,´9 ` 2rbq

1
2
p´4, b,´9q

1
2
p´4 ` 2rb, b,´9q

(g) There are no points on the surface with x ă 0. For each fixed x0 ą 0 the cross-section
x = x0 parallel to the yz-plane is an ellipse centred on the x–axis with semiaxes

?
x0 in

the y-axis direction and 3
2
?

x0 in the z–axis direction. As you increase x0, i.e. move out
along the x-axis, the ellipses grow at a rate proportional to

?
x0. This is an elliptic

paraboloid with axis the x-axis.
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z

y

x

(h) This is called a parabolic cylinder. For any fixed y0, the y = y0 cross-section (parallel
to the xz-plane) is the upward opening parabola z = x2 which has vertex on the y-axis.

z

y

x

S-9: The level curves of z = 0 correspond to all points (x, y) such that 0 = sin(x + y).
The angles that make sin θ equal to 0 are θ = πn for integer values of n. So, the level
curves are lines of the form

x + y = πn

where n is any integer.

So, our level curve has the lines y = ´x, y = π ´ x, y = 2π ´ x, etc.
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x

y

π

π

π
2

π
2

The level curves of z = 1 correspond to all points (x, y) such that 1 = sin(x + y). The
angles that make sin θ equal to 1 are θ = pi

2 + 2πn for integer values of n. So, the level
curves are lines of the form

x + y =
π

2
+ 2πn

where n is any integer.

So, our level curve has the lines y = π
2 ´ x, y = π

2 + 2π ´ x, y = π
2 + 4π ´ x, etc.

x

y

π

π

π
2

π
2

The equation 2 = sin(x + y) has no solutions, since no angle has sine greater than 1. So
the level curve at z = 2 has no points:
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x

y

π

π

π
2

π
2

S-10: Since the level curves are circles centred at the origin (in the xy-plane), when z is a
constant, the equation will have the form x2 + y2 = c for some constant. That is, our
equation looks like

x2 + y2 = g(z),

where g(z) is a function depending only on z.

Because our cross-sections are so nicely symmetric, we know the intersection of the
figure with the left side of the yz-plane as well: z = 3(´y´ 1) = ´3(y + 1) (when z ě 0)
and z = ´3(´y´ 1) = 3(y + 1) (when z ă 0). Below is the intersection of our surface
with the yz plane.

z

y

z = 3(y´ 1)

z = ´3(y´ 1)

z = ´3(y + 1)

z = 3(y + 1)

Setting x = 0, our equation becomes y2 = g(z). Looking at the right side of the yz plane,
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this should lead to:

#

z = 3(y´ 1) if z ě 0, y ě 1
z = ´3(y´ 1) if z ă 0, y ě 1

+

. That is:

|z| = 3(y´ 1)
|z|
3

+ 1 = y( |z|
3

+ 1
)2

= y2 (˚)

A quick check: when we squared both sides of the equation in (˚), we added another
solution, |z|3 + 1 = ´y. Let’s make sure we haven’t diverged from our diagram.

( |z|
3

+ 1
)2

= y2

ô |z|
3

+ 1
loomoon

positive

= ˘y

ô
#

|z|
3 + 1 = y y ą 0
|z|
3 + 1 = ´y y ă 0

ô
#

|z|
3 + 1 = y y ě 1
|z|
3 + 1 = ´y y ď ´1

ô
#|z| = 3(y´ 1) y ě 1

|z| = ´3(y + 1) y ď ´1

ô

$

’

’

’

’

&

’

’

’

’

%

z = ˘ 3(y´ 1)
looomooon

positive

y ě 1

z = ˘ 3(y + 1)
looomooon

negative

y ď ´1

ô

$

’

’

’

&

’

’

’

%

z = 3(y´ 1) y ě 1, z ě 0
z = ´3(y´ 1) y ě 1, z ď 0
z = ´3(y + 1) y ď ´1, z ě 0
z = 3(y + 1) y ď ´1, z ď 0

This matches our diagram eactly. So, all together, the equation of the surface is

x2 + y2 =

( |z|
3

+ 1
)2
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Solutions to Exercises 2.1 — Jump to TABLE OF CONTENTS

S-1:

If fy(0, 0) ă 0, then f (0, y) decreases as y increases from 0. Thus moving in the positive y
direction takes you downhill. This means you aren’t at the lowest point in a valley, since
you can still move downhill. On the other hand, as fy(0, 0) ă 0, f (0, y) also decreases as y
increases towards 0 from slightly negative values. Thus if you move in the negative
y-direction from y = 0, your height z will increase. So you are not at a locally highest
point—you’re not at a summit.

S-2: The definition of the derivative involves a limit at h goes to 0; we can approximate
that limit by choosing a value of h that’s close to 0; in our case, 0.1 or ´0.1 are the best we
can do, using the information on the table.

fx(x, y) = lim
hÑ0

f (x + h, y)´ f (x, y)
h

« f (x + 0.1, y)´ f (x, y)
0.1

fy(x, y) = lim
hÑ0

f (x, y + h)´ f (x, y)
h

« f (x, y + 0.1)´ f (x, y)
0.1

(a) To find fy(1.5, 2.4), we keep x fixed at x = 1.5, and vary y. We don’t know what
happens at y = 2.5, but we do know what happens at y = 2.3:

fy(1.5, 2.4) « f (1.5, 2.3)´ f (1.5, 2.4)
2.3´ 2.4

=
11.2´ 11.0
´0.1

= ´2

(b) To find fx(1.7, 1.7), we keep y fixed at y = 1.7, and vary x. We can choose to use
either x = 1.6 or x = 1.8.

fx(1.7, 1.7) « f (1.8, 1.7)´ f (1.7, 1.7)
1.8´ 1.7

=
16.1´ 15.0

0.1
= 11

fx(1.7, 1.7) « f (1.6, 1.7)´ f (1.7, 1.7)
1.6´ 1.7

=
13.9´ 15.0
´0.1

= 11

(c) To find fy(1.7, 1.7), we keep x fixed at x = 1.7, and vary y. We can choose to use
either y = 1.6 or y = 1.8.

fy(1.7, 1.7) « f (1.7, 1.8)´ f (1.7, 1.7)
1.8´ 1.7

=
14.7´ 15.0

0.1
= ´3

fy(1.7, 1.7) « f (1.7, 1.6)´ f (1.7, 1.7)
1.6´ 1.7

=
15.3´ 15.0
´0.1

= ´3

(d) To find fx(1.1, 2), we keep y fixed at y = 2, and vary x. We can choose to use either
x = 1.0 or x = 1.2.

fx(1.1, 2) « f (1.2, 2)´ f (1.1, 2)
1.2´ 1.1

=
9.1´ 8.2

0.1
= 9

fx(1.1, 2) « f (1.0, 2)´ f (1.1, 2)
1.0´ 1.1

=
7.3´ 8.2
´0.1

= 9
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S-3: (a)

fx(x, y, z) = 3x2y4z5 fx(0,´1,´1) = 0

fy(x, y, z) = 4x3y3z5 fy(0,´1,´1) = 0

fz(x, y, z) = 5x3y4z4 fz(0,´1,´1) = 0

(b)

wx(x, y, z) =
yzexyz

1 + exyz wx(2, 0,´1) = 0

wy(x, y, z) =
xzexyz

1 + exyz wy(2, 0,´1) = ´1

wz(x, y, z) =
xyexyz

1 + exyz wz(2, 0,´1) = 0

(c)

fx(x, y) = ´ x
(x2 + y2)3/2 fx(´3, 4) =

3
125

fy(x, y) = ´ y
(x2 + y2)3/2 fy(´3, 4) = ´ 4

125

S-4: By the quotient rule

Bz
Bx

(x, y) =
(1)(x´ y)´ (x + y)(1)

(x´ y)2 =
´2y

(x´ y)2

Bz
By

(x, y) =
(1)(x´ y)´ (x + y)(´1)

(x´ y)2 =
2x

(x´ y)2

Hence
x
Bz
Bx

(x, y) + y
Bz
By

(x, y) =
´2xy + 2yx
(x´ y)2 = 0

S-5: (a) We are told that z(x, y) obeys

z(x, y) y´ y + x = ln
(
xy z(x, y)

)
= ln x + ln y + ln

(
z(x, y)

)
(˚)

for all (x, y) (near (´1,´2)). Recall the following derivatives:

• The partial derivative of z with respect to x is Bz
Bx

• The partial derivative of y with respect to x is 0 (since we treat y as a constant)
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• The partial derivative of x with respect to x is 1

Differentiating (˚) with respect to x gives

y
Bz
Bx

(x, y) + 1 =
1
x
+

Bz
Bx (x, y)
z(x, y)

ùñ Bz
Bx

(x, y) =
1
x ´ 1

y´ 1
z(x,y)

or, dropping the arguments (x, y) and multiplying both the numerator and denominator
by xz,

Bz
Bx

=
z´ xz

xyz´ x
=

z(1´ x)
x(yz´ 1)

Differentiating (˚) with respect to y gives

z(x, y) + y
Bz
By

(x, y)´ 1 =
1
y
+

Bz
By (x, y)

z(x, y)
ùñ Bz

By
(x, y) =

1
y + 1´ z(x, y)

y´ 1
z(x,y)

or, dropping the arguments (x, y) and multiplying both the numerator and denominator
by yz,

Bz
By

=
z + yz´ yz2

y2z´ y
=

z(1 + y´ yz)
y(yz´ 1)

(b) When (x, y, z) = (´1,´2, 1/2),

Bz
Bx

(´1,´2) =
1
x ´ 1

y´ 1
z

ˇ

ˇ

ˇ

ˇ

ˇ

(x,y,z)=(´1,´2,1/2)

=
1
´1 ´ 1
´2´ 2

=
1
2

Bz
By

(´1,´2) =
1
y + 1´ z

y´ 1
z

ˇ

ˇ

ˇ

ˇ

ˇ

(x,y,z)=(´1,´2,1/2)

=
1
´2 + 1´ 1

2
´2´ 2

= 0

S-6: We are told that the four variables T, U, V, W obey the the single equation
(TU ´V)2 ln(W ´UV) = ln 2. So they are not all independent variables. Roughly
speaking, we can treat any three of them as independent variables and solve the given
equation for the fourth as a function of the three chosen independent variables.

We are first asked to find BU
BT . This implicitly tells to treat T, V and W as independent

variables and to view U as a function U(T, V, W) that obeys(
T U(T, V, W)´V

)2 ln
(
W ´U(T, V, W)V

)
= ln 2 (E1)

for all (T, U, V, W) sufficiently near (1, 1, 2, 4). Differentiating (E1) with respect to T gives

2
(
T U(T, V, W)´V

) [
U(T, V, W) + T

BU
BT

(T, V, W)

]
ln
(
W ´U(T, V, W)V

)
´ (T U(T, V, W)´V

)2 1
W ´U(T, V, W)V

BU
BT

(T, V, W)V = 0
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In particular, for (T, U, V, W) = (1, 1, 2, 4),

2
(
(1)(1)´ 2

) [
1 + (1)

BU
BT

(1, 2, 4)
]

ln
(
4´ (1)(2)

)
´ ((1)(1)´ 2

)2 1
4´ (1)(2)

BU
BT

(1, 2, 4) (2) = 0

This simplifies to

´2
[

1 +
BU
BT

(1, 2, 4)
]

ln(2)´ BU
BT

(1, 2, 4) = 0 ùñ BU
BT

(1, 2, 4) = ´ 2 ln(2)
1 + 2 ln(2)

We are then asked to find BT
BV . This implicitly tells to treat U, V and W as independent

variables and to view T as a function T(U, V, W) that obeys(
T(U, V, W)U ´V

)2 ln
(
W ´U V

)
= ln 2 (E2)

for all (T, U, V, W) sufficiently near (1, 1, 2, 4). Differentiating (E2) with respect to V gives

2
(
T(U, V, W)U ´V

) [BT
BV

(U, V, W) U ´ 1
]

ln
(
W ´U V

)
´ (T(U, V, W)U ´V

)2 U
W ´U V

= 0

In particular, for (T, U, V, W) = (1, 1, 2, 4),

2
(
(1)(1)´ 2

) [
(1)
BT
BV

(1, 2, 4)´ 1
]

ln
(
4´ (1)(2)

)
´ ((1)(1)´ 2

)2 1
4´ (1)(2)

= 0

This simplifies to

´2
[BT
BV

(1, 2, 4)´ 1
]

ln(2)´ 1
2
= 0 ùñ BT

BV
(1, 2, 4) = 1´ 1

4 ln(2)

S-7: The function

u(ρ, r, θ) =
[
ρr cos θ

]2
+
[
ρr sin θ

]
ρr

= ρ2r2 cos2 θ + ρ2r2 sin θ

So
Bu
Br

(ρ, r, θ) = 2ρ2r cos2 θ + 2ρ2r sin θ

and
Bu
Br

(2, 3, π/2) = 2(22)(3)(0)2 + 2(22)(3)(1) = 24
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S-8: By definition

fx(x0, y0) = lim
∆xÑ0

f (x0 + ∆x, y0)´ f (x0, y0)

∆x
fy(x0, y0) = lim

∆yÑ0

f (x0, y0 + ∆y)´ f (x0, y0)

∆y

Setting x0 = y0 = 0,

fx(0, 0) = lim
∆xÑ0

f (∆x, 0)´ f (0, 0)
∆x

= lim
∆xÑ0

f (∆x, 0)
∆x

= lim
∆xÑ0

((∆x)2 ´ 2ˆ 02)/(∆x´ 0)
∆x

= lim
∆xÑ0

1 = 1

fy(0, 0) = lim
∆yÑ0

f (0, ∆y)´ f (0, 0)
∆y

= lim
∆yÑ0

f (0, ∆y)
∆y

= lim
∆yÑ0

(02 ´ 2(∆y)2)/(0´ ∆y)
∆y

= lim
∆yÑ0

2 = 2

S-9: As z(x, y) = f (x2 + y2)

Bz
Bx

(x, y) = 2x f 1(x2 + y2)

Bz
By

(x, y) = 2y f 1(x2 + y2)

by the (ordinary single variable) chain rule. So

y
Bz
Bx
´ x

Bz
By

= y(2x) f 1(x2 + y2)´ x(2y) f 1(x2 + y2) = 0

and the differential equation is always satisfied, assuming that f is differentiable, so that
the chain rule applies.

S-10: By definition

B f
Bx

(0, 0) = lim
∆xÑ0

f (∆x, 0)´ f (0, 0)
∆x

= lim
∆xÑ0

(∆x+2ˆ0)2

∆x+0 ´ 0
∆x

= lim
∆xÑ0

∆x
∆x

= 1

and
B f
By

(0, 0) = lim
∆yÑ0

f (0, ∆y)´ f (0, 0)
∆y

= lim
∆yÑ0

(0+2∆y)2

0+∆y ´ 0

∆y

= lim
∆yÑ0

4∆y
∆y

= 4
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(b) f (x, y) is not continuous at (0, 0), even though both partial derivatives exist there. To
see this, make a change of coordinates from (x, y) to (X, y) with X = x + y (the
denominator). Of course, (x, y)Ñ (0, 0) if and only if (X, y)Ñ (0, 0). Now watch what
happens when (X, y)Ñ (0, 0) with X a lot smaller than y. For example, X = ay2. Then

(x + 2y)2

x + y
=

(X + y)2

X
=

(ay2 + y)2

ay2 =
(1 + ay)2

a
Ñ 1

a

This depends on a. So approaching (0, 0) along different paths gives different limits.
(You can see the same effect without changing coordinates by sending (x, y)Ñ (0, 0)
with x = ´y + ay2.) Even more dramatically, watch what happens when (X, y)Ñ (0, 0)
with X = y3. Then

(x + 2y)2

x + y
=

(X + y)2

X
=

(y3 + y)2

y3 =
(1 + y2)

2

y
Ñ ˘8

S-11: Solution 1
Let’s start by finding an equation for this surface. Every level curve is a horizontal circle
of radius one, so the equation should be of the form

(x´ f1)
2 + (y´ f2)

2 = 1

where f1 and f2 are functions depending only on z. Since the centre of the circle at height
z is at position x = 0, y = z, we see that the equation of our surface is

x2 + (y´ z)2 = 1

The height of the surface at the point (x, y) is the z(x, y) found by solving that equation.
That is,

x2 +
(
y´ z(x, y)

)2
= 1 (˚)

We differentiate this equation implicitly to find zx(x, y) and zy(x, y) at the desired point
(x, y) = (0,´1). First, differentiating (˚) with respect to y gives

0 + 2
(
y´ z(x, y)

)(
1´ zy(x, y)

)
= 0

2(´1´ 0)
(
1´ zy(0,´1)

)
= 0 at (0,´1, 0)

so that the slope looking in the positive y direction is zy(0,´1) = 1. Similarly,
differentiating (˚) with respect to x gives

2x + 2
(
y´ z(x, y)

) ¨ (0´ zx(x, y)
)
= 0

2x = 2
(
y´ z(x, y)

) ¨ zx(x, y)

zx(x, y) =
x

y´ z(x, y)
zx(0,´1) = 0 at (0,´1, 0)

The slope looking in the positive x direction is zx(0,´1) = 0.

Solution 2
Standing at (0,´1, 0) and looking in the positive y direction, the surface follows the
straight line that
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• passes through the point (0,´1, 0), and

• is parallel to the central line z = y, x = 0 of the cylinder.

Shifting the central line one unit in the y-direction, we get the line z = y + 1, x = 0. (As a
check, notice that (0,´1, 0) is indeed on z = y + 1, x = 0.) The slope of this line is 1.

Standing at (0,´1, 0) and looking in the positive x direction, the surface follows the circle
x2 + y2 = 1, z = 0, which is the intersection of the cylinder with the xy-plane. As we
move along that circle our z coordinate stays fixed at 0. So the slope in that direction is 0.

S-12: (a) By definition

B f
Bx

(0, 0) = lim
∆xÑ0

f (∆x, 0)´ f (0, 0)
∆x

= lim
∆xÑ0

(∆x2)(0)
∆x2+02 ´ 0

∆x
= 0

(b) By definition

B f
By

(0, 0) = lim
∆yÑ0

f (0, ∆y)´ f (0, 0)
∆y

= lim
∆yÑ0

(02)(∆y)
02+∆y2 ´ 0

∆y
= 0

(c) By definition

d
dt

f (t, t)
ˇ

ˇ

ˇ

t=0
= lim

tÑ0

f (t, t)´ f (0, 0)
t

= lim
hÑ0

(t2)(t)
t2+t2 ´ 0

t

= lim
tÑ0

t/2
t

=
1
2

Solutions to Exercises 2.2 — Jump to TABLE OF CONTENTS

S-1: From the example that “ fx” is the partial derivative of f with respect to x, we infer
that the notation for “take the partial derivative with respect to (variable)” is “write
(variable) on the bottom right.” Continuing this practice, to take the partial derivative
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with respect to y of fx, we should write the y on the bottom right – that is, to the right of
the x:

( fx)y

Since x is to the left of y, we write the above as fxy, not fyx.

S-2: From the example that “ B
Bx f ” is the partial derivative of f with respect to x, we infer

that the notation for “take the partial derivative of a function with respect to (variable)”
is “put the partial derivative operator B

B(variable) to the left of the function.” Continuing

this practice, to take the partial derivative with respect to y of B f
Bx , we should write the

operator B
By on the left.

B
By

[ B
Bx

f
]

In the above expression, By is to the left of the Bx. So we write B2 f
ByBx rather than B2 f

BxBy .

S-3: As in Question 2, if we want to differentiate B f
Bx with respect to x, we write:

B
Bx

[ B
Bx

f
]

or
B
Bx

[B f
Bx

]
In both cases:

• f shows up only once, so we don’t add an exponent to it.

• B shows up twice in the numerator, so we write B2 as shorthand for B[B].
• Bx shows up twice in the denominator, so we write Bx2 as shorthand for Bx[Bx].

S-4:

f (x, y) =
tan(xy)

ln x

fx =
ln x

(
y sec2(xy)

)´ tan(xy)
(

1
x

)
ln2 x

=

(
1

ln x

)
y sec2(xy)´

(
1

x ln2 x

)
tan(xy)

We’ve separated out factors only depending on x, since these will act as constants when
we differentiate with respect to y. Differentiating sec2(xy) involves two layers of chain
rule, so we’ll figure that out on its own before we find fxy.

B
By

[
(sec(xy))2

]
= 2 sec(xy) ¨ BBy

[sec(xy)]

= 2 sec(xy) ¨ sec(xy) tan(xy) ¨ BBy
[xy]

= 2 sec(xy) ¨ sec(xy) tan(xy) ¨ x
= 2x sec2(xy) ¨ tan(xy)
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Now we differentiate fx with respect to y.

fxy =

(
1

ln x

)(
y ¨ 2x sec2(xy) ¨ tan(xy) + sec2(xy)

)
´
(

1
x ln2 x

)
sec2(xy) ¨ x

=

(
sec2(xy)

ln x

)
(2xy tan(xy) + 1)´ sec2(xy)

ln2 x

To find fyx, we first differentiate f with respect to y.

f (x, y) =
(

1
ln x

)
tan(xy)

fy =
1

ln x
¨ sec2(xy) ¨ x =

x sec2(xy)
ln x

We can differentiate this using the quotient rule. When we do, we’ll need to find the
derivative of the numerator. Since that takes several steps, we do it first.

B
Bx

[
x sec2(xy)

]
= x

B
Bx

[
sec2(xy)

]
+ sec2(xy)

We already found B
Bx
[
sec2(xy)

]
= 2x sec2(xy) ¨ tan(xy). By an equivalent calculation,

B
By
[
sec2(xy)

]
= 2y sec2(xy) ¨ tan(xy)

= x ¨ 2y sec2(xy) ¨ tan(xy) + sec2(xy)

= sec2(xy) (2xy tan(xy) + 1)

Now, let’s differentiate fy with respect to x.

fyx =
ln x ¨ sec2(xy) (2xy tan(xy) + 1)´ x sec2(xy) 1

x

ln2 x

To show that this is equal to fxy, we rearrange.

=
ln x ¨ sec2(xy)

ln2 x
(2xy tan(xy) + 1)´ x sec2(xy) 1

x

ln2 x

=

(
sec2(xy)

ln x

)
(2xy tan(xy) + 1)´ sec2(xy)

ln2 x
= fxy

S-5: (a) We have

fx(x, y) = 2xy3 fxx(x, y) = 2y3

fxy(x, y) = 6xy2 fyxy(x, y) = fxyy(x, y) = 12xy
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(b) We have

fx(x, y) = y2exy2
fxx(x, y) = y4exy2

fxxy(x, y) = 4y3exy2
+ 2xy5exy2

fxy(x, y) = 2yexy2
+ 2xy3exy2

fxyy(x, y) =
(
2 + 4xy2 + 6xy2 + 4x2y4)exy2

=
(
2 + 10xy2 + 4x2y4)exy2

(c) We have

B f
Bu

(u, v, w) = ´ 1
(u + 2v + 3w)2

B2 f
Bu Bv

(u, v, w) =
4

(u + 2v + 3w)3

B3 f
Bu Bv Bw

(u, v, w) = ´ 36
(u + 2v + 3w)4

In particular

B3 f
Bu Bv Bw

(3, 2, 1) = ´ 36
(3 + 2ˆ 2 + 3ˆ 1)4 = ´ 36

104 = ´ 9
2500

S-6: Let f (x, y) =
a

x2 + 5y2. Then

fx =
x

a

x2 + 5y2
fxx =

1
a

x2 + 5y2
´ 1

2
(x)(2x)

(x2 + 5y2)3/2 fxy = ´1
2

(x)(10y)
(x2 + 5y2)3/2

fy =
5y

a

x2 + 5y2
fyy =

5
a

x2 + 5y2
´ 1

2
(5y)(10y)

(x2 + 5y2)3/2 fyx = ´1
2

(5y)(2x)
(x2 + 5y2)3/2

Simplifying, and in particular using that 1?
x2+5y2 = x2+5y2

(x2+5y2)3/2 ,

fxx =
5y2

(x2 + 5y2)3/2 fxy = fyx = ´ 5xy
(x2 + 5y2)3/2 fyy =

5x2

(x2 + 5y2)3/2

S-7: (a) As f (x, y, z) = arctan
(
e
?xy) is independent of z, we have fz(x, y, z) = 0 and

hence
fxyz(x, y, z) = fzxy(x, y, z) = 0

(b) Write u(x, y, z) = arctan
(
e
?xy), v(x, y, z) = arctan

(
e
?

xz) and
w(x, y, z) = arctan

(
e
?yz). Then

• As u(x, y, z) = arctan
(
e
?xy) is independent of z, we have uz(x, y, z) = 0 and hence

uxyz(x, y, z) = uzxy(x, y, z) = 0

• As v(x, y, z) = arctan
(
e
?

xz) is independent of y, we have vy(x, y, z) = 0 and hence
vxyz(x, y, z) = vyxz(x, y, z) = 0
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• As w(x, y, z) = arctan
(
e
?yz) is independent of x, we have wx(x, y, z) = 0 and hence

wxyz(x, y, z) = 0

As f (x, y, z) = u(x, y, z) + v(x, y, z) + w(x, y, z), we have

fxyz(x, y, z) = uxyz(x, y, z) + vxyz(x, y, z) + wxyz(x, y, z) = 0

(c) In the course of evaluating fxx(x, 0, 0), both y and z are held fixed at 0. Thus, if we set
g(x) = f (x, 0, 0), then fxx(x, 0, 0) = g2(x). Now

g(x) = f (x, 0, 0) = arctan
(
e
?xyz)ˇˇ

ˇ

y=z=0
= arctan(1) =

π

4

for all x. So g1(x) = 0 and g2(x) = 0 for all x. In particular,

fxx(1, 0, 0) = g2(1) = 0

S-8: As

ut(x, y, z, t) = ´3
2

1
t5/2 e´(x2+y2+z2)/(4αt) +

1
4α t7/2 (x2 + y2 + z2)e´(x2+y2+z2)/(4αt)

ux(x, y, z, t) = ´ x
2α t5/2 e´(x2+y2+z2)/(4αt)

uxx(x, y, z, t) = ´ 1
2α t5/2 e´(x2+y2+z2)/(4αt) +

x2

4α2 t7/2 e´(x2+y2+z2)/(4αt)

uyy(x, y, z, t) = ´ 1
2α t5/2 e´(x2+y2+z2)/(4αt) +

y2

4α2 t7/2 e´(x2+y2+z2)/(4αt)

uzz(x, y, z, t) = ´ 1
2α t5/2 e´(x2+y2+z2)/(4αt) +

z2

4α2 t7/2 e´(x2+y2+z2)/(4αt)

we have

α
(
uxx + uyy + uzz

)
= ´ 3

2 t5/2 e´(x2+y2+z2)/(4αt) +
x2 + y2 + z2

4α t7/2 e´(x2+y2+z2)/(4αt) = ut

S-9: It is given in the question that x, y ą 0. This is important when deciding the sign of
the derivatives. Here, if you have trouble deciding the sign, it might be helpful to fix
some value for x and y.

(a) u(x, y) = x0.5y0.5: First let us check for x.

(i) ux = 0.5x´0.5y0.5 ą 0

(ii) uxx = ´0.25x´1.5y0.5 ă 0

(iii) ux Ñ 8 as x Ñ 8
Computations for y is very similar to x since u(x, y) is symmetric in terms of x and y.
So we can just switch the roles of x and y to see the conditions are satisfied for y. So,
this utility function satisfies the required properties.
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(b) u(x, y) =
x0.5

y0.5 : First let us check for y.

(i) uy = ´0.5x0.5y´1.5 ă 0

(ii) uyy = (´0.5)(´1.5)x0.5y´2.5 ą 0

(iii) uy Ñ ´8 as y Ñ 8
We can see right away that this utility function does not satisfy the all required
properties! No need to check for them for x. (It does satisfy them when we check for
x).

(c) u(x, y) = ln(x) + ln(y): First let us first find uy.

uy = ln(x) +
1
y

This is not always positive nor always negative. For example, if x = e´2 and y = 1,
then uy = ´2 + 1 = ´1. So, this utility function does not satisfy all the required
properties! No need to check the rest.

(d) u(x) =
x1´a

1´ a
. Note that u only depends on x here, so we only check the properties

for x. We have

ux =
1´ a
1´ a

x1´a´1 = x´a, uxx = ´ax´a´1

Now x´a ą 0 as x ą 0, no matter the sign of a so condition (i) is always satisfied. For
the sign of uxx, note that x´a´1 is always positive as x ą 0. We need to work with
three cases:

(1) First if a = 0 then u(x) = x and uxx = 0, so in this case u(x) will not satisfy all of
our conditions and we do not need to check for the rest of the conditions.

(2) If a ą 0 then uxx ă 0.

(3) If a ă 0 then uxx ą 0 which, similarly to case (1), u(x) will not satisfy all of our
conditions and we do not need to check for the rest of the conditions.

So the only chance that u(x) can satisfy all of our properties is when a ą 0. In this
case, however, ux(x) = x´a tends to 0 as x tends to infinity. This means that for any
value of a, u will not satisfy all of our conditions.

S-10: The definition of the derivative involves a limit at h goes to 0; we can approximate
that limit by choosing a value of h that’s close to 0; in our case, 0.1 or ´0.1 are the best we
can do, using the information on the table.

fx(x, y) = lim
hÑ0

f (x + h, y)´ f (x, y)
h

« f (x + 0.1, y)´ f (x, y)
0.1

fy(x, y) = lim
hÑ0

f (x, y + h)´ f (x, y)
h

« f (x, y + 0.1)´ f (x, y)
0.1
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The same holds for the second derivative:

fxy(x, y) = ( fx(x, y))y = lim
hÑ0

fx(x, y + h)´ fx(x, y)
h

« fx(x, y + 0.1)´ fx(x, y)
0.1

=

[
lim
hÑ0

f (x+h,y+0.1)´ f (x,y+0.1)
h

]
´
[

lim
hÑ0

f (x+h,y)´ f (x,y)
h

]
0.1

«
[

f (x+0.1,y+0.1)´ f (x,y+0.1)
0.1

]
´
[

f (x+0.1,y)´ f (x,y)
0.1

]
0.1

These are the ideas we’ll use in the approximations below.

The second partial derivative fxy(x, y) of f is the partial derivative of fx(x, y) with
respect to y. That is:

fxy(1.8, 2.0) = lim
hÑ0

fx(1.8, 2.0 + h)´ fx(1.8, 2.0)
h

For our approximation, we can choose h = 0.1 or h = ´0.1. There’s no compelling reason
to choose one over the other. Let’s use h = 0.1.

« fx(1.8, 2.1)´ fx(1.8, 2.0)
0.1

=

[
lim
hÑ0

f (1.8+h,2.1)´ f (1.8,2.1)
h

]
´
[

lim
hÑ0

f (1.8+h,2.0)´ f (1.8,2.0)
h

]
0.1

Once again, there’s no compelling reason to choose h = 0.1 over h = ´0.1. We could even
choose different signs for the two limits. We’ll just choose h = 0.1 again, because after all,
we do have to choose something.

«
[

f (1.9,2.1)´ f (1.8,2.1)
0.1

]
´
[

f (1.9,2.0)´ f (1.8,2.0)
0.1

]
0.1

= 100
[(

f (1.9, 2.1)´ f (1.8, 2.1)
)´ ( fx(1.9, 2.0)´ fx(1.8, 2.0)

)]
= 100

[(
16.0´ 14.9

)´ (16.3´ 15.2
)]

= 0

Remark: different choices of h all end up with the same approximation.

Solutions to Exercises 2.3 — Jump to TABLE OF CONTENTS

S-1: a) (i) ∇∇∇ f is zero or does not exist at critical points. The point T is a local maximum
and the point U is a saddle point. The remaining points P, R, S, are not critical points.
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(a) (ii) Only U is a saddle point.

(a) (iii) We have fy(x, y) ą 0 if f increases as you move vertically upward through (x, y).
Looking at the diagram, we see

fy(P) ă 0 fy(Q) ă 0 fy(R) = 0 fy(S) ą 0 fy(T) = 0 fy(U) = 0

So only S works.

(b) (i) The function z = F(x, 2) is increasing at x = 1, because the y = 2.0 graph in the
diagram has positive slope at x = 1. So Fx(1, 2) ą 0.

(b) (ii) The function z = F(x, 2) is also increasing (though slowly) at x = 2, because the
y = 2.0 graph in the diagram has positive slope at x = 2. So Fx(2, 2) ą 0. So F does not
have a critical point at (2, 2).

(b) (iii) From the diagram the looks like Fx(1, 1.9) ą Fx(1, 2.0) ą Fx(1, 2.1). That is, it looks
like the slope of the y = 1.9 graph at x = 1 is larger than the slope of the y = 2.0 graph at
x = 1, which in turn is larger than the slope of the y = 2.1 graph at x = 1. So it looks like
Fx(1, y) decreases as y increases through y = 2, and consequently Fxy(1, 2) ă 0.

S-2: (a)

• The level curve z = 0 is y2 ´ x2 = 0, which is the pair of 45˝ lines y = ˘x.

• When C ą 0, the level curve z = C4 is (y2 ´ x2)
2
= C4, which is the pair of

hyperbolae y2 ´ x2 = C2, y2 ´ x2 = ´C2 or

y = ˘
a

x2 + C2 x = ˘
b

y2 + C2

The hyperbola y2 ´ x2 = C2 crosses the y–axis (i.e. the line x = 0) at (0,˘C). The
hyperbola y2 ´ x2 = ´C2 crosses the x–axis (i.e. the line y = 0) at (˘C, 0).

Here is a sketch showing the level curves z = 0, z = 1 (i.e. C = 1), and z = 16 (i.e. C = 2).

x

y

f“0
f“1f“1

f“1

f“1

f“16f“16

f“16

f“16

3´3

3

´3
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(b) As fx(x, y) = ´4x(y2 ´ x2) and fy(x, y) = 4y(y2 ´ x2), we have fx(0, 0) = fy(0, 0) = 0
so that (0, 0) is a critical point. Note that

• f (0, 0) = 0,

• f (x, y) ě 0 for all x and y.

So (0, 0) is a local (and also absolute) minimum.

(c) Note that

fxx(x, y) = ´4y2 + 12x2 fxx(x, y) = 0

fyy(x, y) = 12y2 ´ 4x2 fyy(x, y) = 0
fxy(x, y) = ´8xy fxx(x, y) = 0

As fxx(0, 0) fyy(0, 0)´ fxy(0, 0)2 = 0, the Second Derivative Test (Theorem 2.3.14 in the
text) tells us absolutely nothing.

S-3: Write f (x, y) = x2 + cxy + y2. Then

fx(x, y) = 2x + cy fx(0, 0) = 0
fy(x, y) = cx + 2y fy(0, 0) = 0

fxx(x, y) = 2
fxy(x, y) = c
fyy(x, y) = 2

As fx(0, 0) = fy(0, 0) = 0, we have that (0, 0) is always a critical point for f . According to
the Second Derivative Test, (0, 0) is also a saddle point for f if

fxx(0, 0) fyy(0, 0)´ fxy(0, 0)2 ă 0 ðñ 4´ c2 ă 0 ðñ |c| ą 2

As a remark, the Second Derivative Test provides no information when the expression
fxx(0, 0) fyy(0, 0)´ fxy(0, 0)2 = 0, i.e. when c = ˘2. But when c = ˘2,

f (x, y) = x2 ˘ 2xy + y2 = (x˘ y)2

and f has a local minimum, not a saddle point, at (0, 0).

S-4: To find the critical points we will need the first order partial derivatives of f , and to
apply the second derivative test of Theorem 2.3.14 in the text we will need all second
order partial derivatives. So we need all partial derivatives of f up to order two. Here
they are.

f = x3 ´ y3 ´ 2xy + 6

fx = 3x2 ´ 2y fxx = 6x fxy = ´2

fy = ´3y2 ´ 2x fyy = ´6y fyx = ´2
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The first order partial derivatives are defined everywhere so the critical points are the
solutions of

fx = 3x2 ´ 2y = 0 fy = ´3y2 ´ 2x = 0

Substituting y = 3
2 x2, from the first equation, into the second equation gives

´3
(

3
2

x2
)2

´ 2x = 0 ðñ ´ 2x
(

33

23 x3 + 1
)
= 0

ðñ x = 0, ´2
3

So there are two critical points: (0, 0),
(´2

3 , 2
3

)
.

The classification is
critical
point fxx fyy ´ f 2

xy fxx type

(0, 0) 0ˆ 0´ (´2)2 ă 0 saddle point(´2
3 , 2

3

)
(´4)ˆ (´4)´ (´2)2 ą 0 ´4 local max

S-5: To find the critical points we will need the first order partial derivatives of f , and to
apply the second derivative test of Theorem 2.3.14 in the text we will need all second
order partial derivatives. So we need all partial derivatives of f up to order two. Here
they are.

f = x3 + x2y + xy2 ´ 9x

fx = 3x2 + 2xy + y2 ´ 9 fxx = 6x + 2y fxy = 2x + 2y

fy = x2 + 2xy fyy = 2x fyx = 2x + 2y

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

fx and fy are polynomials (in two variables) and so they are defined everywhere.
Therefore the critical points are the solutions of

fx = 3x2 + 2xy + y2 ´ 9 = 0 (E1)
fy = x(x + 2y) = 0 (E2)

Equation (E2) is satisfied if at least one of x = 0, x = ´2y.

• If x = 0, equation (E1) reduces to y2 ´ 9 = 0, which is satisfied if y = ˘3.

• If x = ´2y, equation (E1) reduces to

0 = 3(´2y)2 + 2(´2y)y + y2 ´ 9 = 9y2 ´ 9

which is satisfied if y = ˘1.

So there are four critical points: (0, 3), (0,´3), (´2, 1) and (2,´1). The classification is
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critical
point fxx fyy ´ f 2

xy fxx type

(0, 3) (6)ˆ (0)´ (6)2 ă 0 saddle point

(0,´3) (´6)ˆ (0)´ (´6)2 ă 0 saddle point

(´2, 1) (´10)ˆ (´4)´ (´2)2 ą 0 ´10 local max

(2,´1) (10)ˆ (4)´ (2)2 ą 0 10 local min

S-6: To find the critical points we will need the first order partial derivatives of f , and to
apply the second derivative test of Theorem 2.3.14 in the text we will need all second
order partial derivatives. So we need all partial derivatives of f up to order two. Here
they are.

f = x2 + y2 + x2y + 4
fx = 2x + 2xy fxx = 2 + 2y fxy = 2x

fy = 2y + x2 fyy = 2

The first partial derivatives are defined everywhere so the critical points are the solutions
of

fx = 0 fy = 0

ðñ 2x(1 + y) = 0 2y + x2 = 0

ðñ x = 0 or y = ´1 2y + x2 = 0

When x = 0, y must be 0. When y = ´1, x2 must be 2. So, there are three critical points:
(0, 0),

(˘?2,´1
)
.

The classification is
critical
point fxx fyy ´ f 2

xy fxx type

(0, 0) 2ˆ 2´ 02 ą 0 2 ą 0 local min

(
?

2,´1) 0ˆ 2´ (2
?

2)2 ă 0 saddle point

(´?2,´1) 0ˆ 2´ (´2
?

2)2 ă 0 saddle point

S-7: To find the critical points we will need the first order partial derivatives of f , and to
apply the second derivative test of Theorem 2.3.14 in the text we will need all second
order partial derivatives. So we need all partial derivatives of f up to order two. Here
they are.

f = x3 + x2 ´ 2xy + y2 ´ x

fx = 3x2 + 2x´ 2y´ 1 fxx = 6x + 2 fxy = ´2
fy = ´2x + 2y fyy = 2 fyx = ´2

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)
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The first order partial derivatives exist everywhere so the critical points are the solutions
of

fx = 3x2 + 2x´ 2y´ 1 = 0 (E1)
fy = ´2x + 2y = 0 (E2)

Substituting y = x, from (E2), into (E1) gives

3x2 ´ 1 = 0 ðñ x = ˘ 1?
3
= 0

So there are two critical points: ˘( 1?
3
, 1?

3

)
.

The classification is
critical
point fxx fyy ´ f 2

xy fxx type( 1?
3
, 1?

3

)
(2
?

3 + 2)ˆ (2)´ (´2)2 ą 0 2
?

3 + 2 ą 0 local min

´( 1?
3
, 1?

3

)
(´2

?
3 + 2)ˆ (2)´ (´2)2 ă 0 saddle point

S-8: To find the critical points we will need the first order partial derivatives of f and to
apply the second derivative test of Theorem 2.3.14 in the text we will need all second
order partial derivatives. So we need all partial derivatives of f up to order two. Here
they are.

f = x3 + xy2 ´ 3x2 ´ 4y2 + 4

fx = 3x2 + y2 ´ 6x fxx = 6x´ 6 fxy = 2y
fy = 2xy´ 8y fyy = 2x´ 8 fyx = 2y

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The first partial derivatives exist everywhere so the critical points are the solutions of

fx = 3x2 + y2 ´ 6x = 0 fy = 2(x´ 4)y = 0

The second equation is satisfied if at least one of x = 4, y = 0 are satisfied.

• If x = 4, the first equation reduces to y2 = ´24, which has no real solutions.

• If y = 0, the first equation reduces to 3x(x´ 2) = 0, which is satisfied if either x = 0
or x = 2.

So there are two critical points: (0, 0), (2, 0).

The classification is
critical
point fxx fyy ´ f 2

xy fxx type

(0, 0) (´6)ˆ (´8)´ (0)2 ą 0 ´6 local max

(2, 0) 6ˆ (´4)´ (0)2 ă 0 saddle point
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S-9: (a) To find the critical points we will need the first order partial derivatives of f and
to apply the second derivative test of Theorem 2.3.14 in the text we will need all second
order partial derivatives. So we need all partial derivatives of f up to order two. Here
they are.

f = x3 + 3xy + 3y2 ´ 6x´ 3y´ 6

fx = 3x2 + 3y´ 6 fxx = 6x fxy = 3
fy = 3x + 6y´ 3 fyy = 6 fyx = 3

The first partial derivatives exists everywhere (as they are polynomials with two
variables) and so the first order partial derivatives exist everywhere. So the critical points
are the solutions of

fx = 3x2 + 3y´ 6 = 0 fy = 3x + 6y´ 3 = 0

Subtracting the second equation from 2 times the first equation gives

6x2 ´ 3x´ 9 = 0 ðñ 3(2x´ 3)(x + 1) = 0 ðñ x =
3
2

, ´1

Since y = 1´x
2 (from the second equation), the critical points are (3

2 ,´1
4), (´1, 1) and the

classification is
critical
point fxx fyy ´ f 2

xy fxx type

(3
2 ,´1

4) (9)ˆ (6)´ (3)2 ą 0 9 local min

(´1, 1) (´6)ˆ (6)´ (3)2 ă 0 saddle point

(b) Notice that the lines x = y, x = ´y and y = 0 are all level curves of the function
f (x, y) = y(x + y)(x´ y) + 1 (i.e. of (iii)) with f = 1. So the first picture goes with (iii).
And the second picture goes with (i).

Here are the pictures with critical points marked on them. There are saddle points where
level curves cross and there are local max’s or min’s at “bull’s eyes”.

(i) (ii)

S-10: To find the critical points we will need the first order partial derivatives of f , and
to apply the second derivative test of Theorem 2.3.14 in the text we will need all second
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order partial derivatives. So we need all partial derivatives of f up to order two. Here
they are.

f = x3 + 3xy + 3y2 ´ 6x´ 3y´ 6

fx = 3x2 + 3y´ 6 fxx = 6x fxy = 3
fy = 3x + 6y´ 3 fyy = 6 fyx = 3

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The first order partial derivatives are defined everywhere and so the critical points are
the solutions of

fx = 3x2 + 3y´ 6 = 0 (E1)
fy = 3x + 6y´ 3 = 0 (E2)

Subtracting equation (E2) from twice equation (E1) gives

6x2 ´ 3x´ 9 = 0 ðñ (2x´ 3)(3x + 3) = 0

So we must have either x = 3
2 or x = ´1.

• If x = 3
2 , (E2) reduces to 9

2 + 6y´ 3 = 0 so y = ´1
4 .

• If x = ´1, (E2) reduces to ´3 + 6y´ 3 = 0 so y = 1.

So there are two critical points:
(3

2 ,´1
4

)
and (´1, 1).

The classification is
critical
point fxx fyy ´ f 2

xy fxx type(3
2 ,´1

4

)
(9)ˆ (6)´ (3)2 ą 0 9 local min

(´1, 1) (´6)ˆ (6)´ (3)2 ă 0 saddle point

S-11: Thinking a little way ahead, to find the critical points we will need the first order
partial derivatives of f , and to apply the second derivative test of Theorem 2.3.14 in the
text we will need all second order partial derivatives. So we need all partial derivatives
of f up to order two. Here they are.

f = 3x2y + y3 ´ 3x2 ´ 3y2 + 4
fx = 6xy´ 6x fxx = 6y´ 6 fxy = 6x

fy = 3x2 + 3y2 ´ 6y fyy = 6y´ 6 fyx = 6x

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The first partial derivatives are defined everywhere and so the critical points are the
solutions of

fx = 6x(y´ 1) = 0 fy = 3x2 + 3y2 ´ 6y = 0

The first equation is satisfied if at least one of x = 0, y = 1 are satisfied.
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• If x = 0, the second equation reduces to 3y2 ´ 6y = 0, which is satisfied if either
y = 0 or y = 2.

• If y = 1, the second equation reduces to 3x2 ´ 3 = 0 which is satisfied if x = ˘1.

So there are four critical points: (0, 0), (0, 2), (1, 1), (´1, 1).

The classification is

critical
point fxx fyy ´ f 2

xy fxx type

(0, 0) (´6)ˆ (´6)´ (0)2 ą 0 ´6 local max

(0, 2) 6ˆ 6´ (0)2 ą 0 6 local min

(1, 1) 0ˆ 0´ (6)2 ă 0 saddle point

(´1, 1) 0ˆ 0´ (´6)2 ă 0 saddle point

S-12: We have

f (x, y) = x4 + y4 ´ 4xy + 2 fx(x, y) = 4x3 ´ 4y fxx(x, y) = 12x2

fy(x, y) = 4y3 ´ 4x fyy(x, y) = 12y2

fxy(x, y) = ´4

The partial first derivatives are defined everywhere. So the critical point are the solutions
of

fx(x, y) = fy(x, y) = 0 ðñ y = x3 and x = y3

ðñ x = x9 and y = x3

ðñ x(x8 ´ 1) = 0, y = x3

ðñ (x, y) = (0, 0) or (1, 1) or (´1,´1)

Here is a table giving the classification of each of the three critical points.

critical
point fxx fyy ´ f 2

xy fxx type

(0, 0) 0ˆ 0´ (´4)2 ă 0 saddle point

(1, 1) 12ˆ 12´ (´4)2 ą 0 12 local min

(´1,´1) 12ˆ 12´ (´4)2 ą 0 12 local min

S-13: We have

f (x, y) = x4 + y4 ´ 4xy fx(x, y) = 4x3 ´ 4y fxx(x, y) = 12x2

fy(x, y) = 4y3 ´ 4x fyy(x, y) = 12y2

fxy(x, y) = ´4

The first partial derivatives are defined everywhere. So the critical points are the solution
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of

fx(x, y) = fy(x, y) = 0 ðñ y = x3 and x = y3 ðñ x = x9 and y = x3

ðñ x(x8 ´ 1) = 0, y = x3

ðñ (x, y) = (0, 0) or (1, 1) or (´1,´1)

Here is a table giving the classification of each of the three critical points.

critical
point fxx fyy ´ f 2

xy fxx type

(0, 0) 0ˆ 0´ (´4)2 ă 0 saddle point

(1, 1) 12ˆ 12´ (´4)2 ą 0 12 local min

(´1,´1) 12ˆ 12´ (´4)2 ą 0 12 local min

S-14: We have

f (x, y) = x3 + xy2 ´ x fx(x, y) = 3x2 + y2 ´ 1 fxx(x, y) = 6x
fy(x, y) = 2xy fyy(x, y) = 2x

fxy(x, y) = 2y

The first partial derivatives are defined everywhere. So the critical points are the solution
of

fx(x, y) = fy(x, y) = 0 ðñ xy = 0 and 3x2 + y2 = 1

ðñ tx = 0 or y = 0u and 3x2 + y2 = 1

ðñ (x, y) = (0, 1) or (0,´1) or
(

1?
3

, 0
)

or
(
´ 1?

3
, 0
)

Here is a table giving the classification of each of the four critical points.

critical
point fxx fyy ´ f 2

xy fxx type

(0, 1) 0ˆ 0´ 22 ă 0 saddle point

(0,´1) 0ˆ 0´ (´2)2 ă 0 saddle point( 1?
3
, 0
)

2
?

3ˆ 2?
3
´ 02 ą 0 2

?
3 local min(´ 1?

3
, 0
) ´2

?
3ˆ (´ 2?

3

)´ 02 ą 0 ´2
?

3 local max

S-15: We have

f (x, y) = x3 ´ 3xy2 ´ 3x2 ´ 3y2 fx(x, y) = 3x2 ´ 3y2 ´ 6x fxx(x, y) = 6x´ 6
fy(x, y) = ´6xy´ 6y fyy(x, y) = ´6x´ 6

fxy(x, y) = ´6y

The first partial derivatives are defined everywhere. So the critical points are the solution
of

fx(x, y) = fy(x, y) = 0 ðñ 3(x2 ´ y2 ´ 2x) = 0 and ´ 6y(x + 1) = 0

ðñ tx = ´1 or y = 0u and x2 ´ y2 ´ 2x = 0

ðñ (x, y) = (´1,
?

3) or (´1,´?3) or (0, 0) or (2, 0)
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Here is a table giving the classification of each of the four critical points.

critical
point fxx fyy ´ f 2

xy fxx type

(0, 0) (´6)ˆ (´6)´ 02 ą 0 ´6 local max

(2, 0) 6ˆ (´18)´ 02 ă 0 saddle point

(´1,
?

3) (´12)ˆ 0´ (´6
?

3)2 ă 0 saddle point

(´1,´?3) (´12)ˆ 0´ (6
?

3)2 ă 0 saddle point

S-16: To find the critical points we will need the first order partial derivatives of f and to
apply the second derivative test of Theorem 2.3.14 in the text we will need all second
order partial derivatives. So we need all partial derivatives of f up to order two. Here
they are.

f = 3kx2y + y3 ´ 3x2 ´ 3y2 + 4
fx = 6kxy´ 6x fxx = 6ky´ 6 fxy = 6kx

fy = 3kx2 + 3y2 ´ 6y fyy = 6y´ 6 fyx = 6kx

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The first partial derivatives are defined everywhere. So the critical points are the solution
of

fx = 6x(ky´ 1) = 0 fy = 3kx2 + 3y2 ´ 6y = 0

The first equation is satisfied if at least one of x = 0, y = 1/k are satisfied. (Recall that
k ą 0.)

• If x = 0, the second equation reduces to 3y(y´ 2) = 0, which is satisfied if either
y = 0 or y = 2.

• If y = 1/k, the second equation reduces to 3kx2 + 3
k2 ´ 6

k = 3kx2 + 3
k2 (1´ 2k) = 0.

Case k ă 1
2 : If k ă 1

2 , then 3
k2 (1´ 2k) ą 0 and the equation 3kx2 + 3

k2 (1´ 2k) = 0 has no
real solutions. In this case there are two critical points: (0, 0), (0, 2) and the classification
is

critical
point fxx fyy ´ f 2

xy fxx type

(0, 0) (´6)ˆ (´6)´ (0)2 ą 0 ´6 local max

(0, 2) (12k´ 6)ˆ 6´ (0)2 ă 0 saddle point

Case k = 1
2 : If k = 1

2 , then 3
k2 (1´ 2k) = 0 and the equation 3kx2 + 3

k2 (1´ 2k) = 0 reduces
to 3kx2 = 0 which has as its only solution x = 0. We have already seen this third critical
point, x = 0, y = 1/k = 2. So there are again two critical points: (0, 0), (0, 2) and the
classification is

critical
point fxx fyy ´ f 2

xy fxx type

(0, 0) (´6)ˆ (´6)´ (0)2 ą 0 ´6 local max

(0, 2) (12k´ 6)ˆ 6´ (0)2 = 0 unknown
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Case k ą 1
2 : If k ą 1

2 , then 3
k2 (1´ 2k) ă 0 and the equation 3kx2 + 3

k2 (1´ 2k) = 0 reduces

to 3kx2 = 3
k2 (2k´ 1) which has two solutions, namely x = ˘

b

1
k3 (2k´ 1). So there are

four critical points: (0, 0), (0, 2),
(b

1
k3 (2k´ 1) , 1

k

)
and

(
´
b

1
k3 (2k´ 1) , 1

k

)
and the

classification is
critical
point fxx fyy ´ f 2

xy fxx type

(0, 0) (´6)ˆ (´6)´ (0)2 ą 0 ´6 local max

(0, 2) (12k´ 6)ˆ 6´ (0)2 ą 0 12k´ 6 ą 0 local min(b
1
k3 (2k´ 1) , 1

k

)
(6´ 6)ˆ (6

k ´ 6)´ (ą 0)2 ă 0 saddle point(
´
b

1
k3 (2k´ 1) , 1

k

)
(6´ 6)ˆ (6

k ´ 6)´ (ă 0)2 ă 0 saddle point

S-17: We wish to choose m and b so as to minimize the (square of the) rms error

E(m, b) =
n
ř

i=1
(mxi + b´ yi)

2.

0 =
BE
Bm

=
n
ř

i=1
2(mxi + b´ yi)xi = m

[ n
ř

i=1
2x2

i

]
+ b
[ n
ř

i=1
2xi

]
´
[ n
ř

i=1
2xiyi

]
0 =

BE
Bb

=
n
ř

i=1
2(mxi + b´ yi) = m

[ n
ř

i=1
2xi

]
+ b
[ n
ř

i=1
2
]
´
[ n
ř

i=1
2yi

]
Here, the first partial derivatives BE

Bm and = BE
Bb are defined everywhere and the critical

points are the solution of

0 =
BE
Bm

=
n
ř

i=1
2(mxi + b´ yi)xi = m

[ n
ř

i=1
2x2

i

]
+ b
[ n
ř

i=1
2xi

]
´
[ n
ř

i=1
2xiyi

]
0 =

BE
Bb

=
n
ř

i=1
2(mxi + b´ yi) = m

[ n
ř

i=1
2xi

]
+ b
[ n
ř

i=1
2
]
´
[ n
ř

i=1
2yi

]
There are a lot of symbols in those two equations. But remember that only two of them,
namely m and b, are unknowns. All of the xi’s and yi’s are given data. We can make the
equations look a lot less imposing if we define Sx =

řn
i=1 xi, Sy =

řn
i=1 yi, Sx2 =

řn
i=1 x2

i
and Sxy =

řn
i=1 xiyi. In terms of this notation, the two equations are (after dividing by

two)

Sx2 m + Sx b = Sxy (1)
Sx m + n b = Sy (2)

This is a system of two linear equations in two unknowns. One way2 to solve them, is to
use one of the two equations to solve for one of the two unknowns in terms of the other
unknown. For example, equation (2) gives that

b =
1
n
(
Sy ´ Sx m

)
2 This procedure is probably not the most efficient one. But it has the advantage that it always works, it

does not require any ingenuity on the part of the solver, and it generalizes easily to larger linear systems
of equations.
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If we now substitute this into equation (1) we get

Sx2 m +
Sx

n
(
Sy ´ Sx m

)
= Sxy ùñ

(
Sx2 ´ S2

x
n

)
m = Sxy ´

SxSy

n

which is a single equation in the single unkown m. We can easily solve it for m. It tells us
that

m =
nSxy ´ SxSy

nSx2 ´ S2
x

Then substituting this back into b = 1
n
(
Sy ´ Sx m

)
gives us

b =
Sy

n
´ Sx

n

(
nSxy ´ SxSy

nSx2 ´ S2
x

)
=

SySx2 ´ SxSxy

nSx2 ´ S2
x

Solutions to Exercises 2.4 — Jump to TABLE OF CONTENTS

S-1: False. A common mistake is to think that the intercepts of a circle are somehow
“endpoints,” in the same way that the interval [´1, 1] has endpoints ´1 and 1. But circles
don’t have endpoints!

When3 we’re finding the extrema of a function over a closed curve, we use the equation
of the curve to get a function of one variable. Then we look for critical points and
endpoints of that function. These may or may not occur at x = ˘1 or y = ˘1.

Now, you might notice that school problems often end up having their extrema at the
extreme values of x and/or y in the boundary. This is a result of writing problems with
relatively easy algebra, rather than the result of some universal law.

S-2: The height
a

x2 + y2 at (x, y) is the distance from (x, y) to (0, 0). So the minimum
height is zero at (0, 0, 0). The surface is a cone. The cone has a point at (0, 0, 0) and the
derivatives zx and zy do not exist there. The maximum height is achieved when (x, y) is
as far as possible from (0, 0). The highest points are at (˘1,˘1,

?
2). There zx and zy exist

but are not zero. These points would not be the highest points if it were not for the
restriction |x|, |y| ď 1.

S-3: The specified function and its first order derivatives are

f (x, y) = xy´ x3y2 fx(x, y) = y´ 3x2y2 fy(x, y) = x´ 2x3y

• First, we find the critical points. The first partial derivatives are defined
everywhere and so the critical points are the solution of

fx = 0 ðñ y(1´ 3x2y) = 0 ðñ y = 0 or 3x2y = 1

fy = 0 ðñ x(1´ 2x2y) = 0 ðñ x = 0 or 2x2y = 1

3 At least in this section, this is how we do it.. but we’ll learn other ways that also don’t involve optimiz-
ing x and y separately
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– If y = 0, we cannot have 2x2y = 1, so we must have x = 0.

– If 3x2y = 1, we cannot have x = 0, so we must have 2x2y = 1. Dividing gives

1 = 3x2y
2x2y = 3

2 which is impossible.

So the only critical point in the square is (0, 0). There f = 0.

• Next, we look at the part of the boundary with x = 0. There f = 0.

• Next, we look at the part of the boundary with y = 0. There f = 0.

• Next, we look at the part of the boundary with x = 1. There f = y´ y2. As
d
dy (y´ y2) = 1´ 2y, the max and min of y´ y2 for 0 ď y ď 1 must occur either at

y = 0, where f = 0, or at y = 1
2 , where f = 1

4 , or at y = 1, where f = 0.

• Next, we look at the part of the boundary with y = 1. There f = x´ x3. As
d
dx (x´ x3) = 1´ 3x2, the max and min of x´ x3 for 0 ď x ď 1 must occur either at
x = 0, where f = 0, or at x = 1?

3
, where f = 2

3
?

3
, or at x = 1, where f = 0.

All together, we have the following candidates for max and min.

point (0, 0) x = 0 y = 0 (1, 0) (1, 1
2) (1, 1) (0, 1) ( 1?

3
, 1) (1, 1)

value of f 0 0 0 0 1
4 0 0 2

3
?

3
0

min min min min min min max min

The largest and smallest values of f in this table are

min = 0 max =
2

3
?

3
« 0.385

S-4: (a) To find the critical points we will need the first order partial derivatives of h and
to apply the second derivative test of Theorem 2.3.14 in the text we will need all second
order partial derivatives. So we need all partial derivatives of f up to order two. Here
they are.

h = y(4´ x2 ´ y2)

hx = ´2xy hxx = ´2y hxy = ´2x

hy = 4´ x2 ´ 3y2 hyy = ´6y hyx = ´2x

(Of course, hxy and hyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The first partial derivatives are defined everywhere and so the critical points are the
solutions of

hx = ´2xy = 0 hy = 4´ x2 ´ 3y2 = 0

The first equation is satisfied if at least one of x = 0, y = 0 are satisfied.

• If x = 0, the second equation reduces to 4´ 3y2 = 0, which is satisfied if y = ˘ 2?
3
.
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• If y = 0, the second equation reduces to 4´ x2 = 0 which is satisfied if x = ˘2.

So there are four critical points:
(

0, 2?
3

)
,
(

0,´ 2?
3

)
, (2, 0), (´2, 0).

The classification is
critical
point hxxhyy ´ h2

xy hxx type(
0, 2?

3

) (
´4?

3

)
ˆ
(
´ 12?

3

)
´ (0)2 ą 0 ´4?

3
local max(

0,´ 2?
3

) (
4?
3

)
ˆ
(

12?
3

)
´ (0)2 ą 0 4?

3
local min

(2, 0) 0ˆ 0´ (´4)2 ă 0 saddle point

(´2, 0) 0ˆ 0´ (4)2 ă 0 saddle point

(b) The absolute max and min can occur either in the interior of the disk or on the
boundary of the disk. The boundary of the disk is the circle x2 + y2 = 1.

• Any absolute max or min in the interior of the disk must also be a local max or min
and, must also be a critical point of h. We found all of the critical points of h in part
(a). Since 2 ą 1 and 2?

3
ą 1 none of the critical points are in the disk.

• At each point of x2 + y2 = 1 we have h(x, y) = 3y with ´1 ď y ď 1. Clearly the
maximum value is 3 (at (0, 1)) and the minimum value is ´3 (at (0,´1)).

So all together, the maximum and minimum values of h(x, y) in x2 + y2 ď 1 are 3 (at
(0, 1)) and ´3 (at (0,´1)), respectively.

S-5: The maximum and minimum must either occur at a critical point or on the
boundary of R.

• The critical points are the points where the first order partial derivatives are zero or
one does not exist. Here fx(x, y) = 2´ 2x and fy(x, y) = ´8y and so they are
defined everywhere. Therefore, the critical points are the solutions of

0 = fx(x, y) = 2´ 2x
0 = fy(x, y) = ´8y

So the only critical point is (1, 0).

• On the side x = ´1, ´1 ď y ď 1 of the boundary of R

f (´1, y) = 2´ 4y2

This function decreases as |y| increases. So its maximum value on ´1 ď y ď 1 is
achieved at y = 0 and its minimum value is achieved at y = ˘1.

• On the side x = 3, ´1 ď y ď 1 of the boundary of R

f (3, y) = 2´ 4y2

This function decreases as |y| increases. So its maximum value on ´1 ď y ď 1 is
achieved at y = 0 and its minimum value is achieved at y = ˘1.
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• On both sides y = ˘1, ´1 ď x ď 3 of the boundary of R

f (x,˘1) = 1 + 2x´ x2 = 2´ (x´ 1)2

This function decreases as |x´ 1| increases. So its maximum value on ´1 ď x ď 3 is
achieved at x = 1 and its minimum value is achieved at x = 3 and x = ´1 (both of
whom are a distance 2 from x = 1).

So we have the following candidates for the locations of the min and max

point (1, 0) (´1, 0) (1,˘1) (´1,˘1) (3, 0) (3,˘1)

value of f 6 2 2 ´2 2 ´2

max min min

So the minimum is ´2 and the maximum is 6.

S-6: Since ∇∇∇h = 〈´4 , ´2〉 exists and is never zero, h has no critical points and the
minimum of h on the disk x2 + y2 ď 1 must be taken on the boundary, x2 + y2 = 1, of the
disk.

To find the minimum on the boundary, we need to use the equation x2 + y2 ď 1 to turn
h(x, y) into a function of one variable. We can break the boundary up into two pieces:
y =

?
1´ x2, ´1 ď x ď 1, and y = ´?1´ x2, ´1 ď x ď 1.

x

y
y =

?
1´ x2

y = ´?1´ x2

• Define g1(x) as the value of h along the boundary curve y =
?

1´ x2, ´1 ď x ď 1.

g1(x) = h
(

x,
a

1´ x2
)
= ´4x´ 2

a

1´ x2
looomooon

y

+ 6

= ´4x´ 2
a

1´ x2 + 6
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To find the minimum of g1(x), we first find its critical points.

g11(x) = ´4´ 2
( ´2x

2
?

1´ x2

)
= ´4 +

2x?
1´ x2

0 = ´4 +
2x?

1´ x2

4 =
2x?

1´ x2

2
a

1´ x2 = x (*)

Squaring both sides,

4(1´ x2) = x2

4 = 5x2

4
5
= x2

x = ˘ 2?
5

From line (*), we see x must be positive, so the only one of these roots that actually
solves our equation is the positive one

x =
2?
5

So, the minimum of g1(x) will occur at its CP x = 2?
5

or at an endpoint x = 1 or
x = ´1.

g1(´1) = ´4(´1)´ 2
?

1´ 1 + 6 = 10

g1(1) = ´4(1)´ 2
?

1´ 1 + 6 = 2

g1

(
2?
5

)
= ´4

(
2?
5

)
´ 2

d

1´
(

2?
5

)2

+ 6

= ´ 8?
5
´ 2

c

1
5
+ 6

= ´ 10?
5
+ 6

= ´2
?

5 + 6 « 1.53

So the minimum of g1(x) is g1 =
(

2?
5

)
= 6´ 2

?
5.
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x

y

h(1, 0) = g1(1) = 2h(´1, 0) = g1(´1) = 10

g1

(
2?
5

)
= 6´ 2

?
5

• Define g2(x) as the value of h along the boundary curve y = ´?1´ x2, ´1 ď x ď 1.

g2(x) = h
(

x,´
a

1´ x2
)
= ´4x´ 2

(
´
a

1´ x2
)
+ 6

= ´4x + 2
a

1´ x2 + 6

g12(x) = ´4 + 2
( ´2x

2
?

1´ x2

)
= ´4´ 2x?

1´ x2

4 = ´ 2x?
1´ x2

´2
a

1´ x2 = x (*)

4(1´ x2) = x2

4 = 5x2

x = ˘ 2?
5

From line (*), we see that x must be negative, so the only solution that works it the
negative one

x = ´ 2?
5

We see that the minimum of g2(x) will occur at its sole critical point x = ´ 2?
5
, or at

its endpoints x = ˘1.

g2(´1) = ´4(´1) + 2
b

1´ (´1)2 + 6 = 4 + 6 = 10

g2(1) = ´4(1) + 2
b

1´ (1)2 + 6 = ´4 + 6 = 2

g2

(
´ 2?

5

)
= ´4

(
´ 2?

5

)
+ 2

d

1´
(
´ 2?

5

)2

+ 6

=
8?
5
+ 2

c

1
5
+ 6 =

10?
5
+ 6

= 2
?

5 + 6 « 10.47
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So, the minimum of g2(x) is g2(1) = 2.

x

y

h(1, 0) = g2(1) = 2h(´1, 0) = g2(´1) = 10

g2

(
´ 2?

5

)
= 6 + 2

?
5

All together, the minimum value h achieves over the boundary x2 + y2 = 1 is 6´ 2
?

5.
Since we already decided the global minimum would occur on the boundary, that tells us
our global minimum is 6´ 2

?
5.

S-7: (a) Thinking a little way ahead, to find the critical points we will need the first order
partial derivatives of f and to apply the second derivative test of Theorem 2.3.14 in the
text we will need all second order partial derivatives. So we need all partial derivatives
of f up to order two. Here they are.

f = xy(x + y´ 3)

fx = 2xy + y2 ´ 3y fxx = 2y fxy = 2x + 2y´ 3

fy = x2 + 2xy´ 3x fyy = 2x fyx = 2x + 2y´ 3

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The first order partial derivatives are defined everywhere and so the critical points are
the solutions of

fx = y(2x + y´ 3) = 0 fy = x(x + 2y´ 3) = 0

The first equation is satisfied if at least one of y = 0, y = 3´ 2x are satisfied.

• If y = 0, the second equation reduces to x(x´ 3) = 0, which is satisfied if either
x = 0 or x = 3.

• If y = 3´ 2x, the second equation reduces to x(x + 6´ 4x´ 3) = x(3´ 3x) = 0
which is satisfied if x = 0 or x = 1.

So there are four critical points: (0, 0), (3, 0), (0, 3), (1, 1).

The classification is
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critical
point fxx fyy ´ f 2

xy fxx type

(0, 0) 0ˆ 0´ (´3)2 ă 0 saddle point

(3, 0) 0ˆ 6´ (3)2 ă 0 saddle point

(0, 3) 6ˆ 0´ (3)2 ă 0 saddle point

(1, 1) 2ˆ 2´ (1)2 ą 0 2 local min

(b) The absolute max and min can occur either in the interior of the triangle or on the
boundary of the triangle. The boundary of the triangle consists of the three line segments.

L1 =
 

(x, y)
ˇ

ˇ x = 0, 0 ď y ď 8
(

L2 =
 

(x, y)
ˇ

ˇ y = 0, 0 ď x ď 8
(

L3 =
 

(x, y)
ˇ

ˇ x + y = 8, 0 ď x ď 8
(

• Any absolute max or min in the interior of the triangle must also be a local max or
min and, must also be a critical point of f . We found all of the critical points of f in
part (a). Only one of them, namely (1, 1) is in the interior of the triangle. (The other
three critical points are all on the boundary of the triangle.) We have f (1, 1) = ´1.

• At each point of L1 we have x = 0 and so f (x, y) = 0.

• At each point of L2 we have y = 0 and so f (x, y) = 0.

• At each point of L3 we have f (x, y) = x(8´ x)(5) = 40x´ 5x2 = 5[8x´ x2] with
0 ď x ď 8. As d

dx
(
40x´ 5x2) = 40´ 10x, the max and min of 40x´ 5x2 on 0 ď x ď 8

must be one of 5
[
8x´ x2]

x=0 = 0 or 5
[
8x´ x2]

x=8 = 0 or 5
[
8x´ x2]

x=4 = 80.

So all together, we have the following candidates for max and min, with the max and
min indicated.

point(s) (1, 1) L1 L2 (0, 8) (8, 0) (4, 4)

value of f ´1 0 0 0 0 80

min max

x

y

p1, 1q

p4, 4q

p0, 8q

p8, 0q

L1

L2

L3

S-8: (a) Since

f = 2x3 ´ 6xy + y2 + 4y

fx = 6x2 ´ 6y fxx = 12x fxy= ´6
fy = ´6x + 2y + 4 fyy = 2

the first order partial derivatives are defined everywhere and the critical points are the
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solutions of

fx = 0 fy = 0

ðñ y = x2 y´ 3x + 2 = 0

ðñ y = x2 x2 ´ 3x + 2 = 0

ðñ y = x2 x = 1 or 2

So, there are two critical points: (1, 1), (2, 4).

critical
point fxx fyy ´ f 2

xy fxx type

(1, 1) 12ˆ 2´ (´6)2 ă 0 saddle point

(2, 4) 24ˆ 2´ (´6)2 ą 0 24 local min

(b) There are no critical points in the interior of the allowed region, so both the maximum
and the minimum occur only on the boundary. The boundary consists of the line
segments (i) x = 1, 0 ď y ď 1, (ii) y = 1, 0 ď x ď 1 and (iii) y = 1´ x, 0 ď x ď 1.

x

y

p1, 1q
p0, 1q

p1, 0q

• First, we look at the part of the boundary with x = 1. There f = y2 ´ 2y + 2. As
d
dy (y

2 ´ 2y + 2) = 2y´ 2 vanishes only at y = 1, the max and min of y2 ´ 2y + 2 for
0 ď y ď 1 must occur either at y = 0, where f = 2, or at y = 1, where f = 1.

• Next, we look at the part of the boundary with y = 1. There f = 2x3 ´ 6x + 5. As
d
dx (2x3 ´ 6x + 5) = 6x2 ´ 6, the max and min of 2x3 ´ 6x + 5 for 0 ď x ď 1 must
occur either at x = 0, where f = 5, or at x = 1, where f = 1.

• Next, we look at the part of the boundary with y = 1´ x. There
f = 2x3 ´ 6x(1´ x) + (1´ x)2 + 4(1´ x) = 2x3 + 7x2 ´ 12x + 5. As
d
dx (2x3 + 7x2 ´ 12x + 5) = 6x2 + 14x´ 12 = 2

(
3x2 + 7x´ 6

)
= 2(3x´ 2)(x + 3), the

max and min of 2x3 + 7x2 ´ 12x + 5 for 0 ď x ď 1 must occur either at x = 0, where
f = 5, or at x = 1, where f = 2, or at x = 2

3 , where
f = 2( 8

27)´ 6(2
3)(

1
3) +

1
9 +

4
3 = 16´36+3+36

27 = 19
27 .

So all together, we have the following candidates for max and min, with the max and
min indicated.

point (1, 0) (1, 1) (0, 1)
(2

3 , 1
3

)
value of f 2 1 5 19

27

max min
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S-9: (a) We have

f (x, y) = xy(x + 2y´ 6) fx(x, y) = 2xy + 2y2 ´ 6y fxx(x, y) = 2y

fy(x, y) = x2 + 4xy´ 6x fyy(x, y) = 4x
fxy(x, y) = 2x + 4y´ 6

The first partial derivatives are defined everywhere. So the critical points are the solution
of

fx(x, y) = fy(x, y) = 0 ðñ 2y(x + y´ 3) = 0 and x(x + 4y´ 6) = 0
ðñ ty = 0 or x + y = 3u and tx = 0 or x + 4y = 6u
ðñ tx = y = 0u or ty = 0, x + 4y = 6u

or tx + y = 3, x = 0u or tx + y = 3, x + 4y = 6u
ðñ (x, y) = (0, 0) or (6, 0) or (0, 3) or (2, 1)

Here is a table giving the classification of each of the four critical points.

critical
point fxx fyy ´ f 2

xy fxx type

(0, 0) 0ˆ 0´ (´6)2 ă 0 saddle point

(6, 0) 0ˆ 24´ 62 ă 0 saddle point

(0, 3) 6ˆ 0´ 62 ă 0 saddle point

(2, 1) 2ˆ 8´ 22 ą 0 2 local min

(b) Observe that xy = 4 and x + 2y = 6 intersect when x = 6´ 2y and

(6´ 2y)y = 4 ðñ 2y2 ´ 6y + 4 = 0 ðñ 2(y´ 1)(y´ 2) = 0
ðñ (x, y) = (4, 1) or (2, 2)

The shaded region in the sketch below is D.

x

xy “ 4

x ` 2y “ 6

y

p4, 1q

p2, 2q

None of the critical points are in D. So the max and min must occur at either (2, 2) or
(4, 1) or on xy = 4, 2 ă x ă 4 (in which case F(x) = f

(
x, 4

x
)
= 4

(
x + 8

x ´ 6) obeys
F1(x) = 4´ 32

x2 = 0 ðñ x = ˘2
?

2) or on x + 2y = 6, 2 ă x ă 4 (in which case f (x, y) is
identically zero). So the min and max must occur at one of
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(x, y) f (x, y)

(2, 2) 2ˆ 2(2 + 2ˆ 2´ 6) = 0

(4, 1) 4ˆ 1(4 + 2ˆ 1´ 6) = 0

(2
?

2,
?

2) 4(2
?

2 + 2
?

2´ 6) ă 0

The maximum value is 0 and the minimum value is 4(4
?

2´ 6) « ´1.37.

S-10: The coldest point must be either on the boundary of the plate or in the interior of
the plate.

• On the semi–circular part of the boundary 0 ď y ď 2 and x2 + y2 = 4 so that
T = ln

(
1 + x2 + y2)´ y = ln 5´ y. The smallest value of ln 5´ y is taken when y is

as large as possible, i.e. when y = 2, and is ln 5´ 2 « ´0.391.

• On the flat part of the boundary, y = 0 and ´2 ď x ď 2 so that
T = ln

(
1 + x2 + y2)´ y = ln

(
1 + x2). The smallest value of ln

(
1 + x2) is taken

when x is as small as possible, i.e. when x = 0, and is 0.

• If the coldest point is in the interior of the plate, it must be at a critical point of
T(x, y). Since

Tx(x, y) =
2x

1 + x2 + y2 Ty(x, y) =
2y

1 + x2 + y2 ´ 1

a critical point must have x = 0 and 2y
1+x2+y2 ´ 1 = 0, which is the case if and only if

x = 0 and 2y´ 1´ y2 = 0. So the only critical point is x = 0, y = 1, where
T = ln 2´ 1 « ´0.307.

Since ´0.391 ă ´0.307 ă 0, the coldest temperature is ´0.391 and the coldest point is
(0, 2).

S-11: (a) We have

g(x, y) = x2 ´ 10y´ y2 gx(x, y) = 2x gxx(x, y) = 2
gy(x, y) = ´10´ 2y gyy(x, y) = ´2

gxy(x, y) = 0

The first partial derivatives are defined everywhere. So the critical points are the solution
of

gx(x, y) = gy(x, y) = 0 ðñ 2x = 0 and ´ 10´ 2y = 0 ðñ (x, y) = (0,´5)

Since gxx(0,´5)gyy(0,´5)´ gxy(0,´5)2 = 2ˆ (´2)´ 02 ă 0, the critical point is a saddle
point.

(b) The extrema must be either on the boundary of the region or in the interior of the
region.
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• On the semi-elliptical part of the boundary ´2 ď y ď 0 and x2 + 4y2 = 16 so that
g = x2 ´ 10y´ y2 = 16´ 10y´ 5y2 = 21´ 5(y + 1)2. This has a minimum value of
16 (at y = 0,´2) and a maximum value of 21 (at y = ´1). You could also come to
this conclusion by checking the critical point of 16´ 10y´ 5y2 (i.e. solving
d
dy (16´ 10y´ 5y2) = 0) and checking the end points of the allowed interval
(namely y = 0 and y = ´2).

• On the flat part of the boundary y = 0 and ´4 ď x ď 4 so that g = x2. The smallest
value is taken when x = 0 and is 0 and the largest value is taken when x = ˘4 and
is 16.

• If an extremum is in the interior of the plate, it must be at a critical point of g(x, y).
The only critical point is not in the prescribed region.

Here is a table giving all candidates for extrema:

(x, y) g(x, y)

(0,´2) 16

(˘4, 0) 16

(˘?12,´1) 21

(0, 0) 0

From the table the smallest value of g is 0 at (0, 0) and the largest value is 21 at
(˘2

?
3,´1).

S-12: Suppose that the bends are made a distance x from the ends of the fence and that
the bends are through an angle θ. Here is a sketch of the enclosure.

x sin θx x

100 ´ 2x

θθ

It consists of a rectangle, with side lengths 100´ 2x and x sin θ, together with two
triangles, each of height x sin θ and base length x cos θ. So the enclosure has area

A(x, θ) = (100´ 2x)x sin θ + 2 ¨ 1
2 ¨ x sin θ ¨ x cos θ

= (100x´ 2x2) sin θ + 1
2 x2 sin(2θ)

The maximize the area, we need find the critical points.

Ax = (100´ 4x) sin θ + x sin(2θ)

Aθ = (100x´ 2x2) cos θ + x2 cos(2θ)

Note that Ax and Aθ are define everywhere in their domain and so to find the critical
points we only needed to find the points where the first order partial derivatives are zero.

0 = Ax = (100´ 4x) sin θ + x sin(2θ) ùñ (100´ 4x) + 2x cos θ = 0

0 = Aθ = (100x´ 2x2) cos θ + x2 cos(2θ) ùñ (100´ 2x) cos θ + x cos(2θ) = 0
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Here we have used that the fence of maximum area cannot have sin θ = 0 or x = 0,
because in either of these two cases, the area enclosed will be zero. The first equation

forces cos θ = ´100´4x
2x and hence cos(2θ) = 2 cos2 θ ´ 1 = (100´4x)2

2x2 ´ 1. Substituting
these into the second equation gives

´(100´ 2x)
100´ 4x

2x
+ x
[ (100´ 4x)2

2x2 ´ 1
]
= 0

ùñ ´(100´ 2x)(100´ 4x) + (100´ 4x)2 ´ 2x2 = 0

ùñ 6x2 ´ 200x = 0

ùñ x =
100
3

cos θ = ´´100/3
200/3

=
1
2

θ = 60˝

A =

(
100

100
3
´ 2

1002

32

) ?
3

2
+

1
2

1002

32

?
3

2
=

2500?
3

S-13: Suppose that the box has side lengths x, y and z. Here is a sketch.

x
y

z

Because the box has to have volume V we need that V = xyz. We wish to minimize the
area A = xy + 2yz + 2xz of the four sides and bottom. Substituting in z = V

xy ,

A = xy + 2
V
x
+ 2

V
y

Ax = y´ 2
V
x2

Ay = x´ 2
V
y2

To minimize, we want Ax = Ay = 0, which is the case when yx2 = 2V, xy2 = 2V. This
forces yx2 = xy2. Since V = xyz is nonzero, neither x nor y may be zero. So
x = y = (2V)1/3, z = 2´2/3V1/3.

S-14: (a) The maximum and minimum can occur either in the interior of the disk or on
the boundary of the disk. The boundary of the disk is the circle x2 + y2 = 4.

• Any absolute max or min in the interior of the disk must also be a local max or min
and must also be a critical point of h. Since Tx = ´8x and Ty = ´2y, the only
critical point is (x, y) = (0, 0), where T = 20. Since 4x2 + y2 ě 0, we have
T(x, y) = 20´ 4x2 ´ y2 ď 20. So the maximum value of T (even in R2) is 20.

• At each point of x2 + y2 = 4 we have
T(x, y) = 20´ 4x2 ´ y2 = 20´ 4x2 ´ (4´ x2) = 16´ 3x2 with ´2 ď x ď 2. So T is a
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minimum when x2 is a maximum. Thus the minimum value of T on the disk is
16´ 3(˘2)2 = 4.

So all together, the maximum and minimum values of T(x, y) in x2 + y2 ď 4 are 20 (at
(0, 0)) and 4 (at (˘2, 0)), respectively.

(b) We are being asked to find the (x, y) = (x, 2´ x2) which maximizes

T
(
x, 2´ x2) = 20´ 4x2 ´ (2´ x2)2

= 16´ x4

The maximum of 16´ x4 is obviously 16 at x = 0. So the ant should go to(
0, 2´ 02) = (0, 2).

S-15: The region of interest is

D =
 

(x, y, z)
ˇ

ˇ x ě 0, y ě 0, z ě 0, 2x + y + z = 5
(

First observe that, on the boundary of this region, at least one of x, y and z is zero. So
f (x, y, z) = x2y2z is zero on the boundary. As f takes values which are strictly bigger
than zero at all points of D that are not on the boundary, the minimum value of f is 0 on

BD =
 

(x, y, z)
ˇ

ˇ x ě 0, y ě 0, z ě 0, 2x + y + z = 5, at least one of x, y, z zero
(

The maximum value of f will be taken at a critical point. On D

f = x2y2(5´ 2x´ y) = 5x2y2 ´ 2x3y2 ´ x2y3

So the critical points are the solutions of

0 = fx(x, y) = 10xy2 ´ 6x2y2 ´ 2xy3

0 = fy(x, y) = 10x2y´ 4x3y´ 3x2y2

(note that the first order partial derivatives are defined everywhere) or, dividing by the
first equation by xy2 and the second equation by x2y, (recall that x, y ‰ 0)

10´ 6x´ 2y = 0 or 3x + y = 5
10´ 4x´ 3y = 0 or 4x + 3y = 10

Substituting y = 5´ 3x, from the first equation, into the second equation gives

4x + 3(5´ 3x) = 10 ùñ ´ 5x + 15 = 10 ùñ x = 1, y = 5´ 3(1) = 2

So the maximum value of f is (1)2(2)2(5´ 2´ 2) = 4 at (1, 2, 1).

S-16: (a) For x, y ą 0, fx and fy are well-defined and so the critical points are the
solutions of

fx = 2´ 1
x2y

= 0 ðñ y =
1

2x2

fy = 4´ 1
xy2 = 0
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Substituting y = 1
2x2 , from the first equation, into the second gives 4´ 4x3 = 0 which

forces x = 1, y = 1
2 . At x = 1, y = 1

2 ,

f
(
1, 1

2

)
= 2 + 2 + 2 = 6

(b) The second derivatives are

fxx(x, y) =
2

x3y
fxy(x, y) =

1
x2y2 fyy(x, y) =

2
xy3

In particular

fxx
(
1, 1

2

)
= 4 fxy

(
1, 1

2

)
= 4 fyy

(
1, 1

2

)
= 16

Since fxx
(
1, 1

2

)
fyy
(
1, 1

2

)´ fxy
(
1, 1

2

)2
= 4ˆ 16´ 42 = 48 ą 0 and fxx

(
1, 1

2

)
= 4 ą 0, the

point
(
1, 1

2

)
is a local minimum.

(c) As x or y tends to infinity (with the other at least zero), 2x + 4y tends to +8. As (x, y)
tends to any point on the first quadrant part of the x- and y–axes, 1

xy tends to +8. Hence
as x or y tends to the boundary of the first quadrant (counting infinity as part of the
boundary), f (x, y) tends to +8. As a result

(
1, 1

2

)
is a global (and not just local)

minimum for f in the first quadrant. Hence f (x, y) ě f
(
1, 1

2

)
= 6 for all x, y ą 0.

S-17: First, let’s visualize what’s going on. Our surface looks like a bowl, sitting on the
origin, opening upwards. It is radially symmetric about the z-axis, with circular level
curves. That means every point on a level curve is equidistant from the z-axis. Since the
point (0, 0, a) is on the z-axis, if there is a point (x, y, z) that has minimum distance to the
point, then its entire level curve has the same minimum distance. So we expect our
answer to look like a circle (or possibly a single point – a “circle” of radius 0). If a is a
negative number, it seems natural that the closest point would be (0, 0, 0).

The distance from (0, 0, a) to an arbitrary point (x, y, z) is
a

x2 + y2 + (z´ a)2. If the
point (x, y, z) is on our surface, then z = x2 + y2. Rather than deal with square roots,
we’ll minimize the distance squared:

f (x, y) = x2 + y2 +
(

x2 + y2 ´ a
)2

From our observations above, there will be no global maximum; the global minimum
will be a local minimum; the global minimum will depend on a in a less-than-simple
way; and there are likely to be multiple points that are all minimum distance to (0, 0, a).
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We start by finding critical points.

fx(x, y) = 2x + 2x ¨ 2
(

x2 + y2 ´ a
)

= 2x
(

1 + 2
(

x2 + y2 ´ a
))

= 4x
(

x2 + y2 +
1
2
´ a
)

fy(x, y) = 2y + 2y ¨ 2
(

x2 + y2 ´ a
)

= 2y
(

1 + 2
(

x2 + y2 ´ a
))

= 4y
(

x2 + y2 +
1
2
´ a
)

• For any value of a, (x, y) = (0, 0) is a critical point.

• If a ă 1
2 , then the only critical point is (x, y) = (0, 0).

• If a ě 1
2 , then all points on the level curve x2 + y2 = a´ 1

2 are critical points.

So if a ă 1
2 , we’re done: the single closest point on the surface is (0, 0, 0).

Suppose a ě 1
2 . Now we need to decide whether (0, 0, a) is closer to the origin or to a

poitn on the level curve x2 + y2 = a´ 1
2 .

• f (0, 0) = 0 + 0 + (0´ a)2 = a2

• If x2 + y2 = a´ 1
2 , then:

f (x, y) = x2 + y2 +
(

x2 + y2 ´ a
)2

=

(
a´ 1

2

)
+

(
a´ 1

2
´ a
)2

=

(
a´ 1

2

)
+

1
4

= a´ 1
4

• All together, the origin is closer than the level curve when:

a2 ă a´ 1
4

a2 ´ a +
1
4
ă 0(

a´ 1
2

)2

ă 0

which never happens. So the origin is never closer than the level curve, again
provided a ě 1

2 .
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So, all together: if a ă 1
2 , then the closest point is the origin. If a ě 1

2 , then the closest
points are the level curve where z = a´ 1

2 .

S-18:

(a) Let us first find the profit equations for each of the paper sizes separately and then
we sum them up to get the total profit function.

Π4(x) = f (x)(6)´ x(1) = 15x0.8 ´ x (profit for A4)

Π3(y) = g(y)(8)´ y(3) = 80y0.6 ´ 3y (profit for A3)

and therefore, the total profit equation is given by

Π(x, y) = Π4(x) + Π3(y)

= (15x0.8 ´ x) + (80y0.6 ´ 3y)

Note that the production functions of the two paper types aren’t really linked. It’s as
if one firm is doing all the A4, and a different firm is doing all the A3. So to maximize
Π(x, y), we can just find the maximum value of Π4 and the maximum value of Π3
separately.

(b) Note that x4, x3, x2 ě 0 as we cannot produce negative amount of papers. (Maybe
that would mean turning papers into trees?) Note also:

Π4(0) = 0 lim
xÑ8

Π4(x) = ´8
Π3(0) = 0 lim

yÑ8
Π3(y) = ´8

Now let’s consider critical points of each function.

dΠ4

dx
= 15(0.8)x´0.2 ´ 1 = 12x´0.2 ´ 1 = 0 ùñ x = 125

Π4

(
125
)
= 15

(
125
)4/5 ´ 125 = 15

(
124
)
´ 125 = 3 ¨ 124

dΠ3

dy
= 80(0.6)y´0.4 ´ 3 = 48y´0.4 ´ 3 = 0 ùñ y = 210

Π3

(
210
)
= 80

(
210
)6/10 ´ 3 ¨ 210 = 5 ¨ 210 ´ 3 ¨ 210 = 211

(Also x = 0 and y = 0 are critical points, since the derivatives are undefined there,
but we’ve already considered them when we thought about endpoints.)

Since Π4
(
125) ą Π4(0) and Π3

(
210) ą Π3 (0), we see our maximum will occur

when x = 125 and y = 210. Then the number of reams produced will be:

f
(

125
)
=

5
2

(
125
)4/5

= 51840

g
(

210
)
= 10

(
210
)6/10

= 640
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(c) As we saw before, the two reams are optimized separately. So the optimal
production of A3 isn’t affected by how much A4 is produced. That is, the branch
should stick with y = 1, 024 leading to 640 reams of A3.

S-19:

(a) To find Ayan’s profit equation, which we denote by ΠA, we just plug in the
information we are given in the general profit equation (revenue minus cost).

ΠA(qA) = qA [121´ 2(qA + qP)]
looooooooooooomooooooooooooon

revenue

´ qA(1)
loomoon

cost

= 121qA ´ 2q2
A ´ 2qAqP ´ qA

= ´2q2
A + 120qA ´ 2qAqP

This is a parabola pointing down, so its maximum will be at its only critical point.
dΠa

dqA
= ´4qA + 120´ 2qP = 0

4qA = 120´ 2qP

q1 = 30´ 1
2

qP

So Ayan would maximize their profit by selling 30´ 1
2 qP servings of lemonade.

(b) This is very similar to the last part. We find Pipe’s profit function.

ΠP(qP) = qP [121´ 2(qA + qP)]´ qP(1)

= 121qP ´ 2q2
P ´ 2qPqA ´ qP

= ´2q2
P + 120qP ´ 2qPqA

Note that this is ΠA if we switch the places of qA and qP. So Pipe would maximize
their profit by selling 30´ 1

2 qA pitchers of lemonade.

(c) Ayan’s and Pipe’s cost and price for every pitcher of lemonade produced are the
same. Their businesses are identical. So we predict that they will sell the same
amount of lemonade to maximize their respective profits.

(d) To find how much each seller will sell when they are working separately, find out
which values of qA and qP end up with both individual profit functions being
maximized. Therefore we solve the system of equations we get from (a) and (b).

#

qA = 30´ 1
2 qP

qP = 30´ 1
2 qA

ùñ qP = 30´ 1
2

(
30´ 1

2
qP

)
loooooomoooooon

qA

= 15 +
1
4

qP

ùñ qP = 20

ùñ qA = 30´ 1
2

(20)
loomoon

qP

= 20
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So, as predicted, both sellers sell the same number of pitchers.

(e) We need to plug in qP = qA = 20 in ΠA and ΠP:

ΠA(20)|qP=20 = ´2(20)2 + 120(20)´ 2(20)(20) = 800

And similarly, ΠP(20)|qA=20 = 800. So, they would each make 800 dollars in profit.

(f) The joint profit function is Π(qA, qP) = ΠA(qA) + ΠP(qP). Note that here, Ayan and
Pipe are helping each other to make the most profit, instead of competing. Using the
same intuition as before, we can conclude that qA = qP in this case too. (So they share
the workload fairly!)

So to make things easier let us assume qA = qP and denote this quantity by q. Then
ΠA(q) = ΠP(q) = ´4q2 + 120q. This means

Πjoint(q) = ΠA(q) + ΠP(q) = 2ΠA(q)

= 2(´4q2 + 120q)

= ´8q2 + 240q

This is a parabola pointing down, so its global min is at its sole critical point, q = 15.

So q = qA = qP = 15 maximizes the joint profit. Let us compute the corresponding
joint profit

Πjoint(15) = ´8(15)2 + 240(15) = 1, 800

So their optimal joint profit will be 1, 800 dollars. But, they need to share this profit
among the two of them. So if they collaborate, they will each earn 900 dollars. This is
more than their individual optimal profit in the scenario where they are competing
found in part (e) (we found this to be $800). So it is better for them to collaborate!

(g) When the two sellers collaborate, they sell fewer lemonades (30 pitchers total instead
of 40 total) and the lemonade costs more ($60 instead of $40). So it’s better for
consumers when the sellers compete.

Solutions to Exercises 2.5 — Jump to TABLE OF CONTENTS

S-1: (a) f (x, y) = x2 + y2 is the square of the distance from the point (x, y) to the origin.
There are points on the curve xy = 1 that have either x or y arbitrarily large and so
whose distance from the origin is arbitrarily large. So f has no maximum on the curve.
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x

y

y = 1
x

On the other hand f will have a minimum, achieved at the points of xy = 1 that are
closest to the origin.

(b) On the curve xy = 1 we have y = 1
x and hence f = x2 + 1

x2 . As

d
dx

(
x2 +

1
x2

)
= 2x´ 2

x3 =
2
x3 (x4 ´ 1)

and as no point of the curve has x = 0, the minimum is achieved when x = ˘1. So the
minima are at ˘(1, 1), where f takes the value 2.

Remark: this is less a question specifically about Lagrange multipliers and more a
question about the existence of extrema on unbounded curves, as in section 2.5.1 in the
text.

S-2: The easiest (cheapest?) way out is to think of a function z = k(x) with local but not
absolute extrema, then consider the constraint y = 0. This puts our function in the
xz-plane, effectively making it look just like the function of one-variable y = f (x).

For example, we can set f (x, y) = x3 ´ x, with constraint function g(x, y) = y = 0.

Using techniques from last semester, the function z = x3 ´ x has local max at x = ´ 1?
3

and local min at x = 1?
3
; but it has no absolute extrema because lim

xÑ8
(x3 ´ x) = 8 and

lim
xÑ´8

(x3 ´ x) = ´8.

Similarly, f (x, y) has a local constrained max resp. min at
(
´ 1?

3
, 0
)

resp.
(
´ 1?

3
, 0
)

; but
has no absolute extrema.

S-3: There are none.

For any integer n, sin
(

π
2 + 2πn

)
= 1. So, f

(
π
2 + 2πn, π

2 + 2πn
)
= π

2 + 2πn. This satisfies
the constraint x = y and, since n can be arbitrarily large or small, has no absolute
maximum or minimum.

Alternately, if we set x = y, then f (x, y) = f (x, x) = x sin x. This is easy enough to
sketch, and then it is easy enough to see that there are no absolute extrema.
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x

y

S-4: So we are to minimize f (x, y) = x2 + y2 subject to the constraint
g(x, y) = x2y´ 1 = 0.

The constraint is not a closed curve, so we need to be a little more careful than average.
We can interpret our objective function as the distance from the origin squared. So we’re
trying to find the point on the curve y = 1

x2 that is closest to the origin. The distance from
points on that curve to the origin can be arbitrarily large, so the system has no absolute
maximum. It does have an absolute minimum, which will also be a local minimum, so it
will be a solution to the system of Lagrange equations.

According to the method of Lagrange multipliers, we need to find all solutions to

fx = λgx 2x = λ(2xy) (E1)

fy = λgy 2y = λx2 (E2)

g(x, y) = 0 x2y = 1 (E3)

• If gx ‰ 0 and gy ‰ 0, then λ = 2x
2xy = 1

y by (E1) and λ = 2y
x2 by (E2).

1
y
=

2y
x2

x2 = 2y2

x = ˘
?

2y

Using (E3):

1 = x2y =
(
˘
?

2y
)2

y

= 2y3

y =
1
3
?

2

x = ˘
?

2 ¨ 1
3
?

2
= ˘2

1
2´

1
3 = ˘2

1
6
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This gives us two solutions:
(˘21/6, 2´1/3).

• If gx = 0, then 0 = 2xy. By (E1), x = 0; then by(E2), y = 0. Then (E3) fails, so there
are no solutions of this type.

• If gy = 0, then 0 = x2, so 0 = x. By (E2), y = 0. Then (E3) fails, so there are no
solutions of this type.

So the two points to check are
(
2

1
6 , 2´

1
3
)

and
(´ 2

1
6 , 2´

1
3
)
. For both of these critical

points,

x2 + y2 = 2
1
3 + 2´

2
3 = 2

1
3 +

1
2

2
1
3 =

3
2

3
?

2 =
3
3
?

4

S-5: For this problem the objective function is f (x, y) = xy and the constraint function is
g(x, y) = x2 + 2y2 ´ 1. To apply the method of Lagrange multipliers we start by
computing the first order derivatives of these functions.

fx = y fy = x gx = 2x gy = 4y

So, according to the method of Lagrange multipliers, we need to find all solutions to

y = λ(2x) (E1)
x = λ(4y) (E2)

x2 + 2y2 ´ 1 = 0 (E3)

• If gx ‰ 0 and gy ‰ 0, then λ = y
2x (E1) and λ = x

4y .

y
2x

=
x

4y
2y2 = x2

From (E3):

2y2 + 2y2 ´ 1 = 0

4y2 = 1

y = ˘1
2

x = ˘
?

2y = ˘ 1?
2

So four solutions to the system are
(
˘ 1?

2
,˘1

2

)
.

• If gx = 0 then x = 0; by (E1), y = 0; then (E3) fails.

• If gy = 0 then y = 0; by (E2), x = 0; then (E3) fails.

The method of Lagrange multipliers, Theorem 2.5.2 in the text, gives that the only
possible locations of the maximum and minimum of the function f are

(
˘ 1?

2
,˘1

2

)
.
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point
(

1?
2
, 1

2

) (
´ 1?

2
, 1

2

) (
1?
2
,´1

2

) (
´ 1?

2
,´1

2

)
f (x, y) 1

2
?

2
´ 1

2
?

2
´ 1

2
?

2
1

2
?

2

max min min max

So the maximum and minimum values of f are 1
2
?

2
and ´ 1

2
?

2
, respectively.

S-6: This is a constrained optimization problem with the objective function being
f (x, y) = x2 + y2 and the constraint function being g(x, y) = x4 + y4 ´ 1. By Theorem
2.5.2 in the text, any minimum or maximum (x, y) must obey the Lagrange multiplier
equations

fx = gx 2x = 4λx3 (E1)

fy = gy 2y = 4λy3 (E2)

g(x, y) = 1 x4 + y4 = 1 (E3)

• If gx ‰ 0 and gy ‰ 0, then λ = 2x
4x3 = 1

2x2 (E2) and λ = 2y
4y3 = 1

2y2 (E2). So

x2 = 1
2λ = y2. Then (E3) reduces to

2x4 = 1

so that x2 = y2 = 1?
2

and x = ˘2´1/4, y = ˘2´1/4. At all four of these points, we

have f =
?

2.

• If gx = 0, then x = 0. (E1) holds for any λ, so by choosing λ correctly we can make
(E2) hold as well. (E3) reduces to y4 = 1 or y = ˘1. At both

(
0,˘1

)
we have

f
(
0,˘1

)
= 1.

• If gy = 0, then y = 0. (E2) holds for any λ, so by choosing λ correctly (E1) holds as
well. (E3) reduces to x4 = 1 or x = ˘1. At both

(˘ 1, 0
)

we have f
(˘ 1, 0

)
= 1.

So the minimum value of f on x4 + y4 = 1 is 1 and the maximum value of f on
x4 + y4 = 1 is

?
2.

S-7:

fx = λgx 4x3 = λ ¨ 2x (E1)

fy = λgy 4y3 + 4y5 = λ ¨ 2y (E2)

g(x, y) = 1 x2 + y2 = 1 (E3)

• If gx ‰ 0 and gy ‰ 0, then λ = 4x3

2x = 2x2 (E1) and λ = 4y3+4y5

2y = (2y2 + 2y4) (E2).
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So, x2 = λ
2 = y2 + y4. From (E3):

(y2 + y4) + y2 = 1

y4 + 2y2 ´ 1 = 0

y2 =
´2˘a

4´ 4(´1)
2

= ´1˘
?

2

y2 =
?

2´ 1

In this case, x2 = 1´ y2 = 2´?2. So, we should check (˘
a

2´?2 , ˘
a?

2´ 1).

• If gx = 0, then x=0. Then (E1) is true for any λ, which means we can make (E2) be
true by choosing λ accordingly. By (E3), x = 0 ùñ y = ˘1, so we should check
(0,˘1)

• If gy = 0, then y = 0. Then (E2) is true for any λ, which means we can make (E1) be
true by choosing λ accordingly. By (E3), y = 0 ùñ x = ˘1, so we should check
(˘1, 0)

Comparing:

• f (0,˘1) = 0 + 1 + 2
3 = 5

3

• f (˘1, 0) = 1 + 0 + 0 = 1

• When x2 = 2´?2 and y2 =
?

2´ 1, then

f (x, y) = (2´
?

2)2 + (
?

2´ 1)2 +
2
3
(
?

2´ 1)3

=
13´ 8

?
2

3

Since
?

2 ą 5
4 , we see

13´ 8
?

2
3

ă 13´ 8(5/4)
3

=
13´ 10

3
= 1

So, our absolute min over the constraint is 13´8
?

2
3 , and our absolute max over the

constraint is 5
3 .

S-8: (It’s possible to solve this without Lagrange, but we were asked to use Lagrange to
practice the technique.)

We want to minimize
a

x2 + y2, the distance from the origin to a point (x, y). Note the
minimum of that function will occur at the same (x, y)-values as the minimum of its
square, x2 + y2. Since that’s easier to minimize, we use it as our objective function:
f (x, y) = x2 + y2.

We only care about coordinates that are actually on the parabola, so our constraint
function is g(x, y) = y + x2 = 3

2 .
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Our constraint function is not a closed curve. We can keep travelling along the parabola
to end up arbitrarily far from the origin. So there’s no global maximum distance, but
there is a global minimum distance. The global minimum will also be a local minimum,
so it will be a solution to the Lagrange equations.

fx = λgx 2x = λ2x (E1)
fy = λgy 2y = λ (E2)

g(x, y) =
3
2

y + x2 =
3
2

(E3)

• If gx ‰ 0 and gy ‰ 0, then λ = 1 from (E1) and λ = 2y from (E2), so 1 = 2y, i.e.
y = 1

2 . From (E3), then x = ˘1.

• If gx = 0, then x = 0, so (E1) is true for any λ. Then we can make (E2) true by
choosing the appropriate λ; from (E3), y = 3

2 . So another point solving the system is(
0, 3

2

)
.

• There are no points corresponding to gy = 0.

f
(
0, 3

2

)
= 9

4 and f
(
˘1, 1

2

)
= 5

4 . So, the closest points to the origin on the parabola are the
points (´1, 1/2) and (1, 1/2).

x

y

(
1, 1

2

)(
´1, 1

2

)

(
0, 3

2

)

?
5

2

?
5

2

3
2

S-9:

To find extrema over a region, we check CPs and the boundary.
f (x, y) = xy, so fx = y and fy = x. Then the only CP is (0, 0).

To check the boundary, we need to know the extreme values of f (x, y) = xy over the
ellipse x2 ´ 2xy + 5y2 = 1. It seems tough to do this with plugging in, so we use
Lagrange.

fx = λgx y = λ(2x´ 2y) (E1)
fy = λgy x = λ(´2x + 10y) (E2)

g(x, y) = 1 x2 ´ 2xy + 5y2 = 1 (E3)

337



• If gx ‰ 0 and gy ‰ 0, then λ = y
2(x´y) and λ = x

2(5y´x) :

y
2(x´ y)

=
x

2(5y´ x)
5y2 ´ xy = x2 ´ xy

x = ˘?5y

From (E3), if x =
?

5y:

1 = 5y2 ´ 2(
?

5y)y + 5y2

= (10´ 2
?

5)y2

1
10´ 2

?
5
= y2

y = ˘ 1
a

10´ 2
?

5

From (E3), if x = ´?5y:

1 = (10 + 2
?

5)y2

y = ˘ 1
a

10 + 2
?

5

This gives us four points to check:
(
b

5
10´2

?
5
,˘ 1?

10´2
?

5

)
and(

b

5
10+2

?
5
,˘ 1?

10+2
?

5

)
.

• If gx = 0, then (E1) y = 0, so 0 = gx = 2x´ 2y = 2x, hence x = 0. But then (E3) fails.

• If gy = 0, then (E2) x = 0, so 0 = gy = ´2x + 10y = 10y, hence y = 0. But then (E3)
fails.

All together, we’ve identified 5 possible locations of extrema.

• f (0, 0) = 0

• f
(
b

5
10´2

?
5
, 1?

10´2
?

5

)
=

?
5

10´2
?

5

• f
(
b

5
10´2

?
5
,´ 1?

10´2
?

5

)
= ´

?
5

10´2
?

5

• f
(
b

5
10+2

?
5
, 1?

10+2
?

5

)
=

?
5

10+2
?

5

• f
(
b

5
10+2

?
5
,´ 1?

10+2
?

5

)
= ´

?
5

10+2
?

5

The largest and smallest of these are
?

5
10´2

?
5

and ´
?

5
10´2

?
5
, respectively.
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S-10: By way of preparation, we have

BT
Bx

(x, y) = 2x ey BT
By

(x, y) = ey(x2 + y2 + 2y
)

(a) (i) For this problem the objective function is T(x, y) = ey(x2 + y2) and the constraint
function is g(x, y) = x2 + y2 ´ 100. According to the method of Lagrange multipliers,
Theorem 2.5.2 in the text, we need to find all solutions to

Tx = λgx 2x ey = λ(2x) (E1)

Ty = λgy ey(x2 + y2 + 2y
)
= λ(2y) (E2)

g(x, y) = 100 x2 + y2 = 100 (E3)

(a) (ii)

• If gx ‰ 0 and gy ‰ 0, then (E1) λ = ey and (E2) λ = ey(x2+y2+2y)
2y .

ey =
ey(x2 + y2 + 2y)

2y
2y = x2 + y2 + 2y

0 = x2 + y2

but this conflicts with (E3). So gx ‰ 0 and gy ‰ 0 doesn’t lead to any solutions.

• If gx = 0, then x = 0 and (E1) is true; then we can choose the appropriate l to make
(E2) true. From (E3), y = ˘10. So (0,˘10) gives a solution.

• If gy = 0, then y = 0. By (E2), x = 0, which conflicts with (E3).

So the only possible locations of the maximum and minimum of the function T are (0, 10)
and (0,´10). To complete this part of the problem, we only have to compute T at those
points.

point (0, 10) (0,´10)

value of T 100e10 100e´10

max min

Hence the maximum value of T(x, y) = ey(x2 + y2) on x2 + y2 = 100 is 100e10 at (0, 10)
and the minimum value is 100e´10 at (0,´10).

We remark that, on x2 + y2 = 100, the objective function T(x, y) = ey(x2 + y2) = 100ey.
So of course the maximum value of T is achieved when y is a maximum, i.e. when
y = 10, and the minimum value of T is achieved when y is a minimum, i.e. when
y = ´10.

(b) (i) By definition, the point (x, y) is a critical point of T(x, y) if and only if the first
order partial derivatives at that point are both zero, or at least one does not exist. The
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first partial derivatives

Tx = 2x ey

Ty = ey(x2 + y2 + 2y
)

are well defined everywhere and so the critical points are exactly the point where

Tx = 2x ey = 0 (E1)

Ty = ey(x2 + y2 + 2y
)
= 0 (E2)

(b) (ii) Equation (E1) forces x = 0. When x = 0, equation (E2) reduces to

ey(y2 + 2y
)
= 0 ðñ y(y + 2) = 0 ðñ y = 0 or y = ´2

So there are two critical points, namely (0, 0) and (0,´2).

(c) Note that T(x, y) = ey(x2 + y2) ě 0 on all of R2. As T(x, y) = 0 only at (0, 0), it is
obvious that (0, 0) is the coolest point.

In case you didn’t notice that, here is a more conventional solution.

The coolest point on the solid disc x2 + y2 ď 100 must either be on the boundary,
x2 + y2 = 100, of the disc or be in the interior, x2 + y2 ă 100, of the disc.

In part (a) (ii) we found that the coolest point on the boundary is (0,´10), where
T = 100e´10.

If the coolest point is in the interior, it must be a critical point and so must be either (0, 0),
where T = 0, or (0,´2), where T = 4e´2.

So the coolest point is (0, 0).

S-11: Since x ě 0 and y ě 0, our constraint function has endpoints (x, y) = (0, 400) and
(x, y) = (25, 0). Absolute extrema will occur at these endpoints or at points that solve the
system of Lagrange equations.

fx = λgx 3x´
2
3 y

2
3 = 3200λ (E1)

fy = λgy 6x
1
3 y´

1
3 = 200λ (E2)

g(x, y) = 80, 000 3200x + 200y = 80, 000 (E3)

Since gx and gy are always nonzero, we only have one of our usual three cases.

3x´
2
3 y

2
3 ¨ 1

3200
= 6x

1
3 y´

1
3 ¨ 1

200
x´

2
3 y

2
3 = 32x

1
3 y´

1
3

y
1
3 y

2
3 = 32x

1
3 x

2
3

y = 32x
3200x + 200(32x) = 80, 000

x =
25
3

y =
25 ¨ 32

3
=

800
3
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Now we compare our three points of interest.

point (0, 400) (25, 0)
(25

3 , 800
3

)
f (x, y) 0 0 75 ¨ 210/3

min min max

S-12: The constraint tells us
g(a, b) = a + 2b = 1

The triangle formed is a right triangle with area 1
2 bh. Its base and height are the two

intercepts of the line. That is, its base is 1
a , and its height is 1

b . So, the area (which we want
to minimize) is

f (x, y) =
1
2
¨ 1

a
¨ 1

b

x

y

1
a

1
b

By choosing lines with slopes close to 0, or large negative slopes, we can make triangles
with arbitrarily large area. So the absolute minimum will occur somewhere in between at
a local minimum value. So we can find the absolute minimum using the method of
Lagrange multipliers.

fa = λga ´ 1
2a2b

= λ(1) (E1)

fb = λgb ´ 1
2ab2 = λ(2) (E1)

Since ga and gb can’t be 0, we have only one of our usual three cases.

´ 1
2a2b

= ´1
2
¨ 1

2ab2

1
a
=

1
2b

a = 2b
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Using our constraint,

2b + 2b = 1

b =
1
4

a =
1
2

So the minimum area is achieved by the line 1
2 x + 1

4 y = 1. That area is 1
2 ¨ 4 ¨ 2 = 4.

S-13: The ellipse x2

a2 +
y2

b2 = 1 passes through the point (1, 2) if and only if 1
a2 +

4
b2 = 1. We

are to minimize
f (a, b) = πab

subject to the constraint that

g(a, b) =
1
a2 +

4
b2 ´ 1 = 0.

We can imagine ellipses centred at the origin passing through (1, 2) of arbitrarily large
size.

x

y

For large values of a (and corresponding values of b approaching 2), we have a large area.
Similarly, for large values of b (and corresponding values of a approaching 2), we have a
large area. So there’s no absolute maximum, but there is a “sweet spot” where a and b are
both not too large and we have a global minimum. It will also be a local minimum.

According to the method of Lagrange multipliers, we need to find all solutions to the
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system:

fa = λga πb = ´2λ

a3 (E1)

fb = λgb πa = ´8λ

b3 (E2)

g(a, b) = 0
1
a2 +

4
b2 = 1 (E3)

• If ga ‰ 0 and gb ‰ 0, then (E1) λ = ´πa3b
2 and (E2) λ = ´πab3

8 .

´πa3b
2

= ´πab3

8
4a3b = ab3

4a3b´ ab3 = 0

ab(4a2 ´ b2) = 0

This last equation has solutions a = 0, b = 0, and 4a2 = b2. The first two aren’t in
our model domain, since a and b are positive. In the third case:

1 =
1
a2 +

4
4a2

=
1
a2 +

1
a2 =

2
a2

Remember a ą 0 and b ą 0.

a =
?

2

b2 = 4a2 = 4 ¨ 2
b = 2

?
2

• If ga = 0 or gb = 0, then the constraint fails.

So, the only possible location of a local extremum is a =
?

2, b = 2
?

2. This is the location
of our absolute minimum.

S-14: Let r and h denote the radius and height, respectively, of the cylinder. We can
always choose our coordinate system so that the axis of the cylinder is parallel to the
z–axis.

• If the axis of the cylinder does not lie exactly on the z–axis, we can enlarge the
cylinder sideways. (See the figure on the left below. It shows the y = 0 cross–section
of the cylinder.) So we can assume that the axis of the cylinder lies on the z–axis

• If the top and/or the bottom of the cylinder does not touch the sphere
x2 + y2 + z2 = 1, we can enlarge the cylinder vertically. (See the central figure
below.)
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• So we may assume that the cylinder is
 

(x, y, z)
ˇ

ˇ x2 + y2 ď r2, ´h/2 ď z ď h/2
(

with r2 + (h/2)2 = 1. See the figure on the right below.

x

z

x

z

x

z

x2 ` y2 ` z2 “ 1

pr , 0 , h{2q

pr , 0 ,´h{2q

So we are to maximize the volume, f (r, h) = πr2h, of the cylinder subject to the
constraint g(r, h) = r2 + h2

4 ´ 1 = 0. According to the method of Lagrange multipliers,
we need to find all solutions to

fr = gr 2πrh = 2λr (E1)

fh = gh πr2 = λ
h
2

(E2)

g(r, h) = 1 r2 +
h2

4
= 1 (E3)

• If gr ‰ 0 and gh ‰ 0, then (E1) gives us λ = 2πrh
2r = πh and (E2) gives us

λ = πr2

h/2 = 2πr2

h .

πh =
2πr2

h
h2

2
= r2

Now from (E3):

1 = r2 +
h2

4
=

h2

2
+

h2

4

=
3
4

h2

h2 =
4
3

Since h and r are nonnegative,

h =
2?
3

r =

c

h2

2
=

h?
2
=

c

2
3

So one point to check is r =
b

2
3 , h = 2?

3
.
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• If gr = 0, then r = 0. Then (E1) is true for any λ and any r. From (E2), h = 0. But
then (E3) fails.

• If gh = 0, then h = 0. From (E2), r = 0. But then (E3) fails.

So the only solution to all three equations with r ą 0 and h ą 0 is r =
b

2
3 , h = 2?

3
. Since

we restricted our domain to non-negative values of r and h, the points with r = 0 or with
h = 0 are “endpoints” of the region we’re considering. At these points, our volume is 0,
so they give us the global minimum value over our model domain.

So, r =
b

2
3 , h = 2?

3
give the cylinder with maximum volume.

S-15:

The function we want to minimize is surface area, so this is our objective function:

f (x, y) = 2(2x ¨ x) + 2(2x ¨ y) + 2(x ¨ y) = 4x2 + 6xy

Our constraint is that the volume must be 72 cubic centimetres.

g(x, y) = x ¨ 2x ¨ y = 2x2y = 72

This is not a closed curve. If we think of y as a function of x, then our constraint gives us
y = 36

x2 , x ą 0, y ą 0. So this curve has domain 0 ă x. Note that as x approaches 0, then y
approaches infinity, and vice-versa. (That is: to have a very very short box with fixed
volume, the box must be very wide.) Then our objective function goes to infinity as well.
So this system has no global maximum, but it does have a global minimum. That global
minimum will also be a local minimum, so it will be a solution to the system of Lagrange
equations.

fx = λgx 8x + 6y = λ(4xy) (E1)

fy = λgy 6x = λ(2x2) (E2)

g(x, y) = 72 2x2y = 72 (E3)

• If gx ‰ 0 and gy ‰ 0, then (E1) λ = 8x+6y
4xy = 4x+3y

2xy and (E2) λ = 6x
2x2 = 3

x :

4x + 3y
2xy

=
3
x

ùñ 4x2 + 3xy = 6xy

ùñ 4x2 ´ 3xy = 0
ùñ x(4x´ 3y) = 0

ùñ x = 0 or (4x´ 3y) = 0
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From (E3), we see x ‰ 0, so the only point to consider is when 4x = 3y. Plugging
this into our constraint function,

72 = 2x2y = 2x2
(

4
3

x
)
= 3x3

ùñ 27 = x3

ùñ 3 = x

ùñ y =
4
3
¨ 3 = 4

So the point to consider is (3, 4).

• If gx = 0, then x = 0 or y = 0, both of which make (E3) false.

• If gy = 0, then x = 0, which makes (E3) false.

So the only point to consider is (3, 4).

We aren’t considering a region with a closed curve bounding it, so we’ll need some
thought to decide whether this is, in fact, a minimum. Note that our model domain is
that x and y must both be positive numbers. We see that as x or y goes to 0, while the
other one stays constant, our surface area function goes to infinity. Similarly as x or y
goes to infinity, while the other one stays constant, our surface area function goes to
infinity. So the function must have a minimum somewhere well away from its
“boundaries” near and far from the x and y axes.

So, the dimensions of the box with smallest surface area are:
x = 3, 2x = 6, y = 4

S-16: Note that if (x, y) obeys g(x, y) = xy´ 1 = 0, then x is necessarily nonzero. So we
may assume that x ‰ 0. Then

There is a λ such that (x, y, λ) obeys (E1)
ðñ there is a λ such that fx(x, y) = λgx(x, y), fy(x, y) = λgy(x, y), g(x, y) = 0
ðñ there is a λ such that fx(x, y) = λy, fy(x, y) = λx, xy = 1

ðñ there is a λ such that
1
y

fx(x, y) =
1
x

fy(x, y) = λ, xy = 1

ðñ 1
y

fx(x, y) =
1
x

fy(x, y), xy = 1

ðñ x fx

(
x,

1
x

)
=

1
x

fy

(
x,

1
x

)
, y =

1
x

ðñ F1(x) =
d
dx

f
(
x,

1
x

)
= fx

(
x,

1
x

)
´ 1

x2 fy

(
x,

1
x

)
= 0, y =

1
x

S-17: Solution 1
Since f (x, y) is the square root of something, its unconstrained absolute minimum is 0,
achieved whenever 4x4 + y4 = 1. By choosing x and/or y to be large, we see f (x, y) will
be large as well. That is, f (x, y) has no unconstrained maximum.
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By inspection (“staring at it”), we note the point (0, 1) satisfies both our constraint and
4x4 + y4 = 1. So the constrained absolute minimum is 0, and this is achieved at (0, 1).
Since x and y can have arbitrarily large absolute values and still satisfy x3 + y3 = 1, we
see that f (x, y) has no constrained minimum.

Solution 2
First, let’s consider temporarily replacing f (x, y) with

h(x, y) = 4x4 + y4 ´ 1

When h(x, y) is large, then f (x, y) is large; when h(x, y) is small and positive, then f (x, y)
is small. So the extrema of f (x, y) should occur at extrema of h(x, y) or at points where
h(x, y) = 0.

The benefit of this replacement is that h is much easier to differentiate. Let’s use the
method of Lagrange multipliers. First, we differentiate.

hx = 16x3 gx = 3x2

hy = 4x3 gy = 3y2

So, we solve

16x3 = λ ¨ 3x2 ùñ x = 0 or λ =
16
3

x

4y3 = λ ¨ 3y2 ùñ y = 0 or λ =
4
3

y

1. If x = 0, then from x3 + y3 = 1, we require y = 1. So the point (0, 1) is a point to
check.

h(0, 1) = 0

2. If y = 0, then from x3 + y3 = 1, we require x = 1. So the point (1, 0) is a point to
check.

h(1, 0) = 3

3. If neither x = 0 nor y = 0, then λ = 16
3 x = 4

3 y, so y = 4x. Then from our constraint,

x3 + y3 = 1

x3 + (4x)3 = 1

65x3 = 1

x =
1

3
?

65

y = 4x =
4

3
?

65
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So,
(

1
3?65

, 4
3?65

)
is a point to check.

h
(

1
3
?

65
,

4
3
?

65

)
= 4

(
1

3
?

65

)4

+

(
4

3
?

65

)4

´ 1

=
4 + 44

654/3 ´ 1

=
4(1 + 43)

(1 + 43)4/3 ´ 1

=
4

(1 + 43)1/3 ´ 1

ă 4

(43)
1/3 ´ 1 = 0

So the point
(

1
3?65

, 4
3?65

)
is not in the domain of f (x, y).

Since f (x, y) can never be less than 0, and f (0, 1) = 0, we see that this the absolute
minimum subject to the constraint.

If g(x, y) = 1 were a closed curve, such as an ellipse, then we would be guaranteed that a
constrained absolute maximum existed, and then that constrained absolute maximum
would occur at a point identified above: by process of elimination, (1, 0). However,
g(x, y) = 1 is not a closed curve. For any value of x, g(x, y) = 1 has a solution. That
means our constraint contains arbitrarily large values of x. Huge values of x will lead to
huge values of f (x, y), so there is no constrained absolute maximum.

S-18: Both the objective and constraint functions are fairly straightforward to
understand.

• If x and y are both large and positive, then f (x, y) is large and positive; if x and y
are both large and negative, then f (x, y) is large and negative.

• If |y| is large, then |x| = a

1 + y2 is large as well.

So if we take y to be arbitrarily large and positive, and x to be (positive)
a

1 + y2, then
f (x, y) = x + y ą y is arbitrarily large.

Similarly, if we take y to be arbitrarily large and negative, and x to be ´a1 + y2, then
f (x, y) = x + y ă y is arbitrarily large and negative.

So, there are no absolute extrema of f (x, y) subject to the constraint x2 = 1 + y2.

S-19:

(a) Note f (x, 0) = x, which has no absolute extrema. So f (x, y) has no absolute extrema,
either.

(b) The line y = x does not describe a closed curve: it’s a line that continues on forever
without “looping back” on itself.
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(c) The plugging-in method of earlier times fits our functions well, so we won’t bother
with Lagrange. If x = y, then:

f (x, x) =
x

1 + x4

So, let’s consider a function of one variable, call it k.

k(x) =
x

1 + x4

To get a feel for k(x), first note its horizontal asymptotes:

lim
kÑ8

k(x) = lim
kÑ´8

k(x) = 0

(since k is rational and the degree of its numerator is smaller than the degree of its
denominator). So, far away from the origin, k(x) « 0. Also, we note that k(x) is
defined for all real numbers.

x

y

???

Since k(x) is continuous, even without sketching the rest of its graph, we can already
see k(x) has absolute extrema. These will occur at critical points. So, we differentiate.
Using the quotient rule:

k1(x) =
(1 + x4)(1)´ x(4x3)

(1 + x4)2 =
1´ 3x4

(1 + x4)2

0 =
1´ 3x4

(1 + x4)2

0 = 1´ 3x4

x = ˘ 1
4
?

3

k
(

1
4
?

3

)
=

1
4?3

1 + 1
3

=
3
4
¨ 1

4
?

3
=

33/4

4

k
(
´ 1

4
?

3

)
= ´33/4

4

The absolute maximum of k(x) is 33/4

4 and the absolute minimum of k(x) is ´33/4

4 .
That is:

The absolute maximum of f (x, y) constrained to x = y is 33/4

4 and the absolute
minimum of f (x, y) constrained to x = y is ´33/4

4 .

349



Remark: the purpose of this exercise is to point out that, even when a constraint is not a
closed curve, it is still possible for a constrained function to have both an absolute max
and an absolute min.

Solutions to Exercises 2.6 — Jump to TABLE OF CONTENTS

S-1: In Marshallian demand, the budget is a constant, while utility is maximized. This is
the strategy of Consumer A. In Hicksian demand, cost is minimized, subject to a
minimum acceptable utility. This the strategy of Consumer B.

S-2: Following Definition 2.6.7, the price effect of px resp. py is the partial derivative of
xm with respect to those variables.

xm(px, py, I) =

$

’

’

&

’

’

%

I
2(px´py)

if px ě 2py

I
px

if px ă py

=

$

’

&

’

%

I
2(px ´ py)´1 if px ě 2py

I(px)´1 if px ă py

Bxm(px, py, I)
Bpx

=

$

’

&

’

%

´I
2 (px ´ py)´2 if px ě 2py

´I(px)´2 if px ă py

=

$

’

’

&

’

’

%

´I
2(px´py)2 if px ě 2py

´ I
p2

x
if px ă py

Bxm(px, py, I)
Bpy

=

$

’

&

’

%

´I
2 (px ´ py)´2 ¨ (´1) if px ě 2py

0 if px ă py

=

$

’

&

’

%

I
2(px´py)2 if px ě 2py

0 if px ă py

S-3: To answer the question, according to Definition 2.6.5 in the text, we need to decide
whether Bxm

BI is positive or negative.

Bxm

BI
=
B
BI

[
p2

y ´ Ipx

4p2
y ´ 2p2

x

]
=
B
BI

[
p2

y

4p2
y ´ 2p2

x
´ px

4p2
y ´ 2p2

x
I

]
= ´ px

4p2
y ´ 2p2

x

The differentiation is easier than it looks, because if we treat I as the only variable, then
xm is just a line. Now we need to determine the sign of the derivative. If p2

x ď 2p2
y, then

4p2
y ´ 2p2

x ě 0, so the derivative is negative. Therefore, X is an inferior good.

S-4: The constraint here is Luiza’s budget which can be described by

3 f + c = 10
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To solve the problem using the method of Lagrange multipliers, we identify the
constraint function as g( f , c) = 3 f + c´ 10 and we note that u( f , c) and g( f , c) have
continuous first partial derivatives in their domain assuming f is non-zero (the
derivative

a

f is not defined at f = 0). Assume for now that f is not zero. Moreover, we
note that ∇g ‰ 0.

The Lagrange multiplier rule tells us that to optimize the utility function u given Luiza’s
budget, we need to find the points ( f , c) such that

∇u( f , c) = λ∇g( f , c)

for some real number λ (Lagrange multiplier) and

g( f , c) = 0

This gives us three equations (with three unknowns):

u f =
1

2
a

f
= 3λ = λg f (E1)

uc =
1
10

= λ = λgc (E2)

3 f + c = 10 (E3)

Equation (E2) tells us that λ = 1
10 . Putting this into (E1) give us

1
2
a

f
=

3
10

ùñ a

f =
5
3

ùñ f =
25
9

To find c we put the value we found for f in equation (E3):

3(
25
9
) + c = 10 ùñ c = 10´ 25

3
=

5
3

Now note that if f = 0, then the utility function becomes u(c) = c
10 for c ě 0. This

function has a global min at c = 0 and it does not achieve a maximum. Therefore we can
safely assume that in order to maximize our utility function u, f is non-zero.

So we do not have any other candidate points that optimizes u given the constraint
g = 0, so we do not need to compare them and check which maximizes u. The answer to
part (a) is 5

3 and to part (b) is 25
9 .

Finally, for part (c), we multiply the quantities we found by their respective cost:

1. For food ($3)
25
9

= $
25
3
« $8.33;

2. for coffee ($1)
5
3
= $

5
3
« $1.67.

S-5: As suggested by the hint, we use the method of Lagrange Multipliers (Theorem
2.5.2 in the text). The budget constraint is expressed by

80m + 20s = 1000
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We can take the constraint function g(m, s) to be

g(m, s) = 80m + 20s´ 1000

We wish to find the points (m, s) that maximizes the utility function u while g(m, s) = 0.
Note that s ě 0 (we cannot buy negative amount of shares) and m ą 0 (being the
argument of log function). The functions u and g have continuous first partial derivatives
in their domain and ∇g(c, s, w) is never zero. Then the Lagrange Multipliers Theorem
tells us that we need to find the point(s) (m, s) such that

∇u(m, s) = λ∇g(m, s)

for some real number λ while g(m, s) = 0. This means that we have to solve the
following system of equations

um =
1
m

= λ(80) = gm (E1)

us =
1

16
= λ(20) = gs (E2)

80m + 20s = 1000 (E3)

The equation (E2) implies that

λ =
1

16 ¨ 20
=

1
320

putting these (E1) tells us that

1
m

=

(
1

320

)
80 =

1
4
ùñ m = 4

Finally, this information along with (E3) gives

80(4) + 20s = 1000 ùñ 20s = 1000´ 320 ùñ s = 34

We should check that this is not secretly a minimum. Since lim
mÑ0

ln m = ´8, certainly

m = 0 is not ideal. On the other hand, let’s consider s = 0. Then m = 12.5, and
u(12.5, 0) = ln(12.5) « 2.52. On the other hand, u(4, 34) = ln 4 + 3.4 ą 2.52. The
Lagrange point does better.

So Franco should buy four shares of Inter de Milan and thirty two shares of La Spezia
with his money.

S-6: We solve this problem using the method of Lagrange multipliers (Theorem 2.5.2 in
the text). Note that c, s ą 0 (being the argument of a log function). The budget constraint
can be expressed by

5c + 10s = 100

So we may define the constraint function by

g(c, s) = 5c + 10s´ 100
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$

’

&

’

%

uc = λgc

us = λgs

g(c, s) = 0
ùñ

$

’

&

’

%

3
c = λ ¨ 5
4
s = λ ¨ 10
g(c, s) = 0

From the first two equations,

λ =
3
5c

=
4

10s

s =
2
3

c

Now to satisfy the constraint,

0 = 5c + 10s´ 100 = 5c + 10
(

2
3

c
)
´ 100

c =
60
7

s =
2
3

c =
2
3
¨ 60

7
=

40
7

Since the utility function goes to negative infinity as c Ñ 0 or s Ñ 0, we can be confident
that the point we’ve found is a maximum, not a minimum.

S-7: We use the method of Lagrange multipliers. If either k or n is zero then our utility
function u would become zero. This does not maximize (actually minimizes) the utility
function. So, we may assume none of our variables are zero. The budget constraint is
given by

4k + 12n = 84

which implies that we can take the constraint function to be

g(k, n) = 4k + 12n´ 84

$

’

&

’

%

uk = λgk

un = λgn

0 = g(k, n)
ùñ

$

’

’

’

’

&

’

’

’

’

%

n0.2

2k0.5 = λ ¨ 4
k0.5

5n0.8 = λ ¨ 12

0 = 4k + 12n´ 120

From the first two equations, we see

λ =
n0.2

8k0.5 =
k0.5

60n0.8

60n = 8k

k =
15
2

n
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To satisfy the constraint,

0 = 4k + 12n´ 120 = 4
(

15
2

n
)
+ 12n´ 84

n = 2

k =
15
2

n =
15
2
¨ 2 = 15

So the optimal solution is to buy 15 expansion packs for Keitu and 2 for Nefred.

S-8:

(a) Like the previous examples we solve this question using Theorem 2.5.2 in the CLP-3
text. The budget constraint is given by

4.5p + 2s = 20

and therefore we let the constraint function g(p, s) be

g(p, s) = 4.5p + 2s´ 20

Let us assume for now, s and p are non-zero (we will deal with the case that at least
one of them is zero later). The Lagrange Multipliers Theorem tells us that we need to
find the point(s) (p, s) P R2 such that

∇u(p, s) = λ∇g(p, s)

for some real number λ. This gives us a system of three equations and three
unknowns:

up = 0.4p´0.6(s + p)0.6 + 0.6p0.4(s + p)´0.4 = λ(4.5) = λgp (E1)

us = 0.6(s + p)´0.4p0.4 = λ(2) = λgs (E2)
4.5p + 2s = 20 (E3)

If we divide (E1) by (E2) we get

4
6

p´1(s + p) + 1 =
9
4

2
3

p´1(s + p) =
5
4

s
p
+ 1 =

5
4
¨ 3

2
=

15
8

s
p
=

7
8

s =
7
8

p
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Note that, when we divided (E1) by (E2), we have assumed λ ‰= 0. If λ = 0, then
(E2) tells us that p = 0 which we have assumed not to be the case. Moving on, we put
s = 7

8 p into (E3):

4.5p +
7
4

p = 20 ùñ 25
4

p = 20 ùñ p =
80
25

So p = 3.2 units or p = 320 gm and

s =
7
8

p =
7
8
(

80
25

) =
70
25

= 2.8

units or s = 280 ml.

Note that

(1) If s = 0, then the utility function becomes u = p. This function achieves its global
minimum at p = 0 and has no local or global maximum. Since we are interested
in maximizing the utility function u, we can dismiss this as a solution.

(2) Similarly, if p = 0 then u = 0 which minimizes the utility function (for all values
of s). So we can dismiss this case too.

(b) (i) To check this we only need to multiply the given quantities with their respective
price per unit. Here, p = 4.2 and s = 1.6 which means, at the normal price, the
total would be

4.5(4.2) + 2(1.6) = $22.1

which is more than Coral’s budget and therefore she would not have been able
to afford this without the combo price.

(ii) To see if the combo is a better deal for Coral we compare the utility levels of her
original optimal consumption with that of the combo. Let us first find her
original optimal consumption utility level where p = 3.2 and s = 2.8:

(3.2)0.4(2.8 + 3.2)0.6 « 4.666

This is while the utility level of the combo where p = 4.2 and s = 1.6 is given by

(4.2)0.4(1.6 + 4.2)0.6 « 5.097

This implies that the combo is a better deal for Coral!

S-9:

(a) The budget constraint is given by

30m + 30 f = I

(b) To get the level curves for Mr. Blue’s utility function and Ms. Reed’s utility function,
we assign some values to UB and UR. In the graphs below, we have fixed UB and UR
to be equal to 1, 2, and 3.
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m

f
Ms. Reed

UR = 1

UR = 2

UR = 3

m

f
Mr. Blue

UB = 3

To help us draw these curves, we may use some algebra. For example, when UB = 1
we have

UB = 1 = m0.9 f 0.1 ùñ m9 f 1 = 110 = 1 ùñ f =
1

m9

When UR = 2 then

UR = 2 =
a

m f ùñ m f = 22 ùñ f =
4
m

The computations for other values of UB and UR are very similar.

Geometrically, for a fixed value of UB (a level curve), we can see that the graph is
more sensitive to increments in values of m compared to increments in values of f .
This is while for any value of UR (which measures preference here), the level curve is
symmetric about the line f = m. This tells us that Mr. Reed prefers male officers to
female officers while Ms. Reed does not prefer one to the other.

Even though in this question we are asked to argue geometrically, we can look at the
algebraic expressions to confirm our answer. For values f , m ą 1, m0.9 contributes
more than f 0.1 to the utility function UB. (To see this better, you may give some
numerical examples.)

(c) Before we apply Lagrange multipliers method, note that we can assume f , m ą 0. If
m or f is zero, then the utility functions UB and UR become zero. Since we wish to
find the maximum utility, we can assume f and m are non-zero.

(i) Let us first find the optimal combination of m and f for Mr. Blue. We take the
constraint function to be

g(m, f ) = 30m + 30 f ´ I

Then Lagrange multipliers method tells us that in order to find the points (m, f )
that optimize UB, we need to solve the following system of equations

(UB)m = (0.9)m´0.1 f 0.1 = λ(30) = λgm (E1)

(UB) f = (0.1)m0.9 f´0.9 = λ(30) = λg f (E2)

30m + 30 f = I (E3)
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For some real number λ. Since m and f are non-negative, the left hand side of
equation (E1) is non-zero ((UB)m is non-zero), then the right hand side is also
non-zero. So in particular, λ is non-zero. So we cab divide equation (E1) by (E2)
to get

E1
E2

ùñ 9m´1 f = 1 ùñ m = 9 f

Now we put this into (E3)

30(9 f ) + 30 f = 300 f = I ùñ f =
I

300
and

m = 9 f ùñ m =
9I

300
This maximizes Mr. Blue’s utility function UB. We may denote this m and f that
optimize UB by mB and fB (to avoid confusion):

fB =
I

300

mB =
9I

300
Note that, we can see from our solution that for every new female police officer
that Mr. Blue hires, Mr. Blue hires nine new male police officers.

(ii) Now let us do the same for Ms. Reed. We can guess that whatever the solution
would be, we must have that m = f , as the UR which determines Ms. Reed’s
preference is symmetric in m and f . Having this in mind, we apply Lagrange
multipliers method. The the constraint function is the same as before

g(m, f ) = 30m + 30 f ´ I

We need to find the points (m, f ) that satisfy the following system of equations

(UR)m = (0.5)m´0.5 f 0.5 = λ(30) = λgm (E1)

(UR) f = (0.5)m0.5 f´0.5 = λ(30) = λg f (E2)

30m + 30 f = I (E3)

for some real number λ. Again, using equation (E1) (or (E2)) we can infer that λ
is non-zero. This means that divide (E1) by (E2) to get

E1
E2

ùñ (1)m´1 f = 1 ùñ m = f

as we predicted! Now we put this into (E3)

30( f ) + 30 f = 60 f = I ùñ f =
I

60
and m =

I
60

We denote these values by mR and fR

fR =
I

60

mR =
I

60

357



So Mr. Blue will hire a higher proportion of male police officers than Ms. Reed as

mB =
9I

300
ą I

60
= mR

for any value of I.

(d) (i) We start by Mr. Blue. Like the previous part, we may assume m and f are
nonzero. The constraint function is now given by

g(m, f ) = 35m + 30 f ´ I

Using the method of Lagrange multipliers, we need to find the points (m, f )
such that

(UB)m = (0.9)m´0.1 f 0.1 = λ(35) = λgm (E1)

(UB) f = (0.1)m0.9 f´0.9 = λ(30) = λg f (E2)

35m + 30 f = I (E3)

For some real number λ. Since m and f are non-zero we can deduce that λ is
non-zero. Thus, we can divide (E1) by (E2) to get

E1
E2

ùñ 9m´1 f =
35
30

=
7
6
ùñ m =

54
7

f

We put this in (E3):

35(
54
7

f ) + 30 f = 300 f = I ùñ f =
I

300

So

m =
54
7

f ùñ m =
9I

350

Let us denote these points by m˚B and f ˚B :

f ˚B =
I

300

m˚B =
9I

350

Note that we can still see that Mr. Blue has a strong bias towards hiring male
officers. However, m˚B ă mB which means that, with the wage gap Mr. Blue
hires less male officers. Since f ˚B = fB, Mr. Blue would hire the same amount of
female officers.

(ii) For Ms. Reed we used to have that mR = fR. Let us see if this changes. The new
constraint function is given by

g(m, f ) = 35m + 30 f ´ I
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The method of Lagrange multipliers tells us that we need to find the points
(m, f ) such that

(UR)m = (0.5)m´0.5 f 0.5 = λ(35) = λgm (E1)

(UR) f = (0.5)m0.5 f´0.5 = λ(30) = λg f (E2)

35m + 30 f = I (E3)

For some real number λ. Like before, we from equation (E1) and the fact that m
and f are non-zero we can infer that λ is non-zero. To find m in terms of f , we
divide (E1) by (E2):

E1
E2

ùñ (1)m´1 f =
35
30

=
7
6
ùñ m =

6
7

f

Note that right away we can see that now Ms. Reed prefers to hire female police
officers. To find m and f in terms of I, we use (E3):

35(
6
7

f ) + 30 f = 60 f = I ùñ f =
I

60

and so
m =

6
7

f ùñ m =
I

70
Let us denote these points by m˚R and f ˚R:

f ˚R =
I

60

m˚R =
I

70

So, because it is cheaper to hire female officers, both hire a higher proportion of
female officers. However, Mr. Blue has such a strong bias that he still hires more male
officers than female officers. To summarize our findings, we can compare them

fB = f ˚B ă m˚R ă f ˚B ă fR = mR = f ˚R ă m˚B ă mB

S-10: Let p f and pc be the price of food and coffee respectively at a given time. Moreover,
let I denote Luzia’s budget at that time (so secretly these parameters depend on time).

Here, unlike question 4, the price of food and coffee as well as the budget may change
over time. Therefore, we keep them as parameters and find the general solution for the
optimal consumption of coffee and food based on these parameters. Our method is the
same, we use the method of Lagrange multipliers. The budget constraint is give by

pcc + p f f = I

which tells us that we can take the constraint function to be

g(c, f ) = pcc + p f f ´ I
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Note that our variables are still c and f not pc, p f , or I (which we recognize as
parameters). Of course, the value of g(c, f ) depends on the choice of these parameters
but at a given time these parameters will be fixed and have numerical values. Similar to
the argument we made in question 4, we can dismiss the case where c or f are zero (see
the solution to question 4 to see why). So let us assume that c and f are non-zero here.
Lagrange Multipliers Theorem tells us that we need to solve

∇u( f , c) = λ∇g(u, c)

for some real number λ. This gives the following system of equations

u f =
1

2
a

f
= λ(p f ) = λg f (E1)

uc =
1

10
= λ(pc) = λgc (E2)

pcc + p f f = I (E3)

Equation (E2) tells us that λ is nonzero. Furthermore, we may assume the prices of the
goods will never be zero (although that would have been great). If we divide equation
(E1) by equation (E2) we will get

10
2
a

f
=

p f

pc
ùñ f =

(
5pc

p f

)2

If we put this into (E3) we find

pcc + p f

(
5pc

p f

)2

= I ùñ c =
I
pc
´ 25pc

p f

We may denote the Marshallian demand functions by

c˚(pc, p f , I) =
Ip f ´ 25p2

c

p f pc

f ˚(pc, p f , I) =

(
10pc

2p f

)2

Note that if we fix pc = 1, p f = 3, and I = 10 as in question 4, we will get the same
answers as we found earlier!

S-11: let pk, pj, and pn denote the prices of Keitu’s, Jorge’s and Nefret’s packages at a
given month, respectively. Moreover, let I be the Alessio’s budget at that month. Then
the budget constraint is given by

pkk + pnn = I

We take the constraint function to be

g(k, j, n) = pkk + pnn´ I
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A similar argument as in the solution of question 7 tells us that we may assume k and n
are non-zero and that we can apply the Lagrange Multipliers Theorem.

$

’

&

’

%

uk = λgk

un = λgn

0 = g(k, n)
ùñ

$

’

&

’

%

n0.2

2k0.5 = λpk
k0.5

5n0.8 = λpn

0 = pkk + pnn´ I

From the first two equations,

λ =
n0.2

2k0.5pk
=

k0.5

5n0.8pn

5npn = 2kpk

k =
5pn

2pk
n

To satisfy the budget constraint,

0 = pkk + pnn´ I = pk

(
5pn

2pk
n
)
+ pnn´ I

I =
7
2

pnn

n =
2I

7pn

k =
5pn

2pk
n =

5pn

2pk

(
2I

7pn

)
=

5I
7pk

So, the optimal consumption is buying 5I
7pk

expansion packs for Keitu, and 2I
7pn

for Nefret.

S-12:

(a) Recall that logarithm functions can only take positive values as an input. So
whenever we have ln(y), we know that y ą 0. This tells us that

ln(k´ 1) ùñ k´ 1 ą 0 ùñ k ą 1
ln(50´ c) ùñ 50´ c ą 0 ùñ c ă 50

Moreover, note that c ą 0 as we cannot buy a non-positive units of chicken (well, in a
way, that is selling chicken which we cannot do here). This means that 0 ă c ă 50
and k ą 1. Since c and k are integers, we have

1 ď c ď 49, k ě 2

So the maximum amount of chicken we can buy is 49 and we need to buy at least 1
chicken based on the utility function. We have to buy at least 2 kraft dinners but
there is no upper limit (based on the utility function alone, of course our budget is
not infinite).
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(b) We can apply the Lagrange Multipliers Theorem, keeping in mind the domain
restrictions that we found above. The budget is expressed mathematically by

pkk + pcc = I

So we can take the constraint function to be g(k, c) = pkk + pcc´ I. Note that g(k, c)
and u(k, c) have continuous partial derivative. We need to find the points (k, c) such
that g(k, c) = 0 (this describes a line) and

∇u(k, c) = λ∇g(k, c)

where λ is a real number. This means

uk(k, c) =
1

k´ 1
= λpk (E1)

uc(k, c) =
2

50´ c
= λpc (E2)

pkk + pcc = I (E3)

Note that uk =
1

k´1 and uc =
2

50´c can never be zero for any value of k and c. This
means that λ, pk, and pc cannot be zero, by equations (E1) and (E2). So we can divide
(E1) by (E2) to get

E1
E2

ùñ 50´ c
2(k´ 1)

=
pk
pc

and so

50´ c =
pk(2k´ 2)

pc
ùñ c = 50´ pk

pc
(2k´ 2)

We put this into (E3) to get

pkk + pc

(
50´ pk(2k´ 2)

pc

)
= I ùñ pkk´ pk(2k´ 2) = I ´ 50pc

ùñ ´ pkk´ 2pk = I ´ 50pc

ùñ ´ pkk = I ´ 50pc + 2pk

ùñ k =
I ´ 50pc + 2pk

´pk

ùñ k =
50pc ´ I

pk
´ 2

Now we put this back in the expression for c to find the Marshallian demand
function only in terms of pk, pc and I (and not k):

c = 50´ pk
pc
(2k´ 2) ùñ c = 50´ pk

pc
(2
(

50pc ´ I
pk

´ 2
)
´ 2)

ùñ c =
6pk
pc

+
2I
pc
´ 50
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So the Marshallian demand functions are as follows:

k˚(pk, pc, I) =
50pc ´ I

pk
´ 2, k˚(pk, pc, I) ě 2

c˚(pk, pc, I) =
6pk
pc

+
2I
pc
´ 50, 1 ď c˚(pk, pc, I) ď 49

(c) To see whether kraft dinner is a normal or inferior good we need to think what
happens to k˚(pk, pc, I) as we increase I while we keep pk and pc fixed. A nice way to
do this is to see what happens we differentiate k˚(pk, pc, I) in terms of I4.

B
BI

k˚(pk, pc, I) = ´ 1
pk

Note that, pk ą 0 which means that ´ 1
pk

is always negative. This means as we
increase the income I, the optimal kraft dinner consumption k˚(pk, pc, I) decreases.
So, kraft dinner is an inferior good!

We do the same for chicken: B
BI

c˚(pk, pc, I) =
2
pc

Since pc ą 0, we must have that 2 1
pc

is always positive. Therefore, as the income I
increases, the optimal chicken consumption c˚(pk, pc, I) increases. So, chicken is a
normal good!

S-13:

(a) Like the previous examples, we use the method of Lagrange multipliers (Theorem
2.5.2 in the text) to find the Marshallian demand functions. The constraint is given by

lpl + apa = D

and the constraint function is given by

g(l, a) = lpl + apa ´D

So g(l, a) = 0 gives us the constraint. Note that ul and up are not defined when l, a or
4l0.5 + 3a0.5 is zero. This means we have to consider the cases where at least one of l
or a is zero and the case where they are non-zero. For now, let us assume that they
are all non-zero. We will consider the other cases later. In this case, ∇u and ∇g are
defined where g(l, a) = 0. The Lagrange Multipliers Theorem tells us that we have to
find the points (l, a) where g(l, a) = 0 and

∇u(l, a) = λ∇g(l, a)

4 This is basically directional derivative.
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for some real number λ. This gives us a system of three equations with three
unknowns l, a and λ5.

ul =

(
1
2
(4l0.5 + 3a0.5)´0.5

)(
4(

1
2

l´0.5)

)
= λ(pl) = λgl (E1)

ua =

(
1
2
(4l0.5 + 3a0.5)´0.5

)(
3(

1
2

a´0.5)

)
= λ(pa) = λga (E2)

lpl + apa = D (E3)

Note that for all values of a and l, ul and ua are non-zero. This implies that from λ,
(pl), and pa are non-zero. So, we can divide (E1) by (E2).

E1
E2

ùñ 4
3

a0.5

l0.5 =
pl
pa

So

a
l
=

(
4
3
¨ pl

pa

)2

a
l
=

9
16

(
pl
pa
)2

a =
9

16
(

pl
pa
)2l

Now we have that found a in terms of pl, pa and l. We put this in (E3):

lpl +

(
9
16

(
pl
pa
)2l
)

pa = D ùñ lpl +
9
16

pl l(
pl
pa
) = D

ùñ lpl

(
1 +

9
16

(
pl
pa
)

)
= D

ùñ l =
D

pl

(
1 +

9
16

(
pl
pa
)

)
ùñ l =

16paD
pl (16pa + 9pl))

So now we have found l in term of pl, pa, and D which is what we want. Let’s do the
same for a:

a =
9
16

(
pl
pa
)2l ùñ a =

9
16

(
pl
pa
)2

 D

pl

(
1 +

9
16

(
pl
pa
)

)


ùñ a =
9plD

pa (16pa + 9pl)

Note that for these values of a and l, u(l, a) ą 0. (If a ą 0 and l ą 0 then u(l, a) ą 0).

Now let us explore the cases where at least one of l or a is zero.

5 plus three parameters pl , pa, and D
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(i) If a = 0, then the utility function u becomes

u(l) = (4l0.5)0.5 = 2l0.25 = 2 4
?

l

We may optimize now by first finding the critical points. Here we assume l ‰ 0.
Otherwise, if l = a = 0 then the utility function u is also zero. Since we are
trying to maximize the utility function we can dismiss this case. We have

d
dl

u(l) = 2(
1
4
)l´0.75, l ą 0

So d
dl u(l) is zero only when l is zero. This function does not attain a maximum

value.

(ii) The case where l = 0 is very similar to case (ii).

These cases do not give us a new candidate to find the Marshallian demand
functions. So the Marshalian demands are given by

l˚(pl, pa, D) =
16paD

pl (16pa + 9pl))

a˚(pl, pa, D) =
9plD

pa (16pa + 9pl)

(b) To categorize Lomanchenko’s Marshalian demand function l˚(pl, pa, D) and
Anthony Joshua’s Marshalian demand function a˚(pl, pa, D) we need to see what
happens to them as we increase D, while we keep pl and pa fixed. A nice way to do
this is to look at partial derivatives of l˚ and a˚ in terms of D6.

B
BD

l˚(pl, pa, D) =
16pa

pl (16pa + 9pl))
B
BD

a˚(pl, pa, D) =
9pl

pa (16pa + 9pl)

Note that since pl and pa are always positive, so B
BD l˚ and B

BD a˚ are always positive.
Thus, l˚ and a˚ increase as we increase D. This tells us that l˚ and a˚ are normal
goods.

6 Here, we are basically using the concept of directional derivative. Taking the partial derivative of l˚ in
terms of D (differentiating in the direction of D) amounts to looking at how l˚ changes as we increase
D.
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(c) Here, we differentiate l˚ in terms of pl

B
Bpl

l˚(pl, pa, D) =
B
Bpl

(
16paD

pl (16pa + 9pl))

)
= (16paD)

B
Bpl

(
1

16pa pl + 9p2
l

)
= (16paD)

B
Bpl

(16pa pl + 9p2
l )
´1

= (16paD)(´1)(16pa pl + 9p2
l )
´2 B
Bpl

(16pa pl + 9p2
l )

= ´(16paD)(16pa pl + 9p2
l )
´2(16pa + 18pl)

=
´(16paD)(16pa + 18pl)

(16pa pl + 9p2
l )

2

Since pl, pa, and D are all positive, B
Bpl

l˚ is negative. Which means that as we increase
pl, l˚ decreases. Equivalently, l˚ increases as pl decreases. This makes sense with our
intuition. If the price for Lomachenko’s tickets pl decreases, then it must be the case
that the demand for Lomachenko’s tickets l˚ increases.

(d) We use the method of Lagrange multipliers to find Liam’s Hicksian demand
functions. The constraint is given by

(4l0.5 + 3a0.5)0.5 = U

where u is a fixed parameter. Therefore

g(l, a) = (4l0.5 + 3a0.5)0.5 ´U

Whereas, the budget d (previously D7) is now a variable that may change (like u in
part (a) when we wanted to find the Marshallian demand functions).

d(l, a) = lpl + apa

Once again, we assume a and l are non-zero. If say a = 0, then the budget function
becomes d(l) = lpl which has global minimum at l = 0 and has no local or global
maximum. Since we want to find the values of a and l that maximize d, we assumes a
is not zero. Similar argument can be made to show that we can safely assume l is
non-zero.

Lagrange Multipliers Theorem tells us that in order to find the points (l, a) that
optimize d, given the constraint g(l, a) = 0, we need to find the points (l, a) such that
g(l, a) = 0 and

∇d(l, a) = λ∇g(l, a)

7 The reason for the changing lower cases u into U is just for ”bookkeeping”, so that we know U is a fixed
parameter. Similarly, turning D into d is to remember that now d is a variable.
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for some real number λ. So, we need to solve the following system of questions.

dl = pl = λ

[(
1
2
(4l0.5 + 3a0.5)´0.5

)(
4(

1
2

l´0.5)

)]
= gl (E1)

da = pa = λ

[(
1
2
(4l0.5 + 3a0.5)´0.5

)(
3(

1
2

a´0.5)

)]
= ga (E2)

U = (4l0.5 + 3a0.5)0.5 (E3)

Here, we want to find a and l in terms of pa, pl and U. Note that we have seen
equation (E1) and (E2) before in part (a), and we know that (E1) divided by (E2) gives

E1
E2

ùñ 4
3

a0.5

l0.5 =
pl
pa

and this means

a = (
3pl
4pa

)2l

We put this in (E3) to get(
4l0.5 + 3

(
(

3pl
4pa

)2l
)0.5

)0.5

= U ùñ
(

4l0.5 + 3(
3pl
4pa

)l0.5
)0.5

= U

ùñ
(

l0.5(4 +
9pl
4pa

)

)0.5

= U

ùñ l0.5(4 +
9pl
4pa

) = U2

ùñ l0.5 =
U2

(4 +
9pl
4pa

)

ùñ l0.5 =
4U2pa

16pa + 9pl

ùñ l =
(

4U2pa

16pa + 9pl

)2

Now it remains to find a in terms of pa, pl and U.

a = (
3pl
4pa

)2l ùñ a = (
3pl
4pa

)2
(

4U2pa

16pa + 9pl

)2

ùñ a =

(
3U2pl

16pa + 9pl

)2

We need to check what happens when l or a is zero.

(i) If l = 0 then
d(l, a) = (0)pl + apa ùñ d(a) = apa
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To find the critical points we differentiate d in terms of a

d
da

d(a) = pa

Note that pa is always positive. This means that d(a) = apa does not achieve a
local maximum.

(ii) The case where a = 0 is very similar and does not lead to a local maximum.

Therefore, Hicksian demand functions are given by

ah(pl, pa, U) =

(
3U2pl

16pa + 9pl

)2

lh(pl, pa, U) =

(
4U2pa

16pa + 9pl

)2

(e) We wish to understand how ah changes as pa changes. To do this, as usual, we
compute Bah

Bpa
:

Bah

Bpa
=
B
Bpa

(
3U2pl

16pa + 9pl

)2

Bah

Bpa
= (3U2pl)

B
Bpa

(
1

16pa + 9pl

)2

Bah

Bpa
= (3U2pl)(´2)(16pa + 9pl)

´3 B
Bpa

(16pa + 9pl)

Bah

Bpa
= (3U2pl)(´2)(16pa + 9pl)

´3(16)

Bah

Bpa
=

´96U2pl
(16pa + 9pl)3

So Bah

Bpa
is always negative. This means that as the price for Anthony Joshua’s tickets

pa increases, Anthony’s Hicksian demand function ah decreases.

Solutions to Exercises 3.1 — Jump to TABLE OF CONTENTS

S-1:

x

y

1 3

0.75
1.25

x

y

1 3

0.75
1.25
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The diagram on the left shows a rectangle with area 2ˆ 1.25 = 2.5 square units. Since the
blue-shaded region is entirely inside this rectangle, the area of the blue-shaded region is
no more than 2.5 square units.

The diagram on the right shows a rectangle with area 2ˆ 0.75 = 1.5 square units. Since
the blue-shaded region contains this entire rectangle, the area of the blue region is no less
than 1.5 square units.

So, the area of the blue-shaded region is between 1.5 and 2.5 square units.

Remark: we could also give an obvious range, like “the shaded area is between zero and
one million square units.” This would be true, but not very useful or interesting.

S-2:

Solution 1: One naive way to solve this is to simply use the same method as Question 1.

x

y

1 2 3 4

0.75
1.25

0.25

2.25
1.75

x

y

1 2 3 4

0.75
1.25

0.25

2.25
1.75

The rectangle on the left has area 3ˆ 2.25 = 6.75 square units, and encompasses the
entire shaded region. The rectangle on the right has area 3ˆ 0.25 = 0.75 square
units, and is entirely contained inside the blue-shaded region. So, the area of the
blue-shaded region is between 0.75 and 6.75 square units.

This is a legitimate approximation, but we can easily do much better. The shape of
this graph suggests that using the areas of three rectangles would be a natural way
to improve our estimate.

Solution 2: Let’s use these rectangles instead:

x

y

1 2 3 4

0.75
1.25

0.25

2.25
1.75

x

y

1 2 3 4

0.75
1.25

0.25

2.25
1.75

In the left picture, the red area is (1ˆ 1.25) + (1ˆ 2.25) + (1ˆ 0.75) = 4.25 square
units. In the right picture, the red area is (1ˆ 0.75) + (1ˆ 1.75) + (1ˆ 0.25) = 2.75
square units. So, the blue shaded area is between 2.75 and 4.25 square units.
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S-3: Remark: in the solution below, we find the appropriate approximation using trial
and error. Later we will use a more systematic approach.

Try 1: First, we can try by using a single rectangle as an overestimate, and a single
rectangle as an underestimate.

x

y

y = 1
2x

1 3

1/2

1/8

x

y

y = 1
2x

1 3

1/2

1/8

The area under the curve is less than the area of the rectangle on the left (2ˆ 1
2 = 1)

and greater than the area of the rectangle on the right (2ˆ 1
8 = 1

4 ). So, the area is in

the range
(

1
4 , 1
)

. Unfortunately, this range is too big–we need our range to have
length at most 0.2. So, we refine our approximation by using more rectangles.

Try 2: Let’s try using two rectangles each for the upper and lower bounds.

x

y

y = 1
2x

1 2 3

1/2

1/4

1/8

x

y

y = 1
2x

1 32

1/2

1/4

1/8

The rectangles in the left picture have area
(

1ˆ 1
2

)
+
(

1ˆ 1
4

)
= 3

4 , and the

rectangles in the right picture have area
(

1ˆ 1
4

)
+
(

1ˆ 1
8

)
= 3

8 . So, the area under

the curve is in the interval
(3

8 , 3
4

)
. The length of this interval is 3

8 , and
3
8 ą 3

15 = 1
5 = 0.2. (Indeed, 3

8 = 0.375 ą 0.2.) Since the length of our interval is still
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bigger than 0.2, we need even more rectangles.

Try 3: Let’s go ahead and try four rectangles each for the upper and lower estimates.

x

y

y = 1
2x

1 2 3

1/2

1/4
1/(4

?
2)

1/(2
?

2)

1/8
x

y

y = 1
2x

1 2 3

1/2

1/4
1/(4

?
2)

1/(2
?

2)

1/8

The area of the rectangles on the left is:(
1
2
ˆ 1

2

)
+

(
1
2
ˆ 1

2
?

2

)
+

(
1
2
ˆ 1

4

)
+

(
1
2
ˆ 1

4
?

2

)
=

3
8

[
1 +

1?
2

]
,

and the area of the rectangles on the right is:(
1
2
ˆ 1

2
?

2

)
+

(
1
2
ˆ 1

4

)
+

(
1
2
ˆ 1

4
?

2

)
+

(
1
2
ˆ 1

8

)
=

3
8

[
1
2
+

1?
2

]
.

So, the area under the curve is in the interval
(

3
8

[
1
2 +

1?
2

]
, 3

8

[
1 + 1?

2

])
. The length

of this interval is 3
16 , and 3

16 ă 3
15 = 1

5 = 0.2, as desired. (Indeed, 3
16 = 0.1875 ă 0.2.)

Note, if we choose any value in the interval
(

3
8

[
1
2 +

1?
2

]
, 3

8

[
1 + 1?

2

])
as an

approximation for the area under the curve, our error is no more than 0.2.

S-4:

(a) Two possible answers are
7
ÿ

i=3

i and
5
ÿ

i=1

(i + 2). The first has simpler terms (i versus

i + 2), while the second has simpler indices (we often like to start at i = 1). Neither is
objectively better than the other, but depending on your purposes you might find
one more useful.

(b) The terms of this sum are each double the terms of the sum from part (a), so two

possible answers are
7
ÿ

i=3

2i and
5
ÿ

i=1

(2i + 4).

We often want to write a sum that involves even numbers: it will be useful for you to
remember that the term 2i (with index i) generates evens.

(c) The terms of this sum are each one more than the terms of the sum from part (b), so

two possible answers are
7
ÿ

i=3

(2i + 1) and
5
ÿ

i=1

(2i + 5).
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In the last part, we used the expression 2i to generate even numbers; 2i + 1 will
generate odds. So will the index 2i + 5, and indeed, 2i + k for any odd number k. The
choice of what you add will depend on the bounds of i.

(d) This sum adds up the odd numbers from 1 to 15. From Part (c), we know that the
formula 2i + 1 is a simple way of generating odd numbers. Since our first term
should be 1 and our last term should be 15, if we use

ř

(2i + 1), then i should run

from 0 to 7. So, one way of expressing our sum in sigma notation is
7
ÿ

i=0

(2i + 1).

Sometimes we like our sum to start at i = 1 instead of i = 0. If this is our desire, we
can use 2i´ 1 as our terms, and let i run from 1 to 8. This gives us another way of

expressing our sum:
8
ÿ

i=1

(2i´ 1).

S-5:

(a) The denominators are successive powers of three, so one way of writing this is
4
ÿ

i=1

1
3i .

Equivalently, the terms we’re adding are powers of 1/3, so we can also write
4
ÿ

i=1

(
1
3

)i
.

(b) This sum is obtained from the sum in (a) by multiplying each term by two, so we can

write
4
ÿ

i=1

2
3i or

4
ÿ

i=1

2
(

1
3

)i
.

(c) The difference between this sum and the previous sum is its alternating sign,
minus-plus-minus-plus. This behaviour appears when we raise a negative number to
successive powers. We can multiply each term by (´1)i, or we can slip a negative

into the number that is already raised to the power i:
4
ÿ

i=1

(´1)i 2
3i , or

4
ÿ

i=1

2
(´3)i .

(d) This sum is the negative of the sum in part (c), so we can simply multiply each term

by negative one:
4
ÿ

i=1

(´1)i+1 2
3i , or

4
ÿ

i=1

´ 2
(´3)i .

Be careful with the second form: a common mistake is to think that ´ 2
(´3)i =

2
3i , but

these are not the same.

S-6:

(a) If we re-write the second term as 3
9 instead of 1

3 , our sum becomes:

1
3
+

3
9
+

5
27

+
7

81
+

9
243
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The numerators are the first five odd numbers, and the denominators are the first
five positive powers of 3. We learned how to generate odd numbers in Question 4,
and we learned how to generate powers of three in Question 5. Combining these, we

can write our sum as
5
ÿ

i=1

2i´ 1
3i .

(b) The denominators of these terms differ from the denominators of part (a) by
precisely two, while the numerators are simply 1. So, we can modify our previous

answer:
5
ÿ

i=1

1
3i + 2

.

(c) Let’s re-write the sum to make the pattern clearer.

1000 + 200 + 30 + 4 + 1
2 + 3

50 + 7
1000

= 1 ¨ 1000 + 2 ¨ 100 + 3 ¨ 10 + 4
1 + 5

10 + 6
100 + 7

1000

= 1 ¨ 103 + 2 ¨ 102 + 3 ¨ 101 + 4 ¨ 100 + 5 ¨ 10´1 + 6 ¨ 10´2 + 7 ¨ 10´3

= 1 ¨ 104´1 + 2 ¨ 104´2 + 3 ¨ 104´3 + 4 ¨ 104´4 + 5 ¨ 104´5 + 6 ¨ 104´6 + 7 ¨ 104´7

If we let the red numbers be our index i, this gives us the expression
7
ÿ

i=1

i ¨ 104´i .

Equivalently, we can write
7
ÿ

i=1

i
10i´4 .

S-7:

(a) Using Theorem 3.1.6.a in the text, with a = 1, r = 3
5 and n = 100:

100
ÿ

i=0

(
3
5

)i
=

1´ (3
5

)101

1´ 3
5

=
5
2

[
1´

(
3
5

)101
]

(b) We want to use Theorem 3.1.6, part (a) again, but our sum doesn’t start at
(3

5

)0
= 1.

We have two options: factor out the leading term, or use the difference of two sums
that start where we want them to.

Solution 1: In this solution, we’ll make our sum start at 1 by factoring out the
leading term. We wrote our work out the long way (expanding the sigma into
“dot-dot-dot” notation) for clarity, but it’s faster to do the algebra in sigma
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notation all the way through.

100
ÿ

i=50

(
3
5

)i
=

(
3
5

)50

+

(
3
5

)51

+

(
3
5

)52

+ ¨ ¨ ¨+
(

3
5

)100

=

(
3
5

)50
[

1 +
(

3
5

)
+

(
3
5

)2

+ ¨ ¨ ¨+
(

3
5

)50
]

=

(
3
5

)50 1´ (3
5

)51

1´ 3
5

=
5
2

(
3
5

)50
[

1´
(

3
5

)51
]

.

Solution 2: In this solution, we write our given expression as the difference of two
sums, both starting at i = 0.

100
ÿ

i=50

(
3
5

)i
=

100
ÿ

i=0

(
3
5

)i
´

49
ÿ

i=0

(
3
5

)i

=
1´ (3

5

)101

1´ 3
5

´ 1´ (3
5

)50

1´ 3
5

=
5
2

[(
3
5

)50

´
(

3
5

)101
]

=
5
2

(
3
5

)50
[

1´
(

3
5

)51
]

.

(c) Before we can use the equations in Theorem 3.1.6, we’ll need to do a little
simplification.

10
ÿ

i=1

(
i2 ´ 3i + 5

)
=

10
ÿ

i=1

i2 +
10
ÿ

i=1

´3i +
10
ÿ

i=1

5

=
10
ÿ

i=1

i2 ´ 3
10
ÿ

i=1

i + 5
10
ÿ

i=1

1

=
1
6
(10)(11)(21)´ 3

(
1
2
(10 ¨ 11)

)
+ 5 ¨ 10

= 270

(d) As in part (c), we’ll simplify first. The first part (shown here in red) is a geometric
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sum, but it does not start at 1 =
(

1
e

)0
.

b
ÿ

n=1

[(
1
e

)n
+ en3

]
=

b
ÿ

n=1

(
1
e

)n
+

b
ÿ

n=1

en3

=
b
ÿ

n=0

(
1
e

)n
´ 1 + e

b
ÿ

n=1

n3

=
1´

(
1
e

)b+1

1´ 1
e

´ 1 + e
[

1
2

b(b + 1)
]2

=

1
e ´

(
1
e

)b+1

1´ 1
e

+ e
[

1
2

b(b + 1)
]2

=
1´

(
1
e

)b

e´ 1
+

e
4
[b(b + 1)]2

S-8:

(a) The two pieces are very similar, which we can see by changing the index, or
expanding them out:

100
ÿ

i=50

(i´ 50) +
50
ÿ

i=0

i = (0 + 1 + 2 + ¨ ¨ ¨+ 50) + (0 + 1 + 2 + ¨ ¨ ¨+ 50)

= (1 + 2 + ¨ ¨ ¨+ 50) + (1 + 2 + ¨ ¨ ¨+ 50)
= 2 (1 + 2 + ¨ ¨ ¨+ 50)

= 2
50
ÿ

i=1

i

= 2
(

50 ¨ 51
2

)
= 50 ¨ 51 = 2550

(b) If we expand (i´ 5)3 = i3 ´ 15i2 + 75i´ 225, we can break the sum into four parts,
and evaluate each separately. However, it is much simpler to change the index and
make the term (i´ 5)3 into i3.

100
ÿ

i=10

(i´ 5)3 = 53 + 63 + 73 + ¨ ¨ ¨+ 953
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We have a formula to evaluate the sum of cubes if they start at 1, so we turn our
expression into the difference of two sums starting at 1:

=
[
13 + 23 + 33 + 43 + 53 + 63 + 73 + ¨ ¨ ¨+ 953

]
´
[
13 + 23 + 33 + 43

]
=

95
ÿ

i=1

i3 ´
4
ÿ

i=1

i3

=

[
1
2
(95)(96)

]2

´
[

1
2
(4)(5)

]2

.

(c) Notice every two terms cancel with each other, since the sum is (´1) + (+1), etc.
Then the terms n = 1 through n = 10 cancel, and we’re left only with the final term,
(´1)11 = ´1.

Written out more explicitly:

11
ÿ

n=1

(´1)n = ´1 + 1´ 1 + 1´ 1 + 1´ 1 + 1´ 1 + 1´ 1

= [´1 + 1] + [´1 + 1] + [´1 + 1] + [´1 + 1] + [´1 + 1]´ 1
= 0 + 0 + 0 + 0 + 0´ 1 = ´1.

(d) For every integer n, 2n + 1 is odd, so (´1)2n+1 = ´1. Then
11
ÿ

n=2

(´1)2n+1 =
11
ÿ

n=2

´1 = ´10.

S-9: The index of the sum runs from 1 to 4: the first, second, third, and fourth rectangles.
So, we have four rectangles in our Riemann sum. Let’s start by drawing in the intervals

along the x-axis taken up by these four rectangles. Note each has the same width:
b´ a

4
.

x

y

ba

y = f (x)

In a right Riemann sum, the height of each rectangle is given by the y-value of the
function at the right endpoint of the interval. So, now let’s find the height of the function
at the right endpoints of each of the four intervals.
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x

y

ba

y = f (x)

Now we make rectangles with the indicated heights.

x

y

ba

y = f (x)

S-10: In general, the right Riemann sum for the integral
şb

a f (x) dx is of the form

n
ÿ

k=1

f
(

a + k
b´ a

n

)
b´ a

n

• To get the limits of summation to match the given sum, we need n = 4.

n
ÿ

k=1

f
(

a + k
b´ a

n

)
b´ a

n
=

4
ÿ

k=1

f (1 + k) ¨ 1

• Then to get the factor multiplying f to match that in the given sum, we need
b´a

n = 1, so b´ a = 4.

4
ÿ

k=1

f
(

a + k
b´ a

n

)
¨ b´ a

n
=

4
ÿ

k=1

f (1 + k) ¨ 1

377



• Finally, we need the argument of f to match that in the given sum.

4
ÿ

k=1

f

(
a + k

b´ a
n

)
¨ 1 =

4
ÿ

k=1

f
(

1 + k
)
¨ 1

Using the values we’ve already found:

1 + k = a + k
b´ a

n

= a + k
4
4

= a + k
1 = a

Since b´ a = 4 and a = 1, finally we find b = 5.

S-11: The general form of a right Riemann sum is
n
ÿ

i=1

∆x ¨ f (a + i∆x), where ∆x = b´a
n is

the width of each rectangle, and f (a + i∆x) is the height.

There are different ways to interpret the given sum as a Riemann sum. The most obvious
is given in Solution 1. You may notice that we make some convenient assumptions in this
solution about values for ∆x and a. Other visualizations of the sum arise from making
more exotic choices. Some of these are explored in Solutions 2 and 3.

All cases have three rectangles, and the three rectangles will have the same areas: 98, 162,
and 242 square units, respectively. This is because the terms of the given sum simplify to
98 + 162 + 242.

Solution 1:

• Because the index runs from 1 to 3, there are three intervals: n = 3.

• Looking at our sum, it seems reasonable to interpret ∆x = 2. Then, since
n = 3, we conclude b´a

3 = 2, hence b´ a = 6.

• If ∆x = 2, then f (a + i∆x) = (5 + 2i)2. So, using 2 = ∆x, we can let
f (a + 2i) = (5 + 2i)2. This fits with the function f (x) = x2, and a = 5.

• Since b´ a = 6, and a = 5, this tells us b = 11

To sum up, we can interpret the Riemann sum as a right Riemann sum, with three
intervals, of the function f (x) = x2 from x = 5 to x = 11.
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x

y

5 7 9 11

49

81

121

y = x2

Solution 2: We could have chosen a different value for ∆x.

• The index of the sum runs from 1 to 3, so we have n = 3.

• We didn’t have to interpret ∆x as 2–that was just the path of least resistance.
We could have chosen it to be any other number–for the sake of argument,
let’s say ∆x = 10. (Positive numbers are easiest to interpret, but negatives are
technically allowed as well.)

• Then 10 = b´a
n = b´a

3 , so b´ a = 30.

• Let’s match up the terms of the sum given in the problem to the terms in the
definition of a right Riemann sum:

∆x ¨ f (a + i ¨ ∆x) = 2 ¨ (5 + 2i)2

10 ¨ f (a + 10i) = 2 ¨ (5 + 2i)2

f (a + 10i) =
1
5
¨ (5 + 2i)2

f (a + 10i) =
1
5
¨
(

5 +
1
5
¨ 10i

)2

• The easiest value of a in this case is a = 0. Then f (10i) = 1
5 ¨
(

5 + 1
5 ¨ 10i

)2
, so

f (x) = 1
5 ¨
(

5 + 1
5 ¨ x

)2
.

• If a = 0 and b´ a = 30, then b = 30.

• To sum up: n = 3, a = 0, b = 30, ∆x = 10, and f (x) = 1
5 ¨
(
5 + x

5

)2.
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x

y

10 20 30

49
5

81
5

121
5

y = 1
5

(
5 + x

5

)2

By changing ∆x, we changed the widths of the rectangles. The rectangles in this
picture are wider and shorter than the rectangles in Solution 1. Their areas are
the same: 98, 162, and 242.

Solution 3: We could have chosen a different value of a.

• Suppose ∆x = 2, but we don’t assume a = 5. We could have chosen a to be
any number–say, a = 1.

• Let’s match up what we’re given in the problem to what we’re given as a
definition:

∆x ¨ f (a + i ¨ ∆x) = 2 ¨ (5 + 2i)2

2 ¨ f (1 + 2i) = 2 ¨ (5 + 2i)2

f (1 + 2i) = (5 + 2i)2

f (1 + 2i) = (4 + 1 + 2i)2

• Since f (1 + 2i) = (4 + 1 + 2i)2, we have f (x) = (4 + x)2

• Since a = 1 and b´a
3 = 2, in this case b = 7.

• To sum up: n = 3, a = 1, b = 7, ∆x = 2, and f (x) = (4 + x)2.

380



x

y

1 3 5 7

49

81

121

y = (4 + x)2

This picture is a lot like the picture in Solution 1, but shifted to the left. By
changing a, we changed the left endpoint of our region.

S-12: Since there are four terms in the sum, n = 4. (Note the sum starts at k = 0, instead

of k = 1.) Since the function is multiplied by 1, 1 = ∆x =
b´ a

n
=

b´ a
4

, hence b´ a = 4.

The heights of the rectangles are determined when x = 1.5, 2.5, 3.5, and 4.5. These
x-values correspond to the right endpoint of each interval.

x

y

f (1.5)

1.5

f (2.5)

2.5

f (3.5)

3.5

f (4.5)

4.5

Then a = 0.5 and b = 4.5. Therefore:
3
ř

k=0
f (1.5 + k) ¨ 1 is a right Riemann sum on the
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interval [0.5, 4.5] with n = 4.

S-13: The area in question is a triangle with base 5 and height 5, so its area is
25
2

.

x

y

y = x
5

5

5

S-14:

There is a positive and a negative portion of this area. The positive area is a triangle with

base 5 and height 5, so area
25
2

square units. The negative area is a triangle with base 2

and height 2, so negative area
4
2
= 2 square units. So, the net area is

25
2
´ 4

2
=

21
2

square
units.

x

y

y = x
5

5

5

2

2

S-15: In general, the right Riemann sum is given by

n
ÿ

i=1

f
(

a + i∆x
)

∆x , where ∆x =
b´ a

n
.

In this problem we are told that f (x) = x8, a = 5, b = 15 and n = 50, so that
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∆x = b´a
n = 1

5 and the desired Riemann sum is:

50
ÿ

i=1

(
5 +

i
5

)8
¨ 1

5

S-16: In the given integral, the domain of integration runs from a = ´1 to b = 7. So, we
have ∆x = (b´a)

n = (7´(´1))
n = 8

n . The left-hand end of the first subinterval is at a = ´1.
The right Riemann sum with n intervals is:

n
ÿ

i=1

f (a + i∆x)∆x =
n
ÿ

i=1

f
(
´1 + i

8
n

)
8
n

Now we simply take the limit as n goes to infinity.

ż 7

´1
f (x) dx = lim

nÑ8

[
n
ÿ

i=1

f
(
´1 +

8i
n

)
8
n

]

S-17: We identify the given sum as the right Riemann sum
n
ř

i=1
f (a + i∆x)∆x, with a = 0

(which is specified in the statement of the question). Since 4
n is multiplied in every term,

and is also multiplied by i, we let ∆x = 4
n . Then a + i∆x = 4i

n and f (x) = sin2(2 + x). So,
b = a + n∆x = 0 + n ¨ 4

n = 4.

Remark: since a is specified, and f is given simply as f , we don’t have the proliferation of
answers we saw in Question 11.

S-18: The given sum is of the form

lim
nÑ8

n
ÿ

k=1

k
n2

c

1´ k2

n2 = lim
nÑ8

n
ÿ

k=1

(
1
n

)
k
n

d

1´
(

k
n

)2

= lim
nÑ8

n
ÿ

k=1

∆x f (a + k∆x)

with ∆x = 1
n , a = 0, k

n = a + k∆x and f (x) = x
?

1´ x2.

We can check our answer: since a = 0 and b = 1, the right hand side is the definition of
ş1

0 f (x) dx.

S-19: As i ranges from 1 to n, 3i/n range from 3/n to 3 with jumps of ∆x = 3/n, so this is

lim
nÑ8

n
ÿ

i=1

3
n

e´i/n cos(3i/n) = lim
nÑ8

n
ÿ

i=1

f (a + i∆x)∆x =

ż b

a
f (x) dx
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where a + i∆x = 3i/n, f (x) = e´x/3 cos(x), a = 0 and b = 3. Thus

lim
nÑ8

n
ÿ

i=1

3
n

e´i/n cos(3i/n) =
ż 3

0
e´x/3 cos(x) dx

S-20: As i ranges from 1 to n, the exponent i
n ranges from 1

n to 1 with jumps of ∆x = 1
n .

So let’s try a + i∆x = i
n , ∆x = 1

n . Then:

Rn =
n
ÿ

i=1

iei/n

n2 =
n
ÿ

i=1

i
n

ei/n 1
n
=

n
ÿ

i=1

(a + i∆x)ea+i∆x∆x =
n
ÿ

i=1

f (a + i∆x)∆x

with f (x) = xex, and the limit

lim
nÑ8

Rn = lim
nÑ8

n
ÿ

i=1

f (a + i∆x)∆x =

ż b

a
f (x) dx

Since we chose a + i∆x = i
n = 0 + i∆x, we let a = 0. Then 1

n = ∆x = b´a
n = b

n tells us
b = 1. Thus,

lim
nÑ8

Rn =

ż 1

0
xex dx .

S-21: We can make different choices for ∆x and a. Some of the more straightforward
choices are shown below.

Choice #1: If we set ∆x = 2
n and a + i∆x = 2i

n , i.e. a = 0, then

lim
nÑ8

( n
ÿ

i=1

e´1´2i/n ¨ 2
n

)
= lim

nÑ8

( n
ÿ

i=1

e´1´(a+i∆x)∆x
)

= lim
nÑ8

( n
ÿ

i=1

f (a + i∆x)∆x
)

with f (x) = e´1´x

=

ż b

a
f (x) dx with a = 0 and b = 2

=

ż 2

0
e´1´x dx
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Choice #2: If we set ∆x = 2
n and a + i∆x = 1 + 2i

n , i.e. a = 1, then

lim
nÑ8

( n
ÿ

i=1

e´1´2i/n ¨ 2
n

)
= lim

nÑ8

( n
ÿ

i=1

e´(a+i∆x)∆x
)

= lim
nÑ8

( n
ÿ

i=1

f (a + i∆x)∆x
)

with f (x) = e´x

=

ż b

a
f (x) dx with a = 1 and b = 3

=

ż 3

1
e´x dx

Choice #3: If we set ∆x = 1
n and a + i∆x = i

n , i.e. a = 0, then

lim
nÑ8

( n
ÿ

i=1

e´1´2i/n ¨ 2
n

)
= lim

nÑ8

( n
ÿ

i=1

e´1´2(a+i∆x) 2∆x
)

= lim
nÑ8

( n
ÿ

i=1

f (a + i∆x)∆x
)

with f (x) = 2e´1´2x

=

ż b

a
f (x) dx with a = 0 and b = 1

= 2
ż 1

0
e´1´2x dx

Choice #4: If we set ∆x = 1
n and a + i∆x = 1

2 +
i
n , i.e. a = 1

2 , then

lim
nÑ8

( n
ÿ

i=1

e´1´2i/n ¨ 2
n

)
= lim

nÑ8

( n
ÿ

i=1

e´2(a+i∆x) 2∆x
)

= lim
nÑ8

( n
ÿ

i=1

f (a + i∆x)∆x
)

with f (x) = 2e´2x

=

ż b

a
f (x) dx with a =

1
2

and b =
3
2

= 2
ż 3/2

1/2
e´2x dx

S-22: This is similar to the familiar form of a geometric sum, but the powers go up by
threes. So, we make a subsitution. If x = r3, then:

1 + r3 + r6 + r9 + ¨ ¨ ¨+ r3n = 1 + x + x2 + x3 + ¨ ¨ ¨+ xn

Now, using Equation 3.1.3 in the text,

1 + x + x2 + x3 + ¨ ¨ ¨+ xn =
xn+1 ´ 1

x´ 1
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Substituting back in x = r3, we find our sum is equal to
(r3)n+1 ´ 1

r3 ´ 1
, or

r3n+3 ´ 1
r3 ´ 1

.

S-23: The sum does not start at 1, so we need to do some algebra. We can either factor
out the first term, or subtract off the initial terms that are missing.

Solution 1: If we factor out r5, then what’s left fits the form of Equation 3.1.3 in the text:

r5 + r6 + r7 + ¨ ¨ ¨+ r100 = r5
[
1 + r + r2 + ¨ ¨ ¨+ r95

]
= r5

(
r96 ´ 1
r´ 1

)
.

Solution 2: We know how to evaluate sums of this form if they start at 1, so we re-write
our sum as follows:

r5 + r6 + r7 + ¨ ¨ ¨+ r100 =
(

1 + r + r2 + r3 + r4 + r5 + ¨ ¨ ¨+ r100
)
´
(

1 + r + r2 + r3 + r4
)

=
r101 ´ 1

r´ 1
´ r5 ´ 1

r´ 1

=
r101 ´ 1´ r5 + 1

r´ 1
=

r101 ´ r5

r´ 1
= r5

(
r96 ´ 1
r´ 1

)
.

S-24: Recall that

|x| =
#

´x if x ď 0
x if x ě 0

so that

|2x| =
#

´2x if x ď 0
2x if x ě 0

To picture the geometric figure whose area the integral represents observe that

• at the left hand end of the domain of integration x = ´1 and the integrand
|2x| = | ´ 2| = 2 and

• as x increases from ´1 towards 0, the integrand |2x| = ´2x decreases linearly, until
• when x hits 0 the integrand hits |2x| = |0| = 0 and then
• as x increases from 0, the integrand |2x| = 2x increases linearly, until
• when x hits +2, the right hand end of the domain of integration, the integrand hits
|2x| = |4| = 4.

So the integral
ş2
´1 |2x| dx is the area of the union of the two shaded triangles (one of base
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1 and of height 2 and the other of base 2 and height 4) in the figure on the right below and

ż 2

´1
|2x| dx =

1
2
ˆ 1ˆ 2 +

1
2
ˆ 2ˆ 4 = 5

x

y

−1 2

2

4

S-25: The area we want is two triangles, both above the x-axis. Each triangle has base 4

and height 4, so the total area is 2 ¨
(

4 ¨ 4
2

)
= 16.

x

y

y = |t´ 1|

51´3

4

If you had a hard time sketching the function, recall that the absolute value of a number
leaves it unchanged if it is positive or zero, and flips the sign if it is negative. So, when
t´ 1 ě 0 (that is, when t ě 1), our function is simply f (t) = |t´ 1| = t´ 1. On the other
hand, when t = 1 is negative (that is, when t ă 1), the absolute value changes the sign, so
f (t) = |t´ 1| = ´(t´ 1) = ´t + 1.

S-26: The area we want is a trapezoid with base (b´ a) and heights a and b, so its area is
(b´ a)(b + a)

2
=

b2 ´ a2

2
.
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x

y

y = x

b

b

a

a

Instead of using a formula for the area of a trapezoid, you can find the blue area as the
area of a triangle with base and height b, minus the area of a triangle with base and
height a.

S-27: The area is negative. The shape is a trapezoid with base length (b´ a) and heights
0´ a = ´a and 0´ b = ´b (note: those are nonnegative numbers), so its area is
(b´ a)(´b´ a)

2
=
´b2 + a2

2
. Since the shape is below the x-axis, we change its sign.

Thus, the integral evaluates to
b2 ´ a2

2
.

x

y

y = xa

a

b

b

The signs can be a little hard to keep track of. The base of our trapezoid is |a´ b|; since
b ą a, this is b´ a. The heights of the trapezoid are |a| and |b|; since these are both
negative, |a| = ´a and |b| = ´b.

We note that this is the same result as in Question 26.

S-28: If y =
?

16´ x2, then y is nonnegative, and y2 + x2 = 16. So, the graph
y =

?
16´ x2 is the upper half of a circle of radius 4. Since x only runs from 0 to 4, we

have a quarter of a circle of radius 4. Then the area under the curve is
1
4
[
π ¨ 42] = 4π.
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x

y

y =
?

16´ x2

S-29: Here is a sketch the graph of f (x).

x

y

1 3

1 y = f(x)

There is a linear increase from x = 0 to x = 1, followed by a constant. Using the
interpretation of

ş3
0 f (x) dx as the area between y = f (x) and the x–axis with x between 0

and 3, we can break this area into:

•
ş1

0 f (x) dx: a right-angled triangle of height 1 and base 1 and hence area 0.5.

•
ş3

1 f (x) dx: a rectangle of height 1 and base 2 and hence area 2.

Summing up:
ş3

0 f (x) dx = 2.5.

S-30: The car’s speed increases with time. So its highest speed on any time interval
occurs at the right hand end of the interval and the best possible upper estimate for the
distance traveled is given by the right Riemann sum with ∆x = 0.5, which is[

v(0.5) + v(1.0) + v(1.5) + v(2.0)
]ˆ 0.5 =

[
14 + 22 + 30 + 40

]ˆ 0.5 = 53 m

S-31: There is a key detail in the statement of Question 30: namely, that the car is
continuously accelerating. So, although we don’t know exactly what’s going on in
between our brief snippets of information, we know that the car is not going any faster
during an interval than at the end of that interval. Therefore, the car certainly travelled
no farther than our estimation.

We ask this question in order to point out an important detail. If we did not have the
information that the car was continuously accelerating, we would not be able to give a
certain upper bound on its distance travelled. It would be possible that, when the car is
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not being observed (for example, when t = 0.25), it is going much faster than when it is
being observed.

S-32:

Solution #1: Set a + i∆x = ´2 + 2i
n . Then a = ´2 and b = 0 and ∆x = 2

n . So

lim
nÑ8

n
ÿ

i=1

2
n

d

4´
(
´2 +

2i
n

)2

= lim
nÑ8

n
ÿ

i=1

f (a + i∆x)∆x with f (x) =
a

4´ x2 and ∆x =
2
n

=

ż 0

´2

a

4´ x2 dx

For the integral
ş0
´2

?
4´ x2 dx, y =

?
4´ x2 is equivalent to x2 + y2 = 4, y ě 0. So

the integral represents the area between the upper half of the circle x2 + y2 = 4
(which has radius 2) and the x-axis with ´2 ď x ď 0, which is a quarter circle with
area 1

4 ¨ π 22 = π.

x

y

y =
?

4´ x2

´2

Solution #2: Set a + i∆x = 2i
n . Then a = 0 and b = 2 and ∆x = 2

n . So

lim
nÑ8

n
ÿ

i=1

2
n

d

4´
(
´2 +

2i
n

)2

= lim
nÑ8

n
ÿ

i=1

f (a + i∆x)∆x with f (x) =
b

4´ (´2 + x)2, ∆x =
2
n

=

ż 2

0

b

4´ (´2 + x)2 dx

For the integral
ş2

0

a

4´ (´2 + x)2 dx , y =
a

4´ (x´ 2)2 is equivalent to
(x´ 2)2 + y2 = 4, y ě 0. So the integral represents the area between the upper half
of the circle (x´ 2)2 + y2 = 4 (which is centered at (2, 0) and has radius 2) and the
x-axis with 0 ď x ď 2, which is a quarter circle with area 1

4 ¨ π 22 = π.
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x

y

y =
a

4´ (x´ 2)2

2

S-33: We divide into n intervals so that ∆x = b´a
n = 3

n and a + i∆x = 3i
n . The right

Riemann sum is therefore:

Rn =
n
ÿ

i=1

f (a + i∆x)∆x =
n
ÿ

i=1

[
7 +

(3i)3

n3

]
3
n
=

n
ÿ

i=1

[
21
n

+
81 i3

n4

]

To calculate the sum:

Rn =

(
21
n

n
ÿ

i=1

1

)
+

(
81
n4

n
ÿ

i=1

i3

)

=

(
21
n
ˆ n
)
+

(
81
n4 ˆ

n4 + 2n3 + n2

4

)
= 21 +

81
4
(1 + 2/n + 1/n2)

To evaluate the limit exactly, we take n Ñ 8. The expressions involving 1/n vanish
leaving:

ż 3

0
(7 + x3) dx = lim

nÑ8
Rn = 21 +

81
4

= 41 +
1
4

S-34: In general, the right–endpoint Riemann sum approximation to the integral
şb

a f (x) dx using n rectangles is

n
ÿ

i=1

f (a + i∆x)∆x

where ∆x = b´a
n . In this problem, a = 2, b = 4, and f (x) = x2, so that ∆x = 2

n and the
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right–endpoint Riemann sum approximation becomes
n
ÿ

i=1

f
(

2 +
2i
n

) 2
n
=

n
ÿ

i=1

(
2 +

2i
n

)2 2
n

=
n
ÿ

i=1

(
4 +

8i
n
+

4i2

n2

)
2
n

=
n
ÿ

i=1

(
8
n
+

16i
n2 +

8i2

n3

)

=
n
ÿ

i=1

8
n
+

n
ÿ

i=1

16i
n2 +

n
ÿ

i=1

8i2

n3

=
8
n

n
ÿ

i=1

1 +
16
n2

n
ÿ

i=1

i +
8
n3

n
ÿ

i=1

i2

=
8
n

n +
16
n2 ¨

n(n + 1)
2

+
8
n3 ¨

n(n + 1)(2n + 1)
6

= 8 + 8
(

1 +
1
n

)
+

4
3

(
1 +

1
n

)(
2 +

1
n

)

So
ż 4

2
x2 dx = lim

nÑ8

[
8 + 8

(
1 +

1
n

)
+

4
3

(
1 +

1
n

)(
2 +

1
n

)]
= 8 + 8 +

4
3
ˆ 2 =

56
3

S-35: We’ll use right Riemann sums with a = 0 and b = 2. When there are n rectangles,
∆x = b´a

n = 2
n and a + i∆x = 2i/n. So we need to evaluate

lim
nÑ8

n
ÿ

i=1

f (a + i∆x)∆x = lim
nÑ8

n
ÿ

i=1

(
(a + i∆x)3 + a + i∆x

)
∆x

= lim
nÑ8

n
ÿ

i=1

((
2i
n

)3

+
2i
n

)
2
n

= lim
nÑ8

2
n

n
ÿ

i=1

(
8i3

n3 +
2i
n

)

= lim
nÑ8

(
16
n4

n
ÿ

i=1

i3 +
4
n2

n
ÿ

i=1

i

)

= lim
nÑ8

(
16(n4 + 2n3 + n2)

n4 ¨ 4 +
4(n2 + n)

n2 ¨ 2
)

= lim
nÑ8

(
16
4

(
1 +

2
n
+

1
n2

)
+

4
2

(
1 +

1
n

))
=

16
4

+
4
2
= 6.
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S-36: We’ll use right Riemann sums with a = 1, b = 4 and f (x) = 2x´ 1. When there are
n rectangles, ∆x = b´a

n = 3
n and a + i∆x = 1 + 3i/n. So we need to evaluate

lim
nÑ8

n
ÿ

i=1

f (a + i∆x)∆x = lim
nÑ8

n
ÿ

i=1

(2(a + i∆x)´ 1)∆x

= lim
nÑ8

n
ÿ

i=1

(
2 +

6i
n
´ 1
)

3
n

= lim
nÑ8

3
n

n
ÿ

i=1

(
6i
n
+ 1
)

= lim
nÑ8

(
18
n2

n
ÿ

i=1

i +
3
n

n
ÿ

i=1

1

)

= lim
nÑ8

(
18 ¨ n(n + 1)

n2 ¨ 2 +
3
n

n
)

= lim
nÑ8

(
9
(

1 +
1
n

)
+ 3
)

= 9 + 3 = 12.

S-37: Using the definition of a right Riemann sum,
10
ÿ

i=1

3(7 + 2i)2 sin(4i) =
10
ÿ

i=1

∆x f (a + i∆x)

Since ∆x = 10 and a = ´5,
10
ÿ

i=1

3(7 + 2i)2 sin(4i) =
10
ÿ

i=1

10 f (´5 + 10i)

Dividing both expressions by 10,
10
ÿ

i=1

3
10

(7 + 2i)2 sin(4i) =
10
ÿ

i=1

f (´5 + 10i)

So, we have an expression for f (´5 + 10i):

f (´5 + 10i) =
3
10

(7 + 2i)2 sin(4i)

In order to find f (x), let x = ´5 + 10i. Then i = x
10 +

1
2 .

f (x) =
3
10

(
7 + 2

(
x

10
+

1
2

))2

sin
(

4
(

x
10

+
1
2

))
=

3
10

(x
5
+ 8
)2

sin
(

2x
5

+ 2
)

.
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S-38: As in the text, we’ll set up a right Riemann sum for the given integral.

ż 1

0
2xdx = lim

nÑ8

n
ÿ

i=1

∆x f (a + i∆x)

= lim
nÑ8

n
ÿ

i=1

1
n

f
(

i
n

)

= lim
nÑ8

n
ÿ

i=1

1
n
¨ 2i/n

= lim
nÑ8

1
n

(
21/n + 22/n + 23/n + ¨ ¨ ¨+ 2n/n

)
= lim

nÑ8

21/n

n

(
1 + 21/n + 22/n + ¨ ¨ ¨+ 2

n´1
n

)
= lim

nÑ8

21/n

n

(
1 + 21/n +

(
21/n

)2
+ ¨ ¨ ¨+

(
21/n

)n´1
)

The sum in parenthesis has the form of a geometric sum, with r = 21/n:

= lim
nÑ8

21/n

n

((
21/n)n ´ 1
21/n ´ 1

)

= lim
nÑ8

21/n

n

(
2´ 1

21/n ´ 1

)
= lim

nÑ8

21/n

n(21/n ´ 1)

Note as n Ñ 8, 1/n Ñ 0, so the numerator has limit 1, while the denominator has
indeterminate form8 ¨ 0. So, we’ll do a little algebra to get this into a l’Hôpital-style
indeterminate form:

= lim
nÑ8

1
n ¨ 21/n

21/n ´ 1

= lim
nÑ8

1
n

1´ 2´1/n
loooomoooon

numÑ0
denÑ0
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Now we can use l’Hôpital’s rule. Recall d
dx t2xu = 2x log x, where log x is the natural

logarithm of x, also sometimes written ln x. We’ll need to use the chain rule when we
differentiate the denominator.

= lim
nÑ8

´1
n2

´2´1/n log 2 ¨ 1
n2

= lim
nÑ8

21/n

log 2

=
1

log 2

Using a calculator, we see this is about 1.44 square units.

S-39: As in the text, we’ll set up a Riemann sum for the given integral. Right Riemann
sums have the simplest form:

ż b

a
10xdx = lim

nÑ8

n
ÿ

i=1

∆x f (a + i∆x)

= lim
nÑ8

n
ÿ

i=1

b´ a
n

f
(

a + i
b´ a

n

)

= lim
nÑ8

n
ÿ

i=1

b´ a
n

¨ 10a+i b´a
n

= lim
nÑ8

n
ÿ

i=1

b´ a
n

¨ 10a ¨
(

10
b´a

n

)i

= lim
nÑ8

b´ a
n

¨ 10a
((

10
b´a

n

)1
+
(

10
b´a

n

)2
+
(

10
b´a

n

)3
+ ¨ ¨ ¨+

(
10

b´a
n

)n
)

= lim
nÑ8

b´ a
n

¨ 10a ¨ 10
b´a

n

(
1 +

(
10

b´a
n

)
+
(

10
b´a

n

)2
+ ¨ ¨ ¨+

(
10

b´a
n

)n´1
)

Now the sum in parentheses has the form of a geometric sum, with r = 10
b´a

n :

= lim
nÑ8

b´ a
n

¨ 10a ¨ 10
b´a

n


(

10
b´a

n

)n ´ 1

10
b´a

n ´ 1


= lim

nÑ8

b´ a
n

¨ 10a ¨ 10
b´a

n

(
10b´a ´ 1

10
b´a

n ´ 1

)
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The coloured parts do not depend on n, so for simplicity we can move them outside the
limit.

= (b´ a) ¨ 10a
(

10b´a ´ 1
)

lim
nÑ8

1
n
¨
(

10
b´a

n

10
b´a

n ´ 1

)

= (b´ a) ¨
(

10b ´ 10a
)

lim
nÑ8

(
1/n

1´ 10´
b´a

n

)
loooooooomoooooooon

numÑ0
denÑ0

Now we can use l’Hôpital’s rule. Recall d
dx t10xu = 10x log x, where log x is the natural

logarithm of x, also sometimes written ln x. For the denominator, we will have to use the
chain rule.

= (b´ a) ¨
(

10b ´ 10a
)

lim
nÑ8

 ´1/n2

´10´
b´a

n ¨ log 10 ¨ b´a
n2


= (b´ a) ¨

(
10b ´ 10a

)
lim

nÑ8

(
1

10´
b´a

n ¨ log 10 ¨ (b´ a)

)

= (b´ a) ¨
(

10b ´ 10a
)( 1

log 10 ¨ (b´ a)

)
=

1
log 10

(
10b ´ 10a

)

For part (b), we can guess that if 10 were changed to c, our answer would be

ż b

a
cx dx =

1
log c

(
cb ´ ca

)
In Question 38, we had a = 0, b = 1, and c = 2. In this case, the formula we guessed
above gives

ż 1

0
2x dx =

1
log 2

(
21 ´ 20

)
=

1
log 2

This does indeed match the answer we calculated.

(In fact, we can directly show
ż b

a
cx dx =

1
log c

(
cb ´ ca

)
using the method of this

problem.)

S-40: First, we note y =
?

1´ x2 is the upper half of a circle of radius 1, centred at the
origin. We’re taking the area under the curve from 0 to a, so the area in question is as
shown in the picture below.
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x

y

´1 1a

In order to use geometry to find this area, we break it up into two pieces: a sector of a
circle, and a triangle, shown below.

x

y

´1 1a

θ

Area of sector: The sector is a portion of a circle with radius 1, with inner angle θ. So, its
area is θ

2π (area of circle) = θ
2π (π) = θ

2 .

Our job now is to find θ in terms of a. Note π
2 ´ θ is the inner angle of the red

triangle, which lies in the unit circle. So, cos
(

π
2 ´ θ

)
= a. Then π

2 ´ θ = arccos(a),
and so θ = π

2 ´ arccos(a).

Then the area of the sector is π
4 ´ 1

2 arccos(a) square units.

Area of triangle: The triangle has base a. Its height is the y-value of the function when
x = a, so its height is

?
1´ a2. Then the area of the triangle is 1

2 a
?

1´ a2.

We conclude
ż a

0

a

1´ x2 dx =
π

4
´ 1

2
arccos(a) +

1
2

a
a

1´ a2.

S-41:

(a) Let f (n) be the function giving the number of stitches on one side of round n. We’re
told f (n) increases by two every time n increases by one – that means f (n) has a
constant slope of two, so f (n) = 2n + c for some appropriate c. Since f (1) = 1, we
see f (n) = 2n´ 1.
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The last round has a side length of 299, so we solve f (n) = 299 for n:

299 = 2n´ 1
n = 150

There are 150 rounds in the blanket.

(b) We can count the number of stitches using sigma notation and Theorem 3.1.5. Each
round n has 4(2n´ 1) stitches, which we sum over 150 rounds.

150
ÿ

n=1

4(2n´ 1) =

(
8

150
ÿ

n=1

n

)
´ 4

(
150
ÿ

n=1

1

)

= 8
150 ¨ 151

2
´ 4 ¨ 150 = 4(150 ¨ 151´ 150) = 4 ¨ 1502

(c) The halfway point is when 2 ¨ 1502 stitches have been made. At the end of round N,
the number of stitches that have been made is

N
ÿ

n=1

4(2n´ 1) =

(
8

N
ÿ

n=1

n

)
´ 4

(
N
ÿ

n=1

1

)
= 4N(N + 1)´ 4N = 4N2

So, we solve: 4N2 = 2 ¨ 1502

N =
150?

2
« 106.06

The halfway mark is reached slightly after the end of the 106th round. That is, the
crocheter is halfway finished some time near the start of the 107th round.

Solutions to Exercises 3.2 — Jump to TABLE OF CONTENTS

S-1:

(a)
ż a

a
f (x)dx = 0

x

y

a

y = f (x)

The area under the curve is zero, because it’s a region with no width.

(b)
ż b

a
f (x)dx =

ż c

a
f (x)dx +

ż b

c
f (x)dx
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x

y

a c b

y = f (x)

If we assume a ď c ď b, then this identity simply tells us that if we add up the area
under the curve from a to c, and from c to b, then we get the whole area under the
curve from a to b.

(The situation is slightly more complicated when c is not between a and b, but it still
works out.)

(c)
ż b

a
( f (x) + g(x)) dx =

ż b

a
f (x)dx +

ż b

a
g(x)dx

x

y

a b

y = f (x)

y = f (x) + g(x)

The blue-shaded area in the picture above is
ż b

a
f (x) dx. The area under the curve

f (x) + g(x) but above the curve f (x) (shown in red) is
ż b

a
g(x) dx.

S-2: Using the identity

b
ż

a

f (x) dx =

c
ż

a

f (x) dx +

b
ż

c

f (x) dx ,

we see
b
ż

a

cos x dx =

0
ż

a

cos x dx +

b
ż

0

cos x dx

= ´
a
ż

0

cos x dx +

b
ż

0

cos x dx

= ´ sin a + sin b
= sin b´ sin a
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S-3: (a) False. For example if

f (x) =

#

0 for x ă 0
1 for x ě 0

then
ş´2
´3 f (x)dx = 0 and ´ ş2

3 f (x)dx = ´1.

x

y

´3 ´2 32

(b) False. For example, if f (x) = x, then
ş´2
´3 f (x)dx is negative while

ş3
2 f (x)dx is

positive, so they cannot be the same.

x

y

´3 ´2

32

(c) False. For example, consider the functions

f (x) =

#

0 for x ă 1
2

1 for x ě 1
2

and g(x) =

#

0 for x ě 1
2

1 for x ă 1
2

Then f (x) ¨ g(x) = 0 for all x, so
ş1

0 f (x) ¨ g(x)dx = 0. However,
ş1

0 f (x)dx = 1
2 and

ş1
0 g(x)dx = 1

2 , so
ş1

0 f (x)dx ¨ ş1
0 g(x)dx = 1

4 .

1
2

1

1

x

y
f (x)

1
2

1

1

x

y

g(x)

S-4:
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(a) ∆x =
b´ a

n
=

0´ 5
100

= ´ 1
20

Note: if we were to use the Riemann-sum definition of a definite integral, this is how

we would justify the identity
b
ş

a
f (x)dx = ´

a
ş

b
f (x)dx.

(b) The heights of the rectangles are given by f (xi), where xi = a + i∆x = 5´ i
20 . Since

f (x) only gives positive values, f (xi) ą 0, so the heights of the rectangles are
positive.

(c) Our Riemann sum is the sum of the signed areas of individual rectangles. Each
rectangle has a negative base (∆x) and a positive height ( f (xi)). So, each term of our
sum is negative. If we add up negative numbers, the sum is negative. So, the
Riemann sum is negative.

(d) Since f (x) is always above the x-axis,
5
ş

0
f (x)dx is positive.

S-5: The definite integral tallies up the signed area under the curve. All together, that
makes A1 ´ A2 + A3 ´ A4.

S-6: The operation of integration is linear (that’s part (d) of the “arithmetic of
integration” Theorem 3.2.1 in the text), so that:

ż 3

2
[6 f (x)´ 3g(x)]dx =

ż 3

2
6 f (x)dx´

ż 3

2
3g(x)dx

= 6
ż 3

2
f (x)dx´ 3

ż 3

2
g(x)dx = (6ˆ (´1))´ (3ˆ 5) = ´21

S-7: The operation of integration is linear (that’s part (d) of the “arithmetic of
integration” Theorem 3.2.1 in the text), so that:

ż 2

0
[2 f (x) + 3g(x)]dx =

ż 2

0
2 f (x)dx +

ż 2

0
3g(x)dx

= 2
ż 2

0
f (x)dx + 3

ż 2

0
g(x)dx = (2ˆ 3) + (3ˆ (´4)) = ´6

S-8: Using part (d) of the “arithmetic of integration” Theorem 3.2.1, followed by parts (c)
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and (b) of the “arithmetic for the domain of integration” Theorem 3.2.3 in the in the text,

ż 2

´1

[
3g(x)´ f (x)

]
dx = 3

ż 2

´1
g(x)dx´

ż 2

´1
f (x)dx

= 3
ż 0

´1
g(x)dx + 3

ż 2

0
g(x)dx´

ż 0

´1
f (x)dx´

ż 2

0
f (x)dx

= 3
ż 0

´1
g(x)dx + 3

ż 2

0
g(x)dx +

ż ´1

0
f (x)dx´

ż 2

0
f (x)dx

= 3ˆ 3 + 3ˆ 4 + 1´ 2 = 20

S-9:

(a) Since
?

1´ x2 is an even function,

ż 0

a

a

1´ x2 dx =

ż |a|

0

a

1´ x2 dx =
π

4
´ 1

2
arccos(|a|) + 1

2
|a|
b

1´ |a|2

=
π

4
´ 1

2
arccos(´a)´ 1

2
a
a

1´ a2

(b) Note
ż 1

0

a

1´ x2 dx =
π

4
, since the area under the curve represents one-quarter of

the unit circle. Then,
ż 1

a

a

1´ x2 dx =

ż 1

0

a

1´ x2 dx´
ż a

0

a

1´ x2 dx

=
π

4
´
(

π

4
´ 1

2
arccos(a) +

1
2

a
a

1´ a2
)

=
1
2

arccos(a)´ 1
2

a
a

1´ a2

S-10: Recall that

|x| =
#

´x if x ď 0
x if x ě 0

so that

|2x| =
#

´2x if x ď 0
2x if x ě 0

Also recall, from Example 3.2.5 in the text that

ż b

a
x dx =

b2 ´ a2

2
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So
ż 2

´1
|2x| dx =

ż 0

´1
|2x| dx +

ż 2

0
|2x| dx =

ż 0

´1
(´2x) dx +

ż 2

0
2x dx

= ´2
ż 0

´1
x dx + 2

ż 2

0
x dx = ´2 ¨ 02 ´ (´1)2

2
+ 2 ¨ 22 ´ 02

2
= 1 + 4 = 5

S-11: If x2 ď x, then ex2 ď ex. Using Part c of Theorem 3.2.12:

ż 1

0
ex2

dx ď
ż 1

0
exdx = ex

ˇ

ˇ

ˇ

1

0
= e´ 1

S-12: We note that the integrand f (x) = x|x| is an odd function, because
f (´x) = ´x| ´ x| = ´x|x| = ´ f (x). Then, by Theorem 3.2.11.b in the text,
ż 5

´5
x|x| dx = 0.

S-13: Using Theorem 3.2.11.a in the text,

10 =

ż 2

´2
f (x)dx = 2

ż 2

0
f (x)dx

5 =

ż 2

0
f (x)dx

Also,
ż 2

´2
f (x)dx =

ż 0

´2
f (x)dx +

ż 2

0
f (x)dx

So,
ż 0

´2
f (x)dx =

ż 2

´2
f (x)dx´

ż 2

0
f (x)dx

= 10´ 5 = 5

Indeed, for any even function f (x),
0
ş

´a
f (x)dx =

a
ş

0
f (x)dx.

S-14: We first use additivity:

ż 2

´2

(
5 +

a

4´ x2
)

dx =

ż 2

´2
5 dx +

ż 2

´2

a

4´ x2 dx
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The first integral represents the area of a rectangle of height 5 and width 4 and so equals
20. The second integral represents the area above the x–axis and below the curve
y =

?
4´ x2 or x2 + y2 = 4. That is a semicircle of radius 2, which has area 1

2 π22. So

ż 2

´2

(
5 +

a

4´ x2
)

dx = 20 + 2π

x

y

2´2

y = 5

2
ş

´2
5dx = 20

x

y

2´2

y =
?

4´ x2

2
ş

´2

?
4´ x2dx = 2π

S-15: Solution 1: On the interval [0, 1]:

sin2 x ď x sin x ď sin x

So, using Theorem 3.2.12,

ż 1

0
sin2 xdx ď

ż 1

0
x sin xdx ď

ż 1

0
sin xdx

So, whatever bound we get from the inequality sin2 x ď sin x is not going to be more
useful than the bound we get from the inequality sin2 x ď x sin x. That is, once we know
the bound from sin2 x ď x sin x, the other bound will not tell us anything new.

So, the inequality sin2 x ď x sin x will give a more useful bound.

Solution 2:

Let’s find the upper bounds on
ş1

0 sin2 xdx using Theorem 3.2.12 and both inequalities.

(a) Using sin2 x ď x sin x:

ż 1

0
sin2 xdx ď

ż 1

0
x sin xdx
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We can evaluate this integral using integration by parts with u = x, dv = sin xdx;
du = dx, v = ´ cos x

= ´x cos x|10 ´
ż 1

0
´ cos xdx

= ´ cos 1´ [´ sin]10
= ´ cos 1 + sin 1 = sin 1´ cos 1

(b) Using sin2 x ď sin x:
ż 1

0
sin2 xdx ď

ż 1

0
sin xdx = ´ cos x

ˇ

ˇ

1
0

= ´ cos 1 + cos 0 = 1´ cos 1

Since sin 1 ă 1, we see sin 1´ cos 1 ă 1´ cos 1. So, the inequality sin2 x ď x sin x
gives the more useful approximation.

To be even more clear, note sin 1´ cos 1 « 0.301 and 1´ cos 1 « 0.460. If we already
know that our desired value is not any larger than 0.301, then we could have
automatically said that it was also not any larger than 0.46 — so who needs the
bound 0.46?

S-16: Note that the integrand f (x) = sin x
log(3+x2)

is an odd function, because:

f (´x) =
sin(´x)

log(3 + (´x)2)
=

´ sin x
log(3 + x2)

= ´ f (x)

The domain of integration ´2012 ď x ď 2012 is symmetric about x = 0. So, by Theorem
3.2.11 of the text,

ż +2012

´2012

sin x
log(3 + x2)

dx = 0

S-17: Note that the integrand f (x) = x1/3 cos x is an odd function, because:

f (´x) = (´x)1/3 cos(´x) = ´x1/3 cos x = ´ f (x)

The domain of integration ´2012 ď x ď 2012 is symmetric about x = 0. So, by Theorem
3.2.11 of the text,

ż +2012

´2012
x1/3 cos x dx = 0

S-18: Our integrand f (x) = (x´ 3)3 is neither even nor odd. However, it does have a
similar symmetry. Namely, f (3 + x) = ´ f (3´ x). So, f is “negatively symmetric” across
the line x = 3. This suggests that the integral should be 0: the positive area to the right of
x = 3 will be the same as the negative area to the left of x = 3.
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Another way to see this is to notice that the graph of f (x) = (x´ 3)3 is equivalent to the
graph of g(x) = x3 shifted three units to the right, and g(x) is an odd function. So,

ż 6

0
(x´ 3)3 dx =

ż 3

´3
x3 dx = 0

x

y

´3 3 6

y = x3 y = (x´ 3)3

S-19:

(a)

(ax)2 + (by)2 = 1

by =
b

1´ (ax)2

y =
1
b

b

1´ (ax)2

(b) The values of x in the domain of the function above are those that satisfy
1´ (ax)2 ě 0. That is, ´1

a ď x ď 1
a . Therefore, the upper half of the ellipse has area

1
b

ż 1
a

´ 1
a

b

1´ (ax)2 dx

The upper half of a circle has equation y =
?

r2 ´ x2.

=
1
b

ż 1
a

´ 1
a

d

a2
(

1
a2 ´ x2

)
dx

=
1
b

ż 1
a

´ 1
a

a

c

1
a2 ´ x2 dx

=
a
b

ż 1
a

´ 1
a

c

1
a2 ´ x2 dx
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(c) The function y =

c

1
a2 ´ x2 is the upper-half of the circle centred at the origin with

radius
1
a

. So, the expression from (b) evaluates to
( a

b

) π

2a2 =
π

2ab
.

The expression from (b) was half of the ellipse, so the area of the ellipse is
π

ab
.

Remark: this was a slightly long-winded way of getting the result. The reasoning is
basically this:

• The area of the unit circle x2 + y2 = 1 is π .

• The ellipse (ax)2 + y2 = 1 is obtained by shrinking the unit circle horizontally by a

factor of a. So, its area is
π

a
.

• Further, the ellipse (ax)2 + (by)2 = 1 is obtained from the previous ellipse by

shrinking it vertically by a factor of b. So, its area is
π

ab
.

S-20: Let’s recall the definitions of even and odd functions: f (x) is even if f (´x) = f (x)
for every x in its domain, and f (x) is odd if f (´x) = ´ f (x) for every x in its domain.

Let h(x) = f (x) ¨ g(x).

even ˆ even: If f and g are both even, then
h(´x) = f (´x) ¨ g(´x) = f (x) ¨ g(x) = h(x), so their product is even.

odd ˆ odd: If f and g are both odd, then
h(´x) = f (´x) ¨ g(´x) = [´ f (x)] ¨ [´g(x)] = f (x) ¨ g(x) = h(x), so their product is
even.

even ˆ odd: If f is even and g is odd, then
h(´x) = f (´x) ¨ g(´x) = f (x) ¨ [´g(x)] = ´[ f (x) ¨ g(x)] = ´h(x), so their product
is odd. Because multiplication is commutative, the order we multiply the functions
in doesn’t matter.

We note that the table would be the same as if we were adding (not multiplying) even and
odd numbers (not functions).

S-21: Since f (x) is odd, f (0) = ´ f (´0) = ´ f (0). So, f (0) = 0.

However, this restriction does not apply to g(x). For example, for any constant c, let
g(x) = c. Then g(x) is even and g(0) = c. So, g(0) can be any real number.

S-22: Let x be any real number.

• f (x) = f (´x) (since f (x) is even), and

• f (x) = ´ f (´x) (since f (x) is odd).

• So, f (x) = ´ f (x).

• Then (adding f (x) to both sides) we see 2 f (x) = 0, so f (x) = 0.
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So, f (x) = 0 for every x.

S-23:

Solution 1: Suppose f (x) is an odd function. We investigate f 1(x) using the chain rule:

f (´x) = ´ f (x) (odd function)
d
dx
t f (´x)u = d

dx
t´ f (x)u

´ f 1(´x) = ´ f 1(x) (chain rule)
f 1(´x) = f 1(x)

So, when f (x) is odd, f 1(x) is even.

Similarly, suppose f (x) is even.

f (´x) = f (x) (even function)
d
dx
t f (´x)u = d

dx
t f (x)u

´ f 1(´x) = f 1(x) (chain rule)
f 1(´x) = ´ f 1(x)

So, when f (x) is even, f 1(x) is odd.

Solution 2: Another way to think about this problem is to notice that “mirroring” a
function changes the sign of its derivative. Then since an even function is
“mirrored once” (across the y-axis), it should have f 1(x) = ´ f 1(´x), and so the
derivative of an even function should be an odd function. Since an odd function is
“mirrored twice” (across the y-axis and across the x-axis), it should have
f 1(x) = ´(´ f 1(´x)) = f 1(´x). So the derivative of an odd function should be
even. These ideas are presented in more detail below.

First, we consider the case where f (x) is even, and investigate f 1(x).

x

y

y = f (x)

a1´a1 a2´a2 a3´a3
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The whole function has a mirror-like symmetry across the y-axis. So, at x and ´x,
the function will have the same “steepness,” but if one is increasing then the other
is decreasing. That is, f 1(´x) = ´ f 1(x). (In the picture above, compare the slope at
some point ai with its corresponding point ´ai.) So, f 1(x) is odd when f (x) is even.

Second, let’s consider the case where f (x) is odd, and investigate f 1(x). Suppose
the blue graph below is y = f (x). If f (x) were even, then to the left of the y-axis, it
would look like the orange graph, which we’ll call y = g(x).

x

y

y = g(x) y = f (x)

From our work above, we know that, for every x ą 0, ´ f 1(x) = g1(´x). When
x ă 0, f (x) = ´g(x). So, if x ą 0, then ´ f 1(x) = g1(´x) = ´ f 1(´x). In other words,
f 1(x) = f 1(´x). Similarly, if x ă 0, then f 1(x) = ´g1(x) = f 1(´x). Therefore f 1(x) is
even. (In the graph below, you can anecdotally verify that f 1(ai) = f 1(´ai).)

x

y

y = g(x) y = f (x)

a1´a1 a2´a2 a3´a3

S-24: (This space is intentionally left blank.)

S-25: (This space is intentionally left blank.)
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Solutions to Exercises 3.3 — Jump to TABLE OF CONTENTS

S-1: The Fundamental Theorem of Calculus Part 2 (Theorem 3.3.1 in the text) tells us that

ż

?
5

1
f (x)dx = F(

?
5)´ F(1)

=
(
e(
?

52
´3) + 1

)´ (e(12´3) + 1
)

= e5´3 ´ e1´3 = e2 ´ e´2

S-2: First, let’s find a general antiderivative of x3 ´ sin(2x).

• One function with derivative x3 is
x4

4
.

• To find an antiderivative of sin(2x), we might first guess cos(2x); checking, we see
d
dxtcos(2x)u = ´2 sin(2x). So, we only need to multiply by ´1

2
:

d
dx

"

´1
2

cos 2x
*

= sin(2x).

So, the general antiderivative of f (x) is
x4

4
+

1
2

cos 2x + C. To satisfy F(0) = 1, we need8

[x4

4
+

1
2

cos 2x + C
]

x=0
= 1 ðñ 1

2
+ C = 1 ðñ C =

1
2

So F(x) =
x4

4
+

1
2

cos 2x +
1
2

.

S-3: (a) This is true, by part 2 of the Fundamental Theorem of Calculus, Thereom 3.3.1 in
the text with G(x) = f (x) and f (x) replaced by f 1(x).

(b) This is not only false, but it makes no sense at all. The integrand is strictly positive so
the integral has to be strictly positive. In fact it’s +8. The Fundamental Theorem of
Calculus does not apply because the integrand has an infinite discontinuity at x = 0.

8 The symbol ðñ is read “if and only if”. This is used in mathematics to express the logical equivalence
of two statements. To be more precise, the statement P ðñ Q tells us that P is true whenever Q is
true and Q is true whenever P is true.
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x

y

´1 1

y = 1
x2

(c) This is not only false, but it makes no sense at all, unless
şb

a f (x)dx =
şb

a x f (x)dx = 0.
The left hand side is a number. The right hand side is a number times x.

ż b

a
x f (x) dx

loooooomoooooon

area

vs x
loomoon

variable

¨
ż b

a
f (x) dx

looooomooooon

area

For example, if a = 0, b = 1 and f (x) = 1, then the left hand side is
ş1

0 x dx = 1
2 and the

right hand side is x
ş1

0 dx = x.

S-4: This is a tempting thought:
ż

1
x

dx = ln |x|+ C

so perhaps similarly
ż

1
x2 dx ?

= ln |x2|+ C = ln(x2) + C

We check by differentiating:

d
dx
tln(x2)u = d

dx
t2 ln xu = 2

x
‰ 1

x2

So, it wasn’t so easy: false.

When we’re guessing antiderivatives, we often need to adjust our original guesses a
little. Changing constants works well; changing functions usually does not.

S-5: This is tempting:

d
dx
tsin(ex)u = ex cos(ex)

so perhaps

d
dx

"

sin(ex)

ex

*

?
= cos(ex)
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We check by differentiating:

d
dx

"

sin(ex)

ex

*

=
ex (cos(ex) ¨ ex)´ sin(ex)ex

e2x (quotient rule)

= cos(ex)´ sin(ex)

ex

‰ cos(ex)

So, the statement is false.

When we’re guessing antiderivatives, we often need to adjust our original guesses a
little. Dividing by constants works well; dividing by functions usually does not.

S-6: “The instantaneous rate of change of F(x) with respect to x” is another way of
saying “F1(x)”. From the Fundamental Theorem of Calculus Part 1, we know this is
sin(x2).

S-7: The slope of the tangent line to y = F(x) when x = 3 is exactly F1(3). By the
Fundamental Theorem of Calculus Part 1, F1(x) = e1/x. Then F1(3) = e1/3 = 3

?
e.

S-8: For any constant C, F(x) + C is an antiderivative of f (x), because
d
dxtF(x) + Cu = d

dxtF(x)u = f (x). So, for example, F(x) and F(x) + 1 are both
antiderivatives of f (x).

S-9:

(a) We differentiate with respect to a. Recall d
dxtarccos xu = ´1?

1´x2
. To differentiate

1
2 a
?

1´ a2, we use the product and chain rules.

d
da

"

π

4
´ 1

2
arccos(a) +

1
2

a
a

1´ a2
*

= 0´ 1
2
¨ ´1?

1´ a2
+

(
1
2

a
)
¨ ´2a

2
?

1´ a2
+

1
2

a

1´ a2

=
1

2
?

1´ a2
´ a2

2
?

1´ a2
+

1´ a2

2
?

1´ a2

=
1´ a2 + 1´ a2

2
?

1´ a2

=
2(1´ a2)

2
?

1´ a2

=
a

1´ a2

(b) Let G(x) = π
4 ´ 1

2 arccos(x) + 1
2 x
?

1´ x2. We showed in part (a) that G(x) is an
antiderivative of

?
1´ x2. Since F(x) is also an antiderivative of

?
1´ x2,

F(x) = G(x) + C for some constant C (this is Lemma 3.3.8 in the text).
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Note G(0) =
ż 0

0

a

1´ x2 dx = 0, so if F(0) = π, then F(x) = G(x) + π. That is,

F(x) =
5π

4
´ 1

2
arccos(x) +

1
2

x
a

1´ x2 .

S-10:

(a) The antiderivative of cos x is sin x, and cos x is continuous everywhere, so
ż π

´π
cos x dx = sin(π)´ sin(´π) = 0.

(b) Since sec2 x is discontinuous at x = ˘π
2 , the Fundamental Theorem of Calculus Part 2

does not apply to
ż π

´π
sec2 x dx.

(c) Since 1
x+1 is discontinuous at x = ´1, the Fundamental Theorem of Calculus Part 2

does not apply to
ż 0

´2

1
x + 1

dx.

S-11:

Using the definition of F, F(x) is the area under the curve from a to x, and F(x + h) is the
area under the curve from a to x + h. These are shown on the same diagram, below.

t

y

a x x + h

y = f (t)

Then the area represented by F(x + h)´ F(x) is the area that is outside the red, but inside

the blue. Equivalently, it is
x+h
ş

x
f (t) dt.

t

y

a x x + h

y = f (t)
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S-12: We evaluate F(0) using the definition: F(0) =
ş0

0 f (t) dt = 0. Although f (0) ą 0,
the area from t = 0 to t = 0 is zero.
As x moves along, F(x) adds bits of signed area. If it’s adding positive area, it’s
increasing, and if it’s adding negative area, it’s decreasing. So, F(x) is increasing when
0 ă x ă 1 and 3 ă x ă 4, and F(x) is decreasing when 1 ă x ă 3.

S-13: This question is nearly identical to Question 12, with

G(x) =
ż 0

x
f (t) dt = ´

ż x

0
f (t) dt = ´F(x).

So, G(x) increases when F(x) decreases, and vice-versa. Therefore: G(0) = 0, G(x) is
increasing when 1 ă x ă 3, and G(x) is decreasing when 0 ă x ă 1 and when 3 ă x ă 4.

S-14: Using the definition of the derivative,

F1(x) = lim
hÑ0

F(x + h)´ F(x)
h

= lim
hÑ0

şx+h
a t dt´ şx

a t dt
h

= lim
hÑ0

şx+h
x t dt

h

The numerator describes the area of a trapezoid with base h and heights x and x + h.

= lim
hÑ0

1
2 h(x + x + h)

h

= lim
hÑ0

(
x +

1
2

h
)

= x

t

y

x x + h

x

x + h

y = t

şx+h
x t dt

So, F1(x) = x.
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S-15: If F(x) is constant, then F1(x) = 0. By the Fundamental Theorem of Calculus Part
1, F1(x) = f (x). So, the only possible continuous function fitting the question is f (x) = 0.

This makes intuitive sense: if moving x doesn’t add or subtract area under the curve,
then there must not be any area under the curve–the curve should be the same as the
x-axis.

As an aside, we mention that there are other, non-continuous functions f (t) such that
şx

0 f (t) dt = 0 for all x. For example, f (t) =

#

0 x ‰ 0

1 x = 0
. These kinds of removable

discontinuities will not factor heavily in our discussion of integrals.

S-16:
d
dx
tx ln(ax)´ xu = x

( a
ax

)
+ ln(ax)´ 1 (product rule, chain rule)

= ln(ax)

So, we know
ż

ln(ax) dx = x ln(ax)´ x + C where a is a given constant, and C is any constant.

Remark:
ş

ln(ax) dx can be calculated using the method of Integration by Parts, which
you will learn in Section 3.5 of the text.

S-17:
d
dx

!

ex
(

x3 ´ 3x2 + 6x´ 6
))

= ex
(

3x2 ´ 6x + 6
)
+ ex

(
x3 ´ 3x2 + 6x´ 6

)
(product rule)

= ex
(

3x2 ´ 6x + 6 + x3 ´ 3x2 + 6x´ 6
)

= x3ex

So,
ż

x3ex dx = ex
(

x3 ´ 3x2 + 6x´ 6
)
+ C

Remark:
ş

x3ex dx can be calculated using the method of Integration by Parts, which you
will learn in Section 3.5 of the text.

S-18:

d
dx

!

ln
ˇ

ˇ

ˇ
x +

a

x2 + a2
ˇ

ˇ

ˇ

)

=
1

x +
?

x2 + a2
¨
(

1 +
1

2
?

x2 + a2
¨ 2x
)

(chain rule)

=
1 + x?

x2+a2

x +
?

x2 + a2
=

?
x2+a2+x?

x2+a2

x +
?

x2 + a2

=
1?

x2 + a2
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So,
ż

1?
x2 + a2

dx = ln
ˇ

ˇ

ˇ
x +

a

x2 + a2
ˇ

ˇ

ˇ
+ C

Remark:
ş 1?

x2+a2 dx can be calculated using the method of Trigonometric Substitution,
which is taught in many integral calculus courses, but not this one.

S-19: Using the chain rule:

d
dx

"

b

x(a + x)´ a ln
(?

x +
?

a + x
)*

=
x + (a + x)
2
a

x(a + x)
´ a

(
1?

x +
?

a + x
¨
(

1
2
?

x
+

1
2
?

a + x

))
=

2x + a
2
a

x(a + x)
´ a

(
1?

x +
?

a + x
¨
(?

a + x +
?

x
2
a

x(a + x)

))

=
2x + a

2
a

x(a + x)
´ a

(
1

2
a

x(a + x)

)
=

2x
2
a

x(a + x)
=

x
a

x(a + x)

So,
ż

x
a

x(a + x)
dx =

b

x(a + x)´ a ln
(?

x +
?

a + x
)
+ C

Remark:
ş x?

x(a+x)
dx can be calculated using the method of Trigonometric Substitution,

which is taught in many integral calculus courses, but not this one.

S-20: By the Fundamental Theorem of Calculus,

ż 2

0

(
x3 + sin x)dx =

[
x4

4
´ cos x

]2

0

=

(
24

4
´ cos 2

)
´ (0´ cos 0)

= 4´ cos 2 + 1 = 5´ cos 2.

S-21: By part (d) of our “Arithmetic of Integration” theorem, Theorem 3.2.1 in the text,

ż 2

1

x2 + 2
x2 dx =

ż 2

1

[
1 +

2
x2

]
dx =

ż 2

1
dx + 2

ż 2

1

1
x2 dx
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Then by the Fundamental Theorem of Calculus Part 2,

ż 2

1
dx + 2

ż 2

1

1
x2 dx =

[
x
]2

1
+ 2
[
´ 1

x

]2

1
=
[
2´ 1

]
+ 2
[
´ 1

2
+ 1
]
= 2

S-22: The integrand is similar to
1

1 + x2 , which is the derivative of arctangent. Indeed,

we have
ż

1
1 + 25x2 dx =

ż

1
1 + (5x)2 dx.

So, a reasonable first guess for the antiderivative might be

F(x) ?
= arctan(5x).

However, because of the chain rule,

F1(x) =
5

1 + (5x)2 .

In order to “fix” the numerator, we make a second guess:

F(x) =
1
5

arctan(5x)

F1(x) =
1
5

(
5

1 + (5x)2

)
=

1
1 + 25x2

So,
ż

1
1 + 25x2 dx =

1
5

arctan(5x) + C.

S-23: The integrand is similar to
1?

1´ x2
. In order to formulate a guess for the

antiderivative, let’s factor out
?

2 from the denominator:
ż

1?
2´ x2

dx =

ż

1
c

2
(

1´ x2

2

)dx

=

ż

1
?

2
b

1´ x2

2

dx

=

ż

1?
2
¨ 1
d

1´
(

x?
2

)2
dx
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At this point, we might guess that our antiderivative is something like

F(x) = arcsin
(

x?
2

)
. To explore this possibility, we can differentiate, and see what we

get.

d
dx

"

arcsin
(

x?
2

)*
=

1?
2
¨ 1
d

1´
(

x?
2

)2

This is exactly what we want! So,
ż

1?
2´ x2

dx = arcsin
(

x?
2

)
+ C

S-24: We know that
ş

sec2 x dx = tan x + C, and sec2 x = tan2 x + 1, so
ż

tan2 x dx =

ż

sec2 x´ 1 dx

=

ż

sec2 x dx´
ż

1 dx

= tan x´ x + C

S-25:

Solution 1: This might not obviously look like the derivative of anything familiar, but it
does look like half of a familiar trig identity: 2 sin x cos x = sin(2x).

ż

3 sin x cos x dx =

ż

3
2
¨ 2 sin x cos x dx

=

ż

3
2

sin(2x) dx

So, we might guess that the antiderivative is something like ´ cos(2x). We only
need to figure out the constants.

d
dx
t´ cos(2x)u = 2 sin(2x)

So,
d
dx

"

´3
4

cos(2x)
*

=
3
2

sin(2x)

Therefore,
ż

3 sin x cos x dx = ´3
4

cos(2x) + C

Solution 2: You might notice that the integrand looks like it came from the chain rule,
since cos x is the derivative of sin x. Using this observation, we can work out the
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antideriative:

d
dx

!

sin2 x
)

= 2 sin x cos x

d
dx

"

3
2

sin2 x
*

= 3 sin x cos x

So,
ż

3 sin x cos x dx =
3
2

sin2 x + C

These two answers look different. Using the identity cos(2x) = 1´ 2 sin2(x), we
reconcile them:

´3
4

cos(2x) + C = ´3
4

(
1´ 2 sin2 x

)
+ C

=
3
2

sin2 x +

(
C´ 3

4

)
The 3

4 here is not significant. Remember that C is used to designate a constant that can
take any value between ´8 and +8. So C´ 3

4 is also just a constant that can take any
value between ´8 and +8. As the two answers we found differ by a constant, they are
equivalent.

S-26: It’s not immediately obvious which function has cos2 x as its derivative, but we can

make the situation a little clearer by using the identity cos2 x =
1 + cos(2x)

2
:

ż

cos2 x dx =

ż

1
2
¨ (1 + cos(2x)) dx

=

ż

1
2

dx +

ż

1
2

cos(2x) dx

=
1
2

x + C +

ż

1
2

cos(2x) dx

For the remaining integral, we might guess something like F(x) = sin(2x). Let’s figure
out the appropriate constant:

d
dx
tsin(2x)u = 2 cos(2x)

d
dx

"

1
4

sin(2x)
*

=
1
2

cos(2x)

So,
ż

1
2

cos(2x) dx =
1
4

sin(2x) + C

Therefore,
ż

cos2 x dx =
1
2

x +
1
4

sin(2x) + C
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S-27: By the Fundamental Theorem of Calculus Part 1,

F1(x) =
d
dx

ż x

0
ln(2 + sin t)dt = ln(2 + sin x)

G1(y) =
d
dy

[
´
ż y

0
ln(2 + sin t)dt

]
= ´ ln(2 + sin y)

So,
F1
(π

2

)
= ln 3 G1

(π

2

)
= ´ ln(3)

S-28: By the Fundamental Theorem of Calculus Part 1,

f 1(x) = 100(x2 ´ 3x + 2)e´x2
= 100(x´ 1)(x´ 2)e´x2

As f (x) is increasing whenever f 1(x) ą 0 and 100e´x2
is always strictly bigger than 0, we

have f (x) increasing if and only if (x´ 1)(x´ 2) ą 0, which is the case if and only if
(x´ 1) and (x´ 2) are of the same sign. Both are positive when x ą 2 and both are
negative when x ă 1. So f (x) is increasing when ´8 ă x ă 1 and when 2 ă x ă 8.

Remark: even without the Fundamental Theorem of Calculus, since f (x) is the area
under a curve from 1 to x, f (x) is increasing when the curve is above the x-axis (because
we’re adding positive area), and it’s decreasing when the curve is below the x-axis
(because we’re adding negative area).

S-29: Write G(x) =
ż x

0

1
t3 + 6

dt. By the Fundamental Theorem of Calculus Part 1,

G1(x) =
1

x3 + 6
. Since F(x) = G(cos x), the chain rule gives us

F1(x) = G1(cos x) ¨ (´ sin x) = ´ sin x
cos3 x + 6

S-30: Define g(x) =
ż x

0
et2

dt. By the Fundamental Theorem of Calculus Part 1,

g1(x) = ex2
. As f (x) = g(1 + x4) the chain rule gives us

f 1(x) = 4x3g1(1 + x4) = 4x3e(1+x4)2

S-31: Define g(x) =
şx

0(t
6 + 8)dt. By the fundamental theorem of calculus,

g1(x) = x6 + 8. We are to compute the derivative of f (x) = g(sin x). The chain rule gives

d
dx

#

ż sin x

0
(t6 + 8)dt

+

= g1(sin x) ¨ cos x =
(

sin6 x + 8
)

cos x
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S-32: Let G(x) =
ż x

0
e´t sin

(
πt
2

)
dt. By the Fundamental Theorem of Calculus Part 1,

G1(x) = e´x sin
(

πx
2

)
and, since F(x) = G(x3), F1(x) = 3x2G1(x3) = 3x2e´x3

sin
(

πx3

2

)
.

Then F1(1) = 3e´1 sin
(

π
2

)
= 3e´1.

S-33: Define G(x) =
ż 0

x

dt
1 + t3 = ´

ż x

0

1
1 + t3 dt, so that G1(x) = ´ 1

1 + x3 by the

Fundamental Theorem of Calculus Part 1. Then by the chain rule,

d
du

#

ż 0

cos u

dt
1 + t3

+

=
d
du

G(cos u) = G1(cos u) ¨ d
du

cos u = ´ 1
1 + cos3 u

¨ (´ sin u).

S-34: Applying d
dx to both sides of x2 = 1 +

şx
1 f (t) dt gives, by the Fundamental

Theorem of Calculus Part 1, 2x = f (x).

S-35: Apply d
dx to both sides of x sin(πx) =

şx
0 f (t)dt. Then, by the Fundamental

Theorem of Calculus Part 1,

f (x) =
d
dx

ż x

0
f (t)dt =

d
dx

 

x sin(πx)
(

ùñ f (x) =
d
dx

 

x sin(πx)
(

= sin(πx) + πx cos(πx)

ùñ f (4) = sin(4π) + 4π cos(4π) = 4π

S-36: (a) Write

F(x) = G(x2)´ H(´x) with G(y) =
ż y

0
e´t dt, H(y) =

ż y

0
e´t2

dt

By the Fundamental Theorem of Calculus Part 1,

G1(y) = e´y , H1(y) = e´y2

Hence, by the chain rule,

F1(x) = 2xG1(x2)´ (´1)H1(´x) = 2xe´(x2) + e´(´x)2
= (2x + 1)e´x2

(b) Observe that F1(x) ă 0 for x ă ´1/2 and F1(x) ą 0 for x ą ´1/2. Hence F(x) is
decreasing for x ă ´1/2 and increasing for x ą ´1/2, and F(x) must take its minimum
value when x = ´1/2.
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S-37: Define G(y) =
ż y

0
esin t dt. Then:

F(x) =
ż x

0
esin t dt +

ż 0

x4´x3
esin t dt =

ż x

0
esin t dt´

ż x4´x3

0
esin t dt

= G(x)´ G(x4 ´ x3)

By the Fundamental Theorem of Calculus Part 1,

G1(y) = esin y

Hence, by the chain rule,

F1(x) = G1(x)´ G1(x4 ´ x3)
d
dx

 

x4 ´ x3(

= G1(x)´ G1(x4 ´ x3) (4x3 ´ 3x2)

= esin x ´ esin(x4´x3)
(
4x3 ´ 3x2)

S-38: Define with G(y) =
ż y

0
cos

(
et)dt. Then:

F(x) =
ż ´x2

x5
cos

(
et)dt =

ż ´x2

0
cos

(
et)dt +

ż 0

x5
cos

(
et)dt

=

ż ´x2

0
cos

(
et)dt´

ż x5

0
cos

(
et)dt

= G(´x2)´ G(x5)

By the Fundamental Theorem of Calculus,

G1(y) = cos
(
ey)

Hence, by the chain rule,

F1(x) = G1(´x2)
d
dx

 ´ x2(´ G1(x5)
d
dx

 

x5(

= G1(´x2) (´2x)´ G1(x5) (5x4)

= ´2x cos
(
e´x2)´ 5x4 cos

(
ex5)

S-39: Define with G(y) =
ż y

0

?
sin t dt Then:

F(x) =
ż ex

x

?
sin t dt

=

ż ex

0

?
sin t dt +

ż 0

x

?
sin t dt =

ż ex

0

?
sin t dt´

ż x

0

?
sin t dt

= G(ex)´ G(x)
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By the Fundamental Theorem of Calculus Part 1,

G1(y) =
a

sin y

Hence, by the chain rule,

F1(x) = G1(ex)
d
dx

 

ex(´ G1(x)

= exG1(ex)´ G1(x)

= ex
b

sin(ex)´
b

sin(x)

S-40: Splitting up the domain of integration,
ż 5

1
f (x) dx =

ż 3

1
f (x)dx +

ż 5

3
f (x)dx

=

ż 3

1
3 dx +

ż 5

3
x dx

= 3x
ˇ

ˇ

ˇ

ˇ

x=3

x=1
+

x2

2

ˇ

ˇ

ˇ

ˇ

x=5

x=3

= 14

x

y

1 3 5

3

y = f (x)

S-41: By the chain rule,

d
dx

 

( f 1(x))2 (
= 2 f 1(x) f 2(x)

so 1
2 f 1(x)2 is an antiderivative for f 1(x) f 2(x) and, by the Fundamental Theorem of

Calculus Part 2,
ż 2

1
f 1(x) f 2(x)dx =

[
1
2
( f 1(x))2

]x=2

x=1
=

1
2

f 1(2)2 ´ 1
2

f 1(1)2 =
5
2

Remark: evaluating antiderivatives of this type will occupy the next section, Section 3.4
of the text.
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S-42: The car stops when v(t) = 30´ 10t = 0, which occurs at time t = 3. The distance
covered up to that time is

ż 3

0
v(t)dt = (30t´ 5t2)

ˇ

ˇ

ˇ

3

0
= (90´ 45)´ 0 = 45 m.

S-43: Define g(x) =
ż x

0
ln
(
1 + et)dt. By the Fundamental Theorem of Calculus Part 1,

g1(x) = ln
(
1 + ex). But f (x) = g(2x´ x2), so by the chain rule,

f 1(x) = g1(2x´ x2) ¨ d
dx
t2x´ x2u = (2´ 2x) ¨ ln (1 + e2x´x2)

Observe that e2x´x2 ą 0 for all x so that 1 + e2x´x2 ą 1 for all x and ln
(
1 + e2x´x2) ą 0 for

all x. Since 2´ 2x is positive for x ă 1 and negative for x ą 1, f 1(x) is also positive for
x ă 1 and negative for x ą 1. That is, f (x) is increasing for x ă 1 and decreasing for
x ą 1. So f (x) achieves its absolute maximum at x = 1.

S-44: Let f (x) =
şx2´2x

0
dt

1+t4 and g(x) =
şx

0
dt

1+t4 . Then g1(x) = 1
1+x4 and, since

f (x) = g(x2 ´ 2x), f 1(x) = (2x´ 2)g1(x2 ´ 2x) = 2 x´1
1+(x2´2x)4 . This is zero for x = 1,

negative for x ă 1 and positive for x ą 1. Thus as x runs from ´8 to8, f (x) decreases
until x reaches 1 and then increases all x ą 1. So the minimum of f (x) is achieved for
x = 1. At x = 1, x2 ´ 2x = ´1 and f (1) =

ş´1
0

dt
1+t4 .

S-45: Define G(x) =
ż x

0
sin(

?
t)dt. By the Fundamental Theorem of Calculus Part 1,

G1(x) = sin(
?

x). Since F(x) = G(x2), and since x ą 0, we have

F1(x) = 2xG1(x2) = 2x sin |x| = 2x sin x.

Thus F increases as x runs from to 0 to π (since F1(x) ą 0 there) and decreases as x runs
from π to 4 (since F1(x) ă 0 there). Thus F achieves its maximum value at x = π.

S-46: The given sum is of the form

lim
nÑ8

n
ÿ

j=1

π

n
sin
( jπ

n

)
= lim

nÑ8

n
ÿ

j=1

f (x˚j )∆x

with ∆x = π
n , x˚j = jπ

n and f (x) = sin(x). Since x˚0 = 0 and x˚n = π, the right hand side is
the definition (using the right Riemann sum) of

ż π

0
f (x)dx =

ż π

0
sin(x)dx = [´ cos(x)]π0 = 2

where we evaluate the definite integral using the Fundamental Theorem of Calculus Part
2.
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S-47: The given sum is of the form

lim
nÑ8

1
n

n
ÿ

j=1

1

1 + j
n

= lim
nÑ8

n
ÿ

j=1

f (xj)∆x

with ∆x = 1
n , xj =

j
n and f (x) = 1

1+x . The right hand side is the definition (using the
right Riemann sum) of

ż 1

0
f (x) dx =

ż 1

0

1
1 + x

dx = ln |1 + x|
ˇ

ˇ

ˇ

1

0
= ln 2

S-48:

F(x), x ě 0 We learned quite a lot last semester about curve sketching. We can use those
techniques here. We have to be quite careful about the sign of x, though. We can
only directly apply the Fundamental Theorem of Calculus Part 1 (as it’s written in
your text) when x ě 0. So first, let’s graph the right-hand portion. Notice f (x) has
even symmetry–so, if we know one half of F(x), we should be able to figure out the
other half with relative ease.

• F(0) =
ż 0

0
f (t) dt = 0 (so, F(x) passes through the origin)

• Using the Fundamental Theorem of Calculus Part 1, F1(x) ą 0 when 0 ă x ă 1
and when 3 ă x ă 5; F1(x) ă 0 when 1 ă x ă 3. So, F(x) is decreasing from 1
to 3, and increasing from 0 to 1 and also from 3 to 5. That gives us a skeleton to
work with.

x

y

1 3 5

We get the relative sizes of the maxes and mins by eyeballing the area under
y = f (t). The first lobe (from x = 0 to x = 1 has a small positive area, so F(1)
is a small positive number. The next lobe (from x = 1 to x = 3) has a larger
absolute area than the first, so F(3) is negative. Indeed, the second lobe seems
to have more than twice the area of the first, so |F(3)| should be larger than
F(1). The third lobe is larger still, and even after subtracting the area of the
second lobe it looks much larger than the first or second lobe, so |F(3)| ă F(5).

• We can use F2(x) to get the concavity of F(x). Note F2(x) = f 1(x). We observe
f (x) is decreasing on (roughly) (0, 2.5) and (4, 5), so F(x) is concave down on
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those intervals. Further, f (x) is increasing on (roughly) (2.5, 4), so F(x) is
concave up there, and has inflection points at about x = 2.5 and x = 4.

x

y

y = F(x)

y = f (x)

´5 ´3 ´1 1 3 5

In the sketch above, closed dots are extrema, and open dots are inflection
points.

F(x), x ă 0 Now we can consider the left half of the graph. If you stare at it long enough,
you might convince yourself that F(x) is an odd function. We can also show this
with the following calculation:

F(´x) =
ż ´x

0
f (t) dt As in Example 3.2.9 of the text, since f (t) is even,

=

ż 0

x
f (t) dt = ´

ż x

0
f (t) dt

= ´F(x)

Knowing that F(x) is odd allows us to finish our sketch.

x

y

y = F(x)

y = f (x)

´5 ´3 ´1 1 3 5
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S-49: (a) Using the product rule, followed by the chain rule, followed by the
Fundamental Theorem of Calculus Part 1,

f 1(x) = 3x2
ż x3+1

0
et3

dt + x3 d
dx

ż x3+1

0
et3

dt

= 3x2
ż x3+1

0
et3

dt + x3 [3x2][d
dy

ż y

0
et3

dt

]
y=x3+1

= 3x2
ż x3+1

0
et3

dt + x3 [3x2][ey3
]

y=x3+1

= 3x2
ż x3+1

0
et3

dt + x3 [3x2]e(x3+1)3

= 3x2
ż x3+1

0
et3

dt + 3x5e(x3+1)3

(b) In general, the equation of the tangent line to the graph of y = f (x) at x = a is

y = f (a) + f 1(a) (x´ a)

Substituting in the given f (x) and a = ´1:

f (a) = f (´1) = (´1)3
ż 0

0
et3

dt = 0

f 1(a) = f 1(´1) = 3(´1)2
ż 0

0
et3

dt + 3(´1)5e0

= 0´ 3 = ´3
(x´ a) = x´ (´1) = x + 1

So, the equation of the tangent line is

y = ´3(x + 1) .

S-50: Recall that “+C” means that we can add any constant to the function. Since
tan2 x = sec2 x´ 1, Students A and B have equivalent answers: they only differ by a
constant.

So, if one is right, both are right; if one is wrong, both are wrong. We check Student A’s
work:

d
dx
ttan2 x + x + Cu = d

dx
ttan2 xu+ 1 + 0 = f (x)´ 1 + 1 = f (x)

So, Student A’s answer is indeed an anditerivative of f (x). Therefore, both students ended
up with the correct answer.

Remark: it is a frequent occurrence that equivalent answers might look quite different.
As you are comparing your work to others’, this is a good thing to keep in mind!
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S-51:

(a) When x = 3,

F(3) =
ż 3

0
33 sin(t) dt = 27

ż 3

0
sin t dt

Using the Fundamental Theorem of Calculus Part 2,

= 27 [´ cos t]t=3
t=0 = 27 [´ cos 3´ (´ cos 0)]

= 27(1´ cos 3)

(b) Since the integration is with respect to t, the x3 term can be moved outside the
integral. That is: for the purposes of the integral, x3 is a constant (although for the
purposes of the derivative, it certainly is not).

F(x) =
ż x

0
x3 sin(t) dt = x3

ż x

0
sin(t) dt

Using the product rule and the Fundamental Theorem of Calculus Part 1,

F1(x) = x3 ¨ sin(x) + 3x2
ż x

0
sin(t) dt

= x3 sin(x) + 3x2 [´ cos(t)]t=x
t=0

= x3 sin(x) + 3x2[´ cos(x)´ (´ cos(0))]

= x3 sin(x) + 3x2[1´ cos(x)]

Remark: Since x and t play different roles in our problem, it’s crucial that they have
different names. This is one reason why we should avoid the common mistake of writing
şx

a f (x)dx when we mean
şx

a f (t)dt.

S-52: If F(x) is even, then f (x) is odd (by the result of Question 23 in Section 1.2). So,
F(x) can only be even if f (x) is both even and odd. By the result in Question 22, Section
1.2, this means F(x) is only even if f (x) = 0 for all x. Note if f (x) = 0, then F(x) is a
constant function. So, it is certainly even, and it might be odd as well if F(x) = f (x) = 0.

Therefore, if f (x) ‰ 0 for some x, then F(x) is not even. It could be odd, or it could be
neither even nor odd. We can come up with examples of both types: if f (x) = 1, then
F(x) = x is an odd antiderivative, and F(x) = x + 1 is an antiderivative that is neither
even nor odd.

Interestingly, the antiderivative of an odd function is always even. The proof is a little
beyond what we might ask you, but is given below for completeness. The proof goes like
this: First, we’ll show that if g(x) is odd, then there is some antiderivative of g(x) that is
even. Then, we’ll show that every antiderivative of g(x) is even.

So, suppose g(x) is odd and define G(x) =
ż x

0
g(t)dt. By the Fundamental Theorem of

Calculus Part 1, G1(x) = g(x), so G(x) is an antiderivative of g(x). Since g(x) is odd, for
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any x ě 0, the net signed area under the curve along [0, x] is the negative of the net signed
area under the curve along [´x, 0]. So,

ż x

0
g(t) dt = ´

ż 0

´x
g(t) dt (See Example 3.2.10 in the text)

=

ż ´x

0
g(t) dt

By the definition of G(x),

G(x) = G(´x)

That is, G(x) is even. We’ve shown that there exists some antiderivative of g(x) that is
even; it remains to show that all of them are even.

Recall that every antiderivative of g(x) differs from G(x) by some constant. So, any
antiderivative of g(x) can be written as G(x) + C, and G(´x) + C = G(x) + C. So, every
antiderivative of an odd function is even.

S-53:

(a) To find the area C, we’ll first find the area under the demand curve, then subtract the
area under the constant curve p = pe.

q

p

ż qe

0
D(q)dq

qe

D(q)

q

p

qe

pe

D(q)pe ¨ qe

CS =

(
ż qe

0
D(q)dq

)
´ pe ¨ qe =

(
ż qe

0

10
q + 1

dq
)
´ pe ¨ qe

=

(
10

ż qe

0

1
q + 1

dq
)
´ pe ¨ qe = 10 ln |q + 1|

ˇ

ˇ

ˇ

qe

0
´ pe ¨ qe

= 10 ln |qe + 1| ´ 10 ln |1| ´ pe ¨ qe = 10 ln(qe + 1)´ pe ¨ qe

(b) To find the area P, we’ll first find the area under the constant curve p = pe, then
subtract the area under the supply curve.
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q

p

qe

pe

pe ¨ qe

S(q)

q

p

ż qe

0
S(q)dq

qe

S(q)

PS = pe ¨ qe ´
ż qe

0
S(q)dq = pe ¨ qe ´

ż qe

0
(eq ´ 1)dq

= pe ¨ qe ´
[
eq ´ q

]qe

0
= pe ¨ qe ´

[
(eqe ´ qe)´ (e0 ´ 0)

]
= pe ¨ qe ´ eqe + qe + 1

(c)

TS = CS + PS = (10 ln(qe + 1)´ pe ¨ qe) + (pe ¨ qe ´ eqe + qe + 1)
= 10 ln(qe + 1)´ eqe + qe + 1

S-54:

(a) B is the area under the Lorenz curve, so B =
ş1

0 L(x)dx. To find A, rather than use an
integral, we note that it’s the area of a triangle minus the area of B. The triangle is
half of a unit square, so A = 1

2 ´ B. All together,

A
A + B

=
1
2 ´ B

1
2 ´ B + B

= 1´ 2B = 1´ 2
ż 1

0
L(x)dx

This isn’t the only correct answer, but it’s probably the easiest to understand and
calculate. For example, since A + B = 1

2 , we can also say A
A+B = 2A; however, the

integral to find A looks mildly more complicated.

(b) If L(x) = x, then A = 0, so the Gini coefficient is 0.
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(c) First, let’s calculate B.

B =

ż 2

0
L(x)dx =

ż 2

0

x6 + x2

2
dx

=
1
2

ż 1

0

(
x6 + x2

)
dx

=
1
2

[
1
7

x7 +
1
3

x3
]1

0

=
1
2

[
1
7
+

1
3

]
=

1
2

[
10
21

]
So, the Gini coefficient is

1´ 2B = 1´ 10
21

=
11
21
« 0.52

S-55:

(a) Using the Fundamental Theorem of Calculus,

TC =

ż

MCdq + C

for some constant C.
ż

MCdq =

ż
(

1
q + 1

+ q + 2
)

dq = ln |q + 1|+ 1
2

q2 + 2q + C

Since q ě 0,

TC = ln(q + 1) +
1
2

q2 + 2q + C

Now we use the fact that TC(0) =FC = 1000

1000 = TC(0) = ln(0 + 1) +
1
2

02 + 2(0) + C

1000 = C

TC = ln(q + 1) +
1
2

q2 + 2q + 1000

In particular, if we want to make 2000 units, the total cost will be

TC(2000) = ln(2001) +
20002

2
+ 4000 + 1000

= ln(2001) + 2, 005, 000

(b) As in the above part,

TC =

ż

MC dq + C
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for some constant C.
ż

MCdq =

ż
(

40´ 10q +
eq

10

)
dq = 40q´ 5q2 +

eq

10
+ C

Now we use the fact that TC(0) =FC = 50,000

50, 000 = TC(0) = 40(0)´ 5(02) +
e0

10
+ C =

1
10

+ C

49, 999.90 = C

TC = 40q´ 5q2 +
eq

10
+ 49, 999.90

In particular, if we want to make 10 units, the total cost will be

TC(10) = 40(10)´ 5(102) +
e10

10
+ 49, 999.90

= 50, 379.90 +
e10

10

S-56:

(a) By the Fundamental Theorem of Calculus,

TR =

ż

MR dq + C
ż

MR dq =

ż (
cos (q) +

q
5
+ 2
)

dx

= sin q +
q2

10
+ 2q + C

To find C, we use TR(0) = 0

0 = TR(0) = sin 0 +
02

10
+ C

0 = C

All together,

TR = sin q +
q2

10
+ 2q

The unit price is

P =
TR
q

=
sin q

q
+

q
10

+ 2
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(b) As in the previous part,

TR =

ż

MR dq + C
ż

MR dq =

ż
(

eq

1000
+

1
2
?q

)
dx

=
eq

1000
+
?

q + C

To find C, we use TR(0) = 0

0 = TR(0) =
e0

1000
+
?

0 + C =
1

1000
+ C

´ 1
1000

= C

All together,

TR =
eq

1000
+
?

q´ 1
1000

=
eq ´ 1
1000

+
?

q

The unit price is

P =
TR
q

=
eq + 1
1000q

+
1?q

Solutions to Exercises 3.4 — Jump to TABLE OF CONTENTS

S-1: (a) This is true: it is an application of Theorem 3.4.2 in the text with f (x) = sin x and
u(x) = ex.

(b) This is false: the upper limit of integration is incorrect. Using Theorem 3.4.8 in the
text, the correct form is

ż 1

0
sin(ex) ¨ ex dx =

ż e

1
sin(u) du = ´ cos(e) + cos(1) = cos(1)´ cos(e).

Alternately, we can use the Fundamental Theorem of Calculus Part 2, and our answer
from (a):

ż 1

0
sin(ex) ¨ ex dx = [´ cos(ex) + C]10 = cos(1)´ cos(e) .

S-2: The reasoning is not sound: when we do a substitution, we need to take care of the
differential (dx). Remember the method of substitution comes from the chain rule: there
should be a function and its derivative. Here’s the way to do it:

433



Problem: Evaluate
ż

(2x + 1)2dx.

Work: We use the substitution u = 2x + 1. Then du = 2dx, so dx = 1
2du:

ż

(2x + 1)2dx =

ż

u2 ¨ 1
2

du

=
1
6

u3 + C

=
1
6
(2x + 1)3 + C

S-3: The problem is with the limits of integration, as in Question 1. Here’s how it ought
to go:

Problem: Evaluate
ż π

1

cos(ln t)
t

dt.

Work: We use the substitution u = ln t, so du = 1
t dt. When t = 1, we have

u = ln 1 = 0 and when t = π, we have u = ln(π). Then:
ż π

1

cos(ln t)
t

dt =
ż ln(π)

ln 1
cos(u)du

=

ż ln(π)

0
cos(u)du

= sin(ln(π))´ sin(0) = sin(ln(π)).

S-4: Perhaps shorter ways exist, but the reasoning here is valid.

Problem: Evaluate
ż π/4

0
x tan(x2) dx.

Work: We begin with the substitution u = x2, du = 2xdx:
If u = x2, then du

dx = 2x, so indeed du = 2xdx.
ż π/4

0
x tan(x2) dx =

ż π/4

0

1
2

tan(x2) ¨ 2xdx algebra

=

ż π2/16

0

1
2

tan u du

Every piece is changed from x to u: integrand, differential, limits.

=
1
2

ż π2/16

0

sin u
cos u

du tan u =
sin u
cos u

Now we use the substitution v = cos u, dv = ´ sin u du:

=
1
2

ż cos(π2/16)

cos 0
´1

v
dv
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Every piece is changed from u to v: integrand, differential, limits.

= ´1
2

ż cos(π2/16)

1

1
v

dv cos(0) = 1

= ´1
2

[
ln |v|

]cos(π2/16)

1
FTC Part 2

= ´1
2

(
ln
(

cos(π2/16)
)
´ ln(1)

)
= ´1

2
ln
(

cos(π2/16)
)

ln(1) = 0

S-5: We substitute:

u = sin x,
du = cos x dx,

cos x =
a

1´ sin2 x =
a

1´ u2,

dx =
du

cos x
=

du?
1´ u2

u(0) = sin 0 = 0

u
(π

2

)
= sin

(π

2

)
= 1

So,
ż x=π/2

x=0
f (sin x)dx =

ż u=1

u=0
f (u)

du?
1´ u2

S-6: Using the chain rule, we see that

d
dx
t f (g(x))u = f 1(g(x))g1(x)

So, f (g(x)) is an antiderivative of f 1(g(x))g1(x). All antiderivatives of f 1(g(x))g1(x)
differ by only a constant, so:

ż

f 1(g(x))g1(x) dx´ f (g(x)) = f (g(x)) + C´ f (g(x))

= C

That is, our expression simplifies to some constant C.

Remark: since
ż

f 1(g(x))g1(x) dt´ f (g(x)) = C

we conclude
ż

f 1(g(x))g1(x) dt = f (g(x)) + C

435



which is precisely how we perform substitution on integrals.

S-7: We write u(x) = ex2
and find du = u1(x)dx = 2xex2

dx. Note that u(1) = e12
= e

when x = 1, and u(0) = e02
= 1 when x = 0. Therefore:

ż 1

0
xex2

cos(ex2
)dx =

1
2

ż x=1

x=0
cos(u(x))u1(x)dx

=
1
2

ż u=e

u=1
cos(u)du

=
1
2

[
sin(u)

]e

1
=

1
2
(

sin(e)´ sin(1)
)
.

S-8: Substituting y = x3, dy = 3x2 dx :
ż 2

1
x2 f (x3)dx =

1
3

ż 8

1
f (y)dy =

1
3

S-9: Setting u = x3 + 1, we have du = 3x2 dx and so
ż

x2 dx

(x3 + 1)101 =

ż

du/3
u101

=
1
3

ż

u´101 du

=
1
3
¨ u´100

´100

= ´ 1
3ˆ 100u100 + C

= ´ 1

300(x3 + 1)100 + C

S-10: Setting u = ln x, we have du = 1
x dx and so

ż e4

e

dx
x ¨ ln x

=

ż x=e4

x=e

1
ln x

¨ 1
x

dx =

ż u=4

u=1

1
u

du,

since u = ln(e) = 1 when x = e and u = ln(e4) = 4 when x = e4. Then, by the
Fundamental Theorem of Calculus Part 2,

ż 4

1

1
u

du =
[

ln |u|
]4

1
= ln 4´ ln 1 = ln 4.
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S-11: Setting u = 1 + sin x, we have du = cos x dx and so

ż π/2

0

cos x
1 + sin x

dx =

ż x=π/2

x=0

1
1 + sin x

cos x dx =

ż u=2

u=1

du
u

since u = 1 + sin 0 = 1 when x = 0 and u = 1 + sin(π/2) = 2 when x = π/2. Then, by
the Fundamental Theorem of Calculus Part 2,

ż u=2

u=1

du
u

=
[

ln |u|
]2

1
= ln 2

S-12: Setting u = sin x, we have du = cos x dx and so

ż π/2

0
cos x ¨ (1 + sin2x)dx =

ż x=π/2

x=0
(1 + sin2x) ¨ cos x dx =

ż u=1

u=0
(1 + u2)du,

since u = sin 0 = 0 when x = 0 and u = sin(π/2) = 1 when x = π/2. Then, by the
Fundamental Theorem of Calculus Part 2,

ż 1

0
(1 + u2)du =

[
u +

u3

3

]1

0
=

(
1 +

1
3

)
´ 0 =

4
3

.

S-13: Substituting t = x2 ´ x, dt = (2x´ 1)dx and noting that t = 0 when x = 1 and
t = 6 when x = 3,

ż 3

1
(2x´ 1)ex2´xdx =

ż 6

0
et dt =

[
et]6

0 = e6 ´ 1

S-14: We use the substitution u = 4´ x2, for which du = ´2x dx :
ż

x2 ´ 4?
4´ x2

x dx =

ż

1
2
¨ 4´ x2
?

4´ x2
(´2x)dx

=
1
2

ż

u?
u

du

=
1
2

ż ?
u du

=
1
2

u3/2

3/2
+ C

=
1
3
(4´ x2)3/2 + C

S-15:
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Solution 1: If we let u =
?

ln x, then du =
1

2x
?

ln x
dx, and:

ż

e
?

ln x

2x
?

ln x
dx =

ż

eu du = eu + C = e
?

ln x + C

Solution 2: In Solution 1, we made a pretty slick choice. We might have tried to work
with something a little less convenient. For example, it’s not unnatural to think that

u = ln x, du =
1
x

dx would be a good choice. In that case:

ż

e
?

ln x

2x
?

ln x
dx =

ż

e
?

u

2
?

u
du

Now, we should be able to see that w =
?

u, dw =
1

2
?

u
du is a good choice:

ż

e
?

u

2
?

u
du =

ż

ew dw

= e
?

u + C

= e
?

ln x + C

S-16:

The slightly sneaky method: We note that
d
dx

!

ex2
)

= 2x ex2
, so that

1
2

ex2
is a

antiderivative for the integrand xex2
. So

ż 2

´2
xex2

dx =

[
1
2

ex2
]2

´2
=

1
2

e4 ´ 1
2

e4 = 0

The really sneaky method: The integrand f (x) = xex2
is an odd function (meaning that

f (´x) = ´ f (x)). So by Theorem 3.2.11 in the text every integral of the form
şa
´a xex2

dx is zero.

S-17: The given sum is of the form

lim
nÑ8

n
ÿ

j=1

j
n2 sin

(
1 +

j2

n2

)
= lim

nÑ8

n
ÿ

j=1

f (x˚j )∆x

with ∆x = 1
n , x˚j = j

n and f (x) = x sin(1 + x2). Since x˚0 = 0 and x˚n = 1, the right hand
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side is the definition (using the right Riemann sum) of

ż 1

0
f (x)dx =

ż 1

0
x sin(1 + x2)dx

=
1
2

ż 2

1
sin(y)dy with y = 1 + x2, dy = 2x dx

=
1
2

[
´ cos(y)

]y=2

y=1

=
1
2
[cos 1´ cos 2]

Using a calculator, we see this is close to 0.478.

S-18: Often, the denominator of a function is a good guess for the substitution. So, let’s
try setting w = u2 + 1. Then dw = 2u du:

ż 1

0

u3

u2 + 1
du =

1
2

ż 1

0

u2

u2 + 1
2u du

The numerator now is u2, and looking at our substitution, we see u2 = w´ 1:

=
1
2

ż 2

1

w´ 1
w

dw

=
1
2

ż 2

1

(
1´ 1

w

)
dw

=
1
2
[w´ ln |w|]w=2

w=1

=
1
2
(2´ ln 2´ 1) =

1
2
´ 1

2
ln 2

S-19: The only thing we really have to work with is a tangent, so it’s worth considering
what would happen if we substituted u = tan θ. Then du = sec2 θ dθ. This doesn’t show
up in the integrand as it’s written, but we can try and bring it out by using the identity
tan2 = sec2 θ ´ 1:

ż

tan3 θ dθ =

ż

tan θ ¨ tan2 θdθ

=

ż

tan θ ¨
(

sec2 θ ´ 1
)

dθ

=

ż

tan θ ¨ sec2 θdθ ´
ż

tan θ dθ
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In Example 3.4.17 of the text, we learned
ş

tan θ dθ = ln | sec θ|+ C

=

ż

u du´ ln | sec θ|+ C

=
1
2

u2 ´ ln | sec θ|+ C

=
1
2

tan2 θ ´ ln | sec θ|+ C

S-20: At first glance, it’s not clear what substitution to use. If we try the denominator,
u = ex + e´x, then du = (ex ´ e´x) dx, but it’s not clear how to make this work with our
integral. So, we can try something else.

If we want to tidy things up, we might think to take u = ex as a substitution. Then
du = ex dx, so we need an ex in the numerator. That can be arranged.

ż

1
ex + e´x ¨

(
ex

ex

)
dx =

ż

ex

(ex)2 + 1
dx

=

ż

1
u2 + 1

du

= arctan(u) + C
= arctan(ex) + C

S-21: We often like to take the “inside” function as our substitution, in this case
u = 1´ x2, so du = ´2x dx. This takes care of part of the integral:

ż 1

0
(1´ 2x)

a

1´ x2 dx =

ż 1

0

a

1´ x2 dx +

ż 1

0
(´2x)

a

1´ x2 dx

The left integral is tough to solve with substitution, but luckily we don’t have to–it’s the
area of a quarter of a circle of radius 1.

=
π

4
+

ż 0

1

?
u du

=
π

4
+

[
2
3

u3/2
]u=0

u=1

=
π

4
+ 0´ 2

3
=

π

4
´ 2

3

S-22:
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Solution 1: We often find it useful to take “inside” functions as our substitutions, so let’s
try u = cos x, du = ´ sin x dx. In order to dig up a sine, we use the identity

tan x =
sin x
cos x

:
ż

tan x ¨ ln (cos x)dx = ´
ż ´ sin x

cos x
¨ ln (cos x)dx

= ´
ż

1
u

ln(u) du

Now, it is convenient to let w = ln u, dw = 1
u du :

´
ż

1
u

ln(u) du = ´
ż

w dw

= ´1
2

w2 + C

= ´1
2
(ln u)2 + C

= ´1
2
(ln(cos x))2 + C

Solution 2: We might guess that it’s useful to have u = ln(cos x),

du =
´ sin x
cos x

dx = ´ tan x dx:
ż

tan x ¨ ln (cos x)dx = ´
ż

´ tan x ¨ ln (cos x)dx

= ´
ż

u du

= ´1
2

u2 + C

= ´1
2
(ln(cos x))2 + C

S-23: The given sum is of the form

lim
nÑ8

n
ÿ

j=1

j
n2 cos

( j2

n2

)
= lim

nÑ8

n
ÿ

j=1

f (x˚j )∆x

with ∆x = 1
n , x˚j = j

n and f (x) = x cos(x2). Since x˚0 = 0 and x˚n = 1, the right hand side
is the definition (using the right Riemann sum) of

ż 1

0
f (x)dx =

ż 1

0
x cos(x2)dx

=
1
2

ż 1

0
cos(y)dy with y = x2, dy = 2x dx

=
1
2

[
sin(y)

]1

0

=
1
2

sin 1

441



S-24: The given sum is of the form

lim
nÑ8

n
ÿ

j=1

j
n2

c

1 +
j2

n2 = lim
nÑ8

n
ÿ

j=1

f (x˚j )∆x

with ∆x = 1
n , x˚j = j

n and f (x) = x
?

1 + x2. Since x˚0 = 0 and x˚n = 1, the right hand side
is the definition (using the right Riemann sum) of

ż 1

0
f (x)dx =

ż 1

0
x
a

1 + x2 dx

=
1
2

ż 2

1

?
y dy with y = 1 + x2, dy = 2x dx

=
1
2

[
2
3

y3/2
]y=2

y=1

=
1
3
[2
?

2´ 1]

Using a calculator, we see this is approximately 0.609.

S-25: Using the definition of a definite integral with right Riemann sums:

ż b

a
2 f (2x)dx = lim

nÑ8

n
ÿ

i=1

∆x ¨ 2 f (2(a + i∆x)) ∆x =
b´ a

n

= lim
nÑ8

n
ÿ

i=1

(
b´ a

n

)
¨ 2 f

(
2
(

a + i
(

b´ a
n

)))

= lim
nÑ8

n
ÿ

i=1

(
2b´ 2a

n

)
¨ f
(

2a + i
(

2b´ 2a
n

))
ż 2b

2a
f (x)dx = lim

nÑ8

n
ÿ

i=1

∆x ¨ f (2a + i∆x) ∆x =
2b´ 2a

n

= lim
nÑ8

n
ÿ

i=1

(
2b´ 2a

n

)
¨ f
(

2a + i
(

2b´ 2a
n

))
Since the Riemann sums are exactly the same,

ż b

a
2 f (2x)dx =

ż 2b

2a
f (x)dx

Looking at the Riemann sum in this way is instructive, because it is very clear why the
two integrals should be equal (without using substitution). The rectangles in the first
Riemann sum are half as wide, but twice as tall, as the rectangles in the second Riemann
sum. So, the two Riemann sums have rectangles of the same area.
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b´a
n

2 f (x˚i )

2 b´a
n

f (x˚i )

(Not every substitution corresponds to such a simple picture.)

S-26:

(a) By the Fundamention Theorem of Calculus,

TC =

ż

MC dq + C

=

ż

6q2 ´ 80
a

2q3 ´ 80q
dq + C

Let u = 2q3 ´ 80q, so du = (6q2 ´ 80) dq

=

ż

1?
u

du + C =

ż

u´1/2du

= 2
?

u + C = 2
b

2q3 ´ 80q + C

Since TC(0) =FC= 2000,

2000´ TC(0) = 2
?

0 + C
2000 = C

All together,

TC = 2
b

2q3 ´ 80q + 2000

A company has MC =
6q2 ´ 80

a

2q3 ´ 80q
. Find the company’s TC function FC = 2, 000

dollars.

(b) By the Fundamental Theorem of Calculus,

TR =

ż

MR dq + C

=

ż

(
q3

a

q2 + 1

)
dq + C
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The most likely substitution seems to be u = q2 + 1, with du = 2qdq. Also q2 = u´ 1
and q dq = 1

2du.

=

ż

(
q2

a

q2 + 1

)
qdq + C

=

ż
(

u´ 1?
u

)
¨ 1

2
du + C

=
1
2

ż (
u1/2 ´ u´1/2

)
du + C

=
1
2

[
2
3

u3/2 ´ 2u1/2
]
+ C

=
1
3

u3/2 ´ u1/2 + C

=
1
3

(
q2 + 1

)3/2 ´
(

q2 + 1
)1/2

+ C

To find C, we use TR(0) = 0.

0 = TR(0) =
1
3

(
02 + 1

)3/2 ´
(

02 + 1
)1/2

+ C = ´2
3
+ C

C =
2
3

All together,

TR =
1
3

(
q2 + 1

)3/2 ´
(

q2 + 1
)1/2

+
2
3

(c) Profit is revenue minus cost. In this case,(
1
3

(
q2 + 1

)3/2 ´
(

q2 + 1
)1/2

+
2
3

)
´
(

2
b

2q3 ´ 80q + 2000
)

(d) If 2q3 ´ 80q ă 0, then TC is not defined, as it involves the square root of a negative
number. Note

2q3 ´ 80q = 2q(q2 ´ 40)

So for 0 ď q ď ?40, q is a number that makes sense as a quantity of production (i.e. q
isn’t negative), but it isn’t in the domain of our cost functions. The company needs to
make at least 7 units for q to be in the domain of the functions we’re using.

Solutions to Exercises 3.5 — Jump to TABLE OF CONTENTS
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S-1: Integration by substitution is just using the chain rule, backwards:

d
dx
t f (g(x))u = f 1(g(x))g1(x)

ô
ż

d
dx
t f (g(x))udx + C =

ż

f 1(g(x))g1(x)dx

ô f (g(x))
looomooon

f (u)

+C =

ż

f 1(g(x))
looomooon

f 1(u)

g1(x)dx
looomooon

du

Similarly, integration by parts comes from the product rule:

d
dx
t f (x)g(x)u = f 1(x)g(x) + f (x)g1(x)

ô
ż

d
dx
t f (x)g(x)udx + C =

ż

f 1(x)g(x) + f (x)g1(x)dx

ô f (x)g(x) + C =

ż

f 1(x)g(x)dx +

ż

f (x)g1(x)dx

ô
ż

f (x)
loomoon

u

g1(x)dx
looomooon

dv

= f (x)
loomoon

u

g(x)
loomoon

v

´
ż

g(x)
loomoon

v

f 1(x)dx
looomooon

du

S-2: Remember our rule:
ş

udv = uv´ ş

vdu. So, we take u and use it to make du–that is,
we differentiate it. We take dv and use it to make v–that is, we antidifferentiate it.

S-3: We’ll use the same ideas that lead to the methods of substitution and integration by
parts. (You can review these in your text, or see the solution to Question 1 in this section.)
According to the quotient rule,

d
dx

"

f (x)
g(x)

*

=
g(x) f 1(x)´ f (x)g1(x)

g2(x)
.

Antidifferentiating both sides gives us:
ż

d
dx

"

f (x)
g(x)

*

dx + C =

ż

g(x) f 1(x)´ f (x)g1(x)
g2(x)

dx

f (x)
g(x)

+ C =

ż

f 1(x)
g(x)

dx´
ż

f (x)g1(x)
g2(x)

dx
ż

f 1(x)
g(x)

dx =
f (x)
g(x)

+

ż

f (x)g1(x)
g2(x)

dx + C

This isn’t quite at catchy as integration by parts–which is probably why it hasn’t caught
on as a rule with its own name.
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S-4: All the antiderivatives differ only by a constant, so we can write them all as
v(x) + C for some C. Then, using the formula for integration by parts,

ż

u(x) ¨ v1(x)dx = u(x)
loomoon

u

[
v(x) + C

]
looooomooooon

v

´
ż [

v(x) + C
]

looooomooooon

v

u1(x)dx
looomooon

du

= u(x)v(x) + Cu(x)´
ż

v(x)u1(x)dx´
ż

Cu1(x)dx

= u(x)v(x) + Cu(x)´
ż

v(x)u1(x)dx´ Cu(x) + D

= u(x)v(x)´
ż

v(x)u1(x)dx + D

where D is any constant.

Since the terms with C cancel out, it didn’t matter what we chose for C–all choices end
up the same.

S-5: Suppose we choose dv = f (x)dx, u = 1. Then v =

ż

f (x)dx, and du = dx. So, our

integral becomes:

ż

(1)
loomoon

u

f (x)dx
loomoon

dv

= (1)
loomoon

u

ż

f (x)dx
loooomoooon

v

´
ż
(
ż

f (x)dx
)

loooooomoooooon

v

dx
loomoon

du

In order to figure out the first product (and the second integrand), you need to know the
antiderivative of f (x)–but that’s exactly what you’re trying to figure out! So, using
integration by parts has not eased your pain.

We note here that in certain cases, such as
ş

ln x dx (Example 3.5.8 in the text), it is useful
to choose dv = 1dx. This is similar to, but crucially different from, the do-nothing
method in this problem.

S-6: For integration by parts, we want to break the integrand into two pieces, multiplied
together. There is an obvious choice for how to do this: one piece is x, and the other is
ln x. Remember that one piece will be integrated, while the other is differentiated. The
question is, which choice will be more helpful. After some practice, you’ll get the hang of
making the choice. For now, we’ll present both choices–but when you’re writing a
solution, you don’t have to write this part down. It’s enough to present your choice, and
then a successful computation is justification enough.
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Option 1: u = x du = 1 dx

dv = ln x dx v =??

Option 2: u = ln x du =
1
x

dx

dv = x dx v =
1
2

x2

In Example 3.5.8 of the text, we found the antiderivative of logarithm, but it wasn’t
trivial. We might reasonably want to avoid using this complicated antiderivative.
Indeed, Option 2 (differentiating logarithm, antidifferentiating x) looks promising–when
we multiply the blue equations, we get something easily integrable– so let’s not even
bother going deeper into Option 1.

That is, we perform integration by parts with u = ln x and dv = x dx, so that du = dx
x

and v = x2

2 .

ż

ln x
loomoon

u

x dx
loomoon

dv

=
x2 ln x

2
loomoon

uv

´
ż

x2

2
loomoon

v

dx
x

loomoon

du

=
x2 ln x

2
´ 1

2

ż

x dx

=
x2 ln x

2
´ x2

4
+ C

S-7: Our integrand is the product of two functions, and there’s no clear substitution. So,
we might reasonably want to try integration by parts. Again, we have two obvious
pieces: ln x, and x´7. We’ll consider our options for assigning these to u and dv:

Option 1: u = ln x du =
1
x

dx

dv = x´7 dx v =
1
´6

x´6

Option 2: u = x´7 du = ´7x´8 dx

dv = ln x dx v =??

Again, we remember that logarithm has some antiderivative we found in Example 3.5.8
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of the text, but it was something complicated. Luckily, we don’t need to bother with it:
when we multiply the red equations in Option 1, we get a perfectly workable integral.

We perform integration by parts with u = ln x and dv = x´7 dx, so that du = dx
x and

v = ´ x´6

6 .

ż

ln x
x7 dx = ´ ln x

x´6

6
looooomooooon

uv

+

ż

x´6

6
loomoon

´v

dx
x

loomoon

du

= ´ ln x
6x6 +

1
6

ż

x´7 dx

= ´ ln x
6x6 ´

1
36x6 + C

S-8: To integrate by parts, we need to decide what to use as u, and what to use as dv.
The salient parts of this integrand are x and sin x, so we only need to decide which is u
and which dv. Again, this process will soon become familiar, but to help you along we
show you both options below.

Option 1: u = x du = 1 dx

dv = sin x dx v = ´ cos x

Option 2: u = sin x du = cos x dx

dv = x dx v =
1
2

x2

The derivative and antiderivative of sine are almost the same, but x turns into something
simpler when we differentiate it. So, we choose Option 1.

We integrate by parts, using u = x, dv = sin x dx so that v = ´ cos x and du = dx:

ż π

0
x sin x dx = ´x cos x

looomooon

uv

ˇ

ˇ

ˇ

π

0
´
ż π

0
(´ cos x)
loooomoooon

v

dx
loomoon

du

=
[
´ x cos x + sin x

]π

0
= ´π(´1) = π

S-9: When we have two functions multiplied like this, and there’s no obvious
substitution, our minds turn to integration by parts. We hope that our integral will be
improved by differentiating one part and antidifferentiating the other. Let’s see what our
choices are:
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Option 1: u = x du = 1 dx

dv = cos x dx v = sin x

Option 2: u = cos x du = ´ sin x dx

dv = x dx v =
1
2

x2

Option 1 seems preferable. We integrate by parts, using u = x, dv = cos x dx so that
v = sin x and du = dx:

ż π
2

0
x cos x dx = x

loomoon

u

sin x
loomoon

v

ˇ

ˇ

ˇ

π
2

0
´
ż π

2

0
sin x
loomoon

v

dx
loomoon

du

=
[

x sin x + cos x
] π

2

0
=

π

2
´ 1

S-10: This integrand is the product of two functions, with no obvious substitution. So,
let’s try integration by parts, with one part ex and one part x3.

Option 1: u = ex du = ex dx

dv = x3 dx v = 1
4 x4

Option 2: u = x3 du = 3x2 dx

dv = ex dx v = ex

At first glance, multiplying the red functions and multiplying the blue functions give
largely equivalent integrands to what we started with–none of them with obvious
antiderivatives. In previous questions, we were able to choose u = x, and then du = dx,
so the “x” in the integrand effectively went away. Here, we see that choosing u = x3 will
lead to du = 3x2dx, which has a lower power. If we repeatedly perform integration by
parts, choosing u to be the power of x each time, then after a few iterations it should go
away, because the third derivative of x3 is a constant.

So, we start with Option 2: u = x3, dv = exdx, du = 3x2dx, and v = ex.
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ż

x3exdx = x3
loomoon

u

ex
loomoon

v

´
ż

ex
loomoon

v

¨ 3x2dx
loomoon

du

= x3ex ´ 3
ż

ex ¨ x2dx

Now, we take u = x2 and dv = exdx, so du = 2xdx and v = ex. We’re only using
integration by parts on the actual integral–the rest of the function stays the way it is.

= x3ex ´ 3

 x2ex
loomoon

uv

´
ż

ex
loomoon

v

¨ 2xdx
loomoon

du


= x3ex ´ 3x2ex + 6

ż

xexdx

Continuing, we take u = x and dv = exdx, so du = dx and v = ex. This is the step where
the polynomial part of the integrand finally disappears.

= x3ex ´ 3x2ex + 6

 xex
loomoon

uv

´
ż

ex
loomoon

v

dx
loomoon

du


= x3ex ´ 3x2ex + 6xex ´ 6ex + C

= ex
(

x3 ´ 3x2 + 6x´ 6
)
+ C

Let’s check that this makes sense: the derivative of ex (x3 ´ 3x2 + 6x´ 6
)
+ C should be

x3ex. We differentiate using the product rule.

d
dx

!

ex
(

x3 ´ 3x2 + 6x´ 6
)
+ C

)

= ex
(

x3 ´ 3x2 + 6x´ 6
)
+ ex

(
3x2 ´ 6x + 6

)
= ex

(
x3 ´ 3x2 + 3x2 + 6x´ 6x´ 6 + 6

)
= x3ex

Remark: In order to be technically correct in our antidifferentiation, we should add the
+C as soon as we do the first integration by parts. However, when we are using
integration by parts, we usually end up evaluating an integral at the end, and we add the
+C at that point. Since the +C comes up eventually, it is common practice to not clutter
our calculations with it until the end.

S-11: Since our integrand is two functions multiplied together, and there isn’t an obvious
substitution, let’s try integration by parts. Here are our salient options.
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Option 1: u = x du = 1 dx

dv = ln3 x dx v =??

Option 2: u = ln3 x du = 3 ln2 x ¨ 1
x dx

dv = x dx v =
1
2

x2

This calls for some strategizing. Using the template of Example 3.5.8 in the text, we could
probably figure out the antiderivative of ln3 x. Option 1 is tempting, because our x-term
goes away. So, there might be a benefit there, but on the other hand, the antiderivative of
ln3 x is probably pretty complicated.

Now let’s consider Option 2. When we multiply the blue functions together, we get
something similar to our original integrand, but the power of logarithm is smaller. If we
were to iterate this method (using integration by parts a few times, always choosing u to
be the part with a logarithm) then eventually we would end up differentiating logarithm.
This seems like a safer plan: let’s do Option 2.

We use integration by parts with u = ln3 x, dv = xdx, du = 3
x ln2 xdx, and v = 1

2 x2.

ż

x ln3 x dx =
1
2

x2 ln3 x
looomooon

uv

´
ż

3
2

x ln2 xdx
looooomooooon

vdu

=
1
2

x2 ln3 x´ 3
2

ż

x ln2 xdx

Continuing our quest to differentiate away the logarithm, we use integration by parts

with u = ln2 x, dv = xdx, du =
2
x

ln xdx, and v =
1
2

x2.

=
1
2

x2 ln3 x´ 3
2

1
2

x2 ln2 x
looomooon

uv

´
ż

x ln xdx
looomooon

vdu


=

1
2

x2 ln3 x´ 3
4

x2 ln2 x +
3
2

ż

x ln xdx
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One last integration by parts: u = ln x, dv = xdx, du =
1
x

dx, and v =
1
2

x2.

=
1
2

x2 ln3 x´ 3
4

x2 ln2 x +
3
2

1
2

x2 ln x
looomooon

uv

´
ż

1
2

xdx
loomoon

vdu


=

1
2

x2 ln3 x´ 3
4

x2 ln2 x +
3
4

x2 ln x´ 3
4

ż

xdx

=
1
2

x2 ln3 x´ 3
4

x2 ln2 x +
3
4

x2 ln x´ 3
8

x2 + C

Once again, technically there is a +C in the work after the first integration by parts, but
we follow convention by conveniently suppressing it until the final integration.

S-12: The integrand is the product of two functions, without an obvious substitution, so
let’s see what integration by parts can do for us.

Option 1: u = x2 du = 2x dx

dv = sin x dx v = ´ cos x

Option 2: u = sin x du = cos x dx

dv = x2 dx v = 1
3 x3

Neither option gives us something immediately integrable, but Option 1 replaces our x2

term with a lower power of x. If we repeatedly apply integration by parts, we can reduce
this power to zero. So, we start by choosing u = x2 and dv = sin xdx, so du = 2xdx and
v = ´ cos x.

ż

x2 sin x dx = ´x2 cos x
loooomoooon

uv

+

ż

2x cos xdx
loooooomoooooon

´vdu

= ´x2 cos x + 2
ż

x cos xdx
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Using integration by parts again, we want to be differentiating (not antidifferentiating) x,
so we choose u = x, dv = cos xdx, and then du = dx (x went away!), v = sin x.

= ´x2 cos x + 2

x sin x
loomoon

uv

´
ż

sin xdx
loomoon

vdu


= ´x2 cos x + 2x sin x + 2 cos x + C

= (2´ x2) cos x + 2x sin x + C

S-13: This problem is similar to Questions 6 and 7: integrating a polynomial multiplied
by a logarithm. Just as in these questions, if we use integration by parts with u = ln t,

then du =
1
t

dt, and our new integrand will consist of powers of t–which are easy to
antidifferentiate.

So, we use u = ln t, dv = 3t2 ´ 5t + 6, du = 1
t dt, and v = t3 ´ 5

2 t2 + 6t.

ż

(3t2 ´ 5t + 6) ln t dt = ln t
loomoon

u

t3 ´ 5
2

t2 + 6t
loooooomoooooon

v

´ ż

1
t

(
t3 ´ 5

2
t2 + 6t

)
dt

loooooooooooomoooooooooooon

vdu

=

(
t3 ´ 5

2
t2 + 6t

)
ln t´

ż
(

t2 ´ 5
2

t + 6
)

dt

=

(
t3 ´ 5

2
t2 + 6t

)
ln t´ 1

3
t3 +

5
4

t2 ´ 6t + C

S-14: Before we jump to integration by parts, we notice that the square roots lend

themselves to substitution. Let’s take w =
?

s. Then dw =
1

2
?

s
ds, so 2w dw = ds.

ż ?
se
?

sds =
ż

w ¨ ew ¨ 2wdw = 2
ż

w2ewdw

Now we have nearly the situation of Question 10. We can repeatedly use integration by
parts, with u as the power of w, to get rid of the polynomial part. We’ll start with u = w2,
dv = ewdw, du = 2wdw, and v = ew.

= 2

 w2ew
loomoon

uv

´
ż

2wewdw
looomooon

vdu


= 2w2ew ´ 4

ż

wewdw
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We use integration by parts again, this time with u = w, dv = ewdw, du = dw, and
v = ew.

= 2w2ew ´ 4

 wew
loomoon

uv

´
ż

ewdw
loomoon

vdu


= 2w2ew ´ 4wew + 4ew + C

= ew
(

2w2 ´ 4w + 4
)
+ C

= e
?

s (2s´ 4
?

s + 4
)
+ C

S-15: Let’s use integration by parts. What are our parts? We have a few options.

Solution 1: Following Example 3.5.8 in the text, we choose u = ln2 x and dv = dx, so
that du = 2

x ln x dx and v = x.
ż

ln2 xdx = x ln2 x
loomoon

uv

´
ż

2 ln xdx
looomooon

vdu

Here we can either use the antiderivative of logarithm from memory, or re-derive it.
We do the latter, using integration by parts with u = ln x, dv = 2dx, du = 1

x dx, and
v = 2x.

= x ln2 x´
2x ln x
loomoon

uv

´
ż

2dx
loomoon

vdu


= x ln2 x´ 2x ln x + 2x + C

Solution 2: Our integrand is two functions multiplied together: ln x and ln x. So, we will
use integration by parts with u = ln x, dv = ln x, du = 1

x dx, and (using the
antiderivative of logarithm, found in Example 3.5.8 in the text) v = x ln x´ x.

ż

ln2 x dx = ( ln x
loomoon

u

)(x ln x´ x
loooomoooon

v

)´
ż

(x ln x´ x
loooomoooon

v

)
1
x

dx
loomoon

du

= x ln2 x´ x ln x´
ż

(ln x´ 1)dx

= x ln2 x´ x ln x´ [(x ln x´ x)´ x] + C

= x ln2 x´ 2x ln x + 2x + C

S-16: This is your friendly reminder that to a person with a hammer, everything looks
like a nail. The integral in the problem is a classic example of an integral to solve using
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substitution. We have an “inside function,” x2 + 1, whose derivative shows up
multiplied to the rest of the integrand. We take u = x2 + 1, then du = 2xdx, so

ż

2xex2+1dx =

ż

eudu = eu + C = ex2+1 + C

S-17: We integrate by parts, using u = arctan(2y), dv = 4y dy, so that v = 2y2 and
du = 2 dy

1+(2y)2 :

ż

4y arctan(2y)dy = 2y2 arctan(2y)
looooooomooooooon

uv

´
ż

4y2

(2y)2 + 1
dy

loooooomoooooon

vdu

The integrand 4y2

(2y)2+1 is a rational function. So the remaining integral can be evaluated
using the method of partial fractions, starting with long division. But it is easier to just

notice that 4y2

4y2+1 = 4y2+1
4y2+1 ´ 1

4y2+1 . We therefore have:

ż

4y2

4y2 + 1
dy =

ż
(

1´ 1
4y2 + 1

)
dy = y´ 1

2
arctan(2y) + C

The final answer is then
ż

4y arctan(2y)dy = 2y2 arctan(2y)´ y +
1
2

arctan(2y) + C

S-18: We’ve got an integrand that consists of two functions multiplied together, and no
obvious substitution. So, we think about integration by parts. Let’s consider our options.
Note in Example 3.5.9 of the text, we found that the antiderivative of arctangent is
x arctan x´ 1

2 ln(1 + x2) + C.

Option 1: u = arctan x du =
1

1 + x2 dx

dv = x2 dx v =
1
3

x3

Option 2: u = x2 du = 2x dx

dv = arctan x dx v = x arctan x´ 1
2

ln(1 + x2)

Option 1 Option 1 seems likelier. Let’s see how it plays out. We use integration by parts
with u = arctan x, dv = x2dx, du = dx

1+x2 , and v = 1
3 x3.
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ż

x2 arctan x dx =
x3

3
arctan x

looooomooooon

uv

´
ż

x3

3(1 + x2)
dx

loooooomoooooon

vdu

=
x3

3
arctan x´ 1

3

ż

x3

1 + x2 dx

This is starting to look like a candidate for a substitution! Let’s try the denominator,
s = 1 + x2. Then ds = 2xdx, and x2 = s´ 1.

=
x3

3
arctan x´ 1

6

ż

x2

1 + x2 ¨ 2xdx

=
x3

3
arctan x´ 1

6

ż

s´ 1
s

ds

=
x3

3
arctan x´ 1

6

ż

1´ 1
s

ds

=
x3

3
arctan x´ 1

6
s +

1
6

ln |s|+ C

=
x3

3
arctan x´ 1

6
(1 + x2) +

1
6

ln(1 + x2) + C

Option 2: What if we had tried the other option? That is, u = x2, du = 2xdx,
dv = arctan x, and v = x arctan x´ 1

2 ln(1 + x2). It’s not always the case that both
options work, but sometimes they do. (They are almost never of equal difficulty.)
This solution takes advantage of two previously hard-won results: the
antiderivatives of logarithm and arctangent.

ż

x2 arctan xdx = x2
loomoon

u

(
x arctan x´ 1

2
ln(1 + x2)

)
looooooooooooooooomooooooooooooooooon

v

´
ż
(

x arctan x´ 1
2

ln(1 + x2)

)
looooooooooooooooomooooooooooooooooon

v

¨ 2xdx
loomoon

du

= x3 arctan x´ x2

2
ln(1 + x2)´ 2

ż

x2 arctan xdx +

ż

x ln(1 + x2)dx

Adding 2
ż

x2 arctan xdx to both sides:

3
ż

x2 arctan xdx = x3 arctan x´ x2

2
ln(1 + x2) +

ż

x ln(1 + x2)dx
ż

x2 arctan xdx =
x3

3
arctan x´ x2

6
ln(1 + x2) +

1
3

ż

x ln(1 + x2)dx

Using the substitution s = 1 + x2, ds = 2xdx:

=
x3

3
arctan x´ x2

6
ln(1 + x2) +

1
6

ż

ln sds
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Using the antiderivative of logarithm found in Example 3.5.8 of the text,

=
x3

3
arctan x´ x2

6
ln(1 + x2) +

1
6
(s ln s´ s) + C

=
x3

3
arctan x´ x2

6
ln(1 + x2) +

1
6

(
(1 + x2) ln(1 + x2)´ (1 + x2)

)
+ C

=
x3

3
arctan x +

[
´x2

6
+

1 + x2

6

]
ln(1 + x2)´ 1

6
(1 + x2) + C

=
x3

3
arctan x +

1
6

ln(1 + x2)´ 1
6
(1 + x2) + C

S-19: We begin by simplifying the integrand.
ż

2x+log2 xdx =

ż

2x ¨ 2log2 xdx =

ż

2x ¨ x dx

This is similar to the integral
ż

xexdx, which we saw in Example 3.5.1 of the text. Let’s

write 2 = eln 2 to take advantage of the easy integrability of ex.

=

ż

x ¨ ex ln 2dx

We use integration by parts with u = x, dv = ex ln 2dx; du = dx, v = 1
ln 2 ex ln 2. (Remember

ln 2 is a constant. If you’d prefer, you can do a substitution with s = x ln 2 first, to have a
simpler exponent of e.)

=
x

ln 2
ex ln 2

loooomoooon

uv

´
ż

1
ln 2

ex ln 2dx
looooomooooon

vdu

=
x

ln 2
ex ln 2 ´ 1

(ln 2)2 ex ln 2 + C

=
x

ln 2
2x ´ 1

(ln 2)2 2x + C

S-20: It’s not obvious where to start, but in general it’s nice to have the arguments of our
trig functions the same. So, we use the identity sin(2x) = 2 sin x cos x.

ż

ecos x sin(2x)dx = 2
ż

ecos x cos x sin xdx

Now we can use the substitution w = cos x, dw = ´ sin xdx.

= ´2
ż

wewdw
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From here the integral should look more familiar. We can use integration by parts with
u = w, dv = ewdw, du = dw, and v = ew.

= ´2

 wew
loomoon

uv

´
ż

ewdw
loomoon

vdu


= 2ew [1´w] + C
= 2ecos x[1´ cos x] + C

S-21: We’ve got an integrand that consists of several functions multiplied together, and
no obvious substitution. So, we think about integration by parts. We know an
antiderivative for 1

(1´x)2 , because we know d
dx

1
1´x = 1

(1´x)2 . So let’s try dv = dx
(1´x)2 and

u = xe´x. Then v = 1
1´x and du = (1´ x)e´x dx. So, by integration by parts,

ż

xe´x
loomoon

u

dx
(1´ x)2
looomooon

dv

=
xe´x

1´ x
loomoon

uv

´
ż

1
1´ x
loomoon

v

(1´ x)e´x dx
looooooomooooooon

du

=
xe´x

1´ x
´
ż

e´x dx

=
xe´x

1´ x
+ e´x + C =

e´x

1´ x
+ C

S-22: The sketch is the figure on the left below. By integration by parts with u = arctan x,
dv = dx, v = x and du = 1

1+x2 dx, and then the substitution s = 1 + x2,

A =

ż 1

0
arctan x dx = x arctan x

loooomoooon

uv

ˇ

ˇ

ˇ

1

0
´
ż 1

0

x
1 + x2 dx
loooomoooon

vdu

= arctan 1´ 1
2 ln(1 + x2)

ˇ

ˇ

ˇ

1

0

=
π

4
´ ln 2

2

x = 1

y = tan−1 x

x

y

x = 1

x = tan y

x

y

S-23: For a fixed value of x, if we rotate about the x-axis, we form a washer of inner
radius B(x) and outer radius T(x) and hence of area π[T(x)2 ´ B(x)2]. We integrate this
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function from x = 0 to x = 3 to find the total volume V:

V =

ż 3

0
π[T(x)2 ´ B(x)2]dx

= π

ż 3

0
(
?

xe3x)2 ´ (
?

x(1 + 2x))2 dx

= π

ż 3

0

(
xe6x ´ (x + 4x2 + 4x3)

)
dx

= π

ż 3

0
xe6x dx´ π

[x2

2
+

4x3

3
+ x4

]3

0

= π

ż 3

0
xe6x dx´ π

[32

2
+

4 ¨ 33

3
+ 34

]
For the first integral, we use integration by parts with u(x) = x, dv = e6xdx, so that
du = dx and v(x) = 1

6 e6x:

ż 3

0
xe6x dx =

xe6x

6
loomoon

uv

ˇ

ˇ

ˇ

ˇ

3

0
´
ż 3

0

1
6

e6x dx
looomooon

vdu

=
3e18

6
´ 0´ 1

36
e6x

ˇ

ˇ

ˇ

ˇ

3

0
=

e18

2
´
(

e18

36
´ 1

36

)
.

Therefore, the total volume is

V = π

[
e18

2
´
(

e18

36
´ 1

36

)]
´ π

[
32

2
+

4 ¨ 33

3
+ 34

]
= π

(
17e18 ´ 4373

36

)
.

S-24: To get rid of the square root in the argument of f 2, we make the change of
variables (also called “substitution”) x = t2, dx = 2t dt.

ż 4

0
f 2
(?

x
)

dx = 2
ż 2

0
t f 2(t)dt

Then, to convert f 2 into f 1, we integrate by parts with u = t, dv = f 2(t)dt, v = f 1(t).

ż 4

0
f 2
(?

x
)

dx = 2
"[

t f 1(t)
loomoon

uv

]2

0
´
ż 2

0
f 1(t)dt
loomoon

vdu

*

= 2
[
t f 1(t)´ f (t)

]2

0

= 2
[
2 f 1(2)´ f (2) + f (0)

]
= 2

[
2ˆ 4´ 3 + 1

]
= 12
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S-25: As we saw in Section 3.1 of the text, there are many different ways to interpret a
limit as a Riemann sum. In the absence of instructions that restrain our choices, we go
with the most convenient interpretations.

With that in mind, we choose:

• that our Riemann sum is a right Riemann sum (because we see i, not i´ 1 or i´ 1
2 )

• ∆x = 2
n (because it is multiplied by the rest of the integrand, and also shows up

multiplied by i),

• then xi = a + i∆x = 2
n i´ 1, which leads us to a = ´1 and

• f (x) = xex.

• Finally, since ∆x = b´a
n = 2

n and a = ´1, we have b = 1.

So, the limit is equal to the definite integral

lim
nÑ8

n
ÿ

i=1

2
n

(
2
n

i´ 1
)

e
2
n i´1 =

ż 1

´1
xex dx

which we evaluate using integration by parts with u = x, dv = exdx, du = dx, and
v = ex.

=
[

xex
loomoon

uv

]1

´1
´
ż 1

´1
exdx
loomoon

vdu

=

(
e +

1
e

)
´
(

e´ 1
e

)
=

2
e

S-26: The first thing to do is find pe, which is going to be the price at which demand is 5.
That is:

pe = p(5) = 8´ 2 ln(2 ¨ 5 + 1) = 8´ 2 ln 11

What we want to find is the area underneath the curve p(q) = 8´ 2 ln(2q + 1) and above
the line p = 8´ 2 ln 11 on the interval from q = 0 to q = 5. We’ll do this in two steps. The
integral

ż 5

0
8´ 2 ln(2q + 1)dq

gives the area under the demand curve and above the horizontal axis. The area
underneath the line p = pe and the horizontal axis is a rectangle. That rectangle has
width 5 and height 8´ 2 ln 11, so its area is 40´ 10 ln 11. To find C, we subtract this
number from our integral.
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Quantity q

Price p

Demand

ż 5

0
p(q)dq

Quantity q

Price p

C

Demand

40´ 10 ln 11

5

8´ 2 ln 11

So, all together, the consumer surplus is
ş5

0

(
8´ 2 ln(2q + 1)

)
dq´ (40´ 10 ln 11).

CS =

(
ż 5

0

(
8´ 2 ln(2q + 1

)
)dq

)
´ (40´ 10 ln 11)

=

(
ż 5

0
8dq

)
´ 40 + 10 ln 11´

ż 5

0
2 ln(2q + 1)dq

= 10 ln 11´
ż 5

0
2 ln(2q + 1)dq

Let s = 2q + 1, so 2dq = ds

= 10 ln 11´
ż 2¨5+1

2¨0+1
ln sds = 10 ln 11´

ż 11

1
ln sds

We’ve already found the antiderivative of natural log, but we’ll find it again for practice.
Let u = ln s, dv = ds; du = 1

s ds, v = s

= 10 ln 11´
[

s ln s|11
1 ´

ż 11

1
s ¨ 1

s
ds

]

= 10 ln 11´
[
(11 ln 11´ 1 ln 1)´

ż 11

1
1ds

]

= 10 ln 11´ 11 ln 11 +
ż 11

1
1ds

= 10 ln 11´ 11 ln 11 + 10 = 10´ ln 11

S-27:
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(a) Using the Fundamental Theorem of Calculus,

TC =

ż

MCdq + C

for some constant C.

ż

MCdq =

ż

(
qe

q
10

100
´ q + 30

)
dq =

(
ż

1
100

qeq/10dq
)
´ 1

2
q2 + 30q

To make things a little easier to see, we’ll use the substitution q
10 = s, 1

10dq = ds:

=

(
ż

q
10
¨ eq/10 ¨ 1

10
dq
)
´ 1

2
q2 + 30q

=

(
ż

sesds
)
´ 1

2
q2 + 30q

Let u = s, dv = esds; du = ds, v = es

=

(
ses ´

ż

esds
)
´ 1

2
q2 + 30q

= (ses ´ es)´ 1
2

q2 + 30q + C

Now we can comfortably eliminate our invention s, as its usefulness has expired.

=
( q

10
eq/10 ´ eq/10

)
´ 1

2
q2 + 30q + C

=
( q

10
´ 1
)

eq/10 ´ 1
2

q2 + 30q + C

Now, we use the observation at the start of this solution:

TC =
( q

10
´ 1
)

eq/10 ´ 1
2

q2 + 30q + C

The problem mentions TC(0) =FC, and FC= 1000, so:

1000 = TC(0) =
(

0
10
´ 1
)

e0 ´ 1
2
(02) + 30(0) + C = ´1 + C

C = 1000 + 1 = 1001

TC =
( q

10
´ 1
)

eq/10 ´ 1
2

q2 + 30q + 1001

(b) The cost of making 10 items is

TC(10) =
(

10
10
´ 1
)

e10/10 ´ 1
2
(102) + 30(10) + 1001

= 1251
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So, the average cost-per-item is

1251
10

= 125.10

Solutions to Exercises 3.6 — Jump to TABLE OF CONTENTS

S-1: The absolute error is the difference between the two values:

|1.387´ 1.5| = 0.113

The relative error is the absolute error divided by the exact value:

0.113
1.387

« 0.08147

The percent error is 100 times the relative error:

« 8.147%

S-2: With n = 4, we evaluate f (x) at five points: x0 = 2, x1 = 4, x2 = 6, x3 = 8, and
x4 = 10.

x

y

2 4 6 8 10

The function over the region 2 ď x ď 6 is approximated by the parabola passing through
(2, f (2)), (4, f (4)), and (6, f (6)). The function over the region 6 ď x ď 10 is
approximated by the parabola passing through (6, f (6)), (8, f (8)), and (10, f (10)).

x

y

2 4 6 8 10
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S-3: Let’s find the fourth derivative:

f (x) = ´ 1
12

x4 +
7
6

x3 ´ 3x2

f 1(x) = ´1
3

x3 +
7
2

x2 ´ 6x

f 2(x) = ´x2 + 7x´ 6
f3(x) = ´2x

f (4)(x) = ´2

This is constant everywhere, so we take L = | ´ 2| = 2. (It didn’t matter that we only
need to consider 1 ď x ď 6.)

S-4:

For any value of x, | sin x| ď 1. When ´3 ď x ď 2, then |x| ď 3. So, it is true (and not
unreasonably sloppy) that

|x sin x| ď 3

whenever x is in the interval [´3, 2]. So, we can take L = 3.

Note that |x sin x| is actually smaller than 3 whenever x is in the interval [´3, 2], because
when x = ´3, sin x ‰ 1. In fact, since 3 is pretty close to π, sin 3 is pretty small. (The
actual maximum value of |x sin x|when ´3 ď x ď 2 is about 1.8.) However, we find
parameters like L for the purpose of computing error bounds. There is often not much to
be gained from taking the time to find the actual maximum of a function, so we content
ourselves with reasonable upper bounds. Question 26 has a further investigation of
“sloppy” bounds like this.

S-5:

(a) Let f (x) = cos x. Then f (4)(x) = cos x, so | f (4)(x)| ď 1 when ´π ď x ď π. So, using
L = 1, we find the upper bound of the error using Simpson’s rule with n = 4 is:

L(b´ a)5

180n4 =
(2π)5

180 ¨ 44 =
π5

180 ¨ 8 « 0.2

The error bound comes from Theorem 3.6.5 in the text. We used a calculator to find
the approximate decimal value.

(b) We use the general form of Simpson’s rule (Equation 3.6.2 in the text) with
∆x = b´a

n = 2π
4 = π

2 .

A « ∆x
3

( f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4))

=
π/2

3
(

f (´π) + 4 f (´π
2 ) + 2 f (0) + 4 f (π

2 ) + f (π)
)

=
π

6
(´1 + 4(0) + 2(1) + 4(0)´ 1) = 0
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(c) To find the actual error in our approximation, we compare the approximation from
(b) to the exact value of A. In fact, A = 0: this is a fact you’ve probably seen before by
considering the symmetry of cosine, but it’s easy enough to calculate:

A =

ż π

´π
cos x dx = sin π ´ sin(´π) = 0

So, our approximation was exactly the same as our exact value. The absolute error is
0.

Remark: the purpose of this question was to remind you that the error bounds we
calculate are not (usually) the same as the actual error. Often our approximations are
better than we give them credit for. In normal circumstances, we would be
approximating an integral precisely to avoid evaluating it exactly, so we wouldn’t find
our exact error. The bound is a quick way of ensuring that our approximation is not too
far off.

S-6: Using Theorem 3.6.5 in the text, the error using Simpson’s rule is at most

L(b´ a)5

180 ¨ n4 =
L

2880
ď 3

2880
=

1
960

.

So, we’re really being asked to find a function with the maximum possible error (given
its fourth derivative) using Simpson’s rule.

With that in mind, our function should have the largest second derivative possible: let’s
set f (4)(x) = 3 for every x. Then:

f (4)(x) = 3
f3(x) = 3x + C

f 2(x) =
3
2

x2 + Cx + D

f 1(x) =
1
2

x3 +
C
2

x2 + Dx + E

f (x) =
1
8

x4 +
C
6

x3 +
D
2

x2 + Ex + F
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for some constants C, D, E, and F. Now we can find the exact and approximate values of
ż 1

0
f (x) dx.

Exact:
ż 1

0
f (x) dx =

ż 1

0

(
1
8

x4 +
C
6

x3 +
D
2

x2 + Ex + F
)

dx

=

[
1

40
x5 +

C
24

x4 +
D
6

x3 +
E
2

x2 + Fx
]1

0

=
1

40
+

C
24

+
D
6
+

E
2
+ F

Approx:
ż 1

0
f (x) dx « ∆x

3

[
f (0) + 4 f (1

2) + f (1)
]

=
1/2

3

[
(F) + 4

(
1

8 ¨ 16
+

C
6 ¨ 8 +

D
2 ¨ 4 +

E
2
+ F

)
+

(
1
8
+

C
6
+

D
2
+ E + F

)]
=

1
6

[
F +

(
1

32
+

C
12

+
D
2
+ 2E + 4F

)
+

(
1
8
+

C
6
+

D
2
+ E + F

)]
=

1
6

[
5

32
+

C
4
+ D + 3E + 6F

]
=

5
192

+
C
24

+
D
6
+

E
2
+ F

So, the absolute error associated with the Simpson’s rule approximation is:
ˇ

ˇ

ˇ

ˇ

(
1

40
+

C
24

+
D
6
+

E
2
+ F

)
´
(

5
192

+
C
24

+
D
6
+

E
2
+ F

)ˇ
ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

1
40
´ 5

192

ˇ

ˇ

ˇ

ˇ

=
1

960

So, for any constants C, D, E, and F: f (x) = 1
8 x4 + C

6 x3 + D
2 x2 + Ex + F has the desired

error.

Remark: contrast this question with Question 5. In this problem, our absolute error was
exactly as bad as the bound predicted, but sometimes it is much better. The thing to
remember is that, in general, we don’t know our absolute error. We only guarantee that it’s
not any worse than some worst-case-scenario bound.

S-7: According to Theorem 3.6.5 in the text, the error associated with the Simpson’s rule

approximation is no more than
L

180
(b´ a)5

n4 , where L is a constant such that | f (4)(x)| ď L

for all x in [a, b]. If L = 0, then the error is no more than 0 regardless of a, b, or n–that is,
the approximation is exact.

Any polynomial f (x) of degree at most 3 has f (4)(x) = 0 for all x. So, any polynomial of
degree at most 3 is an acceptable answer. For example, f (x) = 5x3 ´ 27, or f (x) = x2.

S-8:

• ∆x =
b´ a

n
=

30´ 0
6

= 5.
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• The x-values where we evaluate
1

x3 + 1
start at x = a = 0 and move up by ∆x = 5:

x0 = 0, x1 = 5, x2 = 10, x3 = 15, x4 = 20, x5 = 25, and x6 = 30.

0
x0

5
x1

10
x2

15
x3

20
x4

25
x5

30
x6

• Following Equation 3.6.2 in the text, the Simpson’s rule approximation is:

ż 30

0

1
x3 + 1

dx «
[

f (x0)+ 4 f (x1)+ 2 f (x2)+ 4 f (x3)+ 2 f (x4)+ 4 f (x5)+ f (x6)
]

∆x
3

=
[ 1

03 + 2
+

4
53 + 1

+
2

103 + 1
+

4
153 + 1

+
2

203 + 1
+

4
253 + 1

+
1

303 + 1

]5
3

S-9: Let f (x) denote the diameter at height x. To approximate the volume of the solid,
we slice it into thin horizontal “pancakes”, which in this case are circular.

dx

f (x)

x

• We are told that the pancake at height x is a circular disk of diameter f (x) and so

• has cross-sectional area π
( f (x)

2

)2 and thickness dx and hence

• has volume π
( f (x)

2

)2dx.

• Hence the volume of V is
ż 40

0
π
[

f (x)
2

]2
dx

• We have 5 data points, which we can assign to x0, x1, x2, x3, and x4. So we use
n = 4.

• The difference between our x-values is 10, so we set ∆x = 10
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Now we can use Simpson’s rule.

ż 40

0
π
[

f (x)
2

]2
dx « ∆x

3

[
π
[

f (0)
2

]2
+ 4π

[
f (10)

2

]2
+ 2π

[
f (20)

2

]2
+ 4π

[
f (30)

2

]2
+ π

[
f (40)

2

]2
]

=
10
3

[
π
[

24
2

]2
+ 4π

[
16
2

]2
+ 2π

[
10
2

]2
+ 4π

[
6
2

]2
+ π

[
4
2

]2
]

=
10π

3
[144 + 4 ¨ 64 + 2 ¨ 25 + 4 ¨ 9 + 4]

=
4900

3
π « 5131 cm3

S-10: Let f (x) be the diameter a distance x from the left end of the log. If we slice our log
into thin disks, the disks x metres from the left end of the log has

• radius f (x)
2 ,

• width dx, and so

• volume π
(

f (x)
2

)2
dx = π

4 f (x)2 dx.

x

f (x)

dx

Using Simpson’s Rule with ∆x = 1, the volume of the log is:

V =

ż 6

0

π

4
f (x)2 dx « π

4
1
3

[
f (0)2 + 4 f (1)2 + 2 f (2)2 + 4 f (3)2 + 2 f (4)2 + 4 f (5)2 + f (6)2

]
=

π

12

[
1.22 + 4(1)2 + 2(0.8)2 + 4(0.8)2 + 2(1)2 + 4(1)2 + 1.22

]
=

π

12
(16.72)

« 4.377 m3

where we used a calculator to approximate the decimal value.

S-11: At height x metres, let the circumference of the tree be c(x). The corresponding

radius is
c(x)
2π

, so the corresponding cross–sectional area is π

(
c(x)
2π

)2

=
c(x)2

4π
.
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dx

c(x)

x

The height of a very thin cross–sectional disk is dx, so the volume of a cross-sectional

disk is
c(x)2

4π
dx. Therefore, total volume of the tree is:

ż 8

0

c(x)2

4π
dx « 1

4π

2
3

[
c(0)2 + 4c(2)2 + 2c(4)2 + 4c(6)2 + c(8)2

]
=

1
6π

[
1.22 + 4(1.1)2 + 2(1.3)2 + 4(0.9)2 + 0.22

]
=

12.94
6π

« 0.6865

where we used Simpson’s rule with ∆x = 2 and n = 4 to approximate the value of the
integral based on the values of c(x) given in the table.

S-12: ∆x = 10 and n = 6.

Simpson’s Rule gives

V =

ż 60

0
A(h)dh « 10

3

[
A(0) + 4A(10) + 2A(20) + 4A(30) + 2A(40) + 4A(50) + A(60)

]
= 367,000

S-13: Call the curve in the graph y = f (x). It looks like

f (2) = 3 f (3) = 8 f (4) = 7 f (5) = 6 f (6) = 4

We’re estimating
ş6

2 f (x) dx with n = 4, so ∆x = 6´2
4 = 1.
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Simpson’s rule gives

S4 =
1
3
[
3 + 4ˆ 8 + 2ˆ 7 + 4ˆ 6 + 4

]ˆ 1 =
77
3

S-14: We know b´ a = 2 and n = 20, so it remains to find L. Using the method of
Example 3.6.7 in the text, we’ll break down the fourth derivative into a number of pieces,
each of which is easy to bound.

For x between ´1 and 1:

0 ďx4 ď 1

ùñ 0 ď 16x4 ď 16

ùñ ´12 ď 16x4 ´ 12 ď 4

so, since ´1 ď sin(x2) ď 1, ´12 ď (16x4 ´ 12) sin(x2) ď 12

Similarly,

0 ďx2 ď 1

ùñ 0 ď48x2 ď 48

so, since ´1 ď cos(x2) ď 1, ´48 ď48x2 cos(x2) ď 48

Combining these two,

´12´ 48 ď (16x4 ´ 12) sin(x2)´ 48x2 cos(x2) ď 12 + 48
ˇ

ˇ(16x4 ´ 12) sin(x2)´ 48x2 cos(x2)
ˇ

ˇ ď 60

Now we set L = 60 and apply the error formula.

L(b´ a)5

180n4 =
60 ¨ 25

180 ¨ 204 =
25

3 ¨ 24 ¨ 104

=
2
3
ˆ 10´4

« 0.667ˆ 10´4

ă 0.7ˆ 10´4

= 7ˆ 10´5

S-15: To find L, we’ll need the fourth derivative of the integrand.

f (x) =
1

15
x6

f 1(x) =
6

15
x5 =

2
5

x5

f 2(x) = 2x4

f3(x) = 8x3

f (4)(x) = 24x2
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For ´2 ď x ď 1, then , | f (4)(x)| ď 24(22) = 96. So, the best choice we can make for L is
L = 96. Then with b´ a = 3 and n = 60, our error is at most:

L(b´ a)5

180n4 =
96 ¨ 35

180 ¨ 204 =
(3 ¨ 25) ¨ 35

(22 ¨ 32 ¨ 5) ¨ (28 ¨ 54)

=
34

25 ¨ 55 =
81
105 = 81ˆ 10´5

= 8.1ˆ 10´4

That is: we are guaranteed our absolute error is certainly no more9 than 8.1ˆ 10´4, and
using the bound stated in the problem we cannot give a better guarantee. (The second
part of the previous sentence comes from the fact that we used the smallest possible L: if
we had used a larger value of L, we would still have some true statement about the error,
for example “the error is no more than 1

10 ,” but it would not be the best true statement we
could make.)

S-16: (a) Since a = 0, b = 2 and n = 6, we have ∆x = b´a
n = 2´0

6 = 1
3 , and so x0 = 0,

x1 = 1
3 , x2 = 2

3 , x3 = 1, x4 = 4
3 , x5 = 5

3 , and x6 = 2. Since Simpson’s Rule with n = 6 in
general is

∆x
3
[

f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + 4 f (x5) + f (x6)
]
,

the desired approximation is

1/3
3

(
(´3)5 + 4

(1
3
´ 3
)5

+ 2
(2

3
´ 3
)5

+ 4(´2)5 + 2
(4

3
´ 3
)5

+ 4
(5

3
´ 3
)5

+ (´1)5
)

Here f (x) = (x´ 3)5, which has derivatives

f 1(x) = 5(x´ 3)4 f 2(x) = 20(x´ 3)3

f (3)(x) = 60(x´ 3)2 f (4)(x) = 120(x´ 3).

For 0 ď x ď 2, (x´ 3) runs from ´3 to ´1, so the maximum absolute value is found at
x = 0, giving L = 120 ¨ |0´ 3| = 360. Consequently, for Simpson’s Rule with n = 10,

|ES| ď 360ˆ 25

180ˆ 64 =
4

81
.

S-17: In general the error in approximating
şb

a f (x) dx using Simpson’s rule with n steps
is bounded by L(b´a)

180 (∆x)4 where ∆x = b´a
n and L ě | f (4)(x)| for all a ď x ď b. In this

case, a = 1, b = 5, n = 4 and f (x) = 1
x . We need to find L, so we differentiate.

9 This is what the error bound always tells us.
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f 1(x) = ´ 1
x2 f 2(x) =

2
x3 f (3)(x) = ´ 6

x4 f (4)(x) =
24
x5

and
ˇ

ˇ f (4)(x)
ˇ

ˇ ď 24 for all x ě 1

So we may take L = 24 and ∆x = 5´1
4 = 1, which leads to

|Error | ď 24(5´ 1)
180

(1)4 =
24
45

=
8

15

S-18: In general, the error in approximating
şb

a f (x) dx using Simpson’s rule with n steps

is bounded by
L(b´ a)

180
(∆x)4 where ∆x =

b´ a
n

and L ě | f (4)(x)| for all a ď x ď b. In this

case, a = 0, b = 1, n = 6 and f (x) = e´2x + 3x3. We need to find L, so we differentiate.

f 1(x) = ´2e´2x + 9x2 f 2(x) = 4e´2x + 18x f (3)(x) = ´8e´2x + 18 f (4)(x) = 16e´2x

Since e´2x =
1

e2x , we see f (4)(x) is a positive, decreasing function. So, its maximum

occurs when x is as small as possible. In the interval [0, 1], that means x = 0.
ˇ

ˇ f (4)(x)
ˇ

ˇ ď f (0) = 16 for all x ě 0

So, we take L = 16 and ∆x = 1´0
6 = 1

6 .

|Error | ď L(b´ a)
180

(∆x)4 =
16(1´ 0)

180
(1/6)4 =

16
180ˆ 64 =

1
180ˆ 34 =

1
14580

S-19: For the approximation, a = 1, b = 2, n = 4, f (x) = 1
x and ∆x = b´a

n = 1
4 .

Then x0 = 1, x1 = 5
4 , x2 = 3

2 , x3 = 7
4 , and x4 = 2.

1
x0

5/4
x1

3/2
x2

7/4
x3

2
x4

(a)

S4 =
∆x
3
[

f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)
]

=
∆x
3
[

f (1) + 4 f (5/4) + 2 f (3/2) + 4 f (7/4) + f (2)
]

=
1

12

[
1 +

(
4ˆ 4

5

)
+

(
2ˆ 2

3

)
+

(
4ˆ 4

7

)
+

1
2

]
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(b) In this case, a = 1, b = 2, n = 4 and f (x) = 1
x . We need to find L, so we differentiate.

f 1(x) = ´ 1
x2 f 2(x) =

2
x3 f (3)(x) = ´ 6

x4 f (4)(x) =
24
x5

So,
ˇ

ˇ f (4)(x)
ˇ

ˇ ď 24 for all x in the interval [1, 2]

We take L = 24.

|Error | ď L(b´ a)5

180ˆ n4 ď
24(2´ 1)5

180ˆ 44 =
24

180ˆ 44 =
3

5760
=

1
1920

S-20: Set a = 0 and b = 8. Since we have information about s(x) when x is 0, 2, 4, 6, and
8, we set ∆x = b´a

n = 2, so n = 4. (Recall with Simpson’s rule, n = 4 intervals actually
uses the value of the function at 5 points.)

We could perform the approximation with fewer intervals, for example n = 2, but this
would involve ignoring some of the points we’re given. Since the question asks for the
best estimation we can give, we use n = 4 intervals and no fewer.

(a)

S4 =
∆x
3
[
s(0) + 4s(2) + 2s(4) + 4s(6) + s(8)

]
=

2
3
[
1.00664 + 4ˆ 1.00543 + 2ˆ 1.00435 + 4ˆ 1.00331 + 1.00233

]
« 8.03509

(b) The information
ˇ

ˇs(k)(x)
ˇ

ˇ ď k
1000

, with k = 4, tells us |s(4)(x)| ď 4
1000 for all x in the

interval [0, 8]. So, we take K4 (also called L in the text) to be 4
1000 .

Then the absolute error associated with our Simpson’s rule approximation is at most

ˇ

ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Sn

ˇ

ˇ

ˇ

ˇ

ď K4(b´ a)5

180n4 ď 4
1000

¨ 85

180(4)4ď 0.00284

S-21: In this case, a = 1, b = 4. Since ´2 ď f (4)(x) ď 0 over the relevant interval, we take
L = 2. (Remember L is an upper bound on | f (4)(x)|, not f (4)(x).) So we need n to obey:

2(4´ 1)5

180n4 ď 0.001

2 ¨ 35

32 ¨ 2 ¨ 10 ¨ n4 ď
1

103

33

n4 ď
1

102

2700 ď n4
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Since 4
?

2700 « 7.2, and n has to be an even number, any n ě 8 works. (Without a
calculator, we can say that one obvious allowed n is 10 because 104 = 10000 ą 2700.)

S-22: Denote by f (x) the width of the pool x feet from the left-hand end. From the
sketch, f (0) = 0, f (2) = 10, f (4) = 12, f (6) = 10, f (8) = 8, f (10) = 6, f (12) = 8,
f (14) = 10 and f (16) = 0.

A cross-section of the pool x feet from the left end is half of a circular disk with diameter
f (x) (so, radius f (x)

2 ) and thickness dx. So, the volume of the part of the pool with

x–coordinate running from x to (x + dx) is 1
2 π
( f (x)

2

)2 dx = π
8 [ f (x)]2 dx.

The total volume is given by the following integral.

V =
π

8

ż 16

0
f (x)2 dx

« π

8
¨ ∆x

3

[
f (0)2 + 4 f (2)2 + 2 f (4)2 + 4 f (6)2 + 2 f (8)2 + 4 f (10)2 + 2 f (12)2 + 4 f (14)2+ f (16)2

]
=

π

8
¨ 2

3

[
0 + 4(10)2 + 2(12)2 + 4(10)2 + 2(8)2 + 4(6)2 + 2(8)2 + 4(10)2 + 0

]
=

472
3

π « 494 ft3

S-23: (a) Let f (x) = 1
x , a = 1, b = 2 and ∆x = b´a

6 = 1
6 . Using Simpson’s rule:

ż 2

1

1
x

dx « ∆x
3

[
f (1) + 4 f

(7
6

)
+ 2 f

(8
6

)
+ 4 f

(9
6

)
+ 2 f

(10
6

)
+ 4 f

(11
6

)
+ f (2)

]
=

1
18

[
1 +

24
7

+
12
8

+
24
9

+
12
10

+
24
11

+
1
2

]
« 0.6931698

(b) The integrand is f (x) = 1
x . The first four derivatives of f (x) are:

f 1(x) = ´ 1
x2 , f 2(x) =

2
x3 , f (3)(x) = ´ 6

x4 , f (4)(x) =
24
x5

On the interval 1 ď x ď 2, the fourth derivative is never bigger in magnitude than L = 24.

|En| ď L(b´ a)5

180n4 =
24(2´ 1)5

180n4 =
4

30n4

So, we want an even number n such that

4
30n4 ď 0.00001 =

1
105

n4 ě 40000
3

n ě 4

c

40000
3

« 10.7

So, any even number greater than or equal to 12 will do.
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S-24: (a) From the figure, we see that the magnitude of | f4(x)| never exceeds 310 for
0 ď x ď 2. So, the absolute error is bounded by

310(2´ 0)5

180ˆ 84 ď 0.01345

(b) We want to choose n such that:

310(2´ 0)5

180ˆ n4 ď 10´4

n4 ě 310ˆ 25

180
104

n ě 10 4

c

310ˆ 32
180

« 27.2

For Simpson’s rule, n must be even, so any even integer obeying n ě 28 will guarantee us
the requisite accuracy.

S-25: Let g(x) =
ż x

0
sin(

?
t)dt. By the Fundamental Theorem of Calculus Part 1,

g1(x) = sin(
?

x). By its definition, f (x) = g(x2), so we use the chain rule to differentiate
f (x).

f 1(x) = 2xg1(x2) = 2x sin x
f 2(x) = 2 sin x + 2x cos x
f3(x) = 2 cos x + (2x)(´ sin x) + 2 cos x = 4 cos x´ 2x sin x

f (4)(x) = ´4 sin x´ (2 sin x + 2x cos x) = ´6 sin x´ 2x cos x

Since | sin x|, | cos x|, |x| ď 1, we have | f (4)(x)| ď 6 + 2 = 8. When Simpson’s rule with n
subintervals is applied, the resulting error En obeys

En ď 8(1´ 0)5

180n4 =
2

45n2

We want an integer n such that

2
45n4 ă 0.000005 = 5ˆ 10´6

n4 ą 2
45 ¨ 5 ˆ 106 =

2
9 ¨ 52 52 ¨ 22 ¨ 104 =

8
9

104

n ą 4

c

8
9

104 = 10 4

c

8
9

Certainly 10 ą 10 4
b

8
9 , so any even integer n ě 10 will do. (Indeed, if we use a calculator,

we see 10 4
b

8
9 « 9.7.)
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S-26:

(a) When 0 ď x ď 1, then x2 ď 1 and x + 1 ě 1, so | f (4)(x)| = x2

|x + 1| ď
1
1
= 1.

(b) To find the maximum value of a function over a closed interval, we test the function’s
values at the endpoints of the interval and at its critical points inside the interval. The
critical points are where the function’s derivative is zero or it does not exist.

The function we’re trying to maximize is | f (4)(x)| = x2

|x+1| =
x2

x+1 = f (4)(x) (since our
interval only contains nonnegative numbers). So, the critical points occur when
f (5)(x) = 0 or does not exist. We find f (5)(x) Using the quotient rule.

f (5)(x) =
(x + 1)(2x)´ x2

(x + 1)2 =
x2 + 2x
(x + 1)2

0 =
x(x + 2)

x + 1
0 = x or x = ´1 or x = ´2

The only critical point in [0, 1] is x = 0. So, the extrema of f (4)(x) over [0, 1] will occur
at its endpoints. Indeed, since f (5)(x) ě 0 for all x in [0, 1], f (4)(x) is increasing over
this interval, so its maximum occurs at x = 1. That is,

| f (4)(x)| ď f (4)(1) =
1
2

(c) The absolute error using Simpson’s rule is at most
L(b´ a)5

180n4 . Using L = 1, if we want

this to be no more than 10´5, we find an acceptable value of n with the following
calculation:

L(b´ a)5

180n4 ď 10´5

1
180n4 ď 10´5 (b´ a = 1, L = 1)

105

180
ď n4

104

18
ď n4

n ě 10
4
?

18

From here, without a calculator, we can say that 24 ă 18, so if n ą 10
2 = 5, then

n ą 10
2 = 10

4?16
ą 10

4?18
. So n = 6 suffices.

Using a calculator, we see 10
4?18

« 4.9. Since n must be even, and no smaller than 4.9,
then again we see n = 6 suffices.
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(d) The absolute error using Simpsons rule is at most
L(b´ a)5

180n4 . Using L = 1
2 , if we want

the error bound to be no more than 10´5, we find an acceptable value of n with the
following calculation:

L(b´ a)5

180n4 ď 10´5

1
360n4 ď 10´5 (b´ a = 1, L =

1
2
)

105

360
ď n4

104

36
ď n4

n ě 10?
6

Without a calculator, note that 10
2 = 10?

4
ą 10?

6
, so if n ě 5, the inequality works. Since

n must be even, n = 6 is the smallest possibility.

Using a calculator, 10?
6
« 4.1, so n = 6 suffices (since n must be at least 4.1, and also

even).

Remark: how accurate you want to be in these calculations depends a lot on your
circumstances. Imagine, for instance, that you were finding L by hand, using this to find
n by hand, then evaluating the approximation. The extra work you put into improving
L = 1 to L = 1

2 did not save you any time computing the approximation, because in both
cases you must use n = 6. So, there’s nothing to be gained by the extra work in (b).

However, if your original sloppy L gave you something like n = 1000000, you might
want to put some time into improving it. Even if you’re evaluating Simpson’s Rule with
a computer, the extra work by hand to improve L might lead to a much smaller n, and so
a faster run time adding up the terms of the approximation.

S-27: Before we can take our Simpson’s rule approximation of
ż x

1

1
t

dt, we need to know

how many intervals to use. That means we need to bound our error, which means we
need to bound d4

dt4

!

1
t

)

.

d
dt

"

1
t

*

= ´ 1
t2

d2

dt2

"

1
t

*

=
2
t3

d3

dt3

"

1
t

*

= ´ 6
t4

d4

dt4

"

1
t

*

=
24
t5

So, over the interval [1, 3],
ˇ

ˇ

ˇ

ˇ

d4

dt4

"

1
t

*
ˇ

ˇ

ˇ

ˇ

ď 24.

Now, we can find an appropriate n to ensure our error will be be less than 0.1 for any x in
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[1, 3]:

L(b´ a)5

180n4 ă 0.1

24(x´ 1)5

180n4 ă 1
10

n4 ą 24 ¨ (x´ 1)5

18

Because x´ 1 ď 2 for every x in [1, 3], if n4 ą 24 ¨ 25

18
, then n4 ą 24 ¨ (x´ 1)5

18
for every

allowed x.

n4 ą 24 ¨ 25

18
=

128
3

n ą 4

c

128
3
« 2.6

Since n must be even, n = 4 is enough intervals to guarantee our error is not too high for
any x in [1, 3]. Now we find our Simpson’s rule approximation with n = 4, a = 1, b = x,

and ∆x =
x´ 1

4
. The points where we evaluate 1

t are:

x0 =1 x1 = 1 +
x´ 1

4
x2 = 1 + 2

x´ 1
4

x3 = 1 + 3
x´ 1

4
x4 = 1 + 4

x´ 1
4

=
x + 3

4
=

x + 1
2

=
3x + 1

4
= x

1
x0

x+3
4

x1

x+1
2

x2

3x+1
4

x3

x
x3

ln x =

ż x

1

1
t

dt « ∆x
3

[
1
x0

+
4
x1

+
2
x2

+
4
x3

+
1
x4

]
=

x´ 1
12

[
1 +

16
x + 3

+
4

x + 1
+

16
3x + 1

+
1
x

]
= f (x)

Below is a graph of our approximation f (x) and natural logarithm on the same axes. The
natural logarithm function is shown red and dashed, while our approximating function
is solid blue. Our approximation appears to be quite accurate for small, positive values
of x.

478



x

y

y = f (x)

y = ln x

2 4 6 8 10

1

2

3

S-28: First, we want a strategy for approximating arctan 2. Our hints are that involves

integrating
1

1 + x2 , which is the antiderivative of arctangent, and the number
π

4
, which is

the same as arctan(1). With that in mind:
ż 2

1

1
1 + x2 dx = arctan(2)´ arctan(1) = arctan(2)´ π

4

So, arctan(2) =
π

4
+

ż 2

1

1
1 + x2 dx (˚)

We won’t know the value of the integral exactly, but we’ll have an approximation A
bounded by some positive error bound ε. Then,

´ε ď
(
ż 2

1

1
1 + x2 dx´ A

)
ď ε

A´ ε ď
(
ż 2

1

1
1 + x2 dx

)
ď A + ε

So, from (˚), π

4
+ A´ ε ď arctan(2) ď π

4
+ A + ε

We can approximate definite integrals using Simpson’s rule. We should decide how
many intervals to use. In order to bound our error, we need to find a bound for the
fourth derivative. To that end, define N(x) = 24(5x4 ´ 10x2 + 1). Then
N1(x) = 24(20x3 ´ 20x) = 480x(x2 ´ 1), which is positive over the interval [1, 2]. So,
N(x) ď N(2) = 24(5 ¨ 24 ´ 10 ¨ 22 + 1) = 984 when 1 ď x ď 2. Furthermore, let
D(x) = (x2 + 1)5. If 1 ď x ď 2, then D(x) ě 25. Now we can find a reasonable value of L:

| f (4)(x)| =
ˇ

ˇ

ˇ

ˇ

25(5x4 ´ 10x2 + 1)
(x2 + 1)5

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

N(x)
D(x)

ˇ

ˇ

ˇ

ˇ

ď 984
25 =

123
4

= 30.75
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So, we take L = 30.75.

We want
[π

4
+ A´ ε,

π

4
+ A + ε

]
to look something like

[π

4
+ 0.321,

π

4
+ 0.323

]
. Note ε

is half the length of the first interval. Half the length of the second interval is
0.001 = 1

1000 . So, we want a value of ε that is no larger than this. Now we can find our n:

L(b´ a)5

180 ¨ n4 ď 1
1000

30.75
180 ¨ n4 ď

1
1000

n4 ě 30.75ˆ 1000
180

n ě 4

c

30750
180

« 3.62

So, we choose n = 4), and are guaranteed that the absolute error in our approximation

will be no more than
30.75

180 ¨ 44 ă 0.00067.

Since n = 4, then ∆x =
b´ a

n
=

1
4

, so:

x0 = 1 x1 =
5
4

x2 =
3
2

x3 =
7
4

x4 = 2

Now we can find our Simpson’s rule approximation A:

ż 1

0

1
1 + x2 dx « ∆x

3
[

f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)
]

=
1/4

3
[

f (1) + 4 f (5/4) + 2 f (3/2) + 4 f (7/4) + f (2)
]

=
1

12

[
1

1 + 1
+

4
25/16 + 1

+
2

9/4 + 1
+

4
49/16 + 1

+
1

4 + 1

]
=

1
12

[
1
2
+

4 ¨ 16
25 + 16

+
2 ¨ 4

9 + 4
+

4 ¨ 16
49 + 16

+
1
5

]
=

1
12

[
1
2
+

64
41

+
8

13
+

64
65

+
1
5

]
« 0.321748 = A

As we saw before, the error associated with this approximation is at most
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30.75
180 ¨ 44 ă 0.00067 = ε. So,

A´ ε ď
ż 2

1

1
1 + x2 dx ď A + ε

ñ 0.321748´ 0.00067 ď
ż 2

1

1
1 + x2 dx ď 0.321748 + 0.00067

ñ 0.321078 ď
ż 2

1

1
1 + x2 dx ď 0.322418

ñ 0.321 ď
ż 2

1

1
1 + x2 dx ď 0.323

ñ π

4
+ 0.321 ď

ż 2

1

1
1 + x2 dx +

π

4
ď π

4
+ 0.323

ñ π

4
+ 0.321 ď arctan(2) ď π

4
+ 0.323

This is precisely what we wanted to show.

Solutions to Exercises 3.7 — Jump to TABLE OF CONTENTS

S-1: If b = ˘8, then our integral is improper because one limit is not a real number.

Furthermore, our integral will be improper if its domain of integration contains either of
its infinite discontinuities, x = 1 and x = ´1. Since one limit of integration is 0, the
integral is improper if b ě 1 or if b ď ´1.

Below, we’ve graphed 1
x2´1 to make it clearer why values of b in (´1, 1) are the only

values that don’t result in an improper integral when the other limit of integration is
a = 0.

x

y

y = 1
x2´1

´1 1
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S-2: Since the integrand is continuous for all real x, the only kind of impropriety
available to us is to set b = ˘8.

S-3: For large values of x, |red dotted function| ď (blue solid function) and
0 ď (blue solid function). If the blue solid function’s integral converged, then the red
dotted function’s integral would as well (by the comparison test, Theorem 3.7.18 in the
text). Since one integral converges and the other diverges, the blue solid function is g(x)
and the red dotted function is f (x).

S-4: False. The inequality goes the “wrong way” for Theorem 3.7.18 in the text: the area
under the curve f (x) is finite, but the area under g(x) could be much larger, even
infinitely larger.

For example, if f (x) = e´x and g(x) = 1, then 0 ď f (x) ď g(x) and
ż 8

1
f (x)dx

converges, but
ż 8

1
g(x)dx diverges.

S-5:

(a) Not enough information to decide. For example, consider h(x) = 0 versus

h(x) = ´1. In both cases, h(x) ď f (x). However,
ż 8

0
0 dx converges to 0, while

ż 8

0
´1 dx diverges.

Note: if we had also specified 0 ď h(x), then we would be able to conclude that
ş8

0 h(x) dx converges by the comparison test.

(b) Not enough information to decide. For example, consider h(x) = f (x) versus
h(x) = g(x). In both cases, f (x) ď h(x) ď g(x).

(c)
ż 8

0
h(x) dx converges.

• From the given information, |h(x)| ď 2 f (x).

• We claim
ż 8

0
2 f (x) dx converges.

– We can see this by writing
ż 8

0
2 f (x) dx = 2

ż 8

0
f (x) dx and noting that the

second integral converges.

– Alternately, we can use the limiting comparison test, Theorem 3.7.23 in the

text. Since f (x) ě 0,
ż 8

0
f (x) dx converges, and lim

xÑ8

2 f (x)
f (x)

= 2 (the limit

exists), we conclude
ż 8

0
2 f (x) dx converges.
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• So, comparing h(x) to 2 f (x), by the comparison test (Theorem 3.7.18 in the text)
ż 8

0
h(x) dx converges.

S-6: The denominator is zero when x = 1, but the numerator is not, so the integrand has
a singularity (infinite discontinuity) at x = 1. Let’s replace the limit x = 1 with a variable
that creeps toward 1.

ż 1

0

x4

x5 ´ 1
dx = lim

tÑ1´

ż t

0

x4

x5 ´ 1
dx

To evaluate this integral we use the substitution u = x5, du = 5x4dx. When x = 0 we
have u = 0, and when x = t we have u = t5, so

ż 1

0

x4

x5 ´ 1
dx = lim

tÑ1´

ż t

0

x4

x5 ´ 1
dx = lim

tÑ1´

ż u=t5

u=0

1
5(u´ 1)

du

= lim
tÑ1´

([
1
5

ln |u´ 1|
]t5

0

)
= lim

tÑ1´

1
5

ln |t5 ´ 1| = ´8

The limit diverges, so the integral diverges as well.

S-7: The denominator of the integrand is zero when x = ´1, but the numerator is not.
So, the integrand has a singularity (infinite discontinuity) at x = ´1. This is the only
“source of impropriety” in this integral, so we only need to make one break in the
domain of integration.

ż 2

´2

1
(x + 1)4/3 dx = lim

tÑ´1´

ż t

´2

1
(x + 1)4/3 dx + lim

tÑ´1+

ż 2

t

1
(x + 1)4/3 dx

Let’s start by considering the left limit.

lim
tÑ´1´

ż t

´2

1
(x + 1)4/3 dx = lim

tÑ´1´

([
´ 3
(x + 1)1/3

ˇ

ˇ

ˇ

ˇ

t

´2

)

= lim
tÑ´1´

(
´ 3
(t + 1)1/3 +

3
(´1)1/3

)
= 8

Since this limit diverges, the integral diverges. (A similar argument shows that the
second integral diverges. Either one of them diverging is enough to conclude that the
original integral diverges.)

S-8: First, let’s identify all “sources of impropriety.” The integrand has a singularity
when 4x2 ´ x = 0, that is, when x(4x´ 1) = 0, so at x = 0 and x = 1

4 . Neither of these are
in our domain of integration, so the only “source of impropriety” is the unbounded
domain of integration.

We haven’t talked about how to antidifferentiate functions like this, but we can use a
comparison. For large values of x, the term x2 will be much larger than x, so we might
guess that our integral behaves similarly to

ş8

1
1?
4x2 dx =

ş8

1
1

2x dx.
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For all x ě 1,
?

4x2 ´ x ď
?

4x2 = 2x. So, 1?
4x2´x

ě 1
2x . Note

ş8

1
1

2x dx diverges:

lim
tÑ8

ż t

1

1
2x

dx = lim
tÑ8

(
1
2
[

ln x
]t

1

)
= lim

tÑ8

1
2

ln t = 8

So:

• 1
2x and 1?

4x2´x
are defined and continuous for all x ě 1,

• 1
2x ě 0 for all x ě 1,

• 1?
4x2´x

ě 1?
4x2 = 1

2x for all x ě 1, and

•
ş8

1
1

2x dx diverges.

By the comparison test, Theorem 3.7.18 in the text, the integral does not converge.

S-9: The integrand is positive everywhere. So, either the integral converges to some
finite number, or it is infinite. We want to generate a guess as to which it is.

When x is small,
?

x ą x2, so we might guess that our integral behaves like the integral of
1?
x when x is near to 0. On the other hand, when x is large,

?
x ă x2, so we might guess

that our integral behaves like the integral of 1
x2 as x goes to infinity. This is the hunch that

drives the following work:

0 ď 1
x2 +

?
x
ď 1?

x
and the integral

ż 1

0

dx?
x

converges by Example 3.7.9 in the text, and

0 ď 1
x2 +

?
x
ď 1

x2 and the integral
ż 8

1

dx
x2 converges by Example 3.7.8 in the text

Note dx
x2+

?
x is defined and continuous everywhere, 1?

x is defined and continuous for

x ą 0, and 1
x2 is defined and continuous for x ě 1. So, the integral converges by the

comparison test, Theorem 3.7.18 in the text, together with Remark 3.7.17.

S-10: There are two “sources of impropriety:” the two (infinite) limits of integration. So,
we break our integral into two pieces.

ż 8

´8

cos x dx =

ż 0

´8

cos x dx +

ż 8

0
cos x dx

= lim
aÑ8

[
ż 0

´a
cos x dx

]
+ lim

bÑ8

[
ż b

0
cos x dx

]

These are easy enough to antdifferentiate.

= lim
aÑ8

[sin 0´ sin(´a)] + lim
bÑ8

[sin b´ sin 0]

= DNE
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Since the limits don’t exist, the integral diverges. (It happens that both limits don’t exist;
even if only one failed to exist, the integral would still diverge.)

S-11: There are two “sources of impropriety:” the two bounds. So, we break our integral
into two pieces.

ż 8

´8

sin x dx =

ż 0

´8

sin x dx +

ż 8

0
sin x dx

= lim
aÑ8

[
ż 0

´a
sin x dx

]
+ lim

bÑ8

[
ż b

0
sin x dx

]
= lim

aÑ8
[´ cos 0 + cos(´a)] + lim

bÑ8
[´ cos b + cos 0]

= DNE

Since the limits don’t exist, the integral diverges. (It happens that both limits don’t exist;
even if only one failed to exist, the integral would diverge.)

Remark: it’s very tempting to think that this integral should converge, because as an odd
function the area to the right of the x-axis “cancels out” the area to the left when the
limits of integration are symmetric. One justification for not using this intuition is given
in Example 3.7.11 in the text. Here’s another: In Question 10 we saw that

ş8

´8
cos x dx

diverges. Since sin x = cos(x´ π/2), the area bounded by sine and the area bounded by
cosine over an infinite region seem to be the same–only shifted by π/2. So if
ş8

´8
sin x dx = 0, then we ought to also have

ş8

´8
cos x dx = 0, but we saw in Question 10

this is not the case.

x

y

y = sin x

y = cos x

S-12: First, we check that the integrand has no singularities. The denominator is always
positive when x ě 10, so our only “source of impropriety” is the infinite limit of
integration.

We further note that, for large values of x, the integrand resembles
x4

x5 =
1
x

. So, we have a

two-part hunch: that the integral diverges, and that we can show it diverges by

comparing it to
ż 8

10

1
x

dx.

In order to use the comparison test, we’d need to show that
x4 ´ 5x3 + 2x´ 7

x5 + 3x + 8
ě 1

x
. If this
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is true, it will be difficult to prove–and it’s not at all clear that it’s true. So, we will use the

limiting comparison test instead, Theorem 3.7.23 in the text, with g(x) =
1
x

,

f (x) =
x4 ´ 5x3 + 2x´ 7

x5 + 3x + 8
, and a = 10.

• Both f (x) and g(x) are defined and continuous for all x ą 0, so in particular they
are defined and continuous for x ě 10.

• g(x) ě 0 for all x ě 10

•
ż 8

10
g(x) dx diverges.

• Using l’Hôpital’s rule (5 times!), or simply dividing both the numerator and
denominator by x5 (the common leading term), tells us:

lim
xÑ8

f (x)
g(x)

= lim
xÑ8

x4´5x3+2x´7
x5+3x+8

1
x

= lim
xÑ8

x ¨ x4 ´ 5x3 + 2x´ 7
x5 + 3x + 8

= lim
xÑ8

x5 ´ 5x4 + 2x2 ´ 7x
x5 + 3x + 8

= 1

That is, the limit exists and is nonzero.

By the limiting comparison test, we conclude
ż 8

10
f (x) dx diverges.

S-13: Our domain of integration is finite, so the only potential “sources of impropriety”
are infinite discontinuities in the integrand. To find these, we factor.

ż 10

0

x´ 1
x2 ´ 11x + 10

dx =

ż 10

0

x´ 1
(x´ 1)(x´ 10)

dx

A removable discontinuity doesn’t affect the integral.

=

ż 10

0

1
x´ 10

dx

Use the substitution u = x´ 10, du = dx. When x = 0, u = ´10, and when x = 10, u = 0.

=

ż 0

´10

1
u

du

This is a p-integral with p = 1. From Example 3.7.9 and Theorem 3.7.21 in the text, we
know it diverges.

S-14: You might think that, because the integrand is odd, the integral converges to 0.
This is a common mistake– see Example 3.7.11 in the text, or Question 11 in this section.
In the absence of such a shortcut, we use our standard procedure: identifying problem
spots over the domain of integration, and replacing them with limits.
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There are two “sources of impropriety,” namely x Ñ +8 and x Ñ ´8. So, we split the
integral in two, and treat the two halves separately. The integrals below can be evaluated
with the substitution u = x2 + 1, 1

2du = xdx.

ż +8

´8

x
x2 + 1

dx =

ż 0

´8

x
x2 + 1

dx +

ż +8

0

x
x2 + 1

dx
ż 0

´8

x
x2 + 1

dx = lim
RÑ8

ż 0

´R

x
x2 + 1

dx = lim
RÑ8

1
2

ln(x2 + 1)
ˇ

ˇ

ˇ

0

´R

= lim
RÑ8

1
2

[
ln 1´ ln(R2 + 1)

]
= lim

RÑ8
´1

2
ln(R2 + 1) = ´8

ż +8

0

x
x2 + 1

dx = lim
RÑ8

ż R

0

x
x2 + 1

dx = lim
RÑ8

1
2

ln(x2 + 1)
ˇ

ˇ

ˇ

R

0

= lim
RÑ8

1
2

[
ln(R2 + 1)´ ln 1

]
= lim

RÑ8

1
2

ln(R2 + 1) = +8

Both halves diverge, so the whole integral diverges.

Once again: after we found that one of the limits diverged, we could have stopped and
concluded that the original integrand diverges. Don’t make the mistake of thinking that
8´8 = 0. That can get you into big trouble. 8 is not a normal number. For example
28 = 8. So if8were a normal number we would have both8´8 = 0 and
8´8 = 28´8 = 8.

S-15: We don’t want to antidifferentiate this integrand, so let’s use a comparison. Note
the integrand is positive when x ą 0.

For any x, | sin x| ď 1, so
| sin x|

x3/2 + x1/2 ď
1

x3/2 + x1/2 .

Since x = 0 and x Ñ 8 both cause the integral to be improper, we need to break it into
two pieces. Since both terms in the denominator give positive numbers when x is

positive,
1

x3/2 + x1/2 ď
1

x3/2 and
1

x3/2 + x1/2 ď
1

x1/2 . That gives us two options for

comparison.

When x is positive and close to zero, x1/2 ě x3/2, so we guess that we should compare
our integrand to 1

x1/2 near the limit x = 0. In contrast, when x is very large, x1/2 ď x3/2,
so we guess that we should compare our integrand to 1

x3/2 as x goes to infinity.

| sin x|
x3/2 + x1/2 ď

1
x1/2 and the integral

ż 1

0

dx
x1/2 converges by the p-test, Example 3.7.9 in the text

| sin x|
x3/2 + x1/2 ď

1
x3/2 and the integral

ż 8

1

dx
x3/2 converges by the p-test, Example 3.7.8 in the text

Now we have all the data we need to apply the comparison test, Theorem 3.7.18 in the
text.
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•
| sin x|

x3/2 + x1/2 ,
1

x1/2 , and
1

x3/2 are defined and continuous for x ą 0

•
1

x1/2 and
1

x3/2 are nonnegative for x ě 0

•
| sin x|

x3/2 + x1/2 ď
1

x1/2 for all x ą 0 and
ż 1

0

1
x1/2 dx converges, so (using Remark 3.7.17

in the text)
ż 1

0

| sin x|
x3/2 + x1/2 dx converges.

•
| sin x|

x3/2 + x1/2 ď
1

x3/2 for all x ě 1 and
ż 8

1

1
x3/2 dx converges, so

ż 8

1

| sin x|
x3/2 + x1/2 dx

converges.

Therefore, our integral
ż 8

0

| sin x|
x3/2 + x1/2 dx converges.

S-16: Our goal is to decide when this integral diverges, and where it converges. We will
leave q as a variable, and antidifferentiate. In order to antidifferentiate without knowing
q, we’ll need different cases. The integrand is x´5q, so when ´5q ‰ ´1, we use the power

rule (that is,
ş

xn dx = xn+1

n+1 ) to antidifferentiate. Note x(´5q)+1 = x1´5q =
1

x5q´1 .

ż t

1

1
x5q dx =

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

[
x1´5q

1´5q

]t

1
with 1´ 5q ą 0 if q ă 1

5[
ln x

]t

1
if q = 1

5[
1

(1´5q)x5q´1

]t

1
with 5q´ 1 ą 0 if q ą 1

5

=

$

’

&

’

%

1
1´5q (t

1´5q ´ 1) with 1´ 5q ą 0 if q ă 1
5

ln t if q = 1
5

1
5q´1(1´ 1

t5q´1 ) with 5q´ 1 ą 0 if q ą 1
5 .

Therefore,

ż 8

1

1
x5q dx = lim

tÑ8

(
ż t

1

1
x5q dx

)
=

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1
1´5q

(
lim
tÑ8

t1´5q ´ 1
)
= 8 if q ă 1

5

lim
tÑ8

ln t = 8 if q = 1
5

1
5q´1

(
1´ lim

tÑ8

1
t5q´1

)
= 1

5q´1 if q ą 1
5 .

The first two cases are divergent, and so the largest such value is q = 1
5 . (Alternatively,

we might recognize this as a “p-integral” with p = 5q, and recall that the p-integral
diverges precisely when p ď 1.)

S-17: This integrand is a nice candidate for the substitution u = x2 + 1, 1
2du = xdx.

Remember when we use substitution on a definite integral, we also need to adjust the

488



limits of integration.

ż 8

0

x
(x2 + 1)p dx = lim

tÑ8

ż t

0

x
(x2 + 1)p dx

= lim
tÑ8

1
2

ż t2+1

1

1
up du

= lim
tÑ8

1
2

ż t2+1

1
u´p du

=

$

’

’

’

&

’

’

’

%

1
2 lim

tÑ8

[
u1´p

1´ p

]t2+1

1
if p ‰ 1

1
2 lim

tÑ8

[
ln |u|

]t2+1

1
if p = 1

=

$

’

&

’

%

1
2 lim

tÑ8

1
1´ p

[
(t2 + 1)1´p ´ 1

]
if p ‰ 1

1
2 lim

tÑ8

[
ln(t2 + 1)

]
= 8 if p = 1

At this point, we can see that the integral diverges when p = 1. When p ‰ 1, we have the
limit

lim
tÑ8

1/2
1´ p

[
(t2 + 1)1´p ´ 1

]
=

1/2
1´ p

[
lim
tÑ8

(t2 + 1)1´p
]
´ 1/2

1´ p

Since t2 + 1 Ñ 8, this limit converges exactly when the exponent 1´ p is negative; that
is, it converges when p ą 1, and diverges when p ă 1.

So, the integral in the question converges when p ą 1.

S-18: There are three singularities in the integrand: x = 0, x = 1, and x = 2. We’ll need
to break up the integral at each of these places.

ż 5

´5

(
1

a|x| +
1

a|x´ 1| +
1

a|x´ 2|

)
dx

=

ż 0

´5

(
1

a|x| +
1

a|x´ 1| +
1

a|x´ 2|

)
dx +

ż 1

0

(
1

a|x| +
1

a|x´ 1| +
1

a|x´ 2|

)
dx

+

ż 2

1

(
1

a|x| +
1

a|x´ 1| +
1

a|x´ 2|

)
dx +

ż 5

2

(
1

a|x| +
1

a|x´ 1| +
1

a|x´ 2|

)
dx

This looks rather unfortunate. Let’s think again. If all of the integrals below converge,
then we can write:

ż 5

´5

(
1

a|x| +
1

a|x´ 1| +
1

a|x´ 2|

)
dx =

ż 5

´5

1
a|x|dx +

ż 5

´5

1
a|x´ 1|dx +

ż 5

´5

1
a|x´ 2|dx
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That looks a lot better. Also, we have a good reason to guess these integrals
converge–they look like p-integrals with p = 1

2 . Let’s take a closer look at each one.

ż 5

´5

1
a|x|dx =

ż 0

´5

1
a|x|dx +

ż 5

0

1
a|x|dx

= 2
ż 5

0

1
a|x|dx (even function)

= 2
ż 5

0

1?
x

dx

This is a p-integral, with p = 1
2 . By Example 3.7.9 in the text (and Theorem 3.7.21, since

the upper limit of integration is not 1), it converges. The other two pieces behave
similarly.

ż 5

´5

1
a|x´ 1|dx =

ż 1

´5

1
a|x´ 1|dx +

ż 5

1

1
a|x´ 1|dx

Use u = x´ 1, du = dx

=

ż 0

´6

1
a|u|du +

ż 4

0

1
a|u|dx

=

ż 6

0

1?
u

du +

ż 4

0

1?
u

dx

Since our function is even, we use the reasoning of Example 3.2.9 in the text to consider
the area under the curve when x ě 0, rather than when x ď 0. Again, these are
p-integrals with p = 1

2 , so they both converge. Finally:

ż 5

´5

1
a|x´ 2|dx =

ż 2

´5

1
a|x´ 2|dx +

ż 5

2

1
a|x´ 2|dx

Use u = x´ 2, du = dx.

=

ż 0

´7

1
a|u|du +

ż 3

0

1
a|u|du

=

ż 7

0

1?
u

du +

ż 3

0

1?
u

du

Since p = 1
2 , so they both converge.

We conclude our original integral, as the sum of convergent integrals, converges.

S-19: The integrand is positive everywhere. So either the integral converges to some
finite number or it is infinite. There are two potential “sources of impropriety” — a
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possible singularity at x = 0 and the fact that the domain of integration extends to8. So,
we split up the integral.

ż 8

0

sin4 x
x2 dx =

ż 1

0

sin4 x
x2 dx +

ż 8

1

sin4 x
x2 dx

Let’s consider the first integral. By l’Hôpital’s rule

lim
xÑ0

sin x
x

= lim
xÑ0

cos x
1

= cos 0 = 1

Consequently,

lim
xÑ0

sin4 x
x2 =

(
lim
xÑ0

sin2 x
)(

lim
xÑ0

sin x
x

)(
lim
xÑ0

sin x
x

)
= 0ˆ 1ˆ 1 = 0

and the first integral is not even improper.

Now for the second integral. Since | sin x| ď 1, we’ll compare it to
ş8

1
1
x2 .

• sin4 x
x2 and 1

x2 are defined and continuous for every x ě 1

• 0 ď sin4 x
x2 ď 14

x2 = 1
x2 for every x ě 1

•
ş8

1
1
x2 dx converges by Example 3.7.8 in the text (it’s a p-type integral with p ą 1)

By the comparison test, Theorem 3.7.18 in the text,
ż 8

1

sin4 x
x2 dx converges.

Since
ż 1

0

sin4 x
x2 dx and

ż 8

1

sin4 x
x2 dx both converge, we conclude

ż 8

0

sin4 x
x2 dx converges

as well.

S-20: Since the denominator is positive for all x ě 0, the integrand is continuous over
[0,8). So, the only “source of impropriety” is the infinite domain of integration.

Solution 1: Let’s try to use a direct comparison. Note
x

ex +
?

x
ě 0 whenever x ě 0. Also

note that, for large values of x, ex is much larger than
?

x. That leads us to consider
the following inequalty:

0 ď x
ex +

?
x
ď x

ex

If
ş8

0
x
ex dx converges, we’re in business. Let’s figure it out. The integrand looks like

a candidate for integration by parts: take u = x, dv = e´x dx, so du = dx and
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v = ´e´x.

ż 8

0

x
ex dx = lim

bÑ8

ż b

0

x
ex dx = lim

bÑ8

([
´ x

ex

]b

0
+

ż b

0
e´x dx

)

= lim
bÑ8

(
´ b

eb +
[´e´x]b

0

)
= lim

bÑ8

(
´ b

eb ´
1
eb + 1

)
= lim

bÑ8

(
1´ b + 1

eb
loomoon

numÑ8
denÑ8

)
= lim

bÑ8

(
1´ 1

eb

)
= 1

Using l’Hôpital’s rule, we see
ş8

0
x
ex dx converges. All together:

• x
ex and x

ex+
?

x are defined and continuous for all x ě 0,

•
ˇ

ˇ

ˇ

x
ex+

?
x

ˇ

ˇ

ˇ
ď x

ex , and

•
ş8

0
x
ex dx converges.

So, by Theorem 3.7.18 in the text, our integral
ż 8

0

x
ex +

?
x

dx converges.

Solution 2: Let’s try to use a different direct comparison from Solution 1, and avoid

integration by parts. We’d like to compare to something like
1
ex , but the inequality

goes the wrong way. So, we make a slight modification: we consider 2e´x/2. To that
end, we claim x ă 2ex/2 for all x ě 0. We can prove this by noting the following two
facts:

• 0 ă 2 = 2e0/2, and

• d
dxtxu = 1 ď ex/2 = d

dxt2ex/2u.
So, when x = 0, x ă 2ex/2, and then as x increases, 2ex/2 grows faster than x.

Now we can make the following comparison:

0 ď x
ex +

?
x
ď x

ex ă
2ex/2

ex =
2

ex/2

We have a hunch that
ş8

0
2

ex/2 dx converges, just like
ş8

0
1
ex dx. This is easy enough to

prove. We can guess an antiderivative, or use the substitution u = x/2.

ż 8

0

2
ex/2 dx = lim

RÑ8

ż R

0

2
ex/2 dx = lim

RÑ8

[
´ 4

ex/2

]R

0

= lim
RÑ8

[
4
e0 ´

4
eR/2

]R

0
= 4

Now we know:

• 0 ď x
ex+

?
x ď 2

ex/2 , and
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•
ş8

0
2

ex/2 dx converges.

• Furthermore, x
ex+

?
x and 2

ex/2 are defined and continuous for all x ě 0.

By the comparison test (Theorem 3.7.18) in the text, we conclude the integral
converges.

Solution 3: Let’s use the limiting comparison test (Theorem 3.7.23 in the text). We have a
hunch that our integral behaves similarly to

ş8

0
1
ex dx, which converges (see

Example 3.7.19 in the text). Unfortunately, if we choose g(x) = 1
ex (and, of course,

f (x) = x
ex+

?
x ), then

lim
xÑ8

f (x)
g(x)

= lim
xÑ8

x
ex +

?
x
¨ ex = lim

xÑ8

x

1 +
?

x
ex

loomoon

Ñ0

= 8

That is, the limit does not exist, so the limiting comparison test does not apply. (To
find lim

xÑ8

?
x

ex , you can use l’Hôpital’s rule.)

This setback encourages us to try a slightly different angle. If g(x) gave larger
values, then we could decrease f (x)

g(x) . So, let’s try g(x) = 1
ex/2 = e´x/2. Now,

lim
xÑ8

f (x)
g(x)

= lim
xÑ8

x
ex +

?
x
˜ 1

ex/2 = lim
xÑ8

x

ex/2 +
?

x
ex/2

Hmm... this looks hard. Instead of dealing with it directly, let’s use the squeeze
theorem.

0 ď x

ex/2 +
?

x
ex/2

ď x
ex/2

Using l’Hôpital’s rule,

lim
xÑ8

x
ex/2
loomoon

numÑ8
denÑ8

= lim
xÑ8

1
1
2 ex/2

= 0 = lim
xÑ8

0

So, by the squeeze theorem lim
xÑ0

x
ex+

?
x

1
ex/2

= 0. Since this limit exists, 1
ex/2 is a reasonable

function to use in the limiting comparison test (provided its integral converges). So,
we need to show that

ş8

0
1

ex/2 dx converges. This can be done by simply evaluating
it:

ż 8

0

1
ex/2 dx = lim

bÑ8

ż b

0
e´x/2 dx = lim

bÑ8
´1

2
[
e´x/2]b

0 = lim
bÑ8

´1
2

[
1

eb/2 ´ 1
]
=

1
2

So, all together:
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• The functions x
ex+

?
x and 1

ex/2 are defined and continuous for all x ě 0, and
1

ex/2 ě 0 for all x ě 0.

•
ş8

0
1

ex/2 dx converges.

• The limit lim
xÑ8

x
ex +

?
x

1
ex/2

exists (it’s equal to 0).

• So, the limiting comparison test (Theorem 3.7.18 in the text) tells us that
ş8

0
x

ex+
?

x dx converges as well.

S-21: There are two sources of error: the upper bound is t, rather than infinity, and we’re
using an approximation with some finite number of intervals, n. Our plan is to first find
a value of t that introduces an error of no more than 1

210´4. That is, we’ll find a value of t
such that

ş8

t
e´x

1+x dx ď 1
210´4. After that, we’ll find a value of n that approximates

şt
0

e´x

x+1 dx to within 1
210´4. Then, all together, our error will be at most

1
210´4 + 1

210´4 = 10´4, as desired. (Note we could have broken up the error in another
way—it didn’t have to be 1

210´4 and 1
210´4. This will give us one of many possible

answers.)

Let’s find a t such that
ş8

t
e´x

1+x dx ď 1
210´4. For all x ě 0, 0 ă e´x

1+x ď e´x, so
ż 8

t

e´x

1 + x
dx ď

ż 8

t
e´x dx = e´t (˚)ď 1

2
10´4

where (˚) is true if t ě ´ ln
(1

2
10´4

)
« 9.90

Choose, for example, t = 10.

Now it’s time to decide how many intervals we’re going to use to approximate
ż t

0

e´x

x + 1
dx. Again, we want our error to be less than 1

210´4. To bound our error, we need

to know the second derivative of e´x

x+1 .

f (x) =
e´x

1 + x
ùñ f 1(x) = ´ e´x

1 + x
´ e´x

(1 + x)2 ùñ f 2(x) =
e´x

1 + x
+ 2

e´x

(1 + x)2 + 2
e´x

(1 + x)3

Since f 2(x) is positive, and decreases as x increases,

| f 2(x)| ď f 2(0) = 5 ùñ |En| ď 5(10´ 0)3

24n2 =
5000
24n2 =

625
3n2

and |En| ď 1
210´4 if

625
3n2 ď

1
2

10´4

ðñ n2 ě 1250ˆ 104

3

ðñ n ě
c

1.25ˆ 107

3
« 2041.2
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So t = 10 and n = 2042 will do the job. There are many other correct answers.

S-22:

(a) Since f (x) is odd, using the reasoning of Example 3.2.10 in the text,

ż ´1

´8

f (x) dx = lim
tÑ8

ż ´1

´t
f (x) dx = lim

tÑ8
´
ż t

1
f (x) dx = ´ lim

tÑ8

ż t

1
f (x) dx

Since
ż 8

1
f (x) dx converges, the last limit above converges. Therefore,

ż ´1

´8

f (x) dx

converges.

(b) Since f (x) is even, using the reasoning of Example 3.2.9 in the text,

ż ´1

´8

f (x) dx = lim
tÑ8

ż ´1

´t
f (x) dx = lim

tÑ8

ż t

1
f (x) dx = lim

tÑ8

ż t

1
f (x) dx

Since
ż 8

1
f (x) dx converges, the last limit above converges. Since f (x) is continuous

everywhere, by Theorem 3.7.21 in the text,
ż 8

´1
f (x) dx converges (note the adjusted

lower limit). Then, since

ż 8

´8

f (x) dx =

ż ´1

´8

f (x) dx +

ż 8

´1
f (x) dx

and both summands converge, our original integral converges as well.

S-23: Define F(x) =
şx

0
1
et dt.

F(x) =
ż x

0

1
et dt =

[
´ 1

et

]x

0
=

1
e0 ´

1
ex ă

1
e0 = 1

So, the statement is false: there is no x such that F(x) = 1. For every real x, F(x) ă 1
e0 = 1.

We note here that lim
xÑ8

ż x

0

1
et dt = 1. So, as x grows larger, the gap between F(x) and 1

grows infintesimally small. But there is no real value of x where F(x) is exactly equal to 1.

Solutions to Exercises 3.8 — Jump to TABLE OF CONTENTS

S-1: First, we note the integral is improper. So, we’ll need to replace the top bound with
a variable, and take a limit. Second, we’re going to have to antidifferentiate. The
integrand is the product of an exponential function, e´x, with a polynomial function,
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x´ 1, so we use integration by parts with u = x´ 1, dv = e´xdu, du = dx, and v = ´e´x.

ż

x´ 1
ex dx = ´(x´ 1)e´x +

ż

e´x dx

= ´(x´ 1)e´x ´ e´x + C = ´xe´x + C

So,
ż 8

0

x´ 1
ex dx = lim

bÑ8

ż b

0

x´ 1
ex dx

= lim
bÑ8

[
´ x

ex

]b

0
= lim

bÑ8

[
´ b

eb
loomoon

numÑ8
denÑ8

]

(˚)
= lim

bÑ8

1
eb = 0

(In the equality marked (˚), we used l’Hôpital’s rule.)

So,
ż 8

0

x´ 1
ex dx = 0.

Remark: this shows that, interestingly,
ż 8

0

x
ex dx =

ż 8

0

1
ex dx.

S-2:

We see that we have two functions multiplied, but they don’t simplify nicely with each
other. However, if we differentiate logarithm, and integrate x2, we’ll get a polynomial.
So, let’s use integration by parts.

u = ln x dv = x2dx

du = (1/x)dx v = x3/3

First, let’s antidifferentiate. We’ll deal with the limits of integration later.

ż

x2 ln xdx = (ln x)
loomoon

u

(x3/3)
loomoon

v

)´
ż

(x3/3)
loomoon

v

(1/x)dx
looomooon

du

=
1
3

x3 ln x´ 1
3

ż

x2dx

=
1
3

x3 ln x´ 1
3
¨ 1

3
x3 + C

=
1
3

x3 ln x´ 1
9

x3 + C
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We use the Fundamental Theorem of Calculus Part 2 to evaluate the definite integral.
ż 2

1
x3 ln xdx =

[
1
3

x3 ln x´ 1
9

x3
]2

1

=

[
1
3

23 ln 2´ 1
9

23
]
´
[

1
3

13 ln 1´ 1
9

13
]

=
8 ln 2

3
´ 8

9
´ 0 +

1
9

=
8
3

ln 2´ 7
9

S-3: The derivative of the denominator shows up in the numerator, only differing by a
constant, so we perform a substitution. Specifically, substitute u = x2 ´ 3, du = 2x dx.
This gives

ż

x
x2 ´ 3

dx =

ż

du/2
u

=
1
2

ln |u|+ C =
1
2

ln
ˇ

ˇx2 ´ 3
ˇ

ˇ+ C

S-4: Integrate by parts with u = x and dv = sin x dx so that du = dx and v = ´ cos x.
ż

x sin x dx = ´x cos x´
ż

(´ cos x)dx = ´x cos x + sin x + C

So,
ż π/2

0
x sin x dx =

[
´ x cos x + sin x

]π/2

0
= 1

S-5: This is a classic integration-by-parts example. If we integrate ex, it doesn’t change,
and if we differentiate x it becomes a constant. So, let u = x and dv = ex dx, so that
du = dx and v = ex.

ż 2

0
xex dx =

[
xex
]2

0
´
ż 2

0
ex dx = 2e2 ´

[
ex
]2

0
= e2 + 1

S-6:
ş3

0

?
9´ x2 dx is the area of the portion of the disk x2 + y2 ď 9 that lies in the first

quadrant. It is 1
4 π33 = 9

4 π .

x

y

y =
?

9´ x2

3
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S-7: We know the derivative of arctangent, and it would integrate nicely if multiplied to
the antiderivative of x. So, we integrate by parts with u = arctan x and dv = x dx so that
du = 1

1+x2 dx and v = 1
2 x2. Then

ż

x arctan x dx =
1
2

x2 arctan x´ 1
2

ż

x2

1 + x2 dx

=
1
2

x2 arctan x´ 1
2

ż

1 + x2 ´ 1
1 + x2 dx

=
1
2

x2 arctan x´ 1
2

ż
(

1´ 1
1 + x2

)
dx

=
1
2
[
x2 arctan x´ x + arctan x

]
+ C

S-8:

Solution 1: Integrate by parts, using u = ln(1 + x2) and dv = x dx, so that du = 2x
1+x2 ,

v = x2

2 .
ż 1

0
x ln(1 + x2)dx =

[1
2

x2 ln(1 + x2)
]1

0
´
ż 1

0

x3

1 + x2 dy =
1
2

ln 2´
ż 1

0

[
x´ x

1 + x2

]
dx

=
1
2

ln 2´
[1

2
x2
]1

0
+

ż 1

0

[ x
1 + x2

]
dx

Substituting u = 1 + x2, 1
2du = dx helps us find the antiderivative of x

1+x2

=
1
2

ln 2´ 1
2
+

ż u=1+12

u=1+02

1
2
¨ 1

u
du

=
1
2

ln 2´ 1
2
+
[1

2
ln |u|

]u=2

u=1

=
1
2

ln 2´ 1
2
+

1
2
¨ ln 2´ 1

2
ln 1

=
1
2

ln 2´ 1
2
+

1
2
¨ ln 2

= ln 2´ 1
2
« 0.193

Solution 2: First substitute y = 1 + x2, dy = 2x dx.
ż 1

0
x ln(1 + x2)dx =

1
2

ż 2

1
ln y dy

Then integrate by parts, using u = ln y and dv = dy, so that du = 1
y , v = y.

ż 1

0
x ln(1 + x2)dx =

1
2

ż 2

1
ln y dy =

[1
2

y ln y
]2

1
´ 1

2

ż 2

1
y

1
y

dy = ln 2´ 1
2
« 0.193
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S-9: Substituting u = x3 + 1, du = 3x2 dx

ż

x2

(x3 + 1)101 dx =

ż

1
u101 ¨

du
3

=
u´100

´100
¨ 1

3
+ C = ´ 1

300(x3 + 1)100 + C

S-10: First, we note that the integral is improper, because sin π = 0. So, we’ll have to use
a limit.

Second, we need to antidifferentiate. The substitution u = sin x, du = cos x dx fits just
right.

ż π

π/2

cos x?
sin x

dx = lim
bÑπ´

ż b

π/2

cos x?
sin x

dx = lim
bÑπ´

ż sin b

1

1?
u

du

= lim
bÑπ´

[
2
?

u
]sin b

1
= 2

?
0´ 2

?
1 = ´2

S-11:

Solution 1: Let’s use the substitution u = x´ 1, du = dx.

ż

x
?

x´ 1 dx =

ż

(u + 1)
?

u du

=

ż (
u3/2 + u1/2

)
du

=
2
5

u5/2 +
2
3

u3/2 + C

=
2
5
(x´ 1)5/2 +

2
3
(x´ 1)3/2 + C

Solution 2: We have an integrand with x multiplied by something integrable. So, if we
use integration by parts with u = x and dv =

?
x´ 1 dx, then du = dx (that is, the

x goes away) and v = 2
3(x´ 1)3/2.
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ż

x
?

x´ 1 dx =
2
3

x
?

x´ 1
3 ´ 2

3

ż

(x´ 1)3/2dx

=
2
3

x
?

x´ 1
3 ´ 2

3

(
2
5
(x´ 1)5/2

)
+ C

=
2
3

?
x´ 1

(
x(x´ 1)´ 2

5
(x´ 1)2

)
+ C

=
2

15

?
x´ 1 ¨ (3x2 ´ x´ 2) + C

=
2

15

?
x´ 1 ¨ (3(x2 ´ 2x + 1) + 5x´ 5) + C

=
2

15

?
x´ 1 ¨ (3(x´ 1)2 + 5(x´ 1)) + C

=
2

15
¨ 3?x´ 1

5
+

2
15
¨ 5?x´ 1

3
+ C

=
2
5

?
x´ 1

5
+

2
3

?
x´ 1

3
+ C

S-12: For lack of a better idea, we decide to use integration by parts. We won’t get
anything better by antidifferentiating arcsine, so let’s plan on differentiating it:

u = arcsin x dv = (3x)2dx

du =
1?

1´ x2
dx v = 3x3

ż

(3x)2 arcsin xdx = arcsin x
looomooon

u

¨ 3x3
loomoon

v

´
ż

3x3
loomoon

v

¨ 1?
1´ x2

dx
looooomooooon

du

= 3x3 arcsin x´
ż

3x3
?

1´ x2
dx

So: we’ve gotten rid of the ugly pairing of arcsine with a polynomial, but now we’re in
another pickle. From here, two options present themselves. We can use the substitution
u = 1´ x2.
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ż

(3x)2 arcsin xdx = 3x3 arcsin x´
ż

3x3
?

1´ x2
dx

= 3x3 arcsin x´ 3
ż

x2
?

1´ x2
¨ x dx

= 3x3 arcsin x +
3
2

ż

1´ u?
u

du

= 3x3 arcsin x +
3
2

ż (
u´1/2 ´ u1/2

)
du

= 3x3 arcsin x +
3
2

(
2u1/2 ´ 2

3
u3/2

)
+ C

= 3x3 arcsin x + 3
a

1´ x2 ´
a

1´ x2
3
+ C

S-13: (a) Integrate by parts with u = ln x and dv = x dx, so that du = dx
x and v = 1

2 x2.

ż

x ln x dx =
1
2

x2 ln x´ 1
2

ż

x2 ¨ 1
x

dx =
1
2

x2 ln x´ 1
4

x2 + C

(b) Substitute y = x3, dy = 3x2 dx.

ż

x2

1 + x6 dx =
1
3

ż

dy
1 + y2 =

1
3

arctan y + C =
1
3

arctan x3 + C

S-14: (a) The integrand is an even function, and the limits of integration are symmetric.
So, we can slightly simplify the integral by replacing the lower limit with 0, and doubling
the integral.

Notice that the numerator is only off by a constant from the derivative of x5. Substituting
x5 = 4y, 5x4 dx = 4 dy, and using that x = 2 ùñ 25 = 4y ùñ y = 8,

ż 2

´2

x4

x10 + 16
dx = 2

ż 2

0

x4

x10 + 16
dx = 2 ¨ 4

5

ż 8

0

1
16y2 + 16

dy =
1

10

ż 8

0

1
y2 + 1

dy

=
1

10
arctan 8 « 0.1446

S-15:

Solution 1: Using logarithm rules, ln
?

x = ln
(
x1/2) = 1

2 ln x, so we can simplify:

ż e

1

ln
?

x
x

dx =

ż e

1

ln x
2x

dx
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We use the substitution u = ln x, du = 1
x dx:

ż e

1

ln x
2x

dx =
1
2

ż e

1
ln(x)
loomoon

u

¨ 1
x

dx
loomoon

du

=
1
2

ż ln(e)

ln(1)
u du

=
1
2

ż 1

0
u du

=
1
2

[
1
2

u2
]1

0

=
1
2

[
1
2
´ 0
]
=

1
4

Solution 2: We use the substitution u = ln
?

x. Then
du
dx

=
1?
x
¨ 1

2
?

x
=

1
2x

, hence

2du =
1
x

dx. This fits our integral nicely!

ż e

1

ln
?

x
x

dx =

ż ln
?

e

ln
?

1
u ¨ 2du

=
[
u2
]1/2

0

=

(
1
2

)2

´ 02 =
1
4

S-16:
ż 0.2

0.1

tan x
ln(cos x)

dx

It might not be immediately obvious how to proceed on this one, so this is another
example of an integral where you should not be discouraged by finding methods that
don’t work. One thing that’s worked for us in the past is to use a u-substitution with the
denominator. With that in mind, let’s find the derivative of the denominator.

d
dx
tln(cos x)u = 1

cos x
¨ (´ sin x) =

´ sin x
cos x

= ´ tan x

So, if we let u = ln(cos x), we see ´du = tan xdx, which will work for a substitution.
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ż 0.2

0.1

tan x
ln(cos x)

dx =

ż ln(cos(0.2))

ln(cos(0.1))

´du
u

=
[
´ ln |u|

]ln(cos(0.2))

ln(cos(0.1))

= ´ ln | ln(cos 0.2)|+ ln | ln(cos 0.1)|
= ln

ˇ

ˇ

ˇ

ˇ

ln(cos(0.1))
ln(cos(0.2))

ˇ

ˇ

ˇ

ˇ

= ln
(

ln(cos(0.1))
ln(cos(0.2))

)

Things to notice: the integrand is only defined when ln(cos x) exists AND is nonzero. So,
for instance, it is not defined when x = 0, because then ln cos x = ln 1 = 0, and we can’t
divide by zero.

In the final simplification, since 0.1 and 0.2 are between 0 and π/2, the cosine term is
positive but less than one, so ln(cos 0.1) and ln(cos 0.2) are both negative; then their
quotient is positive, so we can drop the absolute value signs.

Using the base change formula, we can also write the final answer as
ln
(

lncos(0.2) cos(0.1)
)

.

S-17: If we expand the integrand, one part of it is quite familiar–a portion of a circle. So,
we split the specified integral in two.

ż 3

0
(x + 1)

a

9´ x2 dx =

ż 3

0

a

9´ x2 dx +

ż 3

0
x
a

9´ x2 dx

The first piece represents the area above the x–axis and below the curve y =
?

9´ x2, i.e.
x2 + y2 = 9, with 0 ď x ď 3. That’s the area of one quadrant of a disk of radius 3. So

ż 3

0

a

9´ x2 dx =
1
4
(π ¨ 32) =

9
4

π

For the second part, we substitute u = 9´ x2, du = ´2x dx. Note u(0) = 9 and u(3) = 0.
So,

ż 3

0
x
a

9´ x2 dx =

ż 0

9

?
u

du
´2

= ´1
2

[
u3/2

3/2

]0

9

= ´1
2

[
´ 27

3/2

]
= 9

All together,
ż 3

0
(x + 1)

a

9´ x2 dx =
9
4

π + 9
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S-18: Let’s use the substitution u = ex. There are a few reasons to think this is a good
choice. It’s an “inside function,” in that if we let f (x) = ex, then f (ex) = eex

, which is a
piece of our integrand. Also its derivative, ex, is multiplied by the rest of the integrand,
since e2x = ex ¨ ex .

Let u = ex, du = exdx. When x = 0, u = 1, and when x = 1, u = e.
ż 1

0
e2xeex

dx =

ż 1

0
exeex

exdx =

ż e

1
ueu du

This is more familiar. We use integration by parts with dv = eu du, v = eu. Conveniently,
the “u” we brought in with the substitution is what we want to use for the “u” in
integration by parts, so we don’t have to change the names of our variables.

=
[
ueu]e

1 ´
ż e

1
eu du

= e ¨ ee ´ e´ ee + e = ee(e´ 1)

S-19: The substitution u = x + 1 looks promising at first, but doesn’t result in something
easily integrable. So, let’s think about integration by parts. There’s a lot of different ways
we could break up the integrand into two parts. For example, we could view it as(

x
(x+1)2

)(
ex
)

, or we could view it as
(

x
x+1

)(
ex

x+1

)
. After some trial and error, we settle

on u = xex and dv = (x + 1)´2 dx. Then du = ex(x + 1) and v = ´1
x+1 .

ż

xex

(x + 1)2 dx = ´ xex

x + 1
+

ż

ex(x + 1)
x + 1

dx

= ´ xex

x + 1
+

ż

exdx

= ´ xex

x + 1
+ ex + C

=
ex

x + 1
+ C

S-20: It would be nice to use integration by parts with u = x, because then we would
integrate

ş

v du, and du = dx. That is, the x would go away, and we’d be left with a pure
trig integral. If we use u = x, then dv = sin x

cos2 x . We need to find v:

v =

ż

sin x
cos2 x

dx =

ż

tan x sec x dx = sec x

Now we use integration by parts.
ż

x sin x
cos2 x

dx = x sec x´
ż

sec x dx = x sec x´ ln | sec x + tan x|+ C
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S-21: We would like to not have that square root there. Luckily, there’s a way of turning
cosine into cosine squared: the identity cos(2x) = 2 cos2 x´ 1. If we take 2x = t, then
cos t = 2 cos2(t/2)´ 1.

ż π/2

0

?
cos t + 1 dt =

ż π/2

0

b

2 cos2(t/2) dt =
?

2
ż π/2

0
| cos(t/2)| dt

Over the interval [0, π
2 ], cos(t/2) ą 0, so we can drop the absolute values.

=
?

2
ż π/2

0
cos(t/2) dt =

?
2
[

2 sin
(

t
2

)]π/2

0

= 2
?

2 sin
(π

4

)
= 2

S-22: If the unknown exponent gives you the jitters, think about what this looks like in
easier cases. If n is a whole number, the integrand is a polynomial. Not so scary, right?
However, it’s a little complicated to expand. (You can do it using the very handy
binomial theorem.) Let’s think of an easier way.

If we had simply the variable x raised to the power n, rather than the binomial x + a, that
might be nicer. So, let’s use the substitution u = x + a, du = dx. Note x = u´ a.

ż

x(x + a)n dx =

ż

(u´ a)un dx =

ż (
un+1 ´ aun) du

Now, if n ‰ ´1 and n ‰ ´2, we can just use the power rule:

=
u(n+2)

n + 2
´ a

un+1

n + 1
+ C

=
(x + a)(n+2)

n + 2
´ a

(x + a)n+1

n + 1
+ C

If n = ´1, then
ż

x(x + a)n dx =

ż (
un+1 ´ aun) du =

ż (
1´ a

u

)
du

= u´ a ln |u|+ C = (x + a)´ a ln |x + a|+ C

If n = ´2, then
ż

x(x + a)n dx =

ż (
un+1 ´ aun) du =

ż
(

1
u
´ au´2

)
du

= ln |u|+ a
u
+ C = ln |x + a|+ a

x + a
+ C

All together,

ż

x(x + a)n dx =

$

’

&

’

%

(x+a)(n+2)

n+2 ´ a (x+a)n+1

n+1 + C if n ‰ ´1,´2
(x + a)´ a ln |a + x|+ C if n = ´1
ln |x + a|+ a

x+a + C if n = ´2
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Solutions to Exercises 3.9 — Jump to TABLE OF CONTENTS

S-1:

(a) If y = 5(ex ´ 3x2 ´ 6x´ 6), then dy
dx = 5(ex ´ 6x´ 6). Let’s see whether this is equal to

y + 15x2:

y + 15x2 = 5(ex ´ 3x2 ´ 6x´ 6) + 15x2

= 5(ex ´ 3x2 ´ 6x´ 6 + 3x2)

= 5(ex ´ 6x´ 6)

=
dy
dx

So, y = 5(ex ´ 3x2 ´ 6x´ 6) is indeed a solution to the differential equation
dy
dx = y + 15x2.

(b) If y =
´2

x2 + 1
, then dy

dx =
4x

(x + 1)2 . Let’s see whether this is equal to xy2:

xy2 = x
( ´2

x2 + 1

)2

=
4x

(x2 + 1)2

=
dy
dx

So, y =
´2

x2 + 1
is indeed a solution to the differential equation dy

dx = yx2.

(c) If y = x3/2 + x, then dy
dx = 3

2
?

x + 1.(
dy
dx

)2

+
dy
dx

=

(
3
2
?

x + 1
)2

+
3
2
?

x + 1

=
9
4

x +
9
2
?

x + 2

‰ dy
dx

So, y = x3/2 + x is not a solution to the differential equation
(

dy
dx

)2
+ dy

dx = y.

S-2:

(a) 3y dy
dx = x sin y can be written as 3y

sin y
dy
dx = x, which fits the form of a separable

equation with f (x) = x, g(y) = 3y
sin y .
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(b) dy
dx = ex+y = exey, so e´y dy

dx = ex which fits the form of a separable equation using
f (x) = ex, g(y) = e´y.

(c) dy
dx + 1 = x can be written as dy

dx = (x´ 1), which fits the form of a separable equation
using f (x) = x´ 1, g(y) = 1. (We can solve it by simply antidifferentiating.)

(d) Notice the left side of the equation
(

dy
dx

)2 ´ 2x dy
dx + x2 = 0 is a perfect square. So, this

equation is equivalent to
(

dy
dx ´ x

)2
= 0, that is, dy

dx = x. This has the form of a
separable equation with f (x) = x, g(y) = 1.

S-3: The mnemonic allows us to skip from the separable differential equation we want to
solve (very first line) to the equation

ż

g(y)dy =

ż

f (x)dx

So, the mnemonic is just a shortcut for the substitution we performed to get this point.

We also generally skip the explanation about C1 and C2 being replaced with C.

S-4: To say y = f (x) + C is a solution to the differential equation means:

d
dx
t f (x) + Cu = x( f (x) + C)

Since y = f (x) is a solution, we know d
dxt f (x)u = x f (x). Also, d

dxt f (x) + Cu = d
dxt f (x)u.

So, d
dxt f (x) + Cu = x f (x).

x f (x) = x( f (x) + C)
0 = xC

Our equation should hold for all x in our domain, and for the derivative to y with respect
to x to make sense, our domain should not be a single point. So, there is some x in our
domain such that x ‰ 0. Therefore, the C must be zero. So, f (x) + C is not a solution to the
differential equation for any constant C.

When we’re finding a general antiderivative, we add “+C” at the end. When we’re
finding a general solution to a differential equation, the “+C” gets added when we
antidifferentiate–we don’t add another one at the end of our work.

S-5:

(a) Since |y| ě 0 no matter what y is, we see Cx ě 0 for all x in the domain of f (x). Since
C is positive, that means the domain of f (x) only includes nonnegative numbers. So,
the largest possible domain of f (x) is [0,8).

(b) None exists.

The graph of Cx is given below for some positive constant C, also with the graph of
´Cx. If y = f (x) were sometimes the top function, and other times the bottom
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function, then there would be a jump discontinuity where it switched. Then the
derivative of f (x) would not exist, violating the second property.

x

y

y = Cx

y = ´Cx

A tiny technical note is that it’s possible that f (x) = Cx when x = 0 and f (x) = ´Cx
when x ą 0 (or vice-versa). This would not introduce a jump discontinuity, but it also
does not satisfy that f (x) ą 0 for some values of x.

Remark: in several instances below, solving a differential equation will lead us to
conclude something like |y| = g(x). In these cases, we choose either y = g(x), or
y = ´g(x), but not y = ˘g(x) (which is not a function) or that y is sometimes g(x), and
other times ´g(x). The reasoning above somewhat explains this choice: if y were
sometimes positive and sometimes negative, then dy

dx would not exist at the values of x
where the sign of y switches, unless that switch occurrs at a root of g(x). Since that’s a
pretty specific occurrence, we usually feel safe ignoring it to avoid getting bogged down
in technical details.

S-6: Let Q(t) be the quantity of morphine in a patient’s bloodstream at time t, where t is
measured in minutes.

Using the definition of a derivative,

dQ
dt

= lim
hÑ0

Q(t + h)´Q(t)
h

« Q(t + 1)´Q(t)
1

So, dQ
dt is roughly the change in the amount of morphine in one minute, from t to t + 1.

The sentence tells us that the change in the amount of morphine in one minute is about
´0.003Q, where Q is the quantity in the bloodstream. That is:

dQ
dt

= ´0.003Q(t)

S-7: If p(t) is the proportion of times speakers use the new form, measured between 0
and 1, then 1´ p(t) is the proportion of times speakers use the old form.

The law, then, states that dp
dt is proportional to p(t)ˆ (1´ p(t)

)
. When we say two

quantities are proportional, we mean that one is a constant multiple of the other. So, the
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law says

dp
dt

= αp(t)
(
1´ p(t)

)
for some constant α.

Remark: it follows from this model that, when a new form is either very rare or entirely
ubiquitous, the rate of change of its adoption is small. This makes sense: if the new form
is used all the time (p(t) « 1), there’s nobody left to convert; if the new form is almost
never used (p(t) « 0) then people don’t know about it, so they won’t pick it up.

S-8:

(a) When y = 0, y1 = 0
2 ´ 1 = ´1.

(b) When y = 2, y1 = 2
2 ´ 1 = 0.

(c) When y = 3, y1 = 3
2 ´ 1 = 0.5.

(d) The small red lines have varying slopes. The red lines on points with y-coordinate 2
have slopes of 0; this matches y1 when y = 0, as we saw above. The red lines on
points with y-coordinate 0 have slopes of approximately ´1; again, this matches
what we found for y1 when y = 0.

The red lines correspond to a tiny section of y(x), if y(x) passes through that point.
So, we can sketch a possible curve y(x) satisfying the equation by starting
somewhere, then following the slopes.

For example, suppose we start at the origin.

x

y

1

1

Then our function is decreasing at that point, which leads us to a coordinate where
(as we see from the red marks) the function is decreasing slightly faster.
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x

y

1

1

Following the red marks leads us down even further, so our function y(x) might look
something like this:

x

y

1

1

However, we didn’t have to start at the origin. Suppose y(0) = 3. Then at x = 0, y is
increasing, with slope 1

2 .
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x

y

1

1

Our red marks run out that high up, but we now y1 = 1
2 y´ 1, so y1 increases as y

increases. That means our function keeps getting steeper and steeper, possibly
something like this:

x

y

1

1

If y(0) = 2, we see another possible curve is the constant function y(x) = 2.

Remark: from Theorem 3.9.10 in the text, we see the solutions to the equation
y1 = 1

2 y´ 1 = 1
2(y´ 2) are of the form y(x) = Cex/2 + 2 for some constant C. Check that

the curves you’re sketching look exponential.

S-9: By Theorem 3.9.10 in the text, the function

y(t) = (y(0)´ b)eat + b

is the only function that satisfies the differential equation

dy
dt

= a(y´ b) .
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In our case, dy
dt = 5y´ 7 = 5

(
y´ 7

5

)
, so a = 5 and b = 7

5 . Then

y(t) = (y(0)´ b)eat + b

=

(
´3´ 7

5

)
e5t +

7
5

=
7
5
´ 22

5
e5t

S-10: By Theorem 3.9.10 in the text, the function

y(t) = (y(0)´ b)eat + b

is the only function that satisfies the differential equation

dy
dt

= a(y´ b) .

In our case, dy
dt = 1 + 2y = 2

(
y´

(
´1

2

))
, so a = 2 and b = ´1

2 . Then

y(t) = (y(0)´ b)eat + b

=

(
0 +

1
2

)
e2t ´ 1

2

=
1
2

(
e2t ´ 1

)

S-11: By Theorem 3.9.10 in the text, the function

y(t) = (y(0)´ b)eat + b

is the only function that satisfies the differential equation

dy
dt

= a(y´ b) .

In our case, dy
dt = 2y + 3 = 2

(
y + 3

2

)
, so a = 2 and b = ´3

2 . Then

y(t) = (y(0)´ b)eat + b

=

(
y(0) +

3
2

)
e2t ´ 3

2

We’re given y(1) = 1.

1 = y(1) =
(

y(0) +
3
2

)
e2¨1 ´ 3

2
5
2
=

(
y(0) +

3
2

)
e2

5
2e2 = y(0) +

3
2

5
2e2 ´

3
2
= y(0)
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So,

y(t) =
(

5
2e2 ´

3
2
+

3
2

)
e2t ´ 3

2

=
5

2e2 e2t ´ 3
2

Or, equivalently,

y(t) =
5
2

e2(t´1) ´ 3
2

S-12: The steady-state solution is the constant solution y = b. This has derivative zero, so

0 = 3y´ 7

tells us y = 7
3 .

S-13: A steady-state solution is a constant solution y = b. This has derivative zero, so

0 = y(y2 ´ 1)

Factoring the right-hand side, we get

0 = y(y + 1)(y´ 1)

So the steady-state solutions are y = 0, y = 1, and y = ´1.

S-14: Rearranging, we have:

ey dy = 2x dx.

Integrating both sides:
ż

ey dy =

ż

2x dx

ey = x2 + C

Since y = ln 2 when x = 0, we have

eln 2 = 02 + C
2 = C,

and therefore

ey = x2 + 2

y = ln(x2 + 2)
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S-15: Using separation of variables:

dy
dx

=
xy

x2 + 1
dy
y

=
x

x2 + 1
dx

ż

dy
y

=

ż

x
x2 + 1

dx

ln |y| = 1
2

ln(1 + x2) + C

To satisfy y(0) = 3, we need ln 3 = 1
2 ln(1 + 0) + C, so C = ln 3. Thus:

ln |y| = 1
2

ln(1 + x2) + ln 3

= ln
a

1 + x2 + ln 3

= ln 3
a

1 + x2

So,

|y| = 3
a

1 + x2

We are told to find a function y(x). So far, we have two possible functions from the work
above: maybe y = 3

?
1 + x2, and maybe y = ´3

?
1 + x2. It’s important to note that

y = ˘3
?

1 + x2 is not a function: for an equation to represent a function, for every input
in the domain, there must only be one output. That is, functions pass the vertical line
test. So, we need to decide whether our function is y = 3

?
1 + x2 or y = ´3

?
1 + x2.

Since y(0) = 3, we conclude

y(x) = 3
a

1 + x2

S-16: The given differential equation is separable and we solve it accordingly.

y1 = e
y
3 cos t

e´y/3dy = cos t dt
ż

e´y/3dy =

ż

cos t dt

´3e´y/3 = sin t + C
1

ey/3 =
sin t + C
´3

ey/3 =
´3

C + sin t
y
3
= ln

( ´3
C + sin t

)
y(t) = 3 ln

( ´3
C + sin t

)
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for any constant C.

Since the domain of logarithm is (0,8), the solution only exists when C + sin t ă 0.

S-17: The given differential equation is separable and we solve it accordingly.

dy
dx

= xex2´ln(y2) =
xex2

y2

y2dy = xex2
dx

ż

y2dy =

ż

xex2
dx

We can guess the antiderivative of xex2
, or use the substitution u = x2, du = 2xdx.

y3

3
=

1
2

ex2
+ C1

y3 =
3
2

ex2
+ 3C1

Since C1 can be any constant in (´8,8), then also 3C1 can be any constant in (´8,8), so
we replace 3C1 with the arbitrary constant C.

y3 =
3
2

ex2
+ C

y =
3

c

3
2

ex2 + C

for any constant C.

S-18: The given differential equation is separable and we solve it accordingly.

dy
dx

= xey

dy
ey = x dx

ż

dy
ey =

ż

x dx

´e´y =
1
2

x2 + C

e´y = ´1
2

x2 ´ C

Since C can be any constant in (´8,8), then also ´C can be any constant in (´8,8), so
we write C instead of ´C.

e´y = C´ 1
2

x2

´y = ln
(

C´ x2

2

)
y = ´ ln

(
C´ x2

2

)
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for any constant C.

The solution only exists for C´ x2

2 ą 0. For this to happen, we need C ą 0, and then the
domain of the function is those values x for which |x| ă ?2C.

S-19: The given differential equation is separable and we solve it accordingly.
Cross–multiplying, we rewrite the equation as

y2 dy
dx

= ex ´ 2x

y2 dy = (ex ´ 2x)dx.

Integrating both sides, we find
ż

y2 dy =

ż

(ex ´ 2x)dx

1
3

y3 = ex ´ x2 + C

Setting x = 0 and y = 3, we find 1
333 = e0 ´ 02 + C and hence C = 8.

1
3

y3 = ex ´ x2 + 8

y = (3ex ´ 3x2 + 24)1/3

S-20: This is a separable differential equation that we solve in the usual way.

dy
dx

= ´xy3

´dy
y3 = x dx

ż

´dy
y3 =

ż

x dx

´y´2

´2
=

x2

2
+ C

y´2 = x2 + 2C. (˚)
To have y = ´1

4 when x = 0, we must choose C to obey(
´ 1

4

)´2
= 0 + 2C

16 = 2C

So, from (˚),
y´2 = x2 + 2C = x2 + 16

y2 =
1

x2 + 16
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Now, we have two potential candidates for y(x):

y =
1?

x2 + 16
OR y = ´ 1?

x2 + 16

We know y = ´1
4 when x = 0. The only function above that fits this is

y = ´ 1?
x2 + 16

So, f (x) = ´ 1?
x2 + 16

.

S-21: This is a separable differential equation that we solve in the usual way.
Cross-multiplying and integrating,

y dy = (15x2 + 4x + 3)dx
ż

y dy =

ż

(15x2 + 4x + 3)dx

y2

2
= 5x3 + 2x2 + 3x + C.

Plugging in x = 1 and y = 4 gives 42

2 = 5 + 2 + 3 + C, and so C = ´2. Therefore

y2

2
= 5x3 + 2x2 + 3x´ 2

y2 = 10x3 + 4x2 + 6x´ 4

This leaves us with two possible functions for y:

y =
a

10x3 + 4x2 + 6x´ 4 OR y = ´
a

10x3 + 4x2 + 6x´ 4

When x = 1, y = 4. This only fits the first equation, so

y =
a

10x3 + 4x2 + 6x´ 4

S-22: The given differential equation is separable and we solve it accordingly.

dy
dx

= x3y

dy
y

= x3 dx
ż

dy
y

=

ż

x3 dx

ln |y| = x4

4
+ C

|y| = ex4/4+C = ex4/4eC
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We are told that y = 1 when x = 0. That is, 1 = e0eC, so eC = 1. That is, C = 0.

|y| = ex4/4

This leaves us with two potential functions:

y = ex4/4 OR y = ´ex4/4

The first is always positive, and the second is always negative. Since y = 1 (a positive
number) when x = 0, we see

y = ex4/4

S-23: The unknown function f (x) satisfies an equation that involves the derivative of f .
That means we’re in differential equation territory. Specifically, we are told that y = f (x)
obeys the separable differential equation dy

dx = xy.

dy
dx

= xy

dy
y

= x dx
ż

dy
y

=

ż

x dx

ln |y| = x2

2
+ C

To determine C we set x = 0 and y = e.

ln e =
02

2
+ C

1 = C

So, the solution is

ln |y| = x2

2
+ 1

We are told that y = f (x) ą 0, so may drop the absolute value signs.

ln y =
x2

2
+ 1

y = e1+ 1
2 x2

= e ¨ ex2/2

518



S-24: This is a separable differential equation.

1 +
a

y2 ´ 4
tan x

dy
dx

=
sec x

y

y
[
1 +

b

y2 ´ 4
]

dy = sec x tan x dx
ż

y
[
1 +

b

y2 ´ 4
]

dy =

ż

sec x tan x dx

For the integral on the left, we use the substitution u = y2 ´ 4, 1
2du = y dy.

1
2

ż (
1 +

?
u
)

du = sec x + C

1
2

(
u +

2
3

u3/2
)
= sec x + C

1
2

(
y2 ´ 4 +

2
3
(y2 ´ 4)3/2

)
= sec x + C

y2 +
2
3
(y2 ´ 4)3/2 = 2 sec x + 2C + 4

To find C we set x = 0 and y = 2.

4 +
2
3

?
4´ 4

3
= 2 sec(0) + 2C + 4

4 = 2 + 2C + 4
2 = 2C + 4

So,

y2 +
2
3
(y2 ´ 4)3/2 = 2 sec x + 2

S-25: The given differential equation is separable and we solve it accordingly.

dP
dt

= ´k
?

P

dP?
P
= ´k dt

ż

dP?
P
=

ż

´k dt

2
?

P = ´kt + C

At t = 0, P = 90, 000 so

2
a

90, 000 = ´kˆ 0 + C
C = 2ˆ 300 = 600
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Therefore,

2
?

P = ´kt + 600 (˚)

Now, we find k. Let t be measured in weeks. Then when t = 6, P = 40, 000.

2
a

40, 000 = ´6k + 600
2 ¨ 200 = ´6k + 600

k =
200
6

=
100
3

Substituting our value of k into (˚):

2
?

P = ´100
3

t + 600

To find when the population will be 10,000, we set P = 10, 000 and solve for t.

2
a

10, 000 = ´100
3

t + 600

2 ¨ 100 = ´100
3

t + 600

100
3

t = 400

t = 12

Since we measured t in weeks when we found k, we see that in 12 weeks the population
will decrease to 10,000 individuals.

S-26: The given differential equation is separable and we solve it accordingly.

m
dv
dt

= ´(mg + kv2)

m
mg + kv2 dv = ´dt

ż

m
mg + kv2 dv =

ż

´dt

The left integral looks something like the antiderivative of arctangent. Let’s factor out
that mg from the denominator.

1
mg

ż

m
1 + k

mg v2
dv = ´t + C

1
g

ż

1

1 +
(b

k
mg v

)2 dv = ´t + C
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Now it looks even more like the derivative of arctangent. We can guess the antiderivative
from here, or use the substitution u =

b

k
mg v, du = k

mg dv.

1
g

c

mg
k

arctan

(d
k

mg
v

)
= ´t + C

c

m
gk

arctan

(d
k

mg
v

)
= ´t + C (˚)

At t = 0, v = v0, so:

c

m
gk

arctan

(d
k

mg
v0

)
= C

Plug C into (˚).
c

m
gk

arctan

(d
k

mg
v

)
=

c

m
gk

arctan

(d
k

mg
v0

)
´ t

At its highest point, the object has velocity v = 0. This happens when t obeys:

c

m
gk

arctan

(d
k

mg
0

)
=

c

m
gk

arctan

(d
k

mg
v0

)
´ t

0 =

c

m
gk

arctan

(d
k

mg
v0

)
´ t

t =
c

m
gk

arctan

(d
k

mg
v0

)

S-27: (a) The given differential equation is separable and we solve it accordingly.

dv
dt

= ´k v2

´dv
v2 = k dt

ż

´dv
v2 =

ż

k dt

1
v
= kt + C

At t = 0, v = 40 so

1
40

= kˆ 0 + C

C =
1

40
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Therefore,

v(t) =
1

kt + C
=

1
kt + 1/40

=
40

40kt + 1
(˚)

The constant of proportionality k is determined by

v(10) = 20

20 =
40

40kˆ 10 + 1
1
2
=

1
400k + 1

400k + 1 = 2

k =
1

400

(b) Subbing in the value of k to (˚),

v(t) =
40

40kt + 1
=

40
t/10 + 1

We want to know the value of t that gives v(t) = 5.

5 =
40

t/10 + 1
t

10
+ 1 = 8

t = 70 sec

S-28:

(a) The rate of change of speed at time t is ´kv(t)2 for some constant of proportionality k
(to be determined–but we assume it is positive, since the speed is decreasing). So v(t)
obeys the differential equation dv

dt = ´kv2 .

(b) The equation dv
dt = ´kv2 is a separable differential equation, which we can solve in

the usual way.

dv
dt

= ´kv2

dv
´v2 = kdt

ż

´dv
v2 =

ż

kdt

1
v
= kt + C

At time t = 0, v = 400, so C = 1
400 . Then:

1
v
= kt +

1
400

(˚)
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At time t = 1, v = 200, so
1

200
= k +

1
400

k =
1

400
Therefore, from (˚),

1
v
=

t
400

+
1

400
=

t + 1
400

v =
400

t + 1

(c) To find when the speed is 50, we set v = 50 in the equation from (b) and solve for t.

50 =
400

t + 1
50(t + 1) = 400

t + 1 = 8
t = 7

S-29: (a) The first order derivatives are

fr(r, θ) = mrm´1 cos mθ fθ(r, θ) = ´mrm sin mθ

The second order derivatives are

frr(r, θ) = m(m´ 1)rm´2 cos mθ frθ(r, θ) = ´m2rm´1 sin mθ fθθ(r, θ) = ´m2rm cos mθ

so that
frr(1, 0) = m(m´ 1), frθ(1, 0) = 0, fθθ(1, 0) = ´m2

(b) By part (a), the expression

frr +
λ

r
fr +

1
r2 fθθ = m(m´ 1)rm´2 cos mθ + λmrm´2 cos mθ ´m2rm´2 cos mθ

vanishes for all r and θ if and only if

m(m´ 1) + λm´m2 = 0 ðñ m(λ´ 1) = 0 ðñ λ = 1

S-30: (a) The given differential equation is separable and we solve it accordingly.

dB
dt

= (0.06 + 0.02 sin t)B

dB
B

= (0.06 + 0.02 sin t)dt
ż

dB
B

=

ż

(0.06 + 0.02 sin t)dt

ln |B(t)| = 0.06t´ 0.02 cos t + C1
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Since B(t) is our bank account balance and we’re not withdrawing money, B(t) is
positive, so we can drop the absolute value signs.

ln B(t) = 0.06t´ 0.02 cos t + C1

B(t) = e0.06t´0.02 cos teC1

B(t) = Ce0.06t´0.02 cos t

for arbitrary constants C1 and C = eC1 ě 0.

Remark: the function B(t) = 0 obeys the differential equation so that C = 0 is allowed,
even though it is not of the form C = eC1 . This seeming discrepancy arose because, in our
very first step of part (a), we divided both sides of the differential equation by B, which is
only allowable if B ‰ 0. So, in this step, we implicitly assumed B was nonzero.

(b) We are told that B(0) = 1000. This allows us to find C.

1000 = B(0) = Ce0´0.02 cos 0 = Ce´0.02

C = 1000e0.02

So, when t = 2,

B(2) = 1000e0.02
looomooon

C

e0.06ˆ2´0.02 cos 2 = $1159.89

rounded to the nearest cent.

Note that cos 2 is the cosine of 2 radians, cos 2 « ´0.416.

S-31:

(a) If we let f (t) = 0 for all t, then its average over any interval is 0, as is its root mean
square.

(b) Let’s start by simplifying the given equation.

1
x´ a

ż x

a
f (t)dt =

d

1
x´ a

ż x

a
f 2(t)dt

1?
x´ a

ż x

a
f (t)dt =

d

ż x

a
f 2(t)dt (6.1)

d
dx

"

1?
x´ a

ż x

a
f (t)dt

*

=
d
dx

#

d

ż x

a
f 2(t)dt

+

(6.2)

For the derivative on the left, we use the product rule and the Fundamental Theorem
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of Calculus, part 1.

d
dx

"

1?
x´ a

ż x

a
f (t)dt

*

=
d
dx

"

1?
x´ a

*
ż x

a
f (t)dt +

1?
x´ a

¨ d
dx

"
ż x

a
f (t)dt

*

= ´ 1

2
?

x´ a3

ż x

a
f (t)dt +

f (x)?
x´ a

=
1?

x´ a

[
f (x)´ 1

2(x´ a)

ż x

a
f (t)dt

]
For the derivative on the right in Equation (6.2), we use the chain rule and the
Fundamental Theorem of Calculus, part 1.

d
dx

#

d

ż x

a
f 2(t)dt

+

=
1
2

(
ż x

a
f 2(t)dt

)´ 1
2

¨ d
dx

"
ż x

a
f 2(t)dt

*

=
f 2(x)

2
b

şx
a f 2(t)dt

So, Equation (6.2) yields the following:

1?
x´ a

[
f (x)´ 1

2(x´ a)

ż x

a
f (t)dt

]
=

f 2(x)

2
b

şx
a f 2(t)dt

(6.3)

(c) From Equation (6.1),
b

şx
a f 2(t)dt = 1?

x´a

şx
a f (t)dt.

1?
x´ a

[
f (x)´ 1

2(x´ a)

ż x

a
f (t)dt

]
=

f 2(x)
2 1?

x´a

şx
a f (t)dt

2
x´ a

ż x

a
f (t)dt

[
f (x)´ 1

2(x´ a)

ż x

a
f (t)dt

]
= f 2(x)

(d) Now what we have is a differential equation, although it might not look like it. Let
Y =

şx
a f (t)dt. Then dY

dx = f (x).

2
x´ a

Y
[

dY
dx

´ 1
2(x´ a)

Y
]
=

(
dY
dx

)2

(6.4)

We’re used to solving differential equations of the form dY
dx =(something). So, let’s

manipulate our equation until it has this form.

(
dY
dx

)2

´
(

2Y
x´ a

)(
dY
dx

)
+

(
Y

x´ a

)2

= 0
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This is a quadratic equation, with variable dY
dx . Its solutions are:

dY
dx

=

(
2Y

x´a

)
˘
c(

2Y
x´a

)2 ´ 4 ¨
(

Y
x´a

)2

2

=
2Y

x´a ˘ 0
2

=
Y

x´ a

This gives us the separable differential equation

dY
dx

=
Y

x´ a
dY
Y

=
dx

x´ a
(6.5)

ż

dY
Y

=

ż

dx
x´ a

ln |Y| = ln |x´ a|+ C

|Y| = eln(x´a)+C = (x´ a)eC

Y = D(x´ a)

where D is some constant, eC or ´eC. Note this covers all real constants except D = 0.
If D = 0, then Y(x) = 0 for all x. This function also satisfies Equation (6.4), so indeed,

Y(x) = D(x´ a) (6.6)

for any constant D is the family of equations satisfying our differential equation.

Remark: the reason we “lost” the solution Y(x) = 0 is that in Equation (6.5), we
divided by Y, thus tacitly assuming it was not identically 0.

(e) Remember Y =
şx

a f (t)dt. So, Equation (6.6) tells us:
ż x

a
f (t)dt = D(x´ a)

d
dx

"
ż x

a
f (t)dt

*

=
d
dx
tD(x´ a)u

f (x) = D

We should check that this function works.

favg =
1

x´ a

ż x

a
D dt =

1
x´ a

[
Dt
]t=x

t=a
=

Dx´Da
x´ a

= D

fRMS =

d

1
x´ a

ż x

a
D2 dt =

c

1
x´ a

[
D2x

]t=x

t=a
=

d

D2x´D2a
x´ a

=
?

D2 = |D|

So, f (x) = D works only if D is nonnegative.
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That is: the only functions whose average matches their root square mean over every
interval are constant, nonnegative functions.

Remark: it was step (c) where we introduced the erroneous answer f (x) = D, D ă 0
to our solution. In Equation (6.3), f (x) = D is not a solution if D ă 0:

1?
x´ a

[
f (x)´ 1

2(x´ a)

ż x

a
f (t)dt

]
=

f 2(x)

2
b

şx
a f 2(t)dt

1?
x´ a

[
D´ 1

2(x´ a)

ż x

a
D dt

]
=

D2

2
b

şx
a D2 dt

1?
x´ a

[
D´ 1

2(x´ a)
D(x´ a)

]
=

D2

2
a

D2(x´ a)
1?

x´ a

[
1
2

D
]
=

D2

2|D|?x´ a

D =
D2

|D| = |D|

In (c), we replace
b

şx
a f 2(t)dt, which cannot be negative, with 1?

x´a

şx
a f (t)dt, which

could be negative if f (t) = D ă 0. Indeed, if f (t) = D, then
b

şx
a f 2(t)dt = |D|?x´ a, while 1?

x´a

şx
a f (t)dt = D

?
x´ a. It is at this point that

negative functions creep into our solution.

S-32:

(a) The functions are constant when their derivatives are zero.

dW
dt

= rW + I(H) + a
dH
dt

= sH + I(W) + b

0 = rW + 0 + a 0 = sH + 0 + b

W = ´a
r

H = ´b
r

(b) For this part, dW
dt = rW + a. If dW

dr ą 0, then:

rW + a ą 0
rW ą ´a

If r ą 0, then dividing both sides by r does not change the inequality. If r ă 0, then
dividing both sides by r flips the inequality

#

W ą ´ a
r if r ą 0

W ă ´ a
r if r ă 0

We want the second case, so r ă 0.
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Similarly, if dW
dr ă 0, then:

rW + a ă 0
rW ă ´a

If r ą 0, then dividing both sides by r does not change the inequality. If r ă 0, then
dividing both sides by r flips the inequality

#

W ă ´ a
r if r ą 0

W ą ´ a
r if r ă 0

We want the second case, so again r ă 0.

Note the inequality did not depend on the sign of a.

(c) If W = H, and I(H) = cH, then the first differential equation becomes:

dW
dt

= rW + I(H) + a

= rW + cH + a
= rW + cW + a
= (r + c)W + a

We recognize this as a first-order linear differential equation, so we rearrange it a
little to better fit the format of Theorem 3.9.10 in the text:

dW
dt

= (r + c)
(

W ´ ´a
r + c

)
W(t) =

(
W(0) +

a
r + c

)
e(r+c)t ´ a

r + c

S-33:

(a) ∆x = 300´0
300 = 1, and x0 = 0, so xi = a + i∆x = i. Then:

ż 300

0
f (t)ddt « 1

2
f (0) +

299
ÿ

i=1

f (i) +
1
2

f (300)

=
1
2

f (0) +
300
ÿ

i=1

f (i)´ 1
2

f (300)

=
1
2
´ 1

2
e3/4 +

300
ÿ

i=1

ei/400

(b) f (t) = et/400, so f 1(t) = 1
400 et/400, and f 2(t) = 1

4002 et/400. This is a positive increasing
function, so its max is at the right endpoint of the interval. That is, for x in [0, 300],
| f 2(x)| ď f 2(300) = e3/4

4002 . So, we choose M = e3/4

4002 . Then the error is bounded by

M
12

(b´ a)3

n2 =
e3/4

4002

12
3003

3002 =
e3/4

6400
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(c) 1
2 ´ 1

2 e3/4 +
ř300

i=1 ei/400 ´ř300
t=1 et/400 = 1

2 ´ 1
2 e3/4

(d) From (c), we know our error bound:

ˇ

ˇ

ˇ

ˇ

ˇ

ż 300

0
et/400dt´

(
1
2
´ 1

2
e3/4 +

300
ÿ

i=1

ei/400

)ˇ
ˇ

ˇ

ˇ

ˇ

ď e3/4

6400

This gives us an interval:

´ e3/4

6400
ď
ż 300

0
et/400dt´

(
1
2
´ 1

2
e3/4 +

300
ÿ

i=1

ei/400

)
ď e3/4

6400

´ e3/4

6400
ď
ż 300

0
et/400dt´ 1

2
+

1
2

e3/4 ´
300
ÿ

i=1

ei/400 ď e3/4

6400

Subtracting the coloured terms from all parts of the inequality,

´ e3/4

6400
+

1
2
´ 1

2
e3/4 ´

ż 300

0
et/400dt ď ´

300
ÿ

i=1

ei/400 ď e3/4

6400
+

1
2
´ 1

2
e3/4 ´

ż 300

0
et/400dt

´ e3/4

6400
+

1
2
´ 1

2
e3/4 ´ 400

(
e3/4 ´ 1

) ď ´ 300
ÿ

i=1

ei/400 ď e3/4

6400
+

1
2
´ 1

2
e3/4 ´ 400

(
e3/4 ´ 1

)
400.5´ e3/4

(
400.5 +

1
6400

)
ď ´

300
ÿ

i=1

ei/400 ď 400.5´ e3/4
(

400.5´ 1
6400

)

Now we’ll work this into the form of our original expression.

400.5´ e3/4
(

400.5 +
1

6400

)
ď ´

300
ÿ

t=1

et/400 ď 400.5´ e3/4
(

400.5´ 1
6400

)

Adding 300e3/4 to all parts:

400.5´ e3/4
(

100.5 +
1

6400

)
ď 300e3/4 ´

300
ÿ

t=1

et/400 ď 400.5´ e3/4
(

100.5´ 1
6400

)

Multiplying all parts by the positive constant 1875
e3/4´1 :

1875
(

400.5´ e3/4
(

100.5 + 1
6400

))
e3/4 ´ 1

ď 1875
e3/4 ´ 1

(
300e3/4 ´

300
ÿ

t=1

et/400

)

ď
1875

(
400.5´ e3/4

(
100.5´ 1

6400

))
e3/4 ´ 1
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Now we use a calculator to get numerical approximations.

1875
(

400.5´ e3/4
(

100.5 + 1
6400

))
e3/4 ´ 1

« 315142.957850791

1875
(

400.5´ e3/4
(

100.5´ 1
6400

))
e3/4 ´ 1

« 315144.068351846

So,

315342.95 ď 1875
e3/4 ´ 1

(
300 ¨ e3/4 ´

300
ÿ

t=1

et/400

)
ď 315144.07

(e) The text gave the approximation 1875
e3/4´1

(
300 ¨ e3/4 ´ř300

t=1 et/400
)
« 316081.01, which

is an over-approximation, since the actual value is at most 315,144.07. The largest the
absolute error could possibly be would occur if the real value were as small as
possible. In that case, our absolute error would be 316081.01´ 315342.95. So, the an
absolute error is less than $938.

The relative error is approx´exact
exact . We know the approximate value, but we do not

know the exact value. However, this function decreases as the exact value increases.
So, its maximum occurs in the case that the exact value is as small as possible,
315342.95. In that worst case, the relative error is 316081.01´315342.95

315342.95 « 0.00234. So, the
relative error is less than 0.24%.

So, in the text, our approximation was actually pretty good! It was off by less than
one-quarter of one percent.

S-34:

(a) The interest owed is r percent of P(t), so it’s r
100 P(t).

(b) P1(t) is the rate of change of the amount owed, so ´P1(t) is the rate at which you’re
paying off the loan. In this model, it’s approximately your monthly payment.

(c) You pay two things: interest and principal. So your payment C will satisfy

C =
r

100
P(t)´ P1(t)

(d) The differential equation is linear, so we can use Theorem 3.9.10: The differentiable
function y(x) obeys the differential equation

dy
dx

= a(y´ b)

if and only if
y(x) = (y(0)´ b)eax + b

We re-write our differential equation as dP
dt = r

100

(
P´ 100

r C
)
. Then we see a = r

100 and
b = 100

r C, so
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P(t) =
(

P0 ´ 100
r

C
)

ert/100 +
100

r
C

(e) To find C, we use the as-yet-unused fact that P(N) = 0.

0 = P(N) =

(
P0 ´ 100

r
C
)

erN/100 +
100

r
C = P0erN/100 +

100
r

C
(

1´ erN/100
)

100
r

C
(

1´ erN/100
)
= ´P0erN/100

C =
r

100
¨ P0erN/100

(erN/100 ´ 1)

(f) The setup is the same as in part (c), only C is replaced with C0 ¨ 1.001t:

r
100

P(t)´ P1(t) = C0 ¨ 1.001t

We note here that this is not a separable differential equation, so we haven’t yet
learned a technique to solve it.

Solutions to Exercises 4.1 — Jump to TABLE OF CONTENTS

S-1: Pr(X = 5) = 0.1

S-2: Yes: all the elements of its sample space can be listed (as opposed to belonging to a
continuum).

S-3: The events are disjoint for X: if X ą 4.5 and X is a whole number, then X ě 5. That
is, if B happens, then A does not.

The events are not disjoint for Y, because (for example) if Y = 4.9 then both A and B
occur.

S-4: The outcomes X ď 5 and X ą 5 are disjoint, so

Pr(X ď 5 or X ą 5) = Pr(X ď 5) + Pr(X ą 5)

Since “X ď 5 or X ą 5” describes all real numbers, Pr(X ď 5 or X ą 5) = 1. So, it follows
that

Pr(X ą 5) = Pr(X ď 5 or X ą 5)´ Pr(X ď 5) = 1´ 99
100

=
1

100

S-5: The outcomes X = x and X ‰ x are disjoint, so

Pr(X = x or X ‰ x) = Pr(X = x) + Pr(X ‰ x)
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Since “X = x or X ‰ x” describes all real numbers, Pr(X = x or X ‰ x) = 1. So, it
follows that

Pr(X ‰ 5) = 1´ 78
93

=
15
93

S-6: Out of the six values in the sample space, the four values t2, 3, 4, 6umake “X even or
X = 3” occur. Since all six values in the sample space are equally likely,
Pr(X even OR X = 3) = 4

6 = 2
3 .

S-7: There are 10 values in S . Exactly 7 of these values, t10, 15, 20, 30, 40, 45, 50u, are
divisible by 3 or 10. Since all values are equally likely, the probability that Y is divisible
by 3 or 10 is 7

10 .

We have to be a little careful that we’re considering disjoint events here. There are five
values of S that are divisible by 10, and three that are divisible by 3, but 30 is divisible by
both.

Solutions to Exercises 4.2 — Jump to TABLE OF CONTENTS

S-1: Probability Mass Function

S-2: Discrete

S-3:

(a) Values not in the sample space are not included in the table. We can see that the
probabiliy values in the table add to 1, i.e. 100% of the time X is 5, 6, 7, or 8. So,
S = t5, 6, 7, 8u.

(b) No, all values are not equally likely. X = 5 is the most likely.

S-4: By Theorem 4.2.3,

1 = Pr(X = 3.1) + Pr(X = 3.2) + Pr(X = 3.3) + Pr(X = 3.4) + Pr(X = 3.5)
= 0.1 + 0.15 + 0.35 + 0.2 + Pr(X = 3.5)

so Pr(X = 3.5) = 0.2

S-5: The largest probability in the list is 1
3 , so the most likely outcome is 8.2.

S-6: f (x) is nonzero for all whole numbers 1,2,3,. . . , so S = t1, 2, 3, . . .u.
Since S consists of whole numbers,

Pr(X ď 3) = Pr(X = 1) + Pr(X = 2) + Pr(X = 3) =
1
2
+

1
4
+

1
8
=

7
8
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Solutions to Exercises 4.3 — Jump to TABLE OF CONTENTS

S-1: First, we note that T ą x and T ď x are disjoint events, and together they describe
all possible outcomes, so Pr(T ď x) = 1´ Pr(T ą x).

• F(0) = Pr(T ď 0) = 1´ Pr(T ą 0) = 1´ 9
10 = 1

10 . In words: if 9/10 days had a
temperature of more than 0 degrees, then the remaining 1/10 days had a
temperature of less than or equal to 0 degrees.

• F(20) = Pr(T ď 20) = 4
10 = 2

5 , as stated in the problem.

• F(30) = Pr(T ď 30) = 1´ Pr(T ą 30) = 1´ 1
10 = 9

10 . In words: if 1/10 days had a
temperature of more than 30 degrees, then the remaining 9/10 days had a
temperature of less than or equal to 30 degrees.

Intuitively, these things sound about right: it’s pretty usual to have a temperature less
than or equal to 30 degrees; but it’s pretty unusual to have temperature below freezing.

S-2: The marks should be fairly evenly distributed between a and b, and appear
nowhere else.

a b

Remark: the density diagram above was NOT actually generated from pesudorandom
numbers. Actual random numbers tend to have clusters and gaps – they don’t behave
the way you’d necessarily expect! If we used enough random numbers so that the
density diagram actually did look to have uniform density, then there would be so many
marks, it would look just like one thick line.

S-3: 0 5

S-4: By Definition 4.3.6, since F(x) is continuous, W is a continuous random variable.

S-5:

(a) True, Corollary 4.3.10, part 3.

(b) False, for examples a variable X that takes the value 1, 000, 001 with probability 1.
Contrast this with the previous part: F(x) approaches 1 eventually, but we don’t
have an absolute framework for what counts as “eventually.”

(c) True, Corollary 4.3.10, part 2.

(d) True, Corollary 4.3.10, part 1. F(x) is a probability no matter what real number x is,
so F(x) ě 0 (and also F(x) ď 1)) for any x.
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S-6: By Corollary 4.3.10, part 2, F(11) ě F(10). By part 1, F(11) ď 1. So, F(11) = 1.

S-7:

• X never takes values less than ´1. So, if x ă ´1, then F(x) = Pr(X ď x) = 0.

• F(´1) = Pr(X ď ´1) = Pr(X = ´1) = 1
2

• X never takes values in the interval (´1, 1). So, if ´1 ă x ă 1, then
F(x) = Pr(X ď x) = Pr(X = ´1) = 1

2 .

• F(1) = Pr(X ď 1) = 1

• If x ą 1, then also F(x) = Pr(X ď x) = 1.

All together,

F(x) =

$

’

&

’

%

0 x ă ´1
1
2 ´1 ď x ă 1
1 1 ď x

S-8: This system is fairly similar in structure to the random variable of Example 4.3.4 in
the text and Question 7 above.

• If x is 1, 2, 3, 4, 5, or 6, then F(x) = Pr(D ď x) = x
6 .

• If x ă 1, then F(x) = Pr(D ď x) = 0, because the dice never ever rolls numbers less
than 1.

• If x ą 6, then F(x) = Pr(D ď x) = 1, because the dice always rolls numbers less
than x.

• If (say) x = 2.5, then F(2.5) = Pr(D ď 2.5) = Pr(D ď 2) because X is never in the
interval (2, 2.5]. So, F(2.5) = F(2). We can extrapolate this to F(x) = F(2) for every
x in the interval [2, 3).

All together:

F(x) =

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 x ă 1
1
6 1 ď x ă 2
1
3 2 ď x ă 3
1
2 3 ď x ă 4
2
3 4 ď x ă 5
5
6 5 ď x ă 6

1 x ě 6
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x

y

1/6

1/3

1/2

2/3

5/6

1

1 2 3 4 5 6

Since its cumulative distribution function (CDF) is not continuous (note the jump
discontinuities), D is not a continuous random variable.

S-9:

• Since Z is never less than ´4:

– if x ă ´4, then F(x) = Pr(Z ď x) = 0, and

– F(´4) = Pr(Z ď ´4) = Pr(Z = ´4) = 1
2

• Since Z is never in the interval (´4,´2):

– if ´4 ă x ă ´2, then F(x) = Pr(Z ď x) = Pr(Z = ´4) = 1
6 , and

– F(´2) = Pr(Z ď ´2) = Pr(Z = ´4 or Z = ´2) = 1
2 +

1
3 = 5

6

• Since Z is never in the interval (´2,´1):

– if ´2 ă x ă ´1, then F(x) = Pr(Z ď x) = Pr(Z ď ´2) = F(´2) = 5
6 , and

– F(´1) = Pr(Z ď ´1) = Pr(Z = ´4 or Z = ´2 or Z = ´1) = 5
6 +

1
6 = 1

• If x ą ´1, then F(x) = 1

All together:

F(x) =

$

’

’

’

&

’

’

’

%

0 x ă ´4
1
2 ´4 ď x ă ´2
5
6 ´2 ď x ă ´1
1 ´1 ď x

S-10: From Properties of a CDF (Corollary 4.3.10 in the text) we see that four things need
to be true. For convenience, we’ll go through them in a different order than that in the
theorem.

4. lim
xÑ´8

F(x) = 0. This is already true for any values of A and B.
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3. lim
xÑ8

F(x) = 1. For our particular function, lim
xÑ8

F(x) = A, so we must have A = 1.

1. 0 ď F(x) ď 1 for all real x. Since A = 1, F(x) ě 0 as long as x3 + B ą 0 for all x ě 0.
So, B needs to be a positive number.

2. F(x) is nondecreasing. To check this, we can consider F1(x) when x ą 0:

d
dx

[
x3

x3 + B

]
=

(x3 + B)(3x2)´ x3(3x2)

(x3 + B)2

=
3Bx2

(x3 + B)2

When B is a positive number, this derivative is positive, so F(x) is nondecreasing.

All together, we must have A = 1, and B must be a positive number.

S-11:

• First, let’s see what needs to happen for F to be continuous.

lim
xÑ0+

F(x) = lim
xÑ0+

[
A +

Bx
x + 1

]
= A

lim
xÑ0´

F(x) = lim
xÑ0´

[
C +

Dx
1´ x

]
= C

So, choosing A = C makes F(x) continuous. From now on, we’ll write

F(x) =

#

A + Bx
x+1 x ě 0

A + Dx
1´x x ă 0

• Properties of a CDF are given in Corollary 4.3.10 in the text. Let’s consider the
limits.

0 = lim
xÑ´8

F(x) = lim
xÑ´8

[
A +

Dx
1´ x

]
= A´D

This tells us D = A.

1 = lim
xÑ8

F(x) = lim
xÑ8

[
A +

Bx
x + 1

]
= A + B

That tells us B = 1´ A

• CDFs are non-decreasing. If you’re familiar with the graphs of the two functions in
the piecewise definition, you can easily see that this gives us the requirements
B ě 0 and D ě 0. We can also get there by looking at the derivative of F(x).

d
dx

[
Dx

1´ x

]
=

(1´ x)D´Dx(´1)
(1´ x)2 =

D
(1´ x)2

d
dx

[
Bx

x + 1

]
=

(x + 1)B´ Bx(1)
(x + 1)2 =

B
(x + 1)2
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The derivatives are nonnegative when their parameters are positive. So, we have
D ě 0 and B ą 0.

All together, we need A = C = D, B = 1´ A, A ě 0, and B ě 0. The last three are
fulfilled when B = 1´ A for values of A in [0, 1].

S-12: First, since F(x) = 0 whenever x ă 5, we know W is never less than 5. Similarly,
since F(12) = 1, we know W is always 12 or less. That is, W only takes values in the
interval [5, 12].

Furthermore, within the intervals (5, 6), (6, 8), and (8, 12), F(x) is constant. That means
W never falls inside these intervals, so the sample space of W is S = t5, 6, 8, 12u.
Using Corollary 4.3.3, we see that subtracting different values of F tells us about the
probability mass function (PMF).

• F(5)´ F(x) = 1
4 for any x ă 5. To see this more concretely:

1
4 = F(5)´ F(4.99999) = Pr(4.99999 ă W ď 5). This tells us Pr(W = 5) = 1

2 .

• F(6)´ F(x) = 1
3 ´ 1

4 = 1
12 for any 5 ă x ă 6. Again, to see this more concretely:

1
12 = F(6)´ F(5.99999) = Pr(5.99999 ă W ď 6). This tells us Pr(W = 6) = 1

12 .

• Similarly, Pr(X = 8) = F(8)´ F(6) = 1
2 ´ 1

3 = 1
6

• Pr(X = 12) = F(12)´ F(8) = 1´ 1
2 = 1

2

All together:
x Pr(W = x)

5 1
4

6 1
12

8 1
6

12 1
2

Note: it’s tempting to memorize “subtract values of F(x) to get f (x).” This is, indeed, a
good fact to have in your pocket. But you should also understand why it works that way,
from the definitions and properties of the cumulative distribution function (CDF).

S-13: Comparing to Question 12: where F(x) is constant, there are no values in the
sample space. So S = t1, 2, 4u. The size of the jump discontinuity of F(x) is the
probability that Y = x. We see the biggest jump at x = 2, followed by x = 4, with the
smallest jump at x = 1. So, x = 2 is most likely; x = 4 second most likely; and x = 1 is
least likely.

S = t2, 4, 1u
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Solutions to Exercises 4.4 — Jump to TABLE OF CONTENTS

S-1:

(a) First, let’s think about what f (x) = 4x(x´ 1)(x´ 2) looks like on the interval [0, 1].

• f (x) is cubic function with roots at x = 0, x = 1, and x = 2

• lim
xÑ´8

f (x) = ´8 and lim
xÑ8

f (x) = 8. Knowing the basic shapes cubics take, we

know that f (x) will be positive on the interval (0, 1).

So f (0) = 0, then f (x) increases and decreases, returning to the x-axis at f (1) = 0.
That means we will have fewer marks close to x = 0 and x = 1, and more marks in
the middle. (If we wanted to be really precise, we could find that f (x) has a local
maximum at x = 1´ 1?

3
. Density diagrams aren’t very precise, so there isn’t much

point to going that far.)

0 1

(b) f (x) =

$

’

&

’

%

1
2 0 ă x ă 1
1
3 1 ă x ă 2
1
6 2 ă x ă 3

=

$

’

&

’

%

3
6 0 ă x ă 1
2
6 1 ă x ă 2
1
6 2 ă x ă 3

Comparing the intervals (0, 1), (1, 2), and (1, 3): we expect (1, 2) to be twice as dense
as (2, 3), and we expect (0, 1) to be three times as dense as (2, 3).

0 1 2 3

(c) f (x) = x2 increases on the interval
[
1, 3
?

2
]
, so the marks will be sparse near x = 1

and dense near x = 3
?

2.

1 3
√
2

S-2:

(See Corollaries 4.4.8 and 4.3.10.)

(a) limit at negative infinity is 1: neither. In the case of a cumulative distribution
function (CDF), the limit is 0. In the case of a probability density function (PDF), if
that limit were 1, then

ş0
´8

f (x)dx would diverge, but we need
ş8

´8
f (x)dx = 1.

(b) never negative: both.

(c) nondecreasing: cumulative distribution functions (CDFs) only

(d) never more than 1: cumulative distribution functions (CDFs) only. It is possible for a
probability density function (PDF) to be greater than 1, as long as the area under its
curve is only 1.

(e) area under the curve gives a probability: probability density functions (PDFs)
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(f) value of function gives a probability: cumulative distribution functions (CDFs) (by
definition)

(g) area under the curve from ´8 to8 is 1: probability density functions (PDFs)

S-3: Cumulative distribution functions (CDFs) are nondecreasing, rising from 0 at the far
left to 1 at the far right. This applies to b, c, and e. You can think of the “accumulation” as
the function “piling up” as x goes to the right.

x

y

x

y

x

y

Probability density functions (PDFs) have a finite area (equal to one – but we don’t have
scales on our axes) underneath their curves. This applies to a, d, and f.

x

y

x

y

x

y

S-4: If the cumulative distribution function (CDF) F(x) is continuous, then the random
variable is continuous, and the probability density function (PDF) is f (x) = F1(x).

(a) Because the cumulative distribution function (CDF), F(x), is continuous, the variable
is continuous. In this case, the probability density function (PDF) is defined as
f (x) = F1(x), so we just sketch the derivative of the function shown.

The derivative is 0 outside the middle interval, where the derivative starts close to 0,
then increases.

x

y

(b) Again the cumulative distribution function (CDF), F(x), is continuous, so the variable
is continuous and the probability density function (PDF) is defined as f (x) = F1(x).

The tangent line to the curve seems to be vertical where F(x) first starts increasing, so
we’ll give our derivative a vertical asymptote there. Then the derivative decreases to
0.
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x

y

(c) The cumulative distribution function (CDF) of this random variable is not a
continuous function, so the variable is not continuous. Note if we did take the
derivative of this function, it would be 0 everywhere except the locations of the
jumps, where it wouldn’t exist. This is a nice illustration of why the probability
density function (PDF) is only defined for continuous random variables.

S-5: In each case, we’re plotting F(x) =
şx
´8

f (t)dt, where f (t) is the function shown in
the problem. In each case shown, since f (t) is zero when t ă 0, we see

ş0
´8

f (t)dt = 0.
So, for positive values of x,

F(x) =
ż x

´8

f (t)dt =
ż x

0
f (t)dt

In particular, F(0) = 0. So rather than trying to estimate area, we can think of F(x) as the
antiderivative of f (x) that satisfies F(0) = 0.

(a)

x

y

a b

On the interval [a, b], f (x) is constant, so F(x) is a line. Since f (x) is positive, F(x)
has positive slope, i.e. it’s an increasing line. For x ą b, f (x) = 0, so F(x) turns into a
horizontal line.

x

y

F(x)

a b

Something to remember is that by definition, since the random variable was given as
continuous, F(x) is a continuous function. It’s tempting to try to make F(x) = 0
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when x ą b. If you’re struggling with understanding why that isn’t the case, go
review the proof of Corollary 4.3.10 part 2. This is a case where really remembering
and understanding definitions is important. We defined the probability density
function (PDF) as the derivative of the cumulative distribution function (CDF); but
that definition alone isn’t enough to tell us how to find the cumulative distribution
function (CDF) from the probability density function (PDF), because there are
infinitely many functions that have the same derivative.

(b)

x

y

a b

Again, we expect F(x) = 0 when x ă a and F(x) = 1 when x ą b. On the interval
(a, b), the derivative of F(x) starts at F1(a) = f (a) = 0, then increases to its maximum
at b. To be even more precise, recall an antiderivative of a linear function is a
quadratic function.

x

y

F(x)

a b

Note the sharp corner at x = b. F(x) isn’t differentiable there, and indeed f (x) has a
discontinuity at x = b.

(c)

x

y

ba1 a2 a3 a4

small positive

large positive

largest positive

large positive

As with the other parts, F(x) is constant outside the interval [a, b]. Inside that
interval, F(x) has a derivative that starts out as a small positive number, and then
increases until x = a3. After a3, f (x) is still positive, so F(x) is still increasing; its
slope is positive but decreasing until x = b.
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x

y

F(x)

ba3

Note in the sketch above, F(x) is steepest at x = a3, and its derivative is 0 outside of
the interval [0, b].

It’s a common mistake to see F1(x) decreasing on (a3, b) and think that F(x) should
be decreasing as well. But note that F1(x) is positive on that interval, so F(x) is
increasing – it’s just increasing slower and slower.

S-6: By Corollary 4.4.8,

Pr(4 ď W ď 17) =
ż 17

4
f (x)dx =

ż 17

4

10/π

1 + 100x2 dx

The integrand looks like the derivative of arctangent, so we use the substitution u = 10x,
du = 10dx.

=
1
π

ż 17

4

1
1 + 100x2 ¨ 10dx =

1
π

ż 170

40

1
1 + u2 du

=
1
π
[arctan u]170

40 =
arctan(170)´ arctan(40)

π
« 0.006

S-7: By Corollary 4.4.8,

Pr(Q ě 4.5) = Pr(4.5 ď Q ă 8) =

ż 8

4.5
f (x)dx

If we wanted to find this area using the Fundamental Theorem of Calculus, we’d need to
chop the interval [4.5,8) up into subintervals (4.5, 6), (6, 7), (7, 8), and (8,8). It’s easier
to use geometry.

x

y

3 4 6 7 8

1/10

1/5

3/10

4.5

The blue solid rectangle has area (1.5)(1
5) = 0.3, and the pink striped rectangle has area

(1)( 3
10) = 0.3, so all together Pr(Q ě 4.5) = 0.6.
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S-8: Because the two events are disjoint,

Pr
(

0 ă M ă 1 OR 9 ă M ă 10
)
= Pr

(
0 ă M ă 1

)
+ Pr

(
9 ă M ă 10

)
Since M is a continuous variable, Pr

(
a ă M ă b

)
= Pr

(
a ď M ď b

)
.

=

ż 1

0
f (x)dx +

ż 10

9
f (x)dx =

ż 1

0

x
50

dx +

ż 10

9

x
50

dx

=

[
x2

100

]1

0
+

[
x2

100

]10

9
=

[
1

100
´ 0
]
+

[
100
100

´ 81
100

]
=

2
10

S-9: By Corollary 4.4.10, F(x) =
şx
´8

f (t)dt.

t

y

f (t)

10

1
5

• There is no area under f (t) when t ď 0. So, if x ď 0, then F(x) = 0.

• There is no area under f (t) on the interval [10,8). So, if x ě 10, then F(x) = F(10).
By the properties of a cumulative distribution function (CDF), we know this has to
be 1. We can also check that by noting the area under the entire curve f (t) is a
triangle with area 1

2(base)(height) = 1
2 (10)

(
1
5

)
= 1.

• For x in the interval (0, 10), again we can use the area of a triangle to find F(x):

t

y

f (t)

10

1
5

x

x
50

From the definition of our probability density function (PDF, we see the shaded
triangle has height x

50 , so its area is 1
2(base)(height) = 1

2 (x)
( x

50

)
= x2

100 . So, for x in
the interval (0, 10), f (x) = x2

100 .
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All together, F(x) =

$

’

&

’

%

0 x ď 0
x2

100 0 ă x ă 10
1 x ě 10

S-10: The method to solve this problem is similar to Question 9.

• F(x) = 0 when x ď 0

• F(x) = 1 when x ě 8

• There is no area under f (t) on the interval [3, 4] or the interval [6, 7], so F(x) = F(3)
when 3 ď x ď 4 and F(x) = F(6) when 6 ď x ď 7.

• If 0 ă x ă 3, then

F(x) =
ż x

´8

f (t)dt = 0 +
ż x

0

1
10

dt =
x

10

In particular, F(3) = 3
10 .

x

y

3 4 6 7 8

1/10

1/5

3/10

x

• If 4 ă x ă 6, then

F(x) =
ż x

´8

f (t)dt = 0 +
ż 3

0
f (t)dt + 0 +

ż x

4
f (t)dt = 0.3 +

1
5
(x´ 4) =

x
5
´ 1

2

In particular, F(6) = 7
10 .

x

y

3 4 6 7 8

1/10

1/5

3/10

x

• If 7 ă x ă 8, then

F(x) =
ż x

´8

f (t)dt = 0 +
ż 3

0
f (t)dt + 0 +

ż 6

4
f (t)dt + 0 +

ż x

7
f (t)dt

=
7
10

+
3

10
(x´ 7) =

3x
10
´ 7

5

In particular, F(8) = 1.
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x

y

3 4 6 7 8

1/10

1/5

3/10

x

All together, F(x) =

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

0 x ď 0
x

10 0 ă x ď 3
3

10 3 ă x ď 4
x
5 ´ 1

2 4 ď x ă 6
7

10 6 ď x ă 7
3x
10 ´ 7

5 7 ď x ă 8
1 8 ď x

It’s a common mistake to focus on only one triangle at a time, and forget the triangles to
the left of the current one. For this question, it’s important to remember the C in CDF
stands for cumulative. That’s why we’re adding up all the area under the curve from ´8
to x.

S-11: X is continuous if F(X) is continuous (Definition 4.3.6 in the text). Note
lim

xÑ0´
F(x) = e0 = 1 = lim

xÑ0+
F(x). So, F(x) is continuous, so X is a continuous random

variable.

Continuous variables have PDFs, not PMFs. Definition 4.4.1 in the text says the PDF of a
continuous random variable is the derivative of its CDF, where that derivative exists. So:

f (x) =
d
dx

#

ex x ď 0
1 x ą 0

=

#

ex x ă 0
0 x ą 0

We note here that for some of the subtler parts of the question, it’s convenient to sketch a
graph of y = f (x).

x

y
y = f (x)

From the picture, it’s easy to see that f (x) is continuous, and that its derivative does not
exist at x = 0.

S-12:
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X is continuous if F(X) is continuous (Definition 4.3.6 in the text). Note
lim

xÑ0´
F(x) = 0 = lim

xÑ0+
F(x). So, F(x) is continuous, so X is a continuous random variable.

Continuous variables have PDFs, not PMFs. Definition 4.4.1 in the text says the PDF of a
continuous random variable is the derivative of its CDF, where that derivative exists. So:

f (x) =
d
dx

#

x
x+1 x ě 0
0 x ă 0

=

#

(x+1)´x
(x+1)2 x ą 0 (quotient rule)

0 x ă 0

=

#

1
(x+1)2 x ą 0

0 x ă 0

We note here that for some of the subtler parts of the question, it’s convenient to sketch a
graph of y = f (x).

x

y

y = f (x)

From the picture, it’s easy to see that f (x) is continuous, and that its derivative does not
exist at x = 0.

S-13: Properties of a PDF are given in Corollary 4.4.8 in the text. In particular, the area
under the entire function is 1.

1 =

ż 8

´8

f (x)dx

= 0 +
ż b

´1
exdx

= ex
ˇ

ˇ

ˇ

b

´1

= eb ´ e´1

1 +
1
e
= eb

ln
(

1 +
1
e

)
= b

S-14: Properties of a PDF are given in Corollary 4.4.8 in the text. In particular, the area
under the entire function is 1. Solution 1:
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1 =

ż 8

´8

f (x)dx

=

ż 8

´8

A
x2 + 4

dx

Let x = 2 tan θ, dx = 2 sec2 θdθ. Note θ = arctan
( x

2

)
and lim

xÑ˘8
arctan

( x
2

)
= ˘π

2

1 =

ż π
2

´π
2

A
4 tan2 θ + 4

¨ 2 sec2 θdθ

=

ż π
2

´π
2

2A
4 sec2 θ

¨ sec2 θdθ

=

ż π
2

´π
2

A
2

dθ

=
A
2

θ
ˇ

ˇ

ˇ

π
2

´π
2

=
A
2
(π)

2
π

= A

Solution 2:

1 =

ż 8

´8

f (x)dx

=

ż 8

´8

A
x2 + 4

dx

=

ż 8

´8

A

4
( x

2

)2
+ 4

dx

=
A
4

ż 8

´8

1( x
2

)2
+ 1

dx

Let u = x
2 , du = 1

2dx.

1 =
A
4

ż 8

´8

1
u2 + 1

¨ 2du

=
A
2

[
lim

aÑ´8
arctan u

ˇ

ˇ

ˇ

0

a
+ lim

bÑ8
arctan u

ˇ

ˇ

ˇ

b

0

]
=

A
2

[
0´

(
´π

2

)
+

π

2
´ 0
]

=
π

2
A

2
π

= A
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S-15:

t

y

1 2 3

The intervals that are most interesting are [0, 1] and [2, 3]; on all other intervals, F(x) is
constant.

• If x is on the interval [0, 1], then

F(x) =
ż x

´8

f (t)dt = 0 +
ż x

0
2t3dt =

[
2t4

4

]x

0
=

x4

2

F(1) =
1
2

t

y

1 2 3x

• Note the function 2(x´ 2)2 is the result of shifting the function 2x2 to the right by
two.

If x is on the interval [2, 3], then

F(x) =
ż x

´8

f (t)dt = 0 +
1
2
+ 0 +

ż x

2
f (t)dt =

1
2
+

(x´ 2)4

2
F(3) = 1
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t

y

1 2 3x

All together, F(x) =

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 x ă 0
x4

2 0 ď x ď 1
1
2 1 ă x ă 2
1
2 +

(x´2)4

2 2 ď x ď 3
1 x ą 3

S-16: Remember we define |x| =
#

x x ě 0
´x x ă 0

. So, we’ll be considering the intervals

[´1, 0] and (0, 1] separately.

• First, suppose ´1 ď x ď 0.

t

y

1´1 x

F(x) =
ż x

´8

f (t)dt = 0 +
ż x

´1
´tdt =

[
´ t2

2

]x

´1

= ´x2

2
+

1
2
=

1
2
´ x2

2

F(0) =
1
2

• Now, consider 0 ă x ď 1.
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t

y

1´1 x

F(x) =
ż x

´8

f (t)dt = 0 +
1
2
+

ż x

0
tdt =

1
2
+

[
t2

2

]x

0

=
1
2
+

x2

2
F(1) = 1

All together, F(x) =

$

’

’

’

’

&

’

’

’

’

%

0 x ă ´1
1
2 ´ x2

2 ´1 ď x ď 0
1
2 +

x2

2 0 ă x ď 1
1 x ą 1

S-17:

(a) Since f (x) is a probability density function (PDF), the area under the entire curve
must equal 1. In particular, since f (x) is 0 outside the interval [0, 200]:

1 =

ż 200

0
cx2(200´ x)dx = c

ż 200

0
(200x2 ´ x3)dx

= c
[

200
3

x3 ´ 1
4

x4
]200

0
= c

[
2004

3
´ 2004

4

]
= 2004c

[
1
3
´ 1

4

]
=

2004

12
c

c =
12

2004

(b) If M ă 5, then M1 = 0; if 5 ď M ă 15, then M1 = 10; if 15 ď M ă 25, then M1 = 20;
etc. So, the sample space for M1 is S1 = t0, 10, 20, . . . , 200u.

(c) We’ll be evaluating Pr(a ď M ă b) for different values of a and b. If the interval [a, b]
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is in the interval [0, 200], then following our work on the previous part:

Pr(a ď M ă b) =
ż b

a
cx2(200´ x)dx = c

ż b

a

(
200x2 ´ x3

)
dx

= c
[

200
3

x3 ´ 1
4

x4
]b

a

= c
[

200
3

(b3 ´ a3)´ 1
4
(b4 ´ a4)

]
= c

[
200

3
(b´ a)(b2 + ab + a3)´ 1

4
(b2 ´ a2)(b2 + a2)

]
= c

[
200
3

(b´ a)(b2 + ab + a2)´ 1
4
(b + a)(b´ a)(b2 + a2)

]
Now, let’s compute Pr(M1 = m) for the different m in S1.

• m = 0:

Pr(M1 = 0) = Pr(0 ď M ă 5) =
ż 5

0
cx2(200´ x)dx

= c
[

200
3

(53 ´ 0)´ 1
4
(54 ´ 0)

]
=

157
404

• m = 20:

Pr(M1 = 20) = Pr(15 ď M ď 20) =
ż 20

15
cx2(200´ x)dx

= c
[

200
3

(203 ´ 153)´ 1
4
(204 ´ 154)

]
= c

[
200
3

(53)(43 ´ 33)´ 1
4
(54)(44 ´ 34)

]
= c

[
40
3
(54)(37)´ 1

4
(54)(175)

]
=

3595
404

• All other m in S1, i.e. m = 10, 20, 30, . . . , 180:

Pr(M1 = m) = Pr(m´ 5 ď M ă m + 5) =
ż m+5

m´5
cx2(200´ x)dx

Setting a = m´ 5 and b = m + 5, we have b + a = 2m and b´ a = 10

= c
[

200
3

(b´ a)(b2 + ab + a2)´ 1
4
(b + a)(b´ a)(b2 + a2)

]
= c

[
200

3
(10)(b2 + ab + a2)´ 1

4
(2m)(10)(b2 + a2)

]
= c

[
2000

3
(b2 + ab + a2)´ 5m(b2 + a2)

]
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Plugging in a = m´ 5 and b = m´ 5 and simplifying the quadratics:

= c
[

2000
3

(3m2 + 25)´ 5m(2m2 + 50)
]

=
12

2004

[
´10m3 + 2, 000m2 ´ 250m +

50, 000
3

]

(d) From our work in the last part, we see the probability mass function (PMF) of M1 is:

Pr(M1 = m) =

$

’

’

&

’

’

%

157
404 m = 0
12

2004

[
´10m3 + 2, 000m2 ´ 250m + 50,000

3

]
m = 10, 20, . . . , 180

3595
404 m = 200

x

y

0.02

0.04

0.06

0.08

20 40 60 80 100 120 140 160 180 200

Now, we sketch f (x) = 12
2004 x2(200´ x).

552



x

y

20 40 60 80 100 120 140 160 180 20010 200

0.002

0.004

0.006

0.008

Notice the scales differ by a factor of 10, but other than that the values of the
probability mass function (PMF) seem to approximate the values of the probability
density function (PDF). Below we sketch both functions on the same axis, although
the y-scales differ.

x

y

0.002 0.02

0.004 0.04

0.006 0.06

0.008 0.08

20 40 60 80 100 120 140 160 180 200
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We took a discrete variable as an approximation of a continuous variable, and then the
probability mass function (PMF) for the discrete variable approximates the probability
density function (PDF) for the continuous variable, but on a different scale. Since we
collapsed intervals of length 10 in S into each10 discrete point of S1, the scales11 differ by
a factor of 10.

S-18: We know Pr(0 ď X ď 1) =
ż 1

0
f (x)dx. Equation 3.6.2 gives us Simpson’s Rule:

ż b

a
f (x)dx «

[
f (x0)+ 4 f (x1)+ 2 f (x2)+ 4 f (x3)+ 2 f (x4)+ ¨ ¨ ¨

¨ ¨ ¨+ 2 f (xn´2)+ 4 f (xn´1)+ f (xn)
]

∆x
3

where ∆x = b´a
2 . So,

Pr(0 ď X ď 1) =
ż 1

0
f (x)dx

«
[

f (0)+ 4 f
(

1
4

)
+ 2 f

(
1
2

)
+ 4 f

(3
4

)
+ f (1)

]
1
3

=

[
c

2
π
+ 4

(
c

2
π

e´1/8

)
+ 2

(
c

2
π

e´1/2

)
+ 4

(
c

2
π

e´9/8

)
+

(
c

2
π

e´2

)]
1
3

Solutions to Exercises 4.5 — Jump to TABLE OF CONTENTS

S-1: False.

Indeed, it is often the case that E(X) is not even in the sample space of X. For example,
imagine X results from a fair coin flip, where X = 0 when the flip is tails and X = 1 when
the flip is heads. Then E(X) = 1

2 , which is never a value of X.

S-2: Let X be the random variable resulting in a dice roll. If the dice is fair, then

E(X) =
6
ÿ

x=1

x ¨ Pr(X = x) =
6
ÿ

x=1

x
6
= 3.5

Our interpretation of expected value is a long-term average: if we roll a fair dice a large
number of times, we expect the average to be close to 3.5. One million seems like a lot of
rolls, and our average doesn’t seem that close to 3.5, so the dice does seem rigged.

Notice the vagaries here: how many rolls is “a lot?” How close to 3.5 is “close?” There’s a
lot of statistics that goes into trying to, say, test that a dice is actually fair. Those statistics,
however, are beyond the scope of this class. That’s why we’re asking such general, vague
questions.

10 except at m = 0 and m = 20, where the intervals only had length 5
11 except at the endpoints
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S-3: If we think of E(X) as a long term average, then since every trial of X results in
X = a, our average will always be a.

Alternatively, E(X) =
ř

x=a a ¨ Pr(X = a) = a ¨ 1 = a

S-4: Z does not have to be uniformly distributed. For any probability density function
(PDF) f (x) that has even symmetry, the function x f (x) has odd symmetry, so

E(Z) =
ż 1

´1
x f (x)dx = 0

If f (x) is a constant function on the interval [´1, 1], then Z is uniformly distributed, but
this isn’t the only function with even symmetry. For example, we could have f (x) = 3

2 x2.

S-5:

To do the problem, first let the random variable X be the number of days the men’s
soccer team plays soccer per week. X has sample space t0, 1, 2u.
Definition 4.5.1 says:
Given a discrete random variable X, the expected value of X, denoted E(X), is given by

ÿ

x ¨ Pr(X = x)

where the sum is taken over every possible value of X.

In this case,

E(X) = 0 ¨ Pr(X = 0) + 1 ¨ Pr(X = 1) + 2 ¨ Pr(X = 2)
= 0 ¨ 0.2 + 1 ¨ 0.5 + 2 ¨ 0.3 = 1.1

The expected value is 1.1. The soccer team would, on the average, expect to play soccer
1.1 days per week. The number 1.1 is the long-term average or expected value if the
men’s soccer team plays soccer week after week after week.

S-6: We use the definition of expected value:

E(X) =
5
ÿ

x=0

Pr(X = x) = 0 ¨ 4
50

+ 1 ¨ 8
50

+ 2 ¨ 16
50

+ 3 ¨ 14
50

+ 4 ¨ 6
50

+ 5 ¨ 2
50

=
116
50

= 2.32

S-7: Let X be the amount of money given to you after one round, where X = ´1 if you
loose (because your total money went down by one dollar). The only values X can take
are ´1 (if you loose) and 4 (if you win). Then Pr(X = ´1) = 3

4 and Pr(X = 4) = 1
4 , so

E(X) =
3
4
(´1) +

1
4
(4) =

1
4
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If you were to play N times, where N is a large number, then your average winnings per
turn would be close to 1

4 (twenty-five cents). That is, on average, you earned $0.25 each
time you played. So, your total winnings would be N

4 .

S-8: Let X be the amount of money won after one game, where X is negative if you lose.
The sample space of X is t´10, 1, 7u. Its expected value is

E(X) = (´10)
2
5
+ 1

2
5
+ 7

1
5
= ´11

5

If you play the game a lot of times, then your average winnings per game is ´11
5 dollars.

So, your total winnings are actually a loss of ´11
5 N dollars, where N is the number of

games.

S-9: Using Definition 4.5.1,

E(M) =

ż 8

´8

x ¨ f (x)dx = 0 +
ż 100

0
x ¨ x

5000
dx

=

[
x3

15000

]100

0
=

106

15000
=

1000
15

= 66 +
2
3

The sample space of M is the interval S = [0, 100], so by Theorem 4.5.7, 0 ď E(X) ď 100.
The PDF of M is increasing on its sample space, so by Theorem 4.5.8, E(X) ą 50. All
together, we must have 50 ă E(M) ď 100, and indeed this is the case.

S-10: Using Definition 4.5.1,

E(N) =

ż 8

´8

x ¨ f (x)dx = 0 +
ż 1

´1
x ¨ 2/π

x2 + 1
dx

The function c x
x2+1 has odd symmetry, so
ż 1

´1
x ¨ 2/π

x2 + 1
dx = 0

So, E(N) = 0.

Note S = [´1, 1], so by Theorem 4.5.7, ´1 ď E(N) ď 1, which is true of 0. Since f (x) is
not increasing, nor is it decreasing, we cannot use Theorem 4.5.8.

S-11: Using Definition 4.5.1,

E(P) =
ż 8

´8

x ¨ f (x)dx = 0 +
ż 1

0
x ¨ 2

3
x(1´ x)dx +

ż 3

2
x ¨ 2

3
(x´ 2)dx

=
2
3

ż 1

0
(x2 ´ x3)dx +

2
3

ż 3

2
(x2 ´ 2x)dx

=
2
3

[
1
3

x3 ´ 1
4

x4
]1

0
+

2
3

[
1
3

x3 ´ x2
]3

2
=

17
18
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Since f (x) is neither increasing nor decreasing, we can’t apply Theorem 4.5.8. However,
by Theorem 4.5.7, we need 0 ď E(P) ď 3, so our answer passes that check.

S-12: Using Definition 4.5.1,

E(Q) =

ż e

1
x ¨
(

e
e´ 2

)
¨ ln x

x2 dx =
e

e´ 2

ż e

1
ln x ¨ 1

x
dx

Let u = ln x, du = 1
x dx

=
e

e´ 2

ż ln e

ln 1
udu =

e
e´ 2

ż 1

0
udu =

e
e´ 2

[
1
2

u2
]1

0

=
e

e´ 2

(
1
2

)

Q takes on values from the interval [1, e], so we expect 1 ď E(Q) ď e.

Using a calculator: we expect 1 ď E(Q) ă 2.72 and E(Q) « 1.9.

By hand:

e ă 4
ùñ ´4 ă ´e

ùñ 2e´ 4 ă 2e´ e = e

ùñ 1 ă e
2e´ 4

, as desired

S-13: Since Y is uniformly distributed over [a, b], its PDF is a constant on that interval:
f (x) = c, a ď x ď b. In order for f (x) to be a PDF, we must have the area underneath it
equal to 1, so

1 = c(b´ a) ùñ c =
1

b´ a
Now, we can compute E(Y):

E(Y) =
ż b

a
x ¨ 1

b´ a
dx =

1
2(b´ a)

x2
ˇ

ˇ

ˇ

ˇ

b

a
=

b2 ´ a2

2(b´ a)

=
(b + a)(b´ a)

2(b´ a)
=

b + a
2

It makes intuitive sense that, if Y is uniformly distributed on [a, b], then its long-term
average will be exactly in the middle of that interval.

S-14:

(a) Corollary 4.4.8 has properties of PDFs.
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• fp(x) ě 0 for all real x in the domain of fp(x): this is true for any positive p

• We need
ş8

1 fp(x)dx = 1; in particular, that means
ş8

1
1
xp dx has to converge.

From Example 3.7.10 in the text, this happens when p ą 1.

So, this setup only makes sense when p ą 1.

(b) For p ą 1:

1 =

ż 8

1
fp(x)dx = ap

ż 8

1
x´pdx = ap lim

bÑ8

[
1

1´ p
x1´p

]b

1

=
ap

1´ p
lim
bÑ8

[
b1´p ´ 1

]
=

ap

1´ p
(´1) =

ap

p´ 1
ap = p´ 1

(c) For p ą 1:

E(Xp) =

ż 8

1
x ¨ ap

xp dx = (p´ 1)
ż 8

1

1
xp´1 dx

Again from Example 3.7.10 in the text, this integral converges when p´ 1 ą 1, i.e.
when p ą 2.

S-15:

E(A) =

ż 1

0
x2exdx

Use integration by parts with u = x2, dv = exdx; du = 2xdx, v = ex

=
[

x2ex
]1

0
´
ż 1

0
2xexdx = e´ 2

ż 1

0
xexdx

Use integration by parts with u = x, dv = exdx; du = dx, v = ex

= e´ 2

(
[xex]10 ´

ż 1

0
exdx

)
= e´ 2

(
e´
[
e1 ´ e0

])
= e´ 2

Note: 0 ď e´ 2 ď 1, so it passes our first check.

S-16:

E(B) =
ż 2

1
x ¨ 2

ln2 2

(
ln x

x

)
dx =

2
ln2 2

ż 2

1
ln xdx

We use integration by parts to evaluate
ş

ln xdx, as in Example 3.5.8 in the text. Let
u = ln x, dv = dx; du = 1

x dx, v = x

=
2

ln2 2

(
x ln x

ˇ

ˇ

ˇ

2

1
´
ż 2

1
1dx

)
=

2
ln2 2

(
2 ln 2´

[
x
]2

1

)
=

2
ln2 2

(2 ln 2´ 1)
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S-17:

E(C) =
ż b

2

x2

x2 ´ 1
dx =

ż b

2

x2 ´ 1 + 1
x2 ´ 1

dx =

ż b

2

(
1 +

1
x2 ´ 1

)
dx

To use integration by parial fractions, we factor

=

ż b

2

(
1 +

1
(x + 1)(x´ 1)

)
dx

Intermediate calculation:

1
(x + 1)(x´ 1)

=
A

x + 1
+

B
x´ 1

=
A(x´ 1) + B(x + 1)

(x + 1)(x´ 1)

x = 1 ùñ B =
1
2

x = ´1 ùñ A = ´1
2

Returning to the integral:

E(C) =
ż b

2

(
1 +

1/2
x´ 1

´ 1/2
x + 1

)
dx =

[
x +

1
2

ln |x´ 1| ´ 1
2

ln |x + 1|
]b

2

=

[
x +

1
2

ln
(

x´ 1
x + 1

)]b

2

= (b´ 2) +
1
2

ln
(

b´ 1
b + 1

)
´ 1

2
ln
(

1
3

)
= (b´ 2) +

1
2

ln
(

3
b´ 1
b + 1

)

S-18:

E(D) =
4

4´ π

ż π/4

0
x ¨ tan2 xdx =

4
4´ π

(
ż π/4

0
x(sec2 x´ 1)dx

)

=
4

4´ π

(
ż π/4

0
x ¨ sec2 xdx´

ż π/4

0
xdx

)
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Use integration by parts with u = x, dv = sec2 xdx; du = dx, v = tan x

=
4

4´ π

([
x tan x

]π/4

0
´
ż π/4

0
tan xdx´

[
1
2

x2
]π/4

0

)

=
4

4´ π

(
π

4
´
ż π/4

0
tan xdx´

[
π2

32

])

=
4

4´ π

(
π

4
´
[

ln | sec x|
]π/4

0
´
[

π2

32

])
=

4
4´ π

(
π

4
´
[

ln
?

2
]
´
[

π2

32

])
=

1
4´ π

(
π ´ 2 ln 2´ π2

8

)

S-19: Using the definition of expectation,

E(X) =

ż 8

´8

x ¨ f (x)dx =

ż 8

´8

cxebx2
dx

The integrand has odd symmetry, so since the integral does converge, it will be equal to
0. That’s the easiest way to find E(X).

= 0

However, we could also evaluate the integral with the substitution u = bx2, du = 2bxdx.
To avoid carrying limits throughout our work, let’s first evaluate the indefinite integral.

ż

cxebx2
dx =

ż

c
2b

eudu =
c

2b
eu + C =

c
2b

ebx2
+ C

ż 8

´8

cxebx2
dx = lim

AÑ´8

[
ż 0

A
cxebx2

dx

]
+ lim

BÑ8

[
ż B

0
cxebx2

dx

]

= lim
AÑ´8

[
c

2b
ebx2

ˇ

ˇ

ˇ

0

A

]
+ lim

BÑ8

[
c

2b
ebx2

ˇ

ˇ

ˇ

B

0

]
=

c
2b

lim
AÑ´8

[
1´ ebA2

]
+

c
2b

lim
BÑ8

[
ebB2 ´ 1

]
To evalute the limits, remember b is negative, so lim

xÑ˘8
bx2 = ´8. Hence lim

xÑ˘8
ebx2

= 0.

=
c

2b
[1´ 0] +

c
2b

[0´ 1] = 0

S-20: Sonic will pay $0 with probability 999
1000 (should Fred’s boat stay afloat) or $15,000

with probability 1
1000 . So, their expected payment is 15,000

1000 = 15 dollars.

Since Fred paid $1000, the expected profit is 1000´ 15 = 985.
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S-21: It seems a safe assumption that the salary of $0 means Andrea is unemployed, so
that probability is 15%.

E = 0
(

15
100

)
+ 2500

(
20

100

)
+ 3000

(
30
100

)
+ 3500

(
20

100

)
+ 4000

(
15

100

)
= 2700

S-22:

(a) Suppose Riley invests x dollars in Asset A and y dollars in Asset B. The expected
return from Asset A is 1.2x, while the expected return from Asset B is
4y (0.2) + y (0.8) = 1.6y. So, her expected overall return is 1.2x + 1.6y.

(b) If Riley invests $300, then we can set y = 300´ x. In a bad year, her return is

1.2x + 1(300´ x) = 300 + 0.2x

This is the worst-case scenario. To satisfy Riley’s risk aversion, we need this to be at
least $350.

350 ď 300 + 0.2x
50 ď 0.2x
x ě 250

So, Riley needs to invest at least $250 of her $300 in Asset A.

Now, let’s decide how to allocate the remaining $50. Using our answer from part (a),
if she invests y dollars in Asset B, then her expected return is 1.2(300´ y) + 1.6y, or
360 + 0.4y. This is a line with positive slope: it is a maximum where y is a maximum,
i.e. at y = 50. So, her optimal investment is $50 in Asset B and $250 in Asset A.

Solutions to Exercises 4.6 — Jump to TABLE OF CONTENTS

S-1:

A - 4: we introduced expected value in Section 4.5.1 precisely as a long-term average.
B -6: Section 4.6.1 motivated the study of “average difference from the average;” in
defining variance, we replaced “difference from the average” with ”squared difference
from the average.”
C -5: because variance introduces squares, to get our numbers to have the right kind of
size, standard deviation undoes the squaring, trying to get back to the original
motivation of “average difference from the average” (but with functions that are
differentiable).
D -1 The probability mass function (PMF) is exactly the function (usually written as a
table) describing the probability (likelihood) of each event in the sample space.
E -3: The probability density function (PDF) differs from the probability mass function
(PMF) because in a continuous function, the probability of any one value happening is 0.
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However, it serves a similar purpose, helping us decide which regions are more or less
likely.
F -2: this is from the definition of a cumulative distribution function (CDF)

S-2: If X is at most one standard deviation from the mean, that means |X ´ 10| ď 1.5, so
8.5 ď X ď 11.5. This tells us that bundles of 8.5 to 11.5 kg are typical, while bundles less
than 8.5 kg or more than 11.5 kg are atypical.

S-3: A small standard deviation implies that most values are close to the mean, and a
large standard deviation implies that the values do not cluster in that way. From the
second paragraph, we interpret Brand B to have the larger standard deviation.

The values in Paragraph A are not necessary for solving this question, but they are
somewhat reasonable: in order to make sure you have a minimum mass (what it says on
the label) nearly all the time, you either need to have very accurate measurements, or
you need to add in extra.

S-4: A high standard deviation means X takes values that are very spread out. So, we let
X have sample space S = t´100, 100u let it be equally likely to take either value.

E(X) =
ÿ

x
xPr(X = x) = ´100(1/2) + 100(1/2) = 0

E(X2) =
ÿ

x
x2Pr(X = x) = 1002(1/2) + 1002(1/2) = 1002

Using Corollary 4.6.5:

Var(X) = E(X2)´ [E(X)]2 = 1002

σ(X) =
b

Var(X) = 100

We not that Corollary 4.6.9 tells us σ(X) ď 100´(´100)
2 = 100, so we’ve given X the highest

possible standard deviation, given its restricted range.

S-5:

(a) Since X is uniformly distributed, its probability density function (PDF) is constant on
the interval [a, b]:

f (x) = c, a ď x ď b

If f (x) is a probability density function (PDF), the area underneath it must be one.
Conveniently, this area is a rectangle.

1 = c(b´ a) ùñ c =
1

b´ a

So, we have our probability density function (PDF): f (x) = 1
b´a , a ď x ď b. Now we

can apply our definitions.
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E(X) =

ż b

a

x
b´ a

dx =
x2

2(b´ a)

ˇ

ˇ

ˇ

ˇ

b

a
=

b2 ´ a2

2(b´ a)
=

b + a
2

E(X2) =

ż b

a

x2

b´ a
dx =

x3

3(b´ a)

ˇ

ˇ

ˇ

ˇ

b

a
=

b3 ´ a3

3(b´ a)
=

(b´ a)(b2 + ab + a2)

3(b´ a)
=

1
3
(b2 + ab + a2)

Var(X) = E(X2)´ [E(X)]2 =
1
3
(b2 + ab + a2)´ 1

4
(b + a)2 =

(b´ a)2

12

σ(X) =
b

Var(X) =
b´ a
2
?

3

Note: had we wanted to calculate Var(X) the other way, it would go like this:

Var(X) =

ż b

a
(x´E(X)) f (x)dx =

1
b´ a

ż b

a

(
x´ b + a

2

)2

=
1

b´ a

ż b

a

(
x2 ´ (b + a)x +

(b + a)2

4

)
=

1
b´ a

[
1
3

x3 ´ b + a
2

x2 +
b2 + 2ab + a2

4
x
]b

a

=
1

b´ a

[
1
3

b3 ´ b + a
2

b2 +
b2 + 2ab + a2

4
b´ 1

3
a3 +

b + a
2

a2 ´ b2 + 2ab + a2

4
a
]

=
1

b´ a

[
b3 ´ 3ab2 + 3a2b´ a3

12

]
=

(b´ a)3

12(b´ a)
=

(b´ a)2

12

(b) The values that fall within one standard deviation of E(X) are those on the interval
[E(X)´ σ(X) , E(X) + σ(X)]. In this case,

2σ(X) =
b´ a?

3

So the interval in question is the middle part of the interval [a, b], with length 1?
3

times the length of the whole interval. That’s a little over half the entire interval [a, b]
included in the interval [E(X)´ σ(X) , E(X) + σ(X)].

a bb+a
2

(
b+a

2 + b´a
2
?

3

)(
b+a

2 ´ b´a
2
?

3

)

S-6: The probability mass function (PMF) of this variable is that Pr(X = s) = 1. So,
E(X) = s; E(X2) = s2; Var(X) = s2 ´ s2 = 0; σ(X) = 0.

Since variance is a measure of how much the variable “varies,” it makes sense that the
variance here is 0.
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S-7: If f (x) has even symmetry, then x f (x) has odd symmetry, so
E(X) =

şa
´a x f (x)dx = 0.

This works intuitively: the values taken by X are evenly distributed between positive
and negative values, so these should cancel each other out in the long-term average.

S-8:

(a) Remember F(x) = Pr(X ď x) =
şx
´8

f (t)dt. Since our PDF is in three pieces (less
than 0; from 0 to π

2 ; greater than π
2 ) we’ll use these intervals for finding F(x).

x ă 0 : F(x) =
ż x

´8

0dt = 0

0 ď x ď π

2
: F(x) =

ż x

´8

f (t)dt =
ż x

0
sin tdt = ´ cos x + cos 0 = 1´ cos x

x ą π

2
: F(x) =

ż x

´8

f (t)dt =
ż π

2

0
sin tdt +

ż x

π
2

0dt = 1

All together,

F(x) =

$

’

&

’

%

0 x ă 0
1´ cos x 0 ď x ď π

2
1 x ą π

2

(b) Before we compute Var(X), we need to know E(X).

E(X) =

ż π
2

0
x ¨ sin xdx

We use integration by parts with u = x, dv = sin xdx; du = dx, v = ´ cos x

=
[
´ x cos x

] π
2

0
´
ż π

2

0
´ cos xdx =

ż π
2

0
cos xdx

= sin
π

2
´ sin 0 = 1

Now we can find Var(X)

E(X2) =

ż π
2

0
x2 sin xdx

We use integration by parts with u = x2, dv = sin xdx; du = 2xdx, v = ´ cos x

=
[
´ x2 cos x

] π
2

0
looooooomooooooon

0

+2
ż π

2

0
x cos xdx
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We use integration by parts with u = x, dv = cos xdx; du = dx, v = sin x

= 2

x sin x
ˇ

ˇ

ˇ

π
2

0
looomooon

π/2

+

ż π
2

0
´ sin xdx


= 2

[π

2
+ (cos(π/2)´ cos 0)

]
= 2

[π

2
´ 1
]
= π ´ 2

So, Var(X) = E(X2)´ [E(X)]2 = (π ´ 2)´ 1 = π ´ 3

Note: we can also use the other method to compute Var(X):

Var(X) =

ż 8

´8

f (x) ¨ (x´E(X))2 dx =

ż π
2

0
sin x ¨ (x´ 1)2 dx

=

ż π
2

0

(
x2 sin x´ 2x sin x + sin x

)
dx

=

ż π
2

0
x2 sin xdx´ 2

ż π
2

0
x sin xdx +

ż π
2

0
sin xdx

The second integral is E(X); the third integral is equal to
ş8

´8
f (x)dx, which is 1 by

Corollary 4.4.8 part 3.

=

ż π
2

0
x2 sin xdx´ 2 + 1

Use integration by parts with u = x2, dv = sin xdx; du = 2xdx, v = ´ cos x

= ´x2 cos x
ˇ

ˇ

ˇ

π
2

0
looooomooooon

0

+2
ż π

2

0
x cos xdx´ 1

Use integration by parts with u = x, dv = cos xdx; du = dx, v = sin x

= 2

x sin x
ˇ

ˇ

ˇ

π
2

0
´
ż π

2

0
sin xdx

looooomooooon

1

´ 1

= 2
[π

2
´ 1
]
´ 1 = π ´ 3

(c) σ(X) =
?

π ´ 3

S-9: To find E(X), it’s easiest to note that f (x) is an even function, so x f (x) is an odd
function, so E(X) =

ş1
´1 x f (x)dx = 0. But we can also compute E(X) using the
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(piecewise) definition of the absolute value function.

|x| =
#

´x x ă 0
x x ě 0

E(X) =

ż 1

´1
x f (x)dx =

ż 0

´1
x(1 + x)dx +

ż 1

0
x(1´ x)dx

=

ż 0

´1
(x + x2)dx +

ż 1

0
(x´ x2)dx =

[
x2

2
+

x3

3

]0

´1
+

[
x2

2
´ x3

3

]1

0

=

[
0´

(
1
2
´ 1

3

)]
+

[(
1
2
´ 1

3

)
´ 0
]
= 0

To compute variance, we’ll now find E(X2).

E(X2) =

ż 1

´1
x2 f (x)dx =

ż 0

´1
x2(1 + x)dx +

ż 1

0
x2(1´ x)dx

=

ż 0

´1
(x2 + x3)dx +

ż 1

0
(x2 ´ x3)dx =

[
x3

3
+

1
4

x4
]0

´1
+

[
x3

3
´ 1

4
x4
]1

0

=

[
0´

(´1
3

+
1
4

)]
+

[(
1
3
´ 1

4

)
´ 0
]
=

1
6

So, Var(X) = E(X2)´ [E(X)]2 =
1
6
´ 0 =

1
6

Alternately, we can compute variance the other way.

Var(X) =

ż 1

´1
(x´E(X))2 f (x)dx =

ż 0

´1
x2(1 + x)dx +

ż 1

0
x2(1´ x)dx

=

[
x3

3
+

1
4

x4
]0

´1
+

[
x3

3
´ 1

4
x4
]1

0
=

1
6

Now, σ(X) =
b

1
6 = 1?

6
.

S-10:

(a) X is continuous if and only if F(x) is continuous. The only places where F(x) looks
like it might possibly be discontinuous are at x = ´1, 0, 1. Recall by definition, F(x) is
continuous at the point x = a if lim

xÑa
F(x) = F(a).

• lim
xÑ´1´

F(x) = 0, lim
xÑ´1+

F(x) = lim
xÑ´1+

1
3(x + 1)3 = 0 = F(´1), so

F(´1) = lim
xÑ´1

F(x). That is, F(x) is continuous at x = ´1.

• lim
xÑ0´

F(x) = lim
xÑ0´

1
3(x + 1)3 = 1

3 ;

lim
xÑ0+

F(x) = lim
xÑ0+

[2
3(x´ 1)3 + 1

]
= ´2

3 + 1 = 1
3 = F(1), so lim

xÑ0
F(x) = F(0), o.e.

F(x) is continuous at x = 0.
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• lim
xÑ1´

F(x) = lim
xÑ1´

[2
3(x´ 1)3 + 1

]
= 1 = F(1) = limxÑ1+ F(x), so F(x) is

continuous at x = 1.

Since F(x) is a continuous function, X is a continuous variable.

x

y

´1 1

F(x)

(b) In order to compute the expectation and variance, we need the probability density
function (PDF) for X, f (x). Recall we defined f (x) = F1(x), so:

f (x) =

$

’

’

’

&

’

’

’

%

0 x ă ´1
(x + 1)2 ´1 ď x ă 0
2(x´ 1)2 0 ă x ď 1
0 x ą 1

We use this function to compute the expectation and variance, which means we’ll
need to split up our integral over the intervals [´1, 0] and [0, 1].

E(X) =

ż 0

´1
x (x + 1)2
looomooon

f (x)

dx +

ż 1

0
x ¨ 2(x´ 1)2

loooomoooon

f (x)

dx

=

ż 0

´1

(
x3 + 2x2 + x

)
dx +

ż 1

0

(
2x3 ´ 4x2 + 2x

)
dx

=

[
1
4

x4 +
2
3

x3 +
1
2

x2
]0

´1
+

[
1
2

x4 ´ 4
3

x3 + x2
]1

0

=

[
´1

4
+

2
3
´ 1

2

]
+

[
1
2
´ 4

3
+ 1
]
=

1
12
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Next:

E(X2) =

ż 0

´1
x2 (x + 1)2

looomooon

f (x)

dx +

ż 1

0
x2 ¨ 2(x´ 1)2

loooomoooon

f (x)

dx

=

ż 0

´1

(
x4 + 2x3 + x2

)
dx +

ż 1

0

(
2x4 ´ 4x3 + 2x2

)
dx

=

[
1
5

x5 +
1
2

x4 +
1
3

x3
]0

´1
+

[
2
5

x5 ´ x4 +
2
3

x3
]1

0

=

[
1
5
´ 1

2
+

1
3

]
+

[
2
5
´ 1 +

2
3

]
=

1
10

So,

Var(X) = E(X2)´ [E(X)]2 =
1

10
´
(

1
12

)2

=
67

720

σ(X) =

c

67
720

=

?
67

12
?

5
(The other method of computing Var(X) is significantly more obnoxious.)

S-11:

E(T) = 1 ¨ Pr(T = 1) + 2 ¨ Pr(T = 2) + 3 ¨ Pr(T = 3)

= 1
(

1
2

)
+ 2

(
1
4

)
+ 3

(
1
4

)
=

7
4

Using the definition of variance,

Var(T) =
3
ÿ

x=1

Pr(T = x) ¨
(

x´ 7
4

)2

=
1
2

(
´3

4

)2

+
1
4
¨
(

1
4

)2

+
1
4
¨
(

5
4

)2

=
11
16

σ(T) =
?

11
4

Alternately, we could have computed Var(T) using E(T2):

E(T2) =
3
ÿ

x=1

x2 ¨ Pr(T = x) = 12 ¨ 1
2
+ 22 ¨ 1

4
+ 32 ¨ 1

4

=
15
4

Var(T) = E(T2)´ [E(T)]2 =
15
4
´
(

7
4

)2

=
11
16
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S-12:

E(S) =
ÿ

x
x ¨ Pr(S = x)

= ´5 ¨ 1
9
´ 4 ¨ 2

9
+ 2 ¨ 1

9
+ 7 ¨ 5

9

=
8
3

E(X2) =
ÿ

x
x2 ¨ Pr(S = x)

= 25 ¨ 1
9
+ 16 ¨ 2

9
+ 4 ¨ 1

9
+ 49 ¨ 5

9
= 34

Var(S) = E(S2)´ [E(S)]2 = 34´
(

8
3

)2

=
242

9

Alternately, we could have computed

Var(S) =
ÿ

x

(
x´ 8

3

)2

¨ Pr(S = x)

=

(
´5´ 8

3

)2

¨ 1
9
+

(
´4´ 8

3

)2

¨ 2
9
+

(
2´ 8

3

)2

¨ 1
9
+

(
7´ 8

3

)2

¨ 5
9

=
242
9

Finally,

σ(S) =
b

Var(S) =
11
?

2
3

S-13: The first thing we have to do is find the probability mass function (PMF). (The
cumulative distribution function (CDF) is discontinuous, so U is not a continuous
random variable. Therefore we don’t consider a probability density function (PDF).)

• At x = 0, Pr(U ď x) jumps from 0 to 1
2 , so Pr(U = 0) = 1

2

• At x = 2, Pr(U ď x) jumps from 1
2 to 2

3 , so Pr(U = 2) = 2
3 ´ 1

2 = 1
6

• At x = 3, Pr(U ď x) jumps from 2
3 to 3

4 , so Pr(U = 3) = 3
4 ´ 2

3 = 1
12

• At x = 4, Pr(U ď x) jumps from 3
4 to 1, so Pr(U = 4) = 1´ 4

3 = 1
4

All together:
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x Pr(U = x)

0 1
2

2 1
6

3 1
12

4 1
4

Now, we can find the expected value, variance, and standard deviation of U.

E(U) = 0 ¨ Pr(U = 0) + 2 ¨ Pr(U = 2) + 3 ¨ Pr(U = 3) + 4 ¨ Pr(U = 4)

= 0 + 2 ¨ 1
6
+ 3 ¨ 1

12
+ 4 ¨ 1

4
=

19
12

E(U2) = 02 ¨ Pr(U = 0) + 22 ¨ Pr(U = 2) + 32 ¨ Pr(U = 3) + 42 ¨ Pr(U = 4)

= 0 + 4 ¨ 1
6
+ 9 ¨ 1

12
+ 16 ¨ 1

4
=

65
12

Var(U) = E(U2)´ [E(U)]2 =
65
12
´
(

19
12

)2

=
419
144

σ(U) =
b

Var(U) =

?
419
12

Had we instead wanted to use the definition of variance, we could have computed it
thus:

Var(U) =
ÿ

x

(
x´ 19

12

)2

Pr(U = x)

=

(
19
12

)2

¨ 1
2
+

(
24´ 19

12

)2

¨ 1
6
+

(
36´ 19

12

)2

¨ 1
12

+

(
48´ 19

12

)2

¨ 1
4

=
419
122

Solutions to Exercises 5.1 — Jump to TABLE OF CONTENTS

S-1: (a) The values of the sequence seem to be getting closer and closer to -2, so we guess
the limit of this sequence is -2.
(b) Overall, the values of the sequence seem to be getting extremely close to 0, so we
approximate the limit of this sequence as 0. It doesn’t matter that the sequence changes
signs, or that the numbers are sometimes farther from 0, sometimes closer.
(c) This limit does not exist. The sequence is sometimes 0, sometimes -2, and not
consistently staying extremely near to either one.

S-2: True. We consider the end behaviour of the sequences, which does not depend on
any finite number of terms at their beginning.
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S-3: (a) We follow the arithmetic of limits, Theorem 5.1.8 in the text:
A´ B

C
(b) Since lim

nÑ8
cn is some real number, and n grows without bound, lim

nÑ8

cn

n
= 0.

(c) We note lim
nÑ8

a2n+5 = lim
nÑ8

an, so
a2n+5

bn
=

A
B

.

S-4: There are many possible answers. One is:

an =

#

3000´ n if n ď 1000
´2 + 1

n if n ą 1000

where we have a series that looks different before and after its thousandth term. Note
every term is smaller than the term preceding it.

Another sequence with the desired properties is:

an =
1, 002, 001

n
´ 2

When n ď 1000, an ě 1,002,001
1000 ´ 2 ą 1,002,000

1,000 ´ 2 = 1000. That is, an ą 1000 when n ď 1000.
As n gets larger, an gets smaller, so an+1 ă an for all n. Finally, lim

nÑ8
an = 0´ 2 = ´2.

S-5: One possible answer is an = (´1)n = t´1, 1,´1, 1,´1, 1,´1, . . .u.
Another is an = n(´1)n = t´1, 2,´3, 4,´5, 6,´7, . . .u.

S-6: If the terms of a sequence are alternating sign, but the limit of the sequence exists,
the limit must be zero. (If it were a positive number, the negative terms would not get
very close to it; if it were a negative number, the positive terms would not get very close
to it.)

This gives us the idea to modify an answer from Question 5. One possible sequence:

an =
(´1)n

n
=

"

´1,
1
2

, ´1
3

,
1
4

, ´1
5

,
1
6

, . . .
*

S-7:

(a) Since ´1 ď sin n ď 1 for all n, one potential set of upper and lower bound is

´1
n
ď sin n

n
ď 1

n

Note lim
nÑ8

´1
n

= lim
nÑ8

1
n

, so these are valid comparison sequences for the Squeeze
Theorem.

571



(b) Since ´1 ď sin n ď 1 and ´5 ď ´5 cos n ď 5 for all n, we see

7´1´5 ď 7 + sin n´ 5 cos n ď 7 + 1 + 5
1 ď 7 + sin n´ 5 cos n ď 13

This gives us the idea to try the bounds

n2

13en ď
n2

en(7 + sin n´ 5 cos n)
ď n2

en

We check that lim
nÑ8

n2

13en = lim
nÑ8

n2

en (they’re both 0–you can verify using l’Hôpital’s
rule), so these are indeed reasonable bounds to choose to use with the Squeeze
Theorem.

(c) Since (´n)´n =
1

(´n)n =
(´1)n

nn , we see

´1
nn ď (´n)´n ď 1

nn

Since both lim
nÑ8

´1
nn and lim

nÑ8

1
nn are 0, these are reasonable bounds to use with the

Squeeze Theorem.

S-8:

(a) • Note an = bn, since (in the absence of evidence to the contrary) we assume n

begins at one, hence n = |n|. Then an = bn = 1 +
1
n
=

n + 1
n

. So, whenever n is a

whole number, an and bn are the same as h(n) and i(n). (Be careful here:
h(x) ‰ i(x) when x is not a whole number.)

• cn = e´n =
1
en = j(n)

• For any integer n, cos(πn) = (´1)n. So, dn = f (n).

• Similarly, en = g(n).

(b) According to Theorem 5.1.6 in the text, if any of the functions on the right have limits
that exist as x Ñ 8, then these limits match the limits of their corresponding
sequences. So, we only have to be suspicious of f (x) and i(x), since these do not
converge.

The limit lim
xÑ8

f (x) does not exist, and f (n) = dn; the limit lim
nÑ8

dn also does not exist.
(We generally don’t write equality for two things that don’t exist: equality refers to
numerical value, and these have none.12)

12 The idea “two things that both don’t exist are equal” is also rejected because it can lead to contradictions.
For example, in the real numbers

?
´1 and

?
´2 don’t exist; if we write

?
´1 =

?
´2, then squaring

both sides yields the inanity ´1 = ´2.
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The limit lim
xÑ8

i(x) does not exist, because i(x) = 0 when x is not a whole number,

while i(x) approaches 1 when x is a whole number. However,
lim lim

nÑ8
an = lim

nÑ8
bn = 1.

So, using our answers from part (a), we match the following:

• lim
nÑ8

an = lim
nÑ8

bn = lim
xÑ8

h(x) = 1

• lim
nÑ8

cn = lim
nÑ8

en = lim
xÑ8

g(x) = lim
xÑ8

j(x) = 0

• lim
nÑ8

dn, lim
xÑ8

f (x) and lim
xÑ8

i(x) do not exist.

S-9: (a) We want to find odd multiples of π that are close to integers.

Solution 1: One way to do that is to remember that π is somewhat close to
22
7

. Then
when we multiply π by a multiple of 7, we should get something close to an

integer. In particular, 7π, 21π, and 35π should be reasonably close to 7
(

22
7

)
= 22,

21
(

22
7

)
= 66, and 35

(
22
7

)
= 110, respectively. We check whether they are close

enough:

7π « 21.99 21π « 65.97 35π « 109.96

So indeed, 22, 66, and 110 are all within 0.1 of some odd multiple of π.

Since the cosine of an odd multiple of π is ´1, we expect all of the sequence values
to be close to ´1. Using a calculator:

a22 = cos(22) « ´0.99996,
a66 = cos(66) « ´0.99965,

a110 = cos(110) « ´0.99902

Solution 2: Alternately, we could have just listed odd multiple of π until we found three
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that are close to integers.

2k + 1 (2k + 1)ß

1 3.14

3 9.42

5 15.71

7 21.99

9 28.27

11 34.56

13 40.84

15 47.12

17 53.41

19 59.69

21 65.97

23 72.26

25 78.54

27 84.82

29 91.11

31 97.39

33 103.67

35 109.96

Some earlier odd multiples of π (like 15π and 29π) get fairly close to integers, but
not within 0.1.

(b) If x =
2k + 1

2
π for some integer k (that is, x is an odd multiple of π/2), then cos x = 0.

So, we can either list out the first few terms of an until we find three that are very close to

0, or we can use our approximation π « 22
7

to choose values of n that are close to
2k + 1

2
π.

Solution 1:

2k + 1
2

π « (2k + 1)ˆ 22
2ˆ 7

= 11
2k + 1

7

So, we expect our values to be close to integers when 2k + 1 is a multiple of 7. For
example, 2k + 1 = 7, 2k + 1 = 21, and 2k + 1 = 35.
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We check:

x n an

7ˆ π

2
« 10.99557 11 a11 « 0.0044

21ˆ π

2
« 32.98672 33 a33 « ´0.0133

35ˆ π

2
« 54.97787 55 a55 « 0.0221

These seem like values of an that are all pretty close to 0.

Solution 2: We could have listed the first several values of an, and looked for some that
are close to 0.

n an

1 0.54

2 ´0.42

3 ´0.99

4 ´0.65

5 0.28

6 0.96

7 0.75

8 ´0.15

9 ´0.91

10 ´0.84

Oof. Nothing very close yet. Maybe a better way is to list values of 2k+1
2 π, and see

which ones are close to integers.
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2k + 1 2k+1
2 ß

1 1.57

3 4.71

5 7.85

7 10.996

9 14.14

11 17.28

13 20.42

15 23.56

17 26.70

19 29.85

21 32.99

23 36.13

25 39.27

27 42.41

29 45.55

31 48.69

33 51.84

35 54.98

We find roughly the same candidates we did in Solution 1, depending on what
we’re ready to accept as “close”.

Remark: it is possible to turn the ideas of this question into a rigorous proof that
lim

nÑ8
cos n is undefined.

• Let, for each integer k ě 1, nk be the integer that is closest to 2kπ. Then
2kπ ´ 1

2 ď nk ď 2kπ + 1
2 so that cos(nk) ě cos 1

2 ě 0.8. Consequently, if
lim

nÑ8
cos n = c exists, we must have c ě 0.8.

• Let, for each integer k ě 1, n1k be the integer that is closest to (2k + 1)π. Then
(2k + 1)π´ 1

2 ď n1k ď (2k + 1)π + 1
2 so that cos(n1k) ď ´ cos 1

2 ď ´0.8. Consequently,
if lim

nÑ8
cos n = c exists, we must have c ď ´0.8.

• It is impossible to have both c ě 0.8 and c ď ´0.8, so lim
nÑ8

cos n does not exist.

S-10:
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(a)

a0 = 4
a1 = 10a0 ´ 6 = 10 ¨ 4´ 6 = 34
a2 = 10a1 ´ 6 = 10 ¨ 34´ 6 = 334
a3 = 10a2 ´ 6 = 10 ¨ 334´ 6 = 3334
a4 = 10a3 ´ 6 = 10 ¨ 3334´ 6 = 33334

(b)

b0 = 1

b1 =
b0

2
=

1
2

b2 =
b1

2
=

1
4

b3 =
b2

2
=

1
8

b4 =
b3

2
=

1
16

(c)

c0 = 0

c1 =
c0

2
= 0

c2 =
c1

2
= 0

c3 =
c2

2
= 0

c4 =
c3

2
= 0

(d)

d0 = 1
d1 = ´1
d2 = d0 ´ d1 = 2
d3 = d1 ´ d2 = ´3
d4 = d2 ´ d3 = 5

S-11:

(a) t1, 1, 1, 1, 1, . . .u
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(b) bn = n + 1

b0 = 0 + 1 = 1
b1 = 1 + 1 = 2
b2 = 2 + 1 = 3
b3 = 3 + 1 = 4
b4 = 4 + 1 = 5

(c) cn = tan(πn)

c0 = tan(0) = 0
c1 = tan(π) = 0
c2 = tan(2π) = 0
c3 = tan(3π) = 0
c4 = tan(4π) = 0

(d) dn = (´1)n

d0 = (´1)0 = 1

d1 = (´1)1 = ´1

d2 = (´1)2 = 1

d3 = (´1)3 = ´1

d4 = (´1)4 = 1

S-12: Writing out the first few terms and looking for a pattern is the usual way to start
these.

(a) tanu = t2, 22, 24, 28, 216, . . .u. Note the exponents are powers of two. That is, an = 22n
.

(b) tbnu = t5,´5, 5,´5, 5,´5, . . .u. The sign-switching behaviour is fairly common; we
can use the powers of a negative number to achieve it. bn = (´1)n ¨ 5.

(c) tcnu = t8, 8, 8, 8, . . .u; so, cn = 8

S-13:

(a) t0, 1, 4, 9, 16, . . .u looks like the first few squares of whole numbers: an = n2

(b) t1,´2, 4,´16, 32, . . .u looks like powers of 2, with alternating signs. Remember we
can generate alternating signs using powers of negative numbers: an = (´2)n.

(c)
!

1
2 , 2

3 , 3
4 , 4

5 , . . .
)

has a numerator that’s one less than the denominator. The numerators

and denominators go up by 1 as n goes up by one, so an = n+1
n+2 .

(d) t1.5, 2, 2.5, 3, 3.5, 4, . . .u goes up by one-half as n goes up by one: an = 1.5 + n
2
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S-14: When determining the end behaviour of rational functions, recall from last
semester that we can either cancel out the highest power of n from the numerator and
denominator, or skip this step and compare the highest powers of the numerator and
denominator.

(a) Since the numerator has a higher degree than the denominator, this sequence will
diverge to positive or negative infinity; since its terms are positive for large n, its
limit is (positive) infinity. (You can imagine that the numerator is growing much,
much faster than the denominator, leading the terms to have a very, very large
absolute value.)

Calculating the longer way:

an =
3n2 ´ 2n + 5

4n + 3

(
1
n
1
n

)
=

3n´ 2 + 5
n

4 + 3
n

lim
nÑ8

an = lim
nÑ8

3n´ 2 + 5
n

4 + 3
n

= lim
nÑ8

3n´ 2 + 0
4 + 0

= 8

(b) Since the numerator has the same degree as the denominator, as n goes to infinity,

this sequence will converge to the ratio of their leading coefficients:
3
4

. (You can
imagine that the numerator is growing at roughly the same rate as the denominator,
so the terms settle into an almost-constant ratio.)

Calculating the longer way:

bn =
3n2 ´ 2n + 5

4n2 + 3

(
1

n2

1
n2

)
=

3´ 2
n + 5

n2

4 + 3
n2

lim
nÑ8

bn = lim
nÑ8

3´ 2
n + 5

n2

4 + 3
n2

=
3´ 0 + 0

4 + 0
=

3
4

(c) Since the numerator has a lower degree than the denominator, this sequence will
converge to 0 as n goes to infinity. (You can imagine that the denominator is growing
much, much faster than the numerator, leading the terms to be very, very small.)

Calculating the longer way:

cn =
3n2 ´ 2n + 5

4n3 + 3

(
1

n3

1
n3

)
=

3
n ´ 2

n2 +
5

n3

4 + 3
n3

lim
nÑ8

cn = lim
nÑ8

3
n ´ 2

n2 +
5

n3

4 + 3
n3

=
0´ 0 + 0

4 + 0
= 0
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S-15: At first glance, we see both the numerator and denominator grow huge as n
increases, so we’ll need to think a little further to find the limit.

We don’t have a rational function, but we can still divide the top and bottom by ne to get
a clearer picture.

an =
4n3 ´ 21
ne + 1

n

(
1
ne

1
ne

)
=

4n3´e ´ 21
ne

1 + 1
ne+1

Since e ă 3, we see 3´ e is positive, so lim
nÑ8

n3´e = 8.

lim
nÑ8

an = lim
nÑ8

4n3´e ´ 21
ne

1 + 1
ne+1

= lim
nÑ8

4n3´e ´ 0
1 + 0

= 8

S-16: This isn’t a rational sequence, but factoring out
?

n from the top and bottom will
still clear things up.

bn =
4
?

n + 1?
9n + 3

( 1?
n

1?
n

)
=

1
4?n

+ 1?
n

b

9 + 3
n

lim
nÑ8

bn = lim
nÑ8

1
4?n

+ 1?
n

b

9 + 3
n

=
0 + 0?
9 + 0

= 0

S-17: First, let’s start with a tempting fallacy.

The denominator grows without bound, so lim
nÑ8

sin n
n

= 0.

It’s certainly true that if the limit of the numerator is a real number, and the denominator
grows without bound, then the limit of the sequence is zero. However, in our case, the
limit of the numerator does not exist. To apply the limit arithmetic rules from the text
(Theorem 5.1.8), our limits must actually exist.

A better reasoning looks something like this:

The denominator grows without bound, and the numerator never gets very

large, so lim
nÑ8

sin n
n

= 0.

To quantify this reasoning more precisely, we use the Squeeze Theorem, Theorem 5.1.10
in the text. There are two parts to the Squeeze Theorem: finding two bounding functions,
and making sure these functions have the same limit.

• Since ´1 ď sin n ď 1 for all n, we choose functions an = ´1
n and bn = 1

n . Then
an ď cn ď bn for all n.

• Both lim
nÑ8

an = 0 and lim
nÑ8

bn = 0.
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So, by the Squeeze Theorem, lim
nÑ8

sin n
n

= 0.

S-18: The denominator of this sequence grows without bound. The numerator is
unpredictable: imagine that n is large. When sin n is close to ´1, nsin n puts a power of n
“in the denominator,” so we can have nsin n very close to 0. When sin n is close to 1, nsin n

is close to n, which is large.

To control for these variations, we’ll use the Squeeze Theorem.

• Since ´1 ď sin n ď 1 for all n, let bn = n´1

n2 = 1
n3 and cn = n

n2 = 1
n . Then bn ď an ď cn.

• Both lim
nÑ8

bn = 0 and lim
nÑ8

cn = 0.

So, by the Squeeze Theorem, lim
nÑ8

nsin n

n2 = 0 as well.

Remark: we also could have used bn = 0 for our lower bound, since an ě 0 for all n.

S-19:

dn = e´1/n =
1

e1/n

lim
nÑ8

dn = lim
nÑ8

1
e1/n =

1
e0 =

1
1
= 1

S-20:

Solution 1: Let’s use the Squeeze Theorem. Since sin(n2) and sin n are both between ´1
and 1 for all n, we note:

1 + 3(´1)´ 2(1) ď 1 + 3 sin(n2)´ 2 sin n ď 1 + 3(1)´ 2(´1)

´4 ď 1 + 3 sin(n2)´ 2 sin n ď 6

This allows us to choose suitable bounding functions for the Squeeze Theorem.

• Let bn = ´4
n

and cn =
6
n

. From the work above, we see bn ď an ď cn for all n.

• Both lim
nÑ8

bn = 0 and lim
nÑ8

cn = 0.

So, by the Squeeze Theorem, lim
nÑ8

1 + 3 sin(n2)´ 2 sin n
n

= 0.

Solution 2: We simplify slightly to begin.

an =
1 + 3 sin(n2)´ 2 sin n

n
=

1
n
+ 3 ¨ sin(n2)

n
´ 2 ¨ sin n

n

We apply the Squeeze Theorem to the pieces
sin(n2)

n
and

sin n
n

.
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• Let bn =
´1
n

and cn =
1
n

. Then bn ď sin(n2)

n
ď cn, and bn ď sin n

n
ď cn.

• Both lim
nÑ8

bn = 0 and lim
nÑ8

cn = 0.

So, by the Squeeze Theorem, lim
nÑ8

sin(n2)

n
= 0 and lim

nÑ8

sin n
n

= 0.

Now, using the arithmetic of limits from Theorem 5.1.8 in the text,

lim
nÑ8

an = lim
nÑ8

[
1
n
+ 3 ¨ sin(n2)

n
´ 2 ¨ sin n

n

]
= 0 + 3 ¨ 0´ 2 ¨ 0 = 0

S-21: First, we note that both numerator and denominator grow without bound. So, we
have to decide whether one outstrips the other, or whether they reach a stable ratio.

Solution 1: Let’s try dividing the numerator and denominator by 2n (the dominant term
in the denominator; this is the same idea behind factoring out the leading term in
rational expressions).

bn =
en

2n + n2

(
1

2n

1
2n

)
=

( e
2

)n

1 + n2

2n

Since e ą 2, we see
e
2
ą 1, and so lim

nÑ8

( e
2

)n
= 8. Since exponential functions grow

much, much faster than polynomial functions, we also see lim
nÑ8

n2

2n = 0. So,

lim
nÑ8

bn = lim
nÑ8

( e
2

)n

1 + n2

2n

= lim
nÑ8

( e
2

)n

1 + 0
= 8

Solution 2: Since the numerator and denominator both increase without bound, we
apply l’Hôpital’s rule. Recall d

dxt2xu = 2x ln 2.

lim
nÑ8

bn = lim
nÑ8

en

2n + n2
looomooon

numÑ8
denÑ8

= lim
nÑ8

en

2n ln 2 + 2n
loooooomoooooon

numÑ8
denÑ8

= lim
nÑ8

en

2n(ln 2)2 + 2
looooooomooooooon

numÑ8
denÑ8

= lim
nÑ8

en

2n(ln 2)3

=
1

(ln 2)3 lim
nÑ8

( e
2

)n

= 8
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Since e ą 2, we see
e
2
ą 1, and so lim

nÑ8

( e
2

)n
= 8.

S-22: First, we simplify. Remember n! = n(n´ 1)(n´ 2) ¨ ¨ ¨ (2)(1) for any whole number
n, so (k + 1)! = (k + 1)k! .

ak =
k! sin3 k
(k + 1)!

=
k! sin3 k
(k + 1)k!

=
sin3 k
k + 1

Now, we can use the Squeeze Theorem.

• ´1 ď sin k ď 1 for all k, so ´1 ď sin3 k ď 1. Let bk =
´1
k+1 and ck =

1
k+1 . Then

bk ď ak ď ck.

• Both lim
kÑ8

bk = 0 and lim
kÑ8

ck = 0.

So, by the Squeeze Theorem, also lim
kÑ8

ak = 0.

S-23: Note lim
nÑ8

(´1)n doesn’t exist, but ´1 ď (´1)n ď 1 for all n. Let’s use the Squeeze
Theorem.

• Let an = ´ sin
(

1
n

)
and bn = sin

(
1
n

)
. Then an ď (´1)n sin

(
1
n

)
ď bn.

• Both lim
nÑ8

´ sin
(

1
n

)
= 0 and lim

nÑ8
sin
(

1
n

)
= 0, since lim

nÑ8
1
n = 0 and sin 0 = 0.

By the Squeeze Theorem, the sequence
!

(´1)n sin 1
n

)

converges to 0.

S-24: First, we note that lim
nÑ8

6n2 + 5n
n2 + 1

= 6. We see this either by comparing the leading

terms in the numerator and denominator, or by factoring out n2 from the top and the
bottom.

Second, since lim
nÑ8

1
n2 = 0, we see lim

nÑ8
cos

(
1
n2

)
= cos 0 = 1.

Using arithmetic of limits, Theorem 5.1.8 in the text, we conclude

lim
nÑ8

[
6n2 + 5n

n2 + 1
+ 3 cos(1/n2)

]
= 6 + 3(1) = 9.

S-25: (There are infinitely many potential answers to these questions. )

(a) tanu = t1, 4, 16, 37, ¨ ¨ ¨ u. The first three terms are powers of four, so we could use the
sequence bn = 4n. Then a0 = b0, a1 = b1, and a2 = b2, but a3 ‰ b3 so the sequences are
indeed different.

(b) tcnu = t3, 6, 9, 18, ¨ ¨ ¨ u. The first three terms are consecutive multiples of three, so we
could use the sequence dn = 3(n + 1). Then c0 = d0, c1 = d1, and c2 = d2, but c3 ‰ d3
so the sequences are indeed different.
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(c) tenu = t0, 0, 0, 6, ¨ ¨ ¨ u. We could use the sequence fn = 0. Then e0 = f0, e1 = f1, and
e2 = f2, but e3 ‰ f3 so the sequences are indeed different.

S-26: If there are only negative values in the sequence, then a0 itself is negative.

Note 5x´ x2 = x(5´ x). That’s a parabola pointing down with roots at x = 0 and x = 5.
So if x is negative, then x(5´ x) is negative as well.

So: if a0 is negative, then also a1 is negative; so then also a2 is negative by the same logic,
and so on.

S-27: Let’s take stock: sin(1/n)Ñ sin(0) = 0 as n Ñ 8, so ln (sin(1/n))Ñ ´8.
However, ln(2n)Ñ 8. So, we have some tension here: the two pieces behave in ways
that pull the terms of the sequence in different directions. (Recall we cannot conclude
anything like “´8+8 = 0.”)

We try using logarithm rules to get a clearer picture.

ln
(

sin
1
n

)
+ ln(2n) = ln

(
2n sin

(
1
n

))
Still, we have indeterminate behaviour: 2n sin(1/n) is the product of 2n, which grows
without bound, and sin(1/n), which approaches zero. In the past, we learned that we
can handle the indeterminate form 0 ¨ 8 with l’Hôpital’s rule (after a little algebra), but
there’s a slicker way. Note 1/n Ñ 0 as n Ñ 8. If we write 1

n = x, then this piece of our
limit resembles something familiar.

2n sin
(

1
n

)
= 2

(
sin x

x

)
If n Ñ 8, then x = 1

n Ñ 0.

lim
nÑ8

2n sin
(

1
n

)
= 2 lim

xÑ0

sin x
x

That limit is familiar:

= 2(1) = 2

Then:

lim
nÑ8

ln
(

2n sin
(

1
n

))
= ln 2

Note: if you have forgotten that lim
xÑ0

sin x
x

= 1, you can also evaluate this limit using

l’Hôpital’s rule:

lim
xÑ0

sin x
x

loooomoooon

numÑ0
denÑ0

= lim
xÑ0

cos x
1

= cos 0 = 1
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S-28: First, although this sequence is not defined for some small values of n, it is defined
as long as n ě 5, so it’s not a problem to take the limit as n Ñ 8. Second, we notice that
our limit has the indeterminate form8´8. Since this form is indeterminate, more work
is needed to find our limit, if it exists.

A standard trick we saw last semester with functions of this form was to multiply and
divide by the conjugate of the expression,

?
n2 + 5n +

?
n2 ´ 5n. Then the denominator

will be the sum of two similar things, rather than their difference. See the work below to
find out why that is helpful.

a

n2 + 5n´
a

n2 ´ 5n =
(a

n2 + 5n´
a

n2 ´ 5n
) (?n2 + 5n +

?
n2 ´ 5n?

n2 + 5n +
?

n2 ´ 5n

)

=
(n2 + 5n)´ (n2 ´ 5n)?

n2 + 5n +
?

n2 ´ 5n

=
10n?

n2 + 5n +
?

n2 ´ 5n

Now, we’ll cancel out n from the top and the bottom. Note n =
?

n2.

=
10n?

n2 + 5n +
?

n2 ´ 5n

(
1
n
1
n

)

=
10n?

n2 + 5n +
?

n2 ´ 5n

(
1
n
1?
n2

)

=
10

b

1 + 5
n +

b

1´ 5
n

Now, the limit is clear.

lim
nÑ8

10
b

1 + 5
n +

b

1´ 5
n

=
10?

1 + 0 +
?

1 + 0
=

10
1 + 1

= 5

S-29: First, although this sequence is not defined for some small values of n, it is defined
as long as n ě ?2.5, so it’s not a problem to take the limit as n Ñ 8. Second, we notice
that our limit has the indeterminate form8´8. Since this form is indeterminate, more
work is needed to find our limit, if it exists.

In Question 28, we saw a similar limit, and made use of the conjugate. However, in this
case, there’s an easier path: let’s factor out n from each term.

a

n2 + 5n´
a

2n2 ´ 5 =

d

n2
(

1 +
5
n

)
´
d

n2
(

2´ 5
n2

)
= n

c

1 +
5
n
´ n

c

2´ 5
n2

= n

(
c

1 +
5
n
´
c

2´ 5
n2

)
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Now, the limit is clear.

lim
nÑ8

[
a

n2 + 5n´
a

2n2 ´ 5
]
= lim

nÑ8

[
n

(
c

1 +
5
n
´
c

2´ 5
n2

)]
= lim

nÑ8

[
n
(?

1 + 0´?2´ 0
)]

= lim
nÑ8

[n (´1)] = ´8

Remark: check Question 28 to see whether a similar trick would work there. Why or why
not?

S-30: First, we note that we have in indeterminate form: as n grows, 2 + 1
n Ñ 2, so

n
[(

2 + 1
n

)100 ´ 2100
]

has the form8 ¨ 0. To overcome this difficulty, we could use some

algebra and l’Hôpital’s rule, but there’s a slicker way. If we let h = 1
n , then h Ñ 0 as

n Ñ 8, and our limit looks like:

lim
nÑ8

n

[(
2 +

1
n

)100

´ 2100

]
= lim

hÑ0

(2 + h)100 ´ 2100

h

This reminds us of the definition of a derivative.
d
dx

!

x100
)

= lim
hÑ0

(x + h)100 ´ x100

h

So, if we set f (x) = x100, our limit is simply f 1(2). That is,
[
100x99]

x=2 = 100 ¨ 299.

S-31: Using the definition of a derivative,

f 1(a) = lim
hÑ0

f (a + h)´ f (a)
h

We want n Ñ 8, so we set h = 1
n .

= lim
1
nÑ0

f
(

a + 1
n

)
´ f (a)

1
n

= lim
nÑ8

n
[

f
(

a +
1
n

)
´ f (a)

]
We also could have chosen h = ´ 1

n , which leads to the following:

lim
hÑ0

f (a + h)´ f (a)
h

= lim
´ 1

nÑ0

f
(

a´ 1
n

)
´ f (a)

´1/n

= lim
nÑ8

´n
(

f
(

a´ 1
n

)
´ f (a)

)
= lim

nÑ8
n
(

f (a)´ f
(

a´ 1
n

))
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S-32: (a) To find the area An, note that the figure with n sides can be divided up into n
isosceles triangles, each with two sides of length 1 and angle between them of 2π

n :

1

1

2π
n

Each of these triangles has area 1
2 sin

(2π
n
)
:

2π
n

si
n

2π n

1

1

All together, the area of the n-sided figure is An =
n
2

sin
(

2π

n

)
.

(b) We will discuss two ways to find lim
nÑ8

An, which has the indeterminate form8ˆ 0.

First, note that as n Ñ 8, our figures look more and more like a circle of radius 1. So, we
see An is approaching the area of a circle of radius 1. That is, lim

nÑ8
An = π.

Alternately, we can make use of the limit lim
xÑ0

sin x
x = 1. Let x = 2π

n . Note if n Ñ 8, then

x Ñ 0.

lim
nÑ8

An = lim
nÑ8

n
2

sin
(

2π

n

)
= lim

nÑ8

π
2π
n

sin
(

2π

n

)
= lim

xÑ0
π

sin x
x

= π ˆ 1 = π

S-33: We’ll define a sequence tenu8n=0 where en is the number of readers left after each
equation. We set e0 = 7, 000, 000, 000 (seven billion).

Under the first assumption, en+1 = en
2 . In particular:

• e0 = 7, 000, 000, 000: there have been no equations, and no lost readers

• e1 = e0
2 : there has been one equation, so half of the readers checked out

• e2 = e1
2 = e0

22 : there have been two equations, so half of the readers from e1 (which
was already half of the original number) are left

• In general, en = e0
2n = 7,000,000,000

2n
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If there is one reader left, then

1 = en =
7, 000, 000, 000

2n

2n = 7, 000, 000, 000
n = log2(7, 000, 000, 000) « 32.7

n only makes sense as an integer, so we see unsurprisingly the author took some poetic
license. More precisely,

e32 =
7, 000, 000, 000

232
« 1.6

e33 =
7, 000, 000, 000

232
« 0.8

So the number of equations in the book was probably 32 or 33.

Now, let t fnu8n=0 be the sequence of readers after n equations under the more generous
assumptions of the second paragraph. Let’s look for a pattern.

• After the first equation, half the readers are lost, so half remain:

f1 =
f0

2

• After the second equation, one-third of those readers are lost, so two-thirds remain:

f2 =
2
3
¨ f1 =

2
3
¨ f0

2
=

f0

3

• After the third equation, one-fourth of the readers are lost, so three-fourths remain:

f3 =
3
4
¨ f2 =

3
4
¨ f0

3
=

f0

4

We see a nice pattern: for n ą 0, fn = 7,000,000,000
n . So if there were 32 or 33 equations, the

readers remaining number 7,000,000,000
32 = 218, 750, 000 or 7,000,000,000

32 « 212, 121, 212.

S-34:

(a) f2(x) =

#

1 2 ď x ă 3
0 else

x

y

1

2 3
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(b) f3(x) =

#

1 3 ď x ă 4
0 else

x

y

1

43

(c) For any n, fn(x) = 1 for an interval of length 1, and fn(x) = 0 for all other x. So, the
area under the curve is a square of side length one.

x

y

1

Then An =
ş8

0 fn(x)dx = 1 for all n. That is, the sequence tAnu is simply t1, 1, . . . , 1u,
a sequence of all 1s.

(d) Given the description above, lim
nÑ8

An = 1.

(e) For any fixed x, recall t fn(x)u = t0, . . . , 0, 1, 0, . . . 0, 0, 0, 0, 0, . . .u. In particular, there
are infinitely many zeroes at its end. So, lim

nÑ8
fn(x) = 0. Then g(x) = 0 for every x.

(f) Given the description above,
ż 8

0
g(x)dx =

ż 8

0
0 dx = 0.

Remark: what we’ve shown here is that, for this particular fn(x),

lim
nÑ8

ż 8

0
fn(x)dx ‰

ż 8

0
lim

nÑ8
fn(x)dx

That is, we can’t necessarily swap a limit with an integral (which is, in this case, another
limit, since the integral is improper). The interested reader can look up “uniform
convergence” to learn about the conditions under which these can be swapped.

S-35: If we naively try to find the limit, we run up against the indeterminate form 18.
We’d like to use l’Hôpital’s rule, but we don’t have the form 8

8
or 0

0–we’ll need to use a
logarithm. Additionally, l’Hôpital’s rule applies to differentiable functions defined for
real numbers–so we’ll consider a function, rather than the sequence.

Note the terms of the sequence are all positive.

Solution 1: Define x = 1
n , and f (x) =

(
1 + 3x + 5x2)1/x. Then bn = f

(
1
n

)
= f (x), and

lim
nÑ8

f
(

1
n

)
= lim

xÑ0+
f (x).
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If this limit exists, it is equal to lim
nÑ8

bn.

lim
xÑ0+

f (x) = lim
xÑ0+

(
1 + 3x + 5x2

)1/x

lim
xÑ0+

ln[ f (x)] = lim
xÑ0+

ln
[(

1 + 3x + 5x2
)1/x

]
= lim

xÑ0+

ln
[
1 + 3x + 5x2]

x
looooooooooooomooooooooooooon

numÑ0
denÑ0

= lim
xÑ0+

3+10x
1+3x+5x2

1
= 3

lim
xÑ0+

f (x) = e3

Since the limit exists, lim
nÑ8

bn = e3.

Solution 2: If we didn’t see the nice simplifying trick of letting x = 1
n , we can still solve

the problem using g(x) =
(

1 + 3
x + 5

x2

)x
:

g(x) =
(

1 +
3
x
+

5
x2

)x

ln[g(x)] = x ln
[

1 +
3
x
+

5
x2

]
=

ln
[
1 + 3

x + 5
x2

]
1/x

loooooooomoooooooon

numÑ0
denÑ0

lim
xÑ8

ln[g(x)] = lim
xÑ8

´ 3
x2´

10
x3

1+ 3
x+

5
x2

´1
x2

= lim
xÑ8

x2
3
x2 +

10
x3

1 + 3
x + 5

x2

= lim
xÑ8

3 + 10
x

1 + 3
x + 5

x2

=
3 + 0

1 + 0 + 0
= 3

lim
xÑ8

f (x) = e3

Since the limit exists, lim
nÑ8

bn = e3

S-36:

(a) When a1 = 4, we see a2 =
4 + 8

3
= 4, and so on. That is, an = 4 for every n. So,

lim
nÑ8

an = 4.

(b) Cross-multiplying, we see 3x = x + 8, hence x = 4.

(c) In order for our sequence to converge to 4, the terms should be getting infinitely close
to 4. So, we find the relationship between an+1 ´ 4 and an ´ 4.

an+1 =
an + 8

3

an+1 ´ 4 =
an + 8

3
´ 4 =

an ´ 4
8
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So, the distance between our sequence terms and the number 4 is decreasing by a
factor of 8 each term. This implies that the terms get infinitely close to 4 as n grows.
That is, lim

nÑ8
an = 4.

S-37:

(a) Since w1 has the highest frequency, w2 has the next-highest frequency, and so on, we
know f1 is larger than the other members of its sequence, f2 is the next largest, etc.
So, t fnu is a decreasing sequence.

(b) The most-used word in a language is w1, while the n-th most used word in a
language is wn. So, we re-state the law as:

f1 = n fn

Then we can rewrite this fomula a little more naturally as fn = 1
n f1.

(c) Then f3 = 1
3 f1. In this case, we expect the third-most used word to account for

1
3(6%) = 2% of all words.

(d) From (b), we know f10 = 1
10 f1. Note f1 = 6 f6 = 6(0.3%). Then:

f10 =
1
10

f1 =
1

10
6 f6 =

1
10

(6)(0.3%) =
1.8
10

% = 0.18%

So, f10 should be 0.18% of all words.

(e) The use of the word “frequency” in the statement of Zipf’s law implies
fn = uses of wn

total number of words . The question asks for the total uses of wn. If we call this
quantity tn, and the total number of all words is T, then Zipf’s law tells us tn

T = 1
n

t1
T ,

hence tn = 1
n t1.

With this notation, the problem states t1 = 22, 038, 615, w1 = the, w2 = be, and
w3 = and.

Following Zipf’s law, tn = 1
n t1. So, we expect t2 = t1

2 = 11, 019, 307.5; since this isn’t
an integer, let’s say we expect t2 « 11, 019, 308. Similarly, we expect
t3 = t1

3 = 7, 346, 205.

Remark: The 450-million-word source material that used “the” 22,038,615 times also
contained 12,545,825 instances of “be,” and 10,741,073 instances of “and.” While
Zipf’s Law might be a nice model for our data overall, in these few instances it does
not appear to be extremely accurate.

S-38:

(a) I comes from simplifying P(1 + r) + rP(1 + r) = P[(1 + r) + r(1 + r)] = P(1 + r)2.
(This is not the only way to simplify the expression.)

For II, we take I + rI, i.e. P(1 + r)2 + r ¨ P(1 + r)2. This simplifies to
(1 + r) ¨ P(1 + r)2 = P(1 + r)3, which goes in III.
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(b) This corresponds to P = 100 and r = 0.1, so it would be P(1 + r)2 = 100(1.12) = 121
dollars.

(c) Recognizing the pattern in the third column of the table, after n years, the amount in
the account will be P(1 + r)n dollars.

(d) Using our answer from above, we solve for P:

300 = P(1 + 0.1)3 = P(1.13)

P =
300
1.13 « 225.394

Rounding, to the closest cent, in this case, rounds down; so an investment of $225.39
would yield slightly less than $300 after three years, whereas an investment of
$225.40 would yield slightly more. Both $225.39 and $225.40 are acceptable answers,
but the latter fits the spirit of the question better: usually people want to have at least
some amount of money more then they want to be as close as possible to that amount.

Solutions to Exercises 5.1.1 — Jump to TABLE OF CONTENTS

S-1:

Let’s write our original four notes as multiples of the first note. (We’ll use the same
notation as a series, although we have only finitely many terms.)

a0 = 100
a1 = 110 = 1.1 ¨ a0

a2 = 150 = 1.5 ¨ a0

a3 = 200 = 2 ¨ a0

These same multiples are what will be preserved in the physicist’s song.

b0 = 150
b1 = 1.1 ¨ b0 = 165
b2 = 1.5 ¨ b0 = 225
b3 = 2 ¨ b0 = 300

So, the physicist’s song uses frequencies 150, 165, 225, and 300.

It’s worth nothing that the ratios between all pairs of notes are preserved – not just the
ratio between one note and the original note. For example, a3

a1
= 20

11 = b3
b1

. So there was
nothing special about using the ratio between each note and a0. We equally well could
have used the ratios of consecutive notes:
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a0 = 100 b0 = 150
a1 = 110 = 1.1 ¨ a0 ùñ b1 = 1.1 ¨ b0 = 165

a2 = 150 =
15
11
¨ a1 ùñ b2 =

15
11
¨ b1 = 225

a3 = 200 =
4
3
¨ a2 ùñ b3 =

4
3
¨ b2 = 300

S-2: The scale isn’t even-tempered, because the intervals (ratios) between consecutive
notes are not constant. For starters, 120

110 ‰ 140
120 .

The octave is divided into five intervals: (1) from 100 to 120, (2) from 120 to 140, (3) from
140 to 160, (4) from 160 to 180, and (5) from 180 to 200.

It can sometimes be confusing that six notes give us five intervals! You saw a similar
count with Riemann sums in Section 3.1. The (n + 1) points x0, x1, . . . , xn delineate n
intervals.

S-3: Let’s name the 13 notes from 444 to 888 tanu12
n=0. In an even-tempered scale, an+1

an
= r

for some constant r and every n from 0 to 11. That means our scale will be the initial part
of a geometric sequence,

an = arn

Since a12 = 888 = 2 ¨ a0 = r12a0, we see r = 21/12. Now we can write down each note’s
frequency:

0. 444

1. 444 ¨ 21/12 « 470.40

2. 444 ¨ 22/12 « 498.37

3. 444 ¨ 23/12 « 528.01

4. 444 ¨ 24/12 « 559.40

5. 444 ¨ 25/12 « 592.67

6. 444 ¨ 26/12 « 627.91

7. 444 ¨ 27/12 « 665.25

8. 444 ¨ 28/12 « 704.81

9. 444 ¨ 29/12 « 746.72

10. 444 ¨ 210/12 « 791.12

11. 444 ¨ 211/12 « 838.16

593



12. 444 ¨ 212/12 = 888

S-4:

Let’s name the 11 notes from 100 to 200 tanu10
n=0. In an even-tempered scale, an+1

an
= r for

some constant r and every n from 0 to 9. That means our scale will be the initial part of a
geometric sequence,

an = arn

Since a10 = 200 = 2 ¨ a0 = r10a0, we see r = 21/10. Now we can write down each note’s
frequency:

0. 100

1. 100 ¨ 21/10 « 107.12

2. 100 ¨ 22/10 « 114.87

3. 100 ¨ 23/10 « 1213.11

4. 100 ¨ 24/10 « 131.95

5. 100 ¨ 25/10 « 141.42

6. 100 ¨ 26/10 « 151.57

7. 100 ¨ 27/10 « 162.45

8. 100 ¨ 28/10 « 174.11

9. 100 ¨ 29/10 « 186.61

10. 100 ¨ 210/10 = 200

S-5:

1. As in Example 5.1.14, we’ll consider the ratios of pitches.

a0 = 440 b0 = 586.66

a1 = 495 =
9
8

a0 ùñ b1 =
9
8

b0 = 660

a2 = 556.875 =
9
8

a1 ùñ b2 =
9
8

b1 = 742.5

The pitches in the transposed song all correspond to notes our instrument can play,
so this is indeed possible.

2. Proceeding similarly:

a0 = 440 b0 = 495

a1 = 495 =
9
8

a0 ùñ b1 =
9
8

b0 = 556.875

a2 = 556.875 =
9
8

a1 ùñ b2 =
9
8

b1 = 626.484375
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Our instrument cannot play the note 626.484375. If we tried to play this
transposition, we’d have to change it to use a different note (probably 660), and the
song would sound different.

S-6: Our sequence notation makes it really easy to find the interval between two notes:
am
an

= 100¨2n/12

100¨2m/12 = 2n´m. Notice the interval depends on the difference between the two
indices. So if we want our intervals to be the same, we just need the differences of indices
to be the same. So, if ak is our lowest note, the four notes of the song are simply ak, ak+2,
ak+5, and ak+7.

We can check that the ratios between notes are preserved:

a2

a0
=

100 ¨ 22/12

100 ¨ 20/12 = 22/12 ak+2

ak
=

100 ¨ 2(k+2)/12

100 ¨ 2k/12 = 22/12

a5

a2
=

100 ¨ 25/12

100 ¨ 22/12 = 23/12 ak+5

ak+2
=

100 ¨ 2(k+5)/12

100 ¨ 2(k+2)/12
= 23/12

a7

a5
=

100 ¨ 27/12

100 ¨ 25/12 = 22/12 ak+7

ak+5
=

100 ¨ 2(k+7)/12

100 ¨ 2(k+5)/12
= 22/12

So, the transposition can be played for any lowest note ak. If ak is a note on the scale, then
the rest of the notes of the song are notes on the scale as well.

Note: moving a song up or down while keeping the intervals the same is called
transposition. The ease of transposition is one reason why even-tempered scales are
popular.

S-7: Remember we need to keep the ratios of frequecies the same. Let’s start with the
first two notes.

b11

b10
=

100 ¨ 11
100 ¨ 10

=
11
10

If we were to change the notes b10 and b11 to other notes on the scale, bn and bm, then the
ratio would have to be preserved:

11
10

=
bm

bn
=

100 ¨m
100 ¨ n =

m
n

If we can only use notes from the scale, then for this first ratio to be preserved, we must
have n = 11

10 m. In particular, for n to be a whole number, m must be divisible by 10. The
smallest whole number divisible by 10 is, of course, 10 itself. So while t is possible to shift
the song higher using notes from our harmonic scale, it is not possible to shift it lower.

S-8: In each question, we specified subdivisions of an octave. An octave has ratio 2. So,
in both cases, we had a geometric series

an = arn
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where ak = 2a0 was specified. That’s where the 2 comes from.

S-9:

• Pinching at the first position makes the string 11
12 its original length, so the

frequency produced is 12
11 the original frequency, or 12

11(330) = 360 Hz

• Pinching at the second position makes the string half its original length, so the
frequency produced is double the original frequency, or 2(330) = 660 Hz

• Pinching at the third position makes the string 1
3 its original length, so the

frequency produced is three times the original frequency, or 3(330) = 990 Hz

Solutions to Exercises 5.2 — Jump to TABLE OF CONTENTS

S-1: The Nth term of the sequence of partial sums, SN, is the sum of the first N terms of

the series
8
ÿ

n=1

1
n

.

N SN

1 1

2 1 + 1
2

3 1 + 1
2 +

1
3

4 1 + 1
2 +

1
3 +

1
4

5 1 + 1
2 +

1
3 +

1
4 +

1
5

S-2: If there were a total of 17 cookies before Student 11 came, and 20 cookies after, then
Student 11 brought 3 cookies.

C10

C11

1 2 3 4 5 6 7 8 9 10 11

S-3:

(a) We find tanu from tSNu using the same logic as Question 2. SN is the sum of the first
N terms of tanu, and SN´1 is the sum of all the same terms except aN. So,
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aN = SN ´ SN´1 when N ě 2. Written another way:

SN = a1 + a2 + a3 + ¨ ¨ ¨+ aN´2 + aN´1 + aN

SN´1 = a1 + a2 + a3 + ¨ ¨ ¨+ aN´2 + aN´1

So,

SN ´ SN´1 =
[

a1 + a2 + a3 + ¨ ¨ ¨+ aN´2 + aN´1 + aN

]
´
[

a1 + a2 + a3 + ¨ ¨ ¨+ aN´2 + aN´1

]
= aN

So, we calculate

aN = SN ´ SN´1 =

(
N

N + 1

)
´
(

N ´ 1
N ´ 1 + 1

)
=

N2

N(N + 1)
´ N2 ´ 1

N(N + 1)

=
1

N(N + 1)

Therefore,

an =
1

n(n + 1)

Remark: the formula given for SN has S0 = 0, which makes sense: the sum of no
terms at all should be 0. However, it is common for a sequence of partial sums to
start at N = 1. (This fits our definition of a partial sum–we don’t really define the
“sum of no terms.”) In this case, a1 must be calculated separately from the other
terms of tanu. To find a1, we simply set a1 = S1, which (to reiterate) might not be the
same as S1 ´ S0.

(b)

lim
nÑ8

an = lim
nÑ8

1
n(n + 1)

= 0.

That is, the terms we’re adding up are getting very, very small as we go along.

(c) By Definition 5.2.3 in the text,

8
ÿ

n=1

an = lim
NÑ8

SN = lim
NÑ8

N
N + 1

= 1

That is, as we add more and more terms of our series, our cumulative sum gets very,
very close to 1.
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S-4: As in Question 3,

aN = SN ´ SN´1 =

[
(´1)N +

1
N

]
´
[
(´1)N´1 +

1
N ´ 1

]
= (´1)N ´ (´1)N´1 +

1
N
´ 1

N ´ 1

= (´1)N + (´1)N +
N ´ 1

N(N ´ 1)
´ N

N(N ´ 1)

= 2(´1)N ´ 1
N(N ´ 1)

Note, however, that aN is only the same as SN ´ SN´1 when N ě 2: otherwise, we’re
trying to calculate S1 ´ S0, but S0 is not defined. So, we find a1 separately:

a1 = S1 = (´1)1 +
1
1
= 0

All together:

an =

#

0 if n = 1
2(´1)n ´ 1

n(n´1) else

S-5: If f 1(N) ă 0, that means f (N) is decreasing. So, adding more terms makes for a
smaller sum. That means the terms we’re adding are negative. That is, an ă 0 for all
n ě 2.

S-6: (a) To generate the pattern, we repeat the following steps:

• divide the top triangle into four triangles of equal area,

• colour the bottom two of them black, and

• leave the middle one white.

Every time we repeat this sequence, we divide up a triangle with an area one-quarter the
size of our previous triangle, and take two of the four resulting pieces. So, our area

should end up as a geometric sum with common ratio r =
1
4

, and coefficient a = 2. This
is shown more explicitly below.

Since the entire triangle (outlined in red) has area 1, the four smaller triangles below each

have area
1
4

. The two black triangles will be added to our total black area; the blue
triangle will be subdivided.
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1
4

1
4

The blue triangle had area
1
4

, so each of the small black triangles below has area(
1
4

)(
1
4

)
=

1
42 .

1
4

1
4

1
42

1
42

Each time we make another subdivision, we add two black triangles, each with
1
4

the
area of the previous black triangles. So, our total black area is:

2
(

1
4

)
+ 2

(
1
42

)
+ 2

(
1
43

)
+ 2

(
1
44

)
+ ¨ ¨ ¨ =

8
ÿ

n=1

2
4n

(b) To evalutate the series, we imagine gathering up all our little triangles and sorting
them into three identical piles: the bottom three triangles go in three different piles, the
three triangles directly above them go in three different piles, etc. (In the picture below,
different colours correspond to different piles.)
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Since the piles all have equal area, each pile has a total area of
1
3

. The black area shaded
in the problem corresponds to two piles (red and blue above), so

8
ÿ

n=1

2
4n =

2
3

S-7: (a) The pattern can be described as follows: divide the innermost square into 9 equal
parts (a 3ˆ 3 grid), choose one square to be black, and another square to subdivide.

The area of the red (outermost) square is 1, so the area of the largest black square is
1
9

.

The area of the central, blue square below is also
1
9

.

1
9

1
9

When we subdivide the blue square, the subdivisions each have one-ninth its area, or
1
92 .
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1
9

1
92

1
92

We continue taking squares that are one-ninth the area of the previous square. So, our
total black area is

1
9
+

1
92 +

1
93 + ¨ ¨ ¨ =

8
ÿ

n=1

1
9n

(b) If we cut up this square along the marks, we can easily share it equally among 8

friends: there are eight squares of area
1
9

along the outer ring, eight squares of area
1
92

along the next ring in, and so on.

Since the eight friends all get the same total area, the area each friend gets is
1
8

. The area
shaded in black in the question corresponds to the pile given to one friend. So,

8
ÿ

n=1

1
9n =

1
8

S-8:
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If we start with a shape of area 1, and iteratively divide it into thirds, taking one of the
three newly created pieces each time, then the area we take will be equal to the desired

series,
8
ÿ

n=1

1
3n .

One way to do this is to start with a rectangle, make three vertical strips, then keep the
left strip and subdivide the middle strip.

We see that the total area we take approaches one-half the total area of the figure, so
8
ÿ

n=1

1
3n =

1
2

.

Alternately, instead of always taking vertical strips, we could alternate vertical and
horizontal slices.

In this setup, we notice that our strips come in pairs: two large vertical strips, two
smaller horizontal strips, two smaller vertical strips, etc. We shaed exactly one of each, so
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the shaded area is one-half the total area:
8
ÿ

n=1

1
3n =

1
2

.

Other solutions are possible, as well.

S-9: Theorem 5.2.5 in the text tells us
N
ÿ

n=0

arn = a
1´ rN+1

1´ r
, for r ‰ 1. Our geometric sum

has a = 1, r = 1
5 , and N = 100. So:

100
ÿ

n=0

1
5n =

1´ 1
5101

1´ 1
5

=
5101 ´ 1
4 ¨ 5100

S-10: After twenty students have brought their cookies, the pile numbers 53 cookies. 17
of these cookies were brought by students one through ten. So, the remainder
(53´ 17 = 36) is the number of cookies brought by students 11, 12, 13, 14, 15, 16, 17, 18,
19, and 20, together.

C10

C20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S-11:

Solution 1: Using the ideas of Question 10, we see:

100
ÿ

n=50

1
5n =

100
ÿ

n=0

1
5n ´

49
ÿ

n=0

1
5n
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That is, we want start with the sum of all the terms up to
1

5100 , and then subtract off

the ones we actually don’t want, which is everything up to
1

549 . Now, both series
are in a form appropriate for Theorem 5.2.5 in the text.

100
ÿ

n=0

1
5n ´

49
ÿ

n=0

1
5n =

1´ 1
5101

1´ 1
5

´ 1´ 1
550

1´ 1
5

=
5101 ´ 1
4 ¨ 5100 ´

550 ´ 1
4 ¨ 549

(
551

551

)
=

5101 ´ 1
4 ¨ 5100 ´

5101 ´ 551

4 ¨ 5100

=
551 ´ 1
4 ¨ 5100

Solution 2: If we write out the first few terms of our series, we see we can factor out a
constant to change the starting index.

100
ÿ

n=50

1
5n =

1
550 +

1
551 +

1
552 +

1
553 + ¨ ¨ ¨+ 1

5100

=
1

550

(
1
50 +

1
51 +

1
52 +

1
53 + ¨ ¨ ¨+ 1

550

)
=

50
ÿ

n=0

1
550 ¨

1
5n

Now, our sum is in the form of Theorem 5.2.5 in the text with a =
1

550 , r =
1
5

, and
N = 50.

50
ÿ

n=0

1
550 ¨

1
5n =

1
550 ¨

1´ 1
551

1´ 1
5

=
1´ 1

551

4 ¨ 549

(
551

551

)
=

551 ´ 1
4 ¨ 5100

S-12: (a) The table below is a record of our account, with black entries representing the
money your friend gives you, and red entries representing the money you give them
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(which is why the red entries are negative).

d ´ 1
d+1

1
d

total after
day d

1 ´1
2 1 1

2

2 ´1
3

1
2

2
3

3 ´1
4

1
3

3
4

4 ´1
5

1
4

4
5

5 ´1
6

1
5

5
6

6 ´1
7

1
6

6
7

After the exchange of day n, the amount you’re left with is $
(

1´ 1
n+1

)
. We see this by

the cancellation in the table: the $1
2 you gave your friend on day 1 was returned on day 2;

the $1
3 you gave your friend on day 2 was returned on day 3, etc.

So, after a long time, you’ll have gained close to (but always slightly less than) one dollar.

(b) The series
8
ÿ

d=1

(
1
d
´ 1

(d + 1)

)
describes the scenario in (a), so by our reasoning there,

8
ÿ

d=1

(
1
d
´ 1

(d + 1)

)
= lim

nÑ8

(
1´ 1

n + 1

)
= 1

(c) Again, let’s set up an account book.

d d + 1 ´(d + 2) total

1 2 ´3 ´1

2 3 ´4 ´2

3 4 ´5 ´3

4 5 ´6 ´4

5 6 ´7 ´5

6 7 ´8 ´6

By day d, you’ve lost $ d to your so-called friend. As time goes on, you lose more and
more.

(d) The series
8
ÿ

d=1

((d + 1)´ (d + 2)) exactly describes the scenario in part (c), so it
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diverges to ´8. You can also see this by writing
8
ÿ

d=1

((d + 1)´ (d + 2)) =
8
ÿ

d=1

(´1) = ´1´ 1´ 1´ 1´ 1´ ¨ ¨ ¨ .

Be careful to avoid a common mistake with telescoping series: if we look back at our
account book, we see that every negative term will cancel with a positive term, with the
initial +2 as the only term that never cancels. Your friend takes $3, which they return the
next day; then they take $4, which they return the next day; then they take $5, which they
return the next day, and so on. It’s extremely tempting to say that the series adds up to
$2, since every other term cancels out eventually. This is where we lean on
Definition 5.2.3 in the text: we evaluate the partial sums, which always leave your friend’s
last withdrawal unreturned. This definition makes sense: saying “I gained two bucks
from this exchange” doesn’t really capture the reality of your increasing debt.

S-13: Using arithmetic of series, Theorem 5.2.9 in the text, we see

8
ÿ

n=1

(an + bn + cn+1) = A + B +
8
ÿ

n=1

cn+1

The question remaining is what do to with the last series. If we write out the terms, we

see the difference between
8
ÿ

n=1

cn and
8
ÿ

n=1

cn+1 is simply that the latter is missing c1:

8
ÿ

n=1

cn+1 = c2 + c3 + c4 + c5 + ¨ ¨ ¨

= ´c1 + c1 + c2 + c3 + c4 + c5 + ¨ ¨ ¨

= ´c1 +
8
ÿ

n=1

cn

So,

8
ÿ

n=1

(an + bn + cn+1) = A + B + C´ c1

S-14: Theorem 5.2.9 in the text, arithmetic of series, doesn’t mention division, because in
general it doesn’t work the way the question suggests. For example, let tanu = tbnu = 1

2n .
Then:

•
ř8

n=0 an =
ř8

n=0 bn = 1
1´ 1

2
= 2, while

•
ř8

n=0
an

bn
=

ř8
n=0 1 = 8.

For the statement in the question, we can take tanu = tbnu = 1
2n , A = B = 2,

tcnu = t0, 0, 0, . . .u, and C = 0. We see the statement is false in this case.

606



So, in general, the statement given is false.

S-15: We recognize that this is a geometric series:

1 +
1
3
+

1
9
+

1
27

+
1

81
+

1
243

+ ¨ ¨ ¨ = 1
30 +

1
31 +

1
32 +

1
33 +

1
34 +

1
35 + ¨

=
8
ÿ

n=0

1
3n

Using Theorem 5.2.5 in the text with r =
1
3

and a = 1,

=
1

1´ 1
3

=
3
2

.

S-16: This is a geometric series, with ratio r =
1
8

. However, it doesn’t start at k = 0,
which is what we’re used to.

Solution 1: We write out the first few terms of the series to figure out a convenient
constant to factor out.

8
ÿ

k=7

1
8k =

1
87 +

1
88 +

1
89 + ¨ ¨ ¨

=
1
87

(
1
80 +

1
81 +

1
82 + ¨ ¨ ¨

)
=

8
ÿ

k=0

1
87 ¨

1
8n

We now evaluate the series using Theorem 5.2.5 in the text with r =
1
8

, a =
1
87 .

=
1
87 ¨

1
1´ 1

8

=
1

7ˆ 86

Solution 2: Using the idea of Question 10, we express the series we’re interested in as
the difference of two series that we can easily evaluate.

8
ÿ

k=7

1
8k =

8
ÿ

k=0

1
8k ´

6
ÿ

k=0

1
8k

Using Theorem 5.2.5 in the text,

=
1

1´ 1
8

´ 1´ 1
87

1´ 1
8

=
1

7ˆ 86
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S-17: We recognize this as a telescoping series.

k 6
k2 ´ 6

(k+1)2 sk

1 6 ´6
4 6´ 6

4

2 6
4 ´6

9 6´ 6
9

3 6
9 ´ 6

16 6´ 6
16

4 6
16 ´ 6

25 6´ 6
25

5 6
25 ´ 6

36 6´ 6
36

6 6
36 ´ 6

47 6´ 6
47

...

When we compute the nth partial sum, i.e. the sum of of the first n terms, successive

terms cancel and only the first half of the first term,
(

6
k2 ´ 6

(k+1)2

)ˇ
ˇ

ˇ

k=1
, and the second half

of the nth term,
(

6
k2 ´ 6

(k+1)2

)ˇ
ˇ

ˇ

k=n
, survive. That is:

sn =
n
ÿ

k=1

(
6
k2 ´

6
(k + 1)2

)
=

6
12 ´

6
(n + 1)2

Therefore, we can see directly that the sequence of partial sums tsnu is convergent:

lim
nÑ8

sn = lim
nÑ8

(
6´ 6

(n + 1)2

)
= 6

By Definition 5.2.3 in the text the series is also convergent, with limit 6.

S-18: We recognize that this is a telescoping series, and set up a table to find the
sequence of partial sums.
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n cos
(

ß
n

)
´ cos

(
ß

n+1

)
sn

3 cos
(

π
3

) ´ cos
(

π
4

) 1
2 ´ cos

(
π
4

)
4 cos

(
π
4

) ´ cos
(

π
5

) 1
2 ´ cos

(
π
5

)
5 cos

(
π
5

) ´ cos
(

π
6

) 1
2 ´ cos

(
π
6

)
6 cos

(
π
6

) ´ cos
(

π
7

) 1
2 ´ cos

(
π
7

)
7 cos

(
π
7

) ´ cos
(

π
8

) 1
2 ´ cos

(
π
8

)
8 cos

(
π
8

) ´ cos
(

π
9

) 1
2 ´ cos

(
π
9

)
...

The Nth partial sum sees every term cancel except the first part of the first term (1
2 ) and

the second part of the last term (´ cos( π
n+1)).

sN =
N
ÿ

n=3

(
cos

(π

n

)
´ cos

( π

n + 1

))
= cos

(π

3

)
´ cos

( π

N + 1

)
=

1
2
´ cos

( π

N + 1

)
.

As N Ñ 8, the argument π
N+1 converges to 0, and cos x is continuous at x = 0. By

Definition 5.2.3 in the text, the value of the series is

lim
NÑ8

sN = lim
NÑ8

[
1
2
´ cos

( π

N + 1

))]
=

1
2
´ cos(0) = ´1

2

S-19: (a) As in Question 2, since

sn´1 = a1 + a2 + ¨ ¨ ¨+ an´1

sn = a1 + a2 + ¨ ¨ ¨+ an´1 + an
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we can find an by subtracting:

an = sn ´ sn´1

=
1 + 3n
5 + 4n

´ 1 + 3(n´ 1)
5 + 4(n´ 1)

=
3n + 1
4n + 5

´ 3n´ 2
4n + 1

=
(3n + 1)(4n + 1)´ (3n´ 2)(4n + 5)

(4n + 1)(4n + 5)

=
11

16n2 + 24n + 5

(b) Using Definition 5.2.3 in the text,

8
ÿ

n=1

an = lim
nÑ8

sn = lim
nÑ8

1 + 3n
5 + 4n

= lim
nÑ8

1/n + 3
5/n + 4

=
0 + 3
0 + 4

=
3
4

The series converges to
3
4

.

S-20: What we have is a geometric series, but we need to get it into the proper form
before we can evaluate it.

8
ÿ

n=2

3 ¨ 4n+1

8 ¨ 5n =
8
ÿ

n=2

3 ¨ 4 ¨ 4n

8 ¨ 5n =
3
2

8
ÿ

n=2

(4
5

)n

Solution 1: If we factor our
(

4
5

)2
, we can change our index to something more

convenient.

3
2

8
ÿ

n=2

(
4
5

)n
=

3
2

8
ÿ

n=2

(
4
5

)2 (4
5

)n´2

=
3
2

8
ÿ

n=0

(
4
5

)2 (4
5

)n

We use Theorem 5.2.5 in the text with r =
4
5

.

=
3
2

(
4
5

)2

¨ 1
1´ 4

5

=
24
5

Solution 2: Using the idea of Question 10, we view our series as a more convenient
series, minus a few initial terms.

3
2

8
ÿ

n=2

(
4
5

)n
=

3
2

([
8
ÿ

n=0

(
4
5

)n
]
´
(

4
5

)1

´
(

4
5

)0
)

=
3
2

(
8
ÿ

n=0

(
4
5

)n
´ 9

5

)
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We use Theorem 5.2.5 in the text with r =
4
5

.

=
3
2

(
1

1´ 4
5

´ 9
5

)
=

24
5

S-21: We split the sum into two parts.

8
ÿ

n=2

(
2n+1

3n +
1

2n´ 1
´ 1

2n + 1

)
=

8
ÿ

n=2

2n+1

3n +
8
ÿ

n=2

(
1

2n´ 1
´ 1

2n + 1

)

The first part is a geometric series.

8
ÿ

n=2

2n+1

3n =
8
ÿ

n=0

2n+3

3n+2 =
8
ÿ

n=0

23

32 ¨
(

2
3

)n

We use Theorem 5.2.5 in the text with r =
2
3

and a =
8
9

.

=
8
9
¨ 1

1´ 2
3
=

8
3

The second part is a telescoping series. Let’s make a table to see how it cancels.

n 1
2n´1 ´ 1

2n+1 sn

2 1
3 ´1

5
1
3 ´ 1

5

3 1
5 ´1

7
1
3 ´ 1

7

4 1
7 ´1

9
1
3 ´ 1

9

5 1
9 ´ 1

11
1
3 ´ 1

11

6 1
11 ´ 1

13
1
3 ´ 1

13

7 1
13 ´ 1

15
1
3 ´ 1

15

...

After adding terms n = 2 through n = N, the partial sum is

sN =
1
3
´ 1

2N + 1
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because all the terms except the first part of the n = 2 term, and the last part of the n = N
term, cancel. Then:

8
ÿ

n=2

(
1

2n´ 1
´ 1

2n + 1

)
= lim

NÑ8
sN = lim

NÑ8

1
3
´ 1

2N + 1

=
1
3

All together,

8
ÿ

n=2

(
2n+1

3n +
1

2n´ 1
´ 1

2n + 1

)
=

8
ÿ

n=2

2n+1

3n +
8
ÿ

n=2

(
1

2n´ 1
´ 1

2n + 1

)
=

8
3
+

1
3
= 3

S-22: We split the sum into two parts.

8
ÿ

n=1

[(1
3

)n
+
(
´ 2

5

)n´1]
=

8
ÿ

n=1

(1
3

)n
+

8
ÿ

n=1

(
´ 2

5

)n´1

Both are geometric series.

=
8
ÿ

n=0

(1
3

)n+1
+

8
ÿ

n=0

(
´ 2

5

)n

=
1
3

8
ÿ

n=0

(1
3

)n
+

8
ÿ

n=0

(
´ 2

5

)n

We use Theorem 5.2.5 in the text with a1 =
1
3

and r1 =
1
3

, then with a2 = 1 and r2 = ´2
5

.

=
1
3
¨ 1

1´ 1
3

+
1

1 + 2
5

=
1
2
+

5
7
=

17
14

S-23: We split the sum into two parts.

8
ÿ

n=0

1 + 3n+1

4n =
8
ÿ

n=0

1
4n +

8
ÿ

n=0

3n+1

4n

=
8
ÿ

n=0

1
4n + 3

8
ÿ

n=0

(
3
4

)n
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Using Theorem 5.2.5 in the text,

=
1

1´ 1
4

+
3

1´ 3
4

=
4
3
+ 12 =

40
3

S-24: Using logarithm rules, we see
8
ÿ

n=5

ln
(

n´ 3
n

)
=

8
ÿ

n=5

[
ln(n´ 3)´ ln n

]
which looks like a telescoping series. Let’s make a table to figure out the partial sums.

n ln(n´ 3) ´ ln n sn

5 ln 2 ´ ln 5 ln 2´ ln 5

6 ln 3 ´ ln 6 ln 2 + ln 3´ ln 5´ ln 6

7 ln 4 ´ ln 7 ln 2 + ln 3 + ln 4´ ln 5´ ln 6´ ln 7

8 ln 5 ´ ln 8 ln 2 + ln 3 + ln 4´ ln 6´ ln 7´ ln 8

9 ln 6 ´ ln 9 ln 2 + ln 3 + ln 4´ ln 7´ ln 8´ ln 9

10 ln 7 ´ ln 10 ln 2 + ln 3 + ln 4´ ln 8´ ln 9´ ln 10

11 ln 8 ´ ln 11 ln 2 + ln 3 + ln 4´ ln 9´ ln 10´ ln 11

...

There is a “lag” before the terms cancel, which is why they “build up” more than we saw
in past examples. Still, we can clearly see the Nth partial sum:

N
ÿ

n=5

(
ln(n´ 3)´ ln(n)

)
= ln 2 + ln 3 + ln 4´ ln(N ´ 2)´ ln(N ´ 1)´ ln(N)

= ln
(

24
N(N ´ 1)(N ´ 2)

)
when N ě 7. So,

8
ÿ

n=5

(
ln(n´ 3)´ ln(n)

)
= lim

NÑ8
sN

= lim
NÑ8

ln
(

24
N(N ´ 1)(N ´ 2)

)
= ´8
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S-25: This is a telescoping series. Let’s investigate it in the usual way. We leave the
fractions in the middle of the table unsimplified, to make the pattern of cancellation
clearer, since terms with the same denominator cancel.

n
2
n

´ 1
n + 1

´ 1
n´ 1

sn

2
2
2

´1
3

´1
1

´1
3

3
2
3

´1
4

´1
2

1
3
´1

4
´ 1

2

4
2
4

´1
5

´1
3

1
4
´1

5
´ 1

2

5
2
5

´1
6

´1
4

1
5
´1

6
´ 1

2

6
2
6

´1
7

´1
5

1
6
´1

7
´ 1

2

7
2
7

´1
8

´1
6

1
7
´1

8
´ 1

2

8
2
8

´1
9

´1
7

1
8
´ 1

9
´ 1

2
...

In general, there are three terms with the same denominator, and these cancel out to zero,
but it takes a while to gather all three. So, some are left over in the partial sum.

sN =
N
ÿ

n=2

(
2
n
´ 1

n + 1
´ 1

n´ 1

)
=

1
N
´ 1

N + 1
´ 1

2

Therefore,
8
ÿ

n=2

(
2
n
´ 1

n + 1
´ 1

n´ 1

)
= lim

NÑ8
sN

= lim
NÑ8

[
1
N
´ 1

N + 1
´ 1

2

]
= ´1

2

S-26: Before you start, make sure your remember the relevant definitions. For the PDF,
f (x) = Pr(X = x); for the CDF, F(x) = Pr(X ď x).

• If x ă 1, then Pr(X ď x) = 0, so F(x) = 0 for all x in the interval (´8, 1).
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• If x is a natural number (1, 2, 3, etc.), then:

F(x) = Pr(X ď x) =
x
ÿ

n=1

Pr(X = n) =
x
ÿ

n=1

(
1
2

)n

This is a geometric partial sum. Note it starts at n = 1, not at n = 0.

=

(
1
2

)1

+

(
1
2

)2

+ ¨ ¨ ¨+
(

1
2

)x

=
1
2

[(
1
2

)0

+

(
1
2

)1

+ ¨ ¨ ¨+
(

1
2

)x´1
]

=
1
2

x´1
ÿ

n=0

(
1
2

)n
=

1
2

(
1´ (1/2)x

1´ 1/2

)
= 1´ 1

2x

• To get a feel for what happens for positive non-integers, let’s take a few samples.

– If X ď 1.5, then really X = 1, so Pr(X ď 1.5) = Pr(X ď 1).

– If X ď 2.5, then really X = 1 or X = 2, so Pr(X ď 2.5) = Pr(X ď 2).

Helpful notation: rounding x down to the nearest integer is txu. With this notation,
for x ą 1, F(x) = Pr(X ď x) = Pr(X ď txu) = F(txu).

All together:

F(x) =

#

0 x ă 1
1´ 1

2txu x ě 1

Sketched:

x

y

1/2

3/4

7/8
15/16

1 2 3 4 5 6

¨ ¨ ¨
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S-27: The volume of a sphere of radius
1

πn is

vn =
4
3

π

(
1

πn

)3

=
4π

3

(
1

π3

)n

So, the volume of all the spheres together is:

8
ÿ

n=1

vn =
8
ÿ

n=1

4π

3

(
1

π3

)n

=
8
ÿ

n=0

4π

3

(
1

π3

)n+1

=
8
ÿ

n=0

4
3π2

(
1

π3

)n

We use Theorem 5.2.5 in the text with a =
4

3π2 and r =
1

π3 .

=
4

3π2 ¨
1

1´ 1
π3

=
4π

3 (π3 ´ 1)

S-28: Let’s make a table. Keep in mind cos2 θ + sin2 θ = 1.

n
sin2 n

2n
cos2(n + 1)

2n+1 sn

3
sin2 3

23
cos2 4

24
sin2 3

23 +
cos2 4

24

4
sin2 4

24
cos2 5

25
sin2 3

23 +
1
24 +

cos2 5
25

5
sin2 5

25
cos2 6

26
sin2 3

23 +
1
24 +

1
25 +

cos2 6
26

6
sin2 6

26
cos2 7

27
sin2 3

23 +
1
24 +

1
25 +

1
26 +

cos2 7
27

7
sin2 7

27
cos2 8

28
sin2 3

23 +
1
24 +

1
25 +

1
26 +

1
27 +

cos2 8
28

...

This gives us an equation for the partial sum sN, when N ě 4:

sN =
N
ÿ

n=3

(
sin2 n

2n +
cos2(n + 1)

2n+1

)

=
sin2 3

23 +

(
N
ÿ

n=4

1
2n

)
+

cos2(N + 1)
2N+1
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Using Definition 5.2.3 in the text, our series evaluates to:

lim
NÑ8

sN = lim
NÑ8

[
sin2 3

23 +

(
N
ÿ

n=4

1
2n

)
+

cos2(N + 1)
2N+1

]

=
sin2 3

8
+

[
lim

NÑ8

cos2(N + 1)
2N+1

]
+

8
ÿ

n=4

1
2n

We evaluate the limit using the Squeeze Theorem; the series is geometric.

=
sin2 3

8
+ 0 +

8
ÿ

n=0

1
2n+4

=
sin2 3

8
+

1
24

8
ÿ

n=0

1
2n

Using Theorem 5.2.5 in the text,

=
sin2 3

8
+

1
24

1
1´ 1

2

=
sin2 3

8
+

1
8
« 0.1275

S-29:

(a)

i(i + 1)(i + 2)´ (i´ 1)i(i + 1) = i(i2 + 3i + 2)´ i(i2 ´ 1)

= i(i2 ´ i2 + 3i + 2 + 1)

= i(3i + 3) = 3i2 + 3i

(b) We’ll start by evaluating the telescoping sum

ÿ (
i(i + 1)(i + 2)´ (i´ 1)i(i + 1)

)

We can use tables, but this is actually a simpler relationship than some of the other
examples we’ve seen.
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n i(i + 1)(i + 2) ´(i´ 1)i(i + 1) sn

1 1 ¨ 2 ¨ 3 ´0 ¨ 1 ¨ 2 1 ¨ 2 ¨ 3

2 2 ¨ 3 ¨ 4 ´1 ¨ 2 ¨ 3 2 ¨ 3 ¨ 4

3 3 ¨ 4 ¨ 5 ´2 ¨ 3 ¨ 4 3 ¨ 4 ¨ 5

4 4 ¨ 5 ¨ 6 ´3 ¨ 4 ¨ 5 4 ¨ 5 ¨ 6
...

n n ¨ (n + 1) ¨ (n + 2)

So:

n
ÿ

i=1

(3i2 + 3i) =
ÿ (

i(i + 1)(i + 2)´ (i´ 1)i(i + 1)
)
= n(n + 1)(n + 2)

3
n
ÿ

i=1

i2 + 3
n
ÿ

i=1

i = n(n + 1)(n + 2)

n
ÿ

i=1

i2 =
1
3

n(n + 1)(n + 2)´
n
ÿ

i=1

=
1
3

n(n + 1)(n + 2)´ n(n + 1)
2

= n(n + 1)
(

n + 2
3

´ 1
2

)
= n(n + 1)

(
2(n + 2)´ 3

6

)
=

n(n + 1)(2n + 1)
6

(c) First, note:

i2(i + 1)2 ´ (i´ 1)2i2 = i2
(

i2 + 2i + 1´ (i2 ´ 2i + 1)
)

= i2
(

4i
)
= 4i3
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So,

n
ÿ

i=1

4i3 =
n
ÿ

i=1

(
i2(i + 1)2 ´ (i´ 1)2i2

)
n
ÿ

i=1

i3 =
1
4

n
ÿ

i=1

(
i2(i + 1)2 ´ (i´ 1)2i2

)

This is a telescoping series.

n i2(i + 1)2 ´(i´ 1)2i2 sn

1 12 ¨ 22 ´02 ¨ 12 12 ¨ 22

2 22 ¨ 32 ´12 ¨ 22 22 ¨ 32

3 32 ¨ 42 ´22 ¨ 32 32 ¨ 42

4 42 ¨ 52 ´32 ¨ 42 42 ¨ 52

...

n n2 ¨ (n + 1)2

All together,

n
ÿ

i=1

i3 =
1
4
¨ n2 ¨ (n + 1)2

S-30: Since tSMu is the sequence of partial sums of
8
ÿ

N=1

SN, we can find tSNu from tSMu
as in Question 3:

SN = SN ´SN´1 =
N + 1

N
´ N

N ´ 1
= ´ 1

N(N ´ 1)
if N ě 2,

S1 = S1 = 2
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Similarly, we find tanu from tSNu. Do be careful: SN only follows the formula we found
above when N ě 2. In the next line, we use an expression containing Sn´1; in order for
the subscript to be at least two (so the formula fits), we need n ě 3.

an = Sn ´ Sn´1 = ´ 1
n(n´ 1)

´ ´1
(n´ 1)(n´ 2)

=
2

n(n´ 1)(n´ 2)
if n ě 3,

a2 = S2 ´ S1 = ´ 1
2(2´ 1)

´ 2 = ´5
2

,

a1 = S1 = 2

All together,

an =

$

’

&

’

%

2
n(n´1)(n´2) if n ě 3,

´5
2 if n = 2,

2 if n = 1

S-31:
ş8

´8
f (x) is the area under the entire curve, which (conveniently) is made up of

rectangles. Since the left and right half-planes are symmetric, we’ll double the area under
the curve when x ě 0 to get the entire area.

ż 8

´8

f (x)dx = 2
ż 8

0
f (x)dx = 2

8
ÿ

n=1

1
2
¨
(

1
2

)n

=
8
ÿ

n=1

(
1
2

)n
=

1
2

8
ÿ

n=0

(
1
2

)n

This is a geometric series with r = 1
2

=
1
2
¨ 1

1´ 1
2

= 1

So f (x) could indeed be a PDF.

Indeed, f (x) illustrates the surprising property that a PDF need not have lim
xÑ´8

f (x) = 0.

S-32: We don’t know how to evaluate very many sums. This one isn’t geometric, so let’s
hope it’s telescoping. The telescoping series we’ve seen have terms that are differences;
let’s pull our term apart using partial fractions.

2
n(n + 1)(n + 2)

=
A
n
+

B
n + 1

+
C

n + 2
=

A(n + 1)(n + 2) + Bn(n + 2) + Cn(n + 1)
n(n + 1)(n + 2)

2 = A(n + 1)(n + 2) + Bn(n + 2) + Cn(n + 1)
n = 0 ùñ 2 = A(1)(2) ùñ A = 1

n = ´1 ùñ 2 = B(´1)(1) ùñ B = ´2
n = ´2 ùñ 2 = C(´2)(´1) ùñ C = 1
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So, we can rewrite our sum as
1000
ÿ

n=1

(
1
n
´ 2

n + 1
+

1
n + 2

)
which looks much more like a telescoping sum.

1
n

´2
n + 1

1
n + 2

n = 1
1
1

´2
2

1
3

n = 2
1
2

´2
3

1
4

n = 3
1
3

´2
4

1
5

n = 4
1
4

´2
5

1
6

...

n = 1000
1

1000
´ 2

1001
1

1002

n = 999
1

999
´ 2

1000
1

1001

n = 998
1

998
´ 2

999
1

1000

n = 997
1

997
´ 2

998
1

999

Reading off the remaining terms,

1000
ÿ

n=1

2
n(n + 1)(n + 2)

=

(
1
1
´ 2

2
+

1
2

)
+

(
1

1001
´ 2

1001
+

1
1002

)
=

1
2
´ 1

1001
+

1
1002

S-33: We consider a circle of radius R, with an “inner ring” from R
3 to 2R

3 and an “outer
ring” from 2R

3 to R.

The area of the outer ring is:

πR2 ´ π

(
2R
3

)2

=
5
9

πR2
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The area of the inner ring is:

π

(
2R
3

)2

´ π

(
R
3

)2

=
3
9

πR2

So, the ratio of the inner ring’s area to the outer ring’s area is 3
5 .

In our bullseye diagram, if we pair up any red ring with the blue ring just inside it, the
blue ring has 3

5 the area of the red ring. So, the blue portion of the bullseye has 3
5 the area

of the red portion.

Since the circle has area 1, if we let the red portion have area A, then

1 = A +
3
5

A =
8
5

A

So, the red portion has area 5
8 .

Solutions to Exercises 5.3 — Jump to TABLE OF CONTENTS

S-1:

(A) lim
nÑ8

1
n
= 0, so the divergence test is inconclusive. It’s true that this series diverges,

but we can’t show it using the divergence test.

(B) lim
nÑ8

n2

n + 1
= 8, which is not zero, so the divergence test tells us this series diverges.

(C) lim
nÑ8

sin n does not exist, so in particular it is not zero. Therefore, the divergence test
tells us this series diverges.

(D) For all whole numbers n, sin(πn) = 0, so lim
nÑ8

sin(πn) = 0 and the divergence test is
inconclusive.

S-2: Let f (x) be a function with f (n) = an for all whole numbers n. In order to apply the
integral test (Theorem 5.3.5 in the text) we need f (x) to be positive and decreasing for all
sufficiently large values of n.

(A) f (x) = 1
x , which is positive and decreasing for all x ě 1, so the integral test does

apply here.

(B) f (x) = sin x, which is neither consistently positive nor consistently decreasing, so
the integral test does not apply. (The divergence test tells us the series diverges,
though.)

(C) f (x) = sin x+1
x2 is positive for all whole numbers n. To determine whether it is

decreasing, we consider its derivative.

f 1(x) =
x2(cos x)´ (sin x + 1)(2x)

x4 =
x cos x´ 2 sin x´ 2

x3
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This is sometimes positive, and sometimes negative. (For example, if x = 100π,
f 1(x) = 100π´0´2

(100π)3 ą 0, but if x = 101π then f 1(x) = 101π(´1)´0´2
(101π)3 ă 0.) Then f (x) is

not a decreasing function, so the integral test does not apply.

We also could have seen that f (x) is not always decreasing by noting that f (x) = 0
whenever x = 3π

2 + 2πn for an integer n, and f (x) ą 0 for all other x.

S-3: It diverges by the divergence test, because lim
nÑ8

an ‰ 0.

S-4: The integral test does not apply because f (x) is not decreasing.

S-5: The terms of the series only see a small portion of the domain of the integral. We
can try to think of a function f (x) that behaves “nicely” when x is a whole number (that
is, it produces a sequence whose sum converges), but is more unruly when x is not a
whole number.

For example, suppose f (x) = sin(πx). Then f (x) = 0 for every integer x, but this is not
representative of the function as a whole. Indeed, our corresponding series has terms
tanu = t0, 0, 0, . . .u.

•
ż 8

1
sin(πx)dx = lim

RÑ8

[
´ 1

π
cos(πx)

]R

1
= lim

RÑ8

[
´ cos(πR)

]
´ 1

π
Since the limit does not exist, the integral diverges.

•
8
ÿ

n=1

sin(πn) =
8
ÿ

n=1

0 = 0. The series converges.

S-6: This is a geometric series with r = ´1
5 . Since |r| ă 1, it is convergent.

We want to use the formula
ř8

n=0 rn = 1
1´r , but our series does not start at 0, so we

re-write it:

8
ÿ

n=3

(´1
5

)n
=

8
ÿ

n=0

(´1
5

)n
´

2
ÿ

n=0

(´1
5

)n
=

1
1´ (´1/5)

´
(

1´ 1
5
+

1
25

)
=

1
6/5

´ 1 +
1
5
´ 1

25
=

5
6
+
´25 + 5´ 1

25
= ´ 1

150

S-7: For any integer n, sin(πn) = 0, so
ř

sin(πn) =
ř

0 = 0. So, this series converges.

S-8: For any integer n, cos(πn) = ˘1, so lim
nÑ8

cos(πn) ‰ 0.
By the divergence test, this series diverges.
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S-9: This is close to being in the form of a geometric series. First, we should have our
powers be k, not k + 2, but we notice 3k+2 = 3k32 = 9 ¨ 3k, so:

8
ÿ

k=0

2k

3k+2 =
8
ÿ

k=0

2k

9 ¨ 3k =
1
9

8
ÿ

k=0

2k

3k =
1
9

8
ÿ

k=0

(
2
3

)k

Now it looks like a geometric series with r = 2
3

=
1
9

(
1

1´ (2/3)

)
=

1
3

In conclusion: this (geometric) series is convergent, and its sum is
1
3

.

S-10: Let f (x) = 1
x(ln x)p . Then f (x) is positive for n ě 3, and f (x) decreases as x

increases. So, we can use the integral test, Theorem 5.3.5 in the text.

ż 8

2

1
x(ln x)p dx = lim

RÑ8

ż R

2

1
(ln x)p

dx
x

= lim
RÑ8

ż ln R

ln 2

1
up du with u = ln x, du =

dx
x

Using the results about p-series, Example 5.3.7 in the text, we know this integral
converges if and only if p ą 1, so the same is true for the series by the integral test.

S-11: As usual, let’s see whether the “easy” tests work. The terms we’re adding
converge to zero:

lim
nÑ8

e´
?

n
?

n
= lim

nÑ8

1?
ne
?

n
= 0

so the divergence test is inconclusive. Our series isn’t geometric. However, the terms
we’re adding seem like they would make an integrable function.

Set f (x) = e´
?

x
?

x . For x ě 1, this function is positive and decreasing (since it is the product

of the two positive decreasing functions e´
?

x and 1?
x ). We use the integral test with this

function. Using the substitution u =
?

x, so that du = 1
2
?

x dx, we see that

ż 8

1
f (x)dx = lim

RÑ8

ż R

1

(
e´
?

x
?

x
dx
)

= lim
RÑ8

(
ż

?
R

1
e´u ¨ 2 du

)
= lim

RÑ8

(
´2e´u

ˇ

ˇ

ˇ

?
R

1

)
= lim

RÑ8

(
´2e´

?
R + 2e´

?
1
)
= 0 + 2e´1,
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and so this improper integral converges. By the integral test, the given series also
converges.

S-12:

8
ÿ

n=5

1
en =

8
ÿ

n=5

(
1
e

)n

=
8
ÿ

n=0

(
1
e

)n
´

4
ÿ

n=0

(
1
e

)n

=
1

1´ 1
e
´

1´
(

1
e

)5

1´ 1
e

=

(
1
e

)5

1´ 1
e
=

1

e5
(

1´ 1
e

)
=

1
e5 ´ e4

S-13: This is a geometric series.

8
ÿ

n=2

6
7n =

8
ÿ

n=0

6
7n+2 =

8
ÿ

n=0

6
72 ¨

1
7n

We use Theorem 5.2.5 in the text with a = 6
72 and r = 1

7 .

=
6
72 ¨

1
1´ 1

7

=
6

42
=

1
7

S-14: Note that
e´
?

x
?

x
=

1?
xe
?

x
decreases as x increases. Hence, for every n ě 1,

e´
?

x
?

x
ě e

?
n

?
n

for x in the interval [n´ 1, n]

So,
ż n

n´1

e´
?

x
?

x
dx ě

ż n

n´1

e´
?

n
?

n
dx

=

[
e´
?

n
?

n
x

]x=n

x=n´1

=
e´
?

n
?

n
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Then, for every N ě 1,

EN =
8
ÿ

n=N+1

e´
?

n
?

n
ď

8
ÿ

n=N+1

ż n

n´1

e´
?

x
?

x
dx

=

ż N+1

N

e´
?

x
?

x
dx +

ż N+2

N+1

e´
?

x
?

x
dx + ¨ ¨ ¨

=

ż 8

N

e´
?

x
?

x
dx

Substituting y =
?

x, dy = 1
2

dx?
x ,

ż 8

N

e´
?

x
?

x
dx = 2

ż 8

?
N

e´y dy = ´2e´y
ˇ

ˇ

ˇ

8

?
N
= 2e´

?
N

This shows that
ř8

n=N+1
e´
?

n
?

n converges and is between 0 and 2e´
?

N. Since

E14 = 2e´
?

14 = 0.047, we may truncate the series at n = 14.

8
ÿ

n=1

e´
?

n
?

n
=

14
ÿ

n=1

e´
?

n
?

n
+ E14

= 0.3679 + 0.1719 + 0.1021 + 0.0677 + 0.0478
+ 0.0352 + 0.0268 + 0.0209 + 0.0166 + 0.0134
+ 0.0109 + 0.0090 + 0.0075 + 0.0063 + E14

= 0.9042 + E14

The sum is between 0.9035 and 0.9535. (This even allows for a roundoff error of 0.00005
in each term as we were calculating the partial sum.)

S-15: By the divergence test, the fact that
8
ř

n=0
(1´ an) converges guarantees that

lim
nÑ8

(1´ an) = 0, or equivalently, that lim
nÑ8

an = 1. So, by the divergence test, a second
time, the fact that

lim
nÑ8

2nan = +8

guarantees that
8
ř

n=0
2nan diverges too.

S-16: By the divergence test, the fact that
8
ÿ

n=1

nan ´ 2n + 1
n + 1

converges guarantees that

lim
nÑ8

nan ´ 2n + 1
n + 1

= 0, or equivalently, that

0 = lim
nÑ8

n
n + 1

an ´ lim
nÑ8

2n´ 1
n + 1

= lim
nÑ8

an ´ 2 ðñ lim
nÑ8

an = 2
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The series of interest can be written ´ ln a1 +
8
ř

n=1

[
ln(an)´ ln(an+1)

]
which looks like a

telescoping series. So we’ll compute the partial sum

SN = ´ ln a1 +
N
ÿ

n=1

[
ln(an)´ ln(an+1)

]
= ´ ln a1 +

[
ln(a1)´ ln(a2)

]
+
[

ln(a2)´ ln(a3)
]
+ ¨ ¨ ¨+ [ ln(aN)´ ln(aN+1)

]
= ´ ln(aN+1)

and then take the limit N Ñ 8

´ ln a1 +
8
ÿ

n=1

[
ln(an)´ ln(an+1)

]
= lim

NÑ8
SN = ´ lim

NÑ8
ln(aN+1) = ´ ln 2 = ln

1
2

S-17: The most-commonly used word makes up α percent of all the words. So, we want
to find α.

If we add together the frequencies of all the words, they should amount to 100%. That is,

20,000
ÿ

n=1

α

n
= 100

We can approximate the sum (with α left as a parameter) using the ideas behind the
integral test. (See Example 5.3.4.)

x

y

1 2 3 4

α

5

f (x) = α
x

As we see in the diagram above,
N
ÿ

n=1

α

n
(which is the sum of the areas of the rectangles) is

greater than
ż N+1

1

α

x
dx (the area under the curve). That is,

ż N+1

1

α

x
dx ă

N
ÿ

n=1

α

n
.

Using the fact that our language’s 20,000 words make up 100% of the words used, we can
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find a lower bound for α.

100 =
20,000
ÿ

n=1

α

n
ą
ż 20,001

1

α

x
dx =

[
α ln(x)

]20,001

1
= α ln(20, 001)

α ă 100
ln(20, 001)

We can find an upper bound for α in a similar manner.

x

y

1 2 3 4

α

5

f (x) = α
x

From the diagram, we see
N
ÿ

n=2

α

n
(which is the sum of the areas of the rectangles,

excluding the first) is less than
ż N

1

α

x
dx. (The reason for excluding the first rectangle is to

avoid comparing our series to an integral that diverges.) That is,

N
ÿ

n=2

α

n
ă
ż N

1

α

x
dx .

Therefore,

100 =
20,000
ÿ

n=1

α

n
= α +

20,000
ÿ

n=2

α

n

ă α +

ż 20,00

1

α

x
dx = α + α ln(20, 000) = α

[
1 + ln(20, 000)

]
α ą 100

1 + ln(20, 000)

Using a calculator, we see
9.17 ă α ă 10.01

So, the most-commonly used word makes up about 9-10 percent of the total words.

S-18: Since no town has fewer than one person, the smallest town is the two-millionth
town, with a single inhabitant. Therefore, there are 2 million towns, and the total
population of the region is given by

2 mill
ÿ

n=1

2 mill
n

= 2ˆ 106
2ˆ106
ÿ

n=1

1
n
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Generalizing our work in Question 17, we find the approximations:
ż b+1

a

1
x

dx ă
b
ÿ

n=a

1
n
ă
ż b

a´1

1
x

dx

when a ě 2.

x

y

a´ 1 b + 1a b

1

f (x) = 1
x

Figure 6.1:
b+1
ş

a

1
x dx ă

b
ř

n=a

1
n

x

y

a´ 1 b + 1a b

1

f (x) = 1
x

Figure 6.2:
b
ř

n=a

1
n ă

b
ş

a´1

1
x dx

We want our error to be less than one million, so we need to choose a value of a such that:

2ˆ 106
ż 2ˆ106

a´1

1
x

dx
looooooooooomooooooooooon

upper bound

´ 2ˆ 106
ż 2ˆ106+1

a

1
x

dx
loooooooooooomoooooooooooon

lower bound

ă 106

ż 2ˆ106

a´1

1
x

dx´
ż 2ˆ106+1

a

1
x

dx ă 1
2[

ln
(

2ˆ 106
)
´ ln(a´ 1)

]
´
[
ln
(

2ˆ 106 + 1
)
´ ln(a)

]
ă 1

2[
ln
(

2ˆ 106
)
´ ln

(
2ˆ 106 + 1

)]
+ [ln(a)´ ln(a´ 1)] ă 1

2

ln
(

2ˆ 106

2ˆ 106 + 1

)
+ ln

(
a

a´ 1

)
ă 1

2
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The first term is extremely close to 0, so we ignore it.

ln
(

a
a´ 1

)
ă 1

2
a

a´ 1
ă e1/2 =

?
e

a ă a
?

e´?e?
e ă a(

?
e´ 1)?

e?
e´ 1

ă a

Since
?

e?
e´ 1

« 2.5, we use a = 3. That is, we will approximate the value of
2ˆ106
ÿ

n=3

1
n

using

an integral. Then, we will use that approximation to estimate our total population.

ż 2ˆ106+1

3

1
x

dx ă
2ˆ106
ÿ

n=3

1
n

ă
ż 2ˆ106

4

1
x

dx

ln
(

2ˆ 106 + 1
)
´ ln(3) ă

2ˆ106
ÿ

n=3

1
n

ă ln
(

2ˆ 106
)
´ ln(4)

1 +
1
2
+ ln

(
2ˆ 106 + 1

)
´ ln(3) ă

2ˆ106
ÿ

n=1

1
n

ă 1 +
1
2
+ ln

(
2ˆ 106

)
´ ln(4)

3
2
+ ln

(
2ˆ 106 + 1

3

)
ă

2ˆ106
ÿ

n=1

1
n

ă 3
2
+6 ln(10)´ ln(2)

2ˆ 106
(3

2
+ ln

(
2
3 ˆ 106 + 1

3

) )
ă

2ˆ106
ÿ

n=1

2ˆ 106

n
ă2ˆ 106

(3
2
+6 ln (10)´ ln(2)

)
29, 820, 091 ăpopulation ă 29, 244, 727

Solutions to Exercises 5.4 — Jump to TABLE OF CONTENTS

S-1: (a) If Olaf is old, and I am even older, then I am old as well.
(b) If Olaf is old, and I am not as old, then perhaps I am old as well (just slightly less so),
or perhaps I am young. There is not enough information to tell.
(c) If Yuan is young, and I am older, then perhaps I am much older and I am old, or
perhaps I am only a little older, and I am young. There is not enough information to tell.
(d) If Yuan is young, and I am even younger, then I must also be young.

Another way to think about this is with a timeline of birthdates. People born before the
threshold are old, and people born after it are young.
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threshold YuanOlaf

If I’m born before (older than) Olaf, I’m born before the threshold, so I’m old.
If I’m born after (younger than) Yuan I’m born after the threshold, so I’m young.

threshold Yuan

definitely young

Olaf

definitely old

If I’m born after Olaf or before Yuan, I don’t know which side of the threshold I’m on. I
could be old or I could be young.

threshold Yuan

older than Yuanalso older than Yuan

S-2: The comparison test is Theorem 5.4.1 in the text. However, rather than trying to
memorize which way the inequalities go in all cases, we use the same reasoning as
Question 1.

If a sequence has positive terms, it either converges, or it diverges to infinity, with the
partial sums increasing and increasing without bound. If one sequence diverges, and the
other sequence is larger, then the other sequence diverges–just like being older than an
old person makes you old.

If
ř

an converges, and tanu is the red (larger) series, then
ř

bn converges: it’s smaller
than a sequence that doesn’t add up to infinity, so it too does not add up to infinity.

If
ř

an diverges, and tanu is the blue (smaller) series, then
ř

bn diverges: it’s larger than a
sequence that adds up to infinity, so it too adds up to infinity.

In the other cases, we can’t say anything. If tanu is the red (larger) series, and
ř

an
diverges, then perhaps tbnu behaves similarly to tanu and

ř

bn diverges, or perhaps tbnu
is much, much smaller than tanu and

ř

bn converges.

Similarly, if tanu is the blue (smaller) series, and
ř

an converges, then perhaps tbnu
behaves similarly to tanu and

ř

bn converges, or perhaps tbnu is much, much bigger than
tanu and

ř

bn diverges.
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if
ř

an converges if
ř

an diverges

and if tanu is the red series then
ř

bn CONVERGES inconclusive

and if tanu is the blue series inconclusive then
ř

bn DIVERGES

S-3: (a) Since
ř 1

n is divergent, we can only use it to prove series with larger terms are
divergent. This is the case here, since 1

n´1 ą 1
n . So, the direct comparison test is valid.

For the limit comparison test, we calculate:

lim
nÑ8

an

bn
= lim

nÑ8

1
n´1

1
n

= lim
nÑ8

n
1

Since the limit is a real number and not zero, also the limit comparison test is valid.

(b) Since the series
ř 1

n2 converges, we can only use the direct comparison test to show
the convergence of a series if its terms have smaller absolute values. Indeed,

ˇ

ˇ

ˇ

ˇ

sin n
n2 + 1

ˇ

ˇ

ˇ

ˇ

=
| sin n|
n2 + 1

ă 1
n2

so the series are set for a direct comparison.

To check whether a limit comparison will work, we compute:

lim
nÑ8

an

bn
= lim

nÑ8

sin n
n2+1

1
n2

= lim
nÑ8

n2

n2 + 1
sin n = lim

nÑ8
(1) sin n

The limit does not exist, so the limit comparison test is not a valid test to compare these
two series.

(c) Since the series
ř 1

n3 converges, we can only use the direct comparison test to
conclude something about a series with smaller terms. However,

n3 + 5n + 1
n6 ´ 2

ą n3

n6 =
1
n3 .

Therefore the direct comparison test does not apply to this pair of series.

For the limit comparison test, we calculate:

lim
nÑ8

an

bn
= lim

nÑ8

n3+5n+1
n6´2

1
n3

= lim
nÑ8

n3 + 5n + 1
n3 ´ 2

n3

(
1

n3

1
n3

)

= lim
nÑ8

1 + 5
n2 +

1
n3

1´ 2
n6

= 1
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Since the limit is a nonzero real number, we can use the limit comparison test to compare
this pair of series.

(d) Since the series
ř 1

4?n
diverges, we can only use the direct comparison test to show

that a series with larger terms diverges. However,

1?
n
ă 1

4
?

n

so the direct comparison test isn’t valid with this pair of series.

For the limit comparison test, we calculate:

lim
nÑ8

an

bn
= lim

nÑ8

1?
n

1
4?n

= lim
nÑ8

1
4
?

n
= 0

Since the limit is zero, the limit comparison test doesn’t apply.

S-4: The divergence test (Theorem 5.3.1 in the text) is inconclusive when lim
nÑ8

an = 0. We
cannot use the divergence test to show that a series converges.

S-5: The inequality goes the wrong way, so the direct comparison test (with this
comparison series) is inconclusive.

S-6: When n is very large, the term 2n dominates the numerator, and the term 3n

dominates the denominator. So when n is very large an « 2n

3n . Therefore we should take

bn =
2n

3n . Note that, with this choice of bn,

lim
nÑ8

an

bn
= lim

nÑ8

2n + n
3n + 1

3n

2n = lim
nÑ8

1 + n/2n

1 + 1/3n = 1

as desired.

S-7: (a) In general false. The harmonic series
8
ř

n=1

1
n diverges by the p–test with p = 1.

(b) Be careful. You were not told that the an’s are positive. So this is false in general. If

an = (´1)n 1
n , then

8
ř

n=1
(´1)nan is again the harmonic series

8
ř

n=1

1
n , which diverges.

(c) In general false. Take, for example, an = 0 and bn = 1.

S-8: The terms of the series tend to 0, so we can’t use the divergence test.

To generate a guess about its convergence, we do the following:

ÿ 1?
k
?

k + 1
=

ÿ 1?
k2 + k

«
ÿ 1?

k2
=

ÿ 1
k
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We guess that our series behaves like the harmonic series, and the harmonic series
diverges (which can be demonstrated by p-test or integral test). So, we guess that our
series diverges. However, in order to directly compare our series to the harmonic series
and show our series diverges, our terms would have to be bigger than the terms in the
harmonic series, and this is not the case. So, we use limit comparison.

1
k
1?

k2+k

=

?
k2 + k

k
=

?
k2 + k?

k2
=

c

k2 + k
k2 =

c

1 +
1
k

, so

lim
kÑ8

1
k
1?

k2+k

= lim
kÑ8

c

1 +
1
k
= 1

Since 1 is a real number greater than 0, by the Limit Comparison Test,
ř 1?

k
?

k+1
diverges,

like
ř 1

k .

S-9: First, we rule out some of the easier tests. The limit of the terms being added is zero,
so the divergence test is inconclusive. The terms being added are smaller than the terms
of the (divergent) harmonic series,

ř 1
n , so we can’t directly compare these two series,

and there isn’t another obvious series to compare ours to. However, the terms being
added seem like a function we could integrate.

Let f (x) =
5

x(ln x)3/2 . Then f (x) is positive and decreases as x increases. So the sum
8
ÿ

3

f (n) and the integral
ż 8

3
f (x)dx either both converge or both diverge, by the integral

test, which is Theorem 5.3.5 in the text. For the integral, we use the substitution u = ln x,
du = dx

x to get
ż 8

3

5 dx
x(ln x)3/2 =

ż 8

ln 3

5 du
u3/2

which converges by the p–test (which is Example 3.7.8 in the text) with p = 3
2 ą 1.

S-10: First, we’ll check the divergence test. It doesn’t always work, but if it does, it’s
likely the easiest path.

lim
nÑ8

n2

3n2 +
?

n

(
1

n2

1
n2

)
= lim

nÑ8

1
3 + 1

n
?

n

=
1
3
‰ 0

Since the limit of the terms being added is not zero, the series diverges by the divergence
test.

S-11: We first develop some intuition. For very large n, 3n2 dominates 7 so that
?

3n2 ´ 7
n3 «

?
3n2

n3 =

?
3

n2
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The series
8
ÿ

n=2

1
n2 converges by the p–test with p = 2, so we expect the given series to

converge too.

To verify that our intuition is correct, it suffices to observe that

0 ă an =

?
3n2 ´ 7

n3 ă
?

3n2

n3 =

?
3

n2 = cn

for all n ě 2. As the series
8
ř

n=2
cn converges, the comparison test says that

8
ř

n=2
an

converges too.

S-12: We first develop some intuition. For very large k, k4 dominates 1 so that the
numerator 3

?
k4 + 1 « 3

?
k4 = k4/3, and k5 dominates 9 so that the denominator?

k5 + 9 «
?

k5 = k5/2 and the summand

3
?

k4 + 1?
k5 + 9

« k4/3

k5/2 =
1

k7/6

The series
8
ÿ

n=1

1
k7/6 converges by the p–test with p = 7

6 ą 1, so we expect the given series

to converge too.

To verify that our intuition is correct, we apply the limit comparison test with

ak =
3
?

k4 + 1?
k5 + 9

and bk =
1

k7/6 =
k4/3

k5/2

which is valid since

lim
kÑ8

ak
bk

= lim
kÑ8

3
?

k4 + 1/k4/3
?

k5 + 9/k5/2
= lim

kÑ8

3
a

1 + 1/k4
a

1 + 9/k5
= 1

exists. Since the series
8
ř

k=1
bk is a convergent p–series (with ratio p = 7

6 ą 1), the given

series converges.

Note: to apply the direct comparison test with our chosen comparison series, we would
need to show that

3
?

k4 + 1?
k5 + 9

ď 1
k7/6

for all k sufficiently large. However, this is not true: the opposite inequality holds when k
is large.

S-13: For large k, k4 " 2k3 ´ 2 and k5 " k2 + k so

k4 ´ 2k3 + 2
k5 + k2 + k

« k4

k5 =
1
k

.
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This suggests that we apply the limit comparison test with ak =
k4´2k3+2
k5+k2+k and bk =

1
k .

Since

lim
kÑ8

ak
bk

= lim
kÑ8

k4 ´ 2k3 + 2
k5 + k2 + k

¨ k
1
= lim

kÑ8

k5 ´ 2k4 + k2

k5 + k2 + k
= lim

kÑ8

1´ 2/k + 1/k3

1 + 1/k3 + 1/k4

= 1

and since
8
ř

k=1

1
k diverges (by the p–test with p = 1), the given series diverges.

S-14: (a) For large n, n2 " n + 1 and so the numerator n2 + n + 1 « n2. For large n,
n5 " n and so the denominator n5 ´ n « n5. So, for large n,

n2 + n + 1
n5 ´ n

« n2

n5 =
1
n3 .

This suggests that we apply the limit comparison test with an = n2+n+1
n5´n and bn = 1

n3 .
Since

lim
nÑ8

an

bn
= lim

nÑ8

(n2 + n + 1)/(n5 ´ n)
1/n3 = lim

nÑ8

n5 + n4 + n3

n5 ´ n
= lim

nÑ8

1 + 1/n + 1/n2

1´ 1/n4

= 1

exists and is nonzero, and since
8
ř

n=1

1
n3 converges (by the p–test with p = 3 ą 1), the given

series converges.

(b) For large m, 3m " | sin
?

m| and so

3m + sin
?

m
m2 « 3m

m2 =
3
m

.

This suggests that we apply the limit comparison test with am = 3m+sin
?

m
m2 and bm = 1

m .
(We could also use bm = 3

m .) Since

lim
mÑ8

am

bm
= lim

mÑ8

(3m + sin
?

m)/m2

1/m
= lim

mÑ8

3m + sin
?

m
m

= lim
mÑ8

3 +
sin
?

m
m

= 3

exists and is nonzero, and since
8
ř

m=1

1
m diverges (by the p–test with p = 1), the given

series diverges.

S-15: For large n, the numerator n3 ´ 4 « n3 and the denominator 2n5 ´ 6n « 2n5, so the
nth term is approximately n3

2n5 = 1
2n2 . So we apply the limit comparison test with

an = n3´4
2n5´6n and bn = 1

n2 . Since

lim
nÑ8

an

bn
= lim

nÑ8

(n3 ´ 4)/(2n5 ´ 6n)
1/n2 = lim

nÑ8

1´ 4
n3

2´ 6
n4

=
1
2
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exists and is nonzero, the given series
8
ř

n=1
an converges if and only if the series

8
ř

n=1
bn

converges. Since the series
8
ř

n=1
bn =

8
ř

n=1

1
n2 is a convergent p-series (with p = 2), both

series converge.

S-16: We usually check the divergence test first, to look for low-hanging fruit. The limit
of the terms being added is zero:

lim
nÑ8

1
n + 1

2

= 0

so the divergence test is inconclusive. That is, we need to look harder.

Next, we might consider a comparison test–these can also provide us (if we’re lucky)
with an easy path. The terms we’re adding look somewhat like 1

n , but our terms are
smaller than these terms, which form the terms of the divergent harmonic series. So, a
direct comparison seems unlikely. Now we search for more exotic tests.

Let f (x) =
1

x + 1
2

. Note f (x) is positive and decreases as x increases. So, by the integral

test, which is Theorem 5.3.5 in the text, the given series converges if and only if the
integral

ş8

0
1

x+ 1
2

dx converges. Since

ż 8

0

1
x + 1

2

dx = lim
RÑ8

ż R

0

1
x + 1

2

dx = lim
RÑ8

[
ln
(

x +
1
2

)]x=R

x=0

= lim
RÑ8

[
ln
(

R +
1
2

)
´ ln

1
2

]
diverges, the series diverges.

S-17: (a)

Solution 1: • Our first task is to identify the potential sources of impropriety for this
integral.

• The domain of integration extends to +8. On the domain of integration the
denominator is never zero so the integrand is continuous. Thus the only
problem is at +8.

• Our second task is to develop some intuition about the behaviour of the
integrand for very large x. When x is very large:

– | sin x| ď 1 ! x, so that the numerator x + sin x « x, and

– 1 ! x2, so that denominator 1 + x2 « x2, and

– the integrand
x + sin x

1 + x2 « x
x2 =

1
x
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• Now, since
ż 8

2

dx
x

diverges, we would expect
ż 8

2

x + sin x
1 + x2 dx to diverge too.

• Our final task is to verify that our intuition is correct. To do so, we set

f (x) =
x + sin x

1 + x2 g(x) =
1
x

and compute

lim
xÑ8

f (x)
g(x)

= lim
xÑ8

x + sin x
1 + x2 ˜ 1

x

= lim
xÑ8

(1 + sin x/x)x
(1/x2 + 1)x2 ˆ x

= lim
xÑ8

1 + sin x/x
1/x2 + 1

= 1

• Since
ż 8

2
g(x) dx =

ż 8

2

dx
x

diverges, by Example 3.7.8 in the text13, with

p = 1, Theorem 3.7.23(b) in the text now tells us that
ż 8

2
f (x) dx =

ż 8

2

x + sin x
1 + x2 dx diverges too.

Solution 2: Let’s break up the integrand as
x + sin x

1 + x2 =
x

1 + x2 +
sin x

1 + x2 . First, we

consider the integral
ż 8

2

sin x
1 + x2 dx.

•
| sin x|
1 + x2 ď

1
1 + x2 , so if we can show

ż

1
1 + x2 dx converges, we can conclude

that
ż | sin x|

1 + x2 dx converges as well by the comparison test.

•
ż 8

2

1
1 + x2 dx ď

ż 8

2

1
x2 dx

•
ż 8

2

1
x2 dx converges (by the p–test with p = 2)

• So the integral
ż 8

2

sin x
1 + x2 dx converges by the comparison test, and hence

•
ż 8

2

sin x
1 + x2 dx converges as well.

Therefore,
ż 8

2

x + sin x
1 + x2 dx converges if and only if

ż 8

2

x
1 + x2 dx converges. But

ż 8

2

x
1 + x2 dx = lim

rÑ8

ż r

2

x
1 + x2 dx = lim

rÑ8

[
1
2 ln(1 + x2)

]r

2
= 8

13 To change the lower limit of integration from 1 to 2, just apply Theorem 3.7.21 in the text.
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diverges, so
ż 8

2

x + sin x
1 + x2 dx diverges.

(b) The problem is that f (x) =
x + sin x

1 + x2 is not a decreasing function. To see this,

compute the derivative:

f 1(x) =
(1 + cos x)(1 + x2)´ (x + sin x)(2x)

(1 + x2)2 =
(cos x´ 1)x2 ´ 2x sin x + 1 + cos x

(1 + x2)2

If x = 2mπ, the numerator is 0´ 0 + 1 + 1 ą 0.

Therefore, the integral test does not apply.

(c)

Solution 1: Set an = n+sin n
1+n2 . We first try to develop some intuition about the behaviour

of an for large n and then we confirm that our intuition was correct.

• Step 1: Develop intuition. When n " 1, the numerator n + sin n « n, and the
denominator 1 + n2 « n2 so that an « n

n2 = 1
n and it looks like our series

should diverge by the p–test (Example 5.3.7 in the text) with p = 1.

• Step 2: Verify intuition. To confirm our intuition we set bn = 1
n and compute

the limit

lim
nÑ8

an

bn
= lim

nÑ8

n+sin n
1+n2

1
n

= lim
nÑ8

n[n + sin n]
1 + n2 = lim

nÑ8

1 + sin n
n

1
n2 + 1

= 1

We already know that the series
8
ř

n=1
bn =

8
ř

n=1

1
n diverges by the p–test with

p = 1. So our series diverges by the limit comparison test, Theorem 5.4.4 in the
text.

Solution 2: Since
ˇ

ˇ

sin n
1+n2

ˇ

ˇ ď 1
n2 and the series

8
ř

n=1

1
n2 converges by the p–test with p = 2, the

series
8
ř

n=1

sin n
1+n2 converges. Hence

8
ř

n=1

n+sin n
1+n2 converges if and only if the series

8
ř

n=1

n
1+n2 converges. Now f (x) = x

1+x2 is a continuous, positive, decreasing function

on [1,8) since

f 1(x) =
(1 + x2)´ x(2x)

(1 + x2)2 =
1´ x2

(1 + x2)2

is negative for all x ą 1. We saw in part (a) that the integral
ş8

2
x

1+x2 dx diverges. So

the integral
ş8

1
x

1+x2 dx diverges too and the sum
8
ř

n=1

n
1+n2 diverges by the integral

test. So
8
ř

n=1

n+sin n
1+n2 diverges.
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S-18: Let’s get some intuition to guide us through a proof. Since
8
ř

n=1
an, converges an

must converge to zero as n Ñ 8. So, when n is quite large, an
1´an

« an
1´0 = an

1 , and we
know

ř

an converges. So, we want to separate the “large” indices from a finite number
of smaller ones.

Since lim
nÑ8

an = 0, there must be14 some integer N such that 1
2 ą an ě 0 for all n ą N.

Then, for n ą N,
an

1´ an
ď an

1´ 1/2
= 2an

From the information in the problem statement, we know

8
ÿ

n=N+1

2an = 2
8
ÿ

n=N+1

an converges.

So, by the direct comparison test,

8
ÿ

n=N+1

an

1´ an
converges as well.

Since the convergence of a series is not affected by its first N terms, as long as N is finite,
we conclude

8
ÿ

n=1

an

1´ an
converges.

S-19: We are told that
ř8

n=1 an converges. Thus we must have that lim
nÑ8

an = 0. In
particular, there is an index N such that 0 ď an ď 1 for all n ě N. Then:

0 ď a2
n ď an for n ą N

By the direct comparison test,

8
ÿ

n=N+1

a2
n converges.

Since convergence doesn’t depend on the first N terms of a series for any finite N,

8
ÿ

n=1

a2
n converges as well.

Solutions to Exercises 5.5 — Jump to TABLE OF CONTENTS

14 We could have chosen any positive number strictly less than 1, not only 1
2 .
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S-1: One possible answer:
8
ÿ

n=1

1
n2 . This series converges (it’s a p–series with p = 2 ą 1),

but if we take the ratio of consecutive terms:

lim
nÑ8

an+1

an
= lim

nÑ8

n2

(n + 1)2 = 1

The limit of the ratio is 1, so the ratio test is inconclusive.

S-2: By the divergence test, for a series
ř

an to converge, we need lim
nÑ8

an = 0. That is, the

magnitude (absolute value) of the terms needs to be getting smaller. If lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an

an+1

ˇ

ˇ

ˇ

ˇ

ă 1 or

(equivalently) lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

ą 1, then |an+1| ą |an| for sufficiently large n, so the terms are

actually growing in magnitude. That means the series diverges, by the divergence test.

S-3: This is a geometric series with r = 1.001. Since |r| ą 1, it is divergent.

S-4: Factorials grow super fast. Like, wow, really fast. Even faster than exponentials. So
the terms are going to zero, and the divergence test won’t help us. Let’s use ratio–it’s a
good go-to test with factorials.

ak+1

ak
=

ek+1

(k+1)!
ek

k!

=
ek+1

ek ¨ k!
(k + 1)!

= e ¨ k(k´ 1) ¨ ¨ ¨ (1)
(k + 1)(k)(k´ 1) ¨ ¨ ¨ (1) = e ¨ 1

k + 1
=

e
k + 1

Since e is a constant,

lim
kÑ8

ak+1

ak
= lim

kÑ8

e
k + 1

= 0

Since 0 ă 1, by the ratio test, the series converges.

S-5: Usually with factorials, we want to use the divergence test or the ratio test. Since the
terms are indeed tending towards zero, we are left with the ratio test.

an+1

an
=

(n+1)!(n+1)!
(2n+2)!

n!n!
(2n)!

=
(n + 1)!(n + 1)!

n!n!
¨ (2n)!
(2n + 2)!

= (n+1)(n)(n´1)¨¨¨(1)
n(n´1)¨¨¨(1) ¨ (n+1)(n)(n´1)¨¨¨(1)

n(n´1)¨¨¨(1) ¨ (2n)(2n´1)(2n´2)¨¨¨(1)
(2n+2)(2n+1)(2n)(2n´1)(2n´2)¨¨¨(1)

= (n + 1)(n + 1) ¨ 1
(2n + 2)(2n + 1)

, so

lim
nÑ8

an+1

an
= lim

nÑ8

(n + 1)(n + 1)
(2n + 2)(2n + 1)

= lim
nÑ8

(n + 1)(n + 1)
2(n + 1)(2n + 1)

= lim
nÑ8

n + 1
4n + 2

=
1
4

Since the limit is a number less than 1, the series converges by the ratio test.
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S-6: We want to make an estimation, when n gets big:

n2 + 1
2n4 + n

« n2

2n4 =
1

2n2

Since
ř 1

2n2 is a convergent series (by p-test, or integral test), we guess that our series is
convergent as well. If we wanted to use comparison test, we should have to show
n2+1

2n4+n ă 1
2n2 , which seems unpleasant, so let’s use limit comparison.

lim
nÑ8

n2+1
2n4+n

1
2n2

= lim
nÑ8

(n2 + 1)2n2

2n4 + n
= lim

nÑ8

2n4 + 2n2

2n4 + n

(
1/n4

1/n4

)
= lim

nÑ8

2 + 2
n2

2 + 1
n3

= 1

Since the limit is a positive finite number, by the Limit Comparison Test,
ř n1+1

2n4+n does
the same thing

ř 1
2n2 does: it converges.

S-7:

Solution 1: Let’s see whether the divergence test works here.

lim
nÑ8

n42n/3

(2n + 7)4

(
1

n4

1
n4

)
= lim

nÑ8

2n/3

(2 + 7/n)4 = lim
nÑ8

2n/3

(2 + 0)4 = 8

The summands of our series do not converge to zero. By the divergence test, the
series diverges.

Solution 2: Let’s develop some intuition for a comparison. For very large n, 2n
dominates 7 so that

n42n/3

(2n + 7)4 «
n42n/3

(2n)4 =
1

16
2n/3

The series
8
ÿ

n=1

2n/3 is a geometric series with ratio r = 21/3 ą 1 and so diverges. (It

also fails the divergence test.) We expect the given series to diverge too.

To verify that our intuition is correct, we apply the limit comparison test with

an =
n42n/3

(2n + 7)4 and bn = 2n/3

which is valid since

lim
nÑ8

an

bn
= lim

nÑ8

n4

(2n + 7)4 = lim
nÑ8

1

(2 + 7/n)4 =
1
24

exists and is nonzero. Since the series
8
ř

n=1
bn is a divergent geometric series (with

ratio r = 21/3 ą 1), the given series diverges.
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(It is possible to use the plain comparison test as well. One needs to show
something like an = n42n/3

(2n+7)4 ě n42n/3

(2n+7n)4 = 1
94 bn.)

Solution 3: Alternately, one can apply the ratio test:

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(n + 1)42(n+1)/3/(2(n + 1) + 7)4

n42n/3/(2n + 7)4

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

(n + 1)4(2n + 7)4

n4(2n + 9)4
2(n+1)/3

2n/3

= lim
nÑ8

(1 + 1/n)4(2 + 7/n)4

(2 + 9/n)4 ¨ 21/3 = 1 ¨ 21/3 ą 1.

Since the ratio of consecutive terms is greater than one, by the ratio test, the series
diverges.

S-8: (a)

Solution 1: The given series is

1 +
1
3
+

1
5
+

1
7
+

1
9
+ ¨ ¨ ¨ =

8
ÿ

n=1

an with an =
1

2n´ 1

First we’ll develop some intuition by observing that, for very large n, an « 1
2n . We

know that the series
8
ř

n=1

1
n diverges by the p–test with p = 1. So let’s apply the limit

comparison test with bn = 1
n . Since

lim
nÑ8

an

bn
= lim

nÑ8

n
2n´ 1

= lim
nÑ8

1
2´ 1

n
=

1
2

the series
8
ř

n=1
an converges if and only if the series

8
ř

n=1
bn converges. So the given

series diverges.

Solution 2: The series

1 +
1
3
+

1
5
+

1
7
+

1
9
+ ¨ ¨ ¨ ě 1

2
+

1
4
+

1
6
+

1
8
+

1
10

+ ¨ ¨ ¨

=
1
2

(
1 +

1
2
+

1
3
+

1
4
+

1
5
+ ¨ ¨ ¨

)
The series in the brackets is the harmonic series which we know diverges, by the
p–test with p = 1. So the series on the right hand side diverges. By the direct
comparison test, the series on the left hand side diverges too.

(b) We’ll use the ratio test with an =
(2n + 1)

22n+1 . Since

an+1

an
=

(2n + 3)
22n+3

22n+1

(2n + 1)
=

1
4
(2n + 3)
(2n + 1)

=
1
4
(2 + 3/n)
(2 + 1/n)

Ñ 1
4
ă 1 as n Ñ 8
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the series converges.

S-9: (a) For very large k, k ! k2 so that

an =
3
?

k
k2 ´ k

«
3
?

k
k2 =

1
k5/3 .

We apply the limit comparison test with bk =
1

k5/3 . Since

lim
kÑ8

ak
bk

= lim
kÑ8

3
?

k/(k2 ´ k)
1/k5/3 = lim

kÑ8

k2

k2 ´ k
= lim

kÑ8

1
1´ 1/k

= 1

exists and is nonzero, and
8
ř

k=1

1
k5/3 converges (by the p–test with p = 5

3 ą 1), the given

series converges by the limit comparison test.

(b) The kth term in this series is ak =
k1010k(k!)2

(2k)! . Factorials often work well with the ratio
test, because they simplify so nicely in quotients.

ak+1

ak
=

(k + 1)1010k+1((k + 1)!)2

(2k + 2)!
¨ (2k)!

k1010k(k!)2 = 10
(k + 1

k

)10 (k + 1)2

(2k + 2)(2k + 1)

= 10
(

1 +
1
k

)10 (1 + 1/k)2

(2 + 2/k)(2 + 1/k)

As k tends to8, this converges to 10ˆ 1ˆ 1
2ˆ2 ą 1. So the series diverges by the ratio test.

(c) We’ll use the integal test. The kth term in the series is ak =
1

k(ln k)(ln ln k) = f (k) with

f (x) = 1
x(ln x)(ln ln x) , which is continuous, positive and decreasing for x ě 3.

ż 8

3
f (x) dx =

ż 8

3

dx
x(ln x)(ln ln x)

= lim
RÑ8

ż R

3

dx
x(ln x)(ln ln x)

= lim
RÑ8

ż ln R

ln 3

dy
y ln y

with y = ln x, dy =
dx
x

= lim
RÑ8

ż ln ln R

ln ln 3

dt
t

with t = ln y, dt =
dy
y

= lim
RÑ8

[
ln t
]ln ln R

ln ln 3
= 8

Since the integral is divergent, the series is divergent as well by the integral test.

S-10: This precise question was asked on a 2014 final exam. Note that the nth term in the
series is an = 5k

4k+3k and does not depend on n! There are two possibilities. Either this was
intentional (and the instructor was being particularly tricky) or it was a typo and the
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intention was to have an = 5n

4n+3n . In both cases, the limit

lim
nÑ8

an = lim
nÑ8

5k

4k + 3k =
5k

4k + 3k ‰ 0

lim
nÑ8

an = lim
nÑ8

5n

4n + 3n = lim
nÑ8

(5/4)n

1 + (3/4)n = +8 ‰ 0

is nonzero, so the series diverges by the divergence test.

S-11: (a) There are plenty of powers/factorials. So let’s try the ratio test with an = nn

9nn! .

lim
nÑ8

an+1

an
= lim

nÑ8

(n + 1)n+1

9n+1(n + 1)!
9nn!
nn = lim

nÑ8

(n + 1)n+1

nn 9 (n + 1)
= lim

nÑ8

(1 + 1/n)n

9
=

e
9

Here we have used that lim
nÑ8

(1 + 1/n)n = e. This can be taken as a definition of the
number e, or you can find the limit using L’Hôpital’s Rule. As e ă 9, our series converges.

(b) We know that the series
ř8

n=1
1

n2 converges, by the p–test with p = 2, and also that
ln n ě 2 for all n ě e2. So let’s use the limit comparison test with an = 1

nln n and bn = 1
n2 .

lim
nÑ8

an

bn
= lim

nÑ8

1
nln n ¨

n2

1
= lim

nÑ8

1
nln n´2 = 0

So our series converges, by the limit comparison test.

Solutions to Exercises 5.6 — Jump to TABLE OF CONTENTS

S-1: False. For example if bn = 1
n , then

8
ř

n=1
(´1)n+1bn =

8
ř

n=1
(´1)n+1 1

n converges by the

alternating series test, but
8
ř

n=1

1
n diverges by the p–test.

Remark: if we had added that tbnu is a sequence of alternating terms, then by
Theorem 5.6.2 in the text, the statement would have been true. This is because
8
ÿ

n=1

(´1)n+1bn would either be equal to
8
ÿ

n=1

|bn| or ´
8
ÿ

n=1

|bn|.

S-2: Absolute convergence describes the situation where
ř |an| converges (see

Definition 5.6.1 in the text). By Theorem 5.6.2 in the text, this guarantees that also
ř

an
converges.

Conditional convergence describes the situation where
ř |an| diverges but

ř

an
converges (see again Definition 5.6.1 in the text).

If
ř

an diverges, we just say it diverges. The reason is that if
ř

an diverges, we
automatically know

ř |an| diverges as well, so there’s no need for a special name.

645



ř

an converges
ř

an diverges

ř |an| converges converges absolutely not possible

ř |an| diverges converges conditionally diverges

S-3: The series
8
ř

n=1

(´1)n

9n+5 converges by the alternating series test. On the other hand the

series
8
ř

n=1

ˇ

ˇ

(´1)n

9n+5

ˇ

ˇ =
ř8

n=1
1

9n+5 diverges by the limit comparison test with bn = 1
n . So the

given series is conditionally convergent.

S-4: Note that (´1)2n+1 = (´1) ¨ (´1)2n = ´1. So we can simplify

8
ÿ

n=1

(´1)2n+1

1 + n
= ´

8
ÿ

n=1

1
1 + n

Since
1

1 + n
ě 1

n + n
=

1
2n

,
8
ÿ

n=1

1
1 + n

diverges by the comparison test with the

divergent harmonic series
8
ř

n=1

1
n . The extra overall factor of ´1 in the original series does

not change the conclusion of divergence.

S-5: Since

lim
nÑ8

1 + 4n

3 + 22n = lim
nÑ8

1 + 4n

3 + 4n = 1

the alternating series test cannot be used. Indeed, lim
nÑ8

(´1)n´1 1 + 4n

3 + 22n does not exist (for

very large n, (´1)n´1 1+4n

3+22n alternates between a number close to +1 and a number close
to ´1) so the divergence test says that the series diverges. (Note that “none of the above”
cannot possibly be the correct answer — every series either converges absolutely,
converges conditionally, or diverges.)

S-6: First, we’ll develop some intuition. For very large n

ˇ

ˇ

ˇ

ˇ

?
n cos(n)
n2 ´ 1

ˇ

ˇ

ˇ

ˇ

«
ˇ

ˇ

ˇ

ˇ

?
n cos(n)

n2

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

cos(n)
n3/2

ˇ

ˇ

ˇ

ˇ

ď 1
n3/2

since |cos(n)| ď 1 for all n. By the p–test, the series
8
ÿ

n=5

1
np converges for all p ą 1. So we

would expect the given series to converge absolutely.
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Now, to confirm that our intuition is correct, we’ll first try setting an =
ˇ

ˇ

ˇ

?
n cos(n)
n2´1

ˇ

ˇ

ˇ
and

bn = 1
n3/2 .

lim
nÑ8

an

bn
= lim

nÑ8

ˇ

ˇ

ˇ

?
n cos(n)
n2´1

ˇ

ˇ

ˇ

1
n3/2

= lim
nÑ8

?
n ¨ ?n3| cos n|

n2 ´ 1

= lim
nÑ8

n2| cos n|
n2 ´ 1

= lim
nÑ8

(
n2

n2 ´ 1

)
| cos n|

= lim
nÑ8

1 ¨ | cos n|
Unfortunately, this limit doesn’t exist, so we can’t use the limit comparison theorem.
We’ll need a slightly different tactic.

Solution 1: Let’s try the limit comparison test with a different p–series. The question is,
which one. Let’s start by leaving p as a variable, then see what happens.

We apply the limit comparison test with an =
ˇ

ˇ

ˇ

?
n cos(n)
n2´1

ˇ

ˇ

ˇ
and bn = 1

np . We’ll choose a
specific p shortly.

lim
nÑ8

an

bn
= lim

nÑ8

ˇ

ˇ

?
n cos n/(n2 ´ 1)

ˇ

ˇ

1/np

= lim
nÑ8

np+0.5| cos n|
n2(1´ 1/n2)

= lim
nÑ8

| cos n|
n(3/2´p)(1´ 1/n2)

= 0 if p ă 3
2

the limit comparison test says that if p ă 3
2 and the series

8
ř

n=5
bn converges (which is

the case if p ą 1) then the series
8
ř

n=5

ˇ

ˇ

ˇ

?
n cos(n)
n2´1

ˇ

ˇ

ˇ
also converges. So choosing any

1 ă p ă 3
2 , for example p = 5

4 , we conclude that the given series converges
absolutely.

Solution 2: Let’s try to use the direct comparison test. When we were trying to develop
intuition, we noticed the following:

ˇ

ˇ

ˇ

ˇ

?
n cos(n)
n2 ´ 1

ˇ

ˇ

ˇ

ˇ

«
ˇ

ˇ

ˇ

ˇ

?
n cos(n)

n2

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

cos(n)
n3/2

ˇ

ˇ

ˇ

ˇ

ď 1
n3/2

It’s not the case that our terms are less than 1
n3/2 , but perhaps they would be less

than, say 2
n3/2 . Let’s trace our reasoning above backwards.

2
n3/2 ě

ˇ

ˇ

ˇ

ˇ

2 cos n
n3/2

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

?
n cos n

(1/2)n2

ˇ

ˇ

ˇ

ˇ

ě
ˇ

ˇ

ˇ

ˇ

?
n cos n

n2 ´ 1

ˇ

ˇ

ˇ

ˇ

where the final inequality holds for all n ě 2.

Since
8
ř

n=1

2
n3/2 converges by the p-test, our series converges as well by the direct

comparison test.
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S-7: We first develop some intuition about
8
ÿ

n=1

ˇ

ˇ

ˇ

ˇ

n2 ´ sin n
n6 + n2

ˇ

ˇ

ˇ

ˇ

, where we take the absolute

value of the summands to consider whether the series converges absolutely. For very
large n, n2 dominates sin n and n6 dominates n2 so that

ˇ

ˇ

ˇ

ˇ

n2 ´ sin n
n6 + n2

ˇ

ˇ

ˇ

ˇ

« n2

n6 =
1
n4

The series
8
ÿ

n=1

1
n4 converges by the p–test with p = 4 ą 1. We expect the given series to

converge too.

To verify that our intuition is correct, we apply the limit comparison test with

an =
n2 ´ sin n
n6 + n2 and bn =

1
n4

which is valid since

lim
nÑ8

an

bn
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

(n2 ´ sin n)
n6 + n2

ˇ

ˇ

ˇ

ˇ

¨ n4

1
= lim

nÑ8

|n6 ´ n4 sin n|
n6 + n2 = lim

nÑ8

1´ n´2 sin n
1 + n´4 = 1

exists and is nonzero. Since the series
8
ř

n=1
bn converges, the series

8
ř

n=1

|n2 ´ sin n|
n6 + n2

converges too. Therefore, the series
8
ř

n=1

n2 ´ sin n
n6 + n2 converges absolutely.

S-8: You might think that this series converges by the alternating series test. But you
would be wrong. The problem is that tanu does not converge to zero as n Ñ 8, so that
the series actually diverges by the divergence test. To verify that the nth term does not
converge to zero as n Ñ 8 let’s write an = (2n)!

(n2+1)(n!)2 (i.e. an is the nth term without the
sign) and check to see whether an+1 is bigger than or smaller than an.

an+1

an
=

(2n + 2)!
((n + 1)2 + 1)((n + 1)!)2

(n2 + 1)(n!)2

(2n)!
=

(2n + 2)(2n + 1)
(n + 1)2

n2 + 1
(n + 1)2 + 1

=
2(2n + 1)
(n + 1)

1 + 1/n2

(1 + 1/n)2 + 1/n2 = 4
1 + 1/2n
1 + 1/n

1 + 1/n2

(1 + 1/n)2 + 1/n2

So
lim

nÑ8

an+1

an
= 4

and, in particular, for large n, an+1 ą an. Thus, for large n, an increases with n and so
cannot converge to 0. So the series diverges by the divergence test.
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S-9: This series converges by the alternating series test. We want to know whether it

converges absolutely, so we consider the seris
8
ÿ

n=2

ˇ

ˇ

ˇ

ˇ

(´1)n

n(ln n)101

ˇ

ˇ

ˇ

ˇ

=
8
ÿ

n=2

1
n(ln n)101 .

We’ve seen similar function before (e.g. Example 5.3.8 in the text, with p = 101 ą 1) and
it yields nicely to the integral test. Let f (x) = 1

x(ln x)101 . Note f (x) is positive and

decreasing for n ě 3. Then by the integral test, the series
ř8

n=2
1

n(ln n)101 converges if and

only if the integral
ş8

2
1

x(ln x)101 dx does. We evaluate the integral using the substitution

u = ln x, du = 1
x dx.

ż 8

2

1
x(ln x)101 dx = lim

bÑ8

ż b

2

1
x(ln x)101 dx

= lim
bÑ8

ż ln b

ln 2

1
u101 du

= lim
bÑ8

[ ´1
100u100

]ln b

ln 2

=
1

100(ln 2)100

Since the integral converges, the series
8
ř

n=2

1
n(ln n)101 converges, and therefore the series

8
ř

n=2

(´1)n

n(ln n)101 converges absolutely.

S-10: The sequence has some positive terms and some negative terms, which limits the

tests we can use. However, if we consider the series
8
ÿ

n=1

ˇ

ˇ

ˇ

ˇ

sin n
n2

ˇ

ˇ

ˇ

ˇ

, we can use the direct

comparison test.

For every n, | sin n| ă 1, so 0 ď
ˇ

ˇ

ˇ

ˇ

sin n
n2

ˇ

ˇ

ˇ

ˇ

ă 1
n2 . Since

8
ÿ

n=1

1
n2 converges, then by the direct

comparison test,
8
ÿ

n=1

ˇ

ˇ

ˇ

ˇ

sin n
n2

ˇ

ˇ

ˇ

ˇ

converges as well. Then
8
ÿ

n=1

sin n
n2 converges absolutely– in

particular, it converges.

S-11: The terms of this series are sometimes negative (for odd values of n where
sin n ă 1

2 ) and sometimes positive. But, they are not strictly alternating, so we can’t use
the alternating series test. Instead, we use a direct comparison test to show the series
converges absolutely.
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´1
4
ď sin n

4
ď 1

4

ñ
(
´1

4
´ 1

8

)
ď
(

sin x
4

´ 1
8

)
ă
(

1
4
´ 1

8

)
ñ ´3

8
ď
(

sin x
4

´ 1
8

)
ă 1

8

ñ 0 ď
ˇ

ˇ

ˇ

ˇ

sin x
4

´ 1
8

ˇ

ˇ

ˇ

ˇ

ă 3
8

ñ 0 ď
ˇ

ˇ

ˇ

ˇ

(
sin x

4
´ 1

8

)nˇ
ˇ

ˇ

ˇ

ă
(

3
8

)n

Since
8
ÿ

n=1

(
3
8

)n
converges (it’s a geometric sum with |r| ă 1), by the direct comparison

test,
8
ÿ

n=1

ˇ

ˇ

ˇ

ˇ

(
sin x

4
´ 1

8

)nˇ
ˇ

ˇ

ˇ

converges as well.

Then
8
ÿ

n=1

(
sin x

4
´ 1

8

)n
converges absolutely–and so it converges.

S-12: The terms of this series are sometimes negative and sometimes positive. But, they
are not strictly alternating, so we can’t use the alternating series test. Instead, we use a
direct comparison test to show the series converges absolutely.

0 ď sin2 n ď 1

0 ď cos2 n ď 1

So, ´ 1 ď sin2 n´ cos2 n ď 1

´1
2
=

(
´1 +

1
2

)
ď
(

sin2 n´ cos2 n +
1
2

)
ď
(

1 +
1
2

)
=

3
2

´1
2
¨ 1

2n ď
sin2 n´ cos2 n + 1

2
2n ď 3

2
¨ 1

2n

0 ď
ˇ

ˇ

ˇ

ˇ

ˇ

sin2 n´ cos2 n + 1
2

2n

ˇ

ˇ

ˇ

ˇ

ˇ

ď 3
2n+1

The series
8
ÿ

n=1

3
2n+1 converges, because it’s a geometric series with r = 1

2 . By the direct

comparison test,
8
ÿ

n=1

ˇ

ˇ

ˇ

ˇ

ˇ

sin2 n´ cos2 n + 1
2

2n

ˇ

ˇ

ˇ

ˇ

ˇ

converges as well. Then
8
ÿ

n=1

sin2 n´ cos2 n + 1
2

2n

converges absolutely, so it converges.
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S-13: (a)

Solution 1: We need to show that
8
ř

n=1
24n2e´n3

converges. If we replace n by x in the

summand, we get f (x) = 24x2e´x3
, which we can integate. (Just substitute u = x3.)

So let’s try the integral test. First, we have to check that f (x) is positive and
decreasing. It is certainly positive. To determine if it is decreasing, we compute

d f
dx

= 48xe´x3 ´ 24ˆ 3x4e´x3
= 24x(2´ 3x3)e´x3

which is negative for x ě 1. Therefore f (x) is decreasing for x ě 1, and the integral
test applies. The substitution u = x3, du = 3x2 dx, yields

ż

f (x)dx =

ż

24x2e´x3
dx =

ż

8e´u du = ´8e´u + C = ´8e´x3
+ C.

Therefore
ż 8

1
f (x)dx = lim

RÑ8

ż R

1
f (x)dx = lim

RÑ8

[
´8e´x3

]R

1

= lim
RÑ8

(´8e´R3
+ 8e´1) = 8e´1

Since the integral is convergent, the series
8
ř

n=1
24n2e´n3

converges and the series

8
ÿ

n=1

(´1)n´124n2e´n3
converges absolutely.

Solution 2: Alternatively, we can use the ratio test with an = 24n2e´n3
. We calculate

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

24(n + 1)2e´(n+1)3

24n2e´n3

ˇ

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

(
(n + 1)2

n2
en3

e(n+1)3

)

= lim
nÑ8

(
1 +

1
n

)2

e´(3n2+3n+1) = 1 ¨ 0 = 0 ă 1,

and therefore the series converges absolutely.

Solution 3: Alternatively, alternatively, we can use the limiting comparison test. First a

little intuition building. Recall that we need to show that
8
ř

n=1
24n2e´n3

converges.

The nth term in this series is

an = 24n2e´n3
=

24n2

en3

It is a ratio with both the numerator and denominator growing with n. A good rule
of thumb is that exponentials grow a lot faster than powers. For example, if n = 10

651



the numerator is 2400 = 2.4ˆ 103 and the denominator is about 2ˆ 10434. So we
would guess that an tends to zero as n Ñ 8. The question is “does an tend to zero
fast enough with n that our series converges?”. For example, we know that

ř8
n=1

1
n2

converges (by the p–test with p = 2). So if an tends to zero faster than 1
n2 does, our

series will converge. So let’s try the limiting convergence test with
an = 24n2e´n3

= 24n2

en3 and bn = 1
n2 .

lim
nÑ8

an

bn
= lim

nÑ8

24n2e´n3

1/n2 = lim
nÑ8

24n4

en3

By l’Hôpital’s rule, twice,

lim
xÑ8

24x4

ex3 = lim
xÑ8

4ˆ 24x3

3x2ex3 by l’Hôpital

= lim
xÑ8

32x
ex3 just cleaning up

= lim
xÑ8

32
3x2ex3 by l’Hôpital, again

= 0

That’s it. The limit comparison test now tells us that
ř8

n=1 an converges.

(b) In part (a) we saw that 24n2e´n3
is positive and decreasing. The limit of this sequence

equals 0 (as can be shown with l’Hôpital’s Rule, just as we did at the end of the third
solution of part (a)). Therefore, we can use the alternating series test, so that the error

made in approximating the infinite sum S =
8
ř

n=1
an =

8
ř

n=1
(´1)n´124n2e´n3

by the sum of

its first N terms, SN =
N
ř

n=1
an, lies between 0 and the first omitted term, aN+1. If we use 5

terms, the error satisfies

|S´ S5| ď |a6| = 24ˆ 36e´63 « 1.3ˆ 10´91

S-14: The error in our approximation using through term N is at most 1
(2(N+1))! . We want

1
(2(N+1))! ă 1

1000 . By checking small values of N, we see that 8! = 40320 ą 1000, so if

N = 3, then 1
2(N+1)! =

1
40320 ă 1

1000 . So, for our approximation, it suffices to consider the
first four terms of our series.

cos(2) «
3
ÿ

N=0

(´1)n

(2n)!
=

1
0!
´ 1

2!
+

1
4!
´ 1

6!

= 1´ 1
2
+

1
24
´ 1

720

=
720´ 360 + 30´ 1

720
=

379
720
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When we use a calculator, we see

389
720

= 0.540277

cos(1) « 0.540302

cos(1)´ 389
720

« 0.000024528 « 1
40770

So, our error is reasonably close to our bound of 1
40320 , and far smaller than 1

1000 .

S-15: The terms of this series are sometimes negative and sometimes positive. But, they
are not strictly alternating, so we can’t use the alternating series test. Instead, we use a
direct comparison test to show the series converges absolutely.

If n is prime, then
ˇ

ˇ

ˇ

an

en

ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

ˇ

ˇ

´en/2

en

ˇ

ˇ

ˇ

ˇ

ˇ

=
1

en/2 =

(
1?
e

)n

If n is not prime, then
ˇ

ˇ

ˇ

an

en

ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

ˇ

´n2

en

ˇ

ˇ

ˇ

ˇ

=
n2

en

For n sufficiently large, n2 ă en/2, so for n sufficiently large,

n2

en ď
(

1?
e

)n
.

Since e ą 1, then
?

e ą 1, so the geometric series
ÿ

(
1?
e

)n
has |r| = r = 1?

e ă 1, so it

converges. By the direct comparison test,
8
ÿ

n=1

ˇ

ˇ

ˇ

an

en

ˇ

ˇ

ˇ
converges as well. Then

8
ÿ

n=1

an

en

converges absolutely, so it converges.

Solutions to Exercises 6.1 — Jump to TABLE OF CONTENTS

S-1: If x = c, then

f (x) = Aa(c´ c)a + Aa+1(c´ c)a+1 + Aa+2(c´ c)a+2 + ¨ ¨ ¨
= Aa ¨ 0 + Aa+1 ¨ 0 + Aa+2 ¨ 0 + ¨ ¨ ¨
= 0

So, f (x) converges (to the constant 0) when x = c. (Had we allowed a = 0, it would be
possible for f (x) to converge to a nonzero number A0, because we use the convention
00 = 1.)
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Depending on the sequence tAnu, it’s possible that f (x) diverges for all x ‰ c. For

example, suppose An = n!, so f (x) =
8
ÿ

n=0

n!(x´ c)n. If x ‰ c, then the limit

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(n + 1)!(x´ c)n+1

n!(x´ c)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

(n + 1)|x´ c| is infinity, since x´ c ‰ 0. So, the series

diverges.

We’ve now shown that the series definitely converges at x = c, but at any other point, it
may fail to converge.

S-2: According to Theorem 6.1.9 in the text, because f (x) diverges somewhere, and
because it converges at a point other than its centre, f (x) has a positive radius of
convergence R. That is, f (x) converges whenever |x´ 5| ă R, and it diverges whenever
|x´ 5| ą R.

If R ą 6, then |11´ 5| ă R, so f (x) converges at x = 11; since we are told f (x) diverges at
x = 11, we see R ď 6.

If R ă 6, then | ´ 1´ 5| ą R, so f (x) diverges at x = ´1; since we are told f (x) converges
at x = ´1, we see R ě 6.

Therefore, R = 6.

S-3: We apply the ratio test for the series whose kth term is ak =
xk

10k+1(k+1)! . Then

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ak+1

ak

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

xk+1

10k+2(k + 2)!
¨ 10k+1(k + 1)!

xk

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

10k+1

10k+2

ˇ

ˇ

ˇ

ˇ

ˇ

¨
ˇ

ˇ

ˇ

ˇ

(k + 1)!
(k + 2)!

ˇ

ˇ

ˇ

ˇ

¨
ˇ

ˇ

ˇ

ˇ

ˇ

xk+1

xk

ˇ

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

1
10(k + 2)

|x| = 0 ă 1

for all x. Therefore, by the ratio test, the series converges for all x and the radius of
convergence is R = 8.

Alternatively, one can set Ak =
1

10k+1(k + 1)!
and compute A = lim

kÑ8

ˇ

ˇ

ˇ

ˇ

Ak+1

Ak

ˇ

ˇ

ˇ

ˇ

= 0, so that

R is again +8.

S-4: We apply the ratio test with an = (x´2)n

n2+1 .
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lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

(x´ 2)n+1

(n + 1)2 + 1
¨ n2 + 1
(x´ 2)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

n2 + 1
(n + 1)2 + 1

|x´ 2|

= lim
nÑ8

1 + 1/n2

(1 + 1/n)2 + 1/n2 |x´ 2|
= |x´ 2|

So, the series converges if |x´ 2| ă 1 and diverges if |x´ 2| ą 1. That is, the radius of
convergence is 1.

S-5: We apply the ratio test for the series whose nth term is an =
(´1)n(x + 2)n

?
n

. Then

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(x + 2)n+1
?

n + 1

?
n

(x + 2)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

|x + 2|
?

n?
n + 1

= lim
nÑ8

|x + 2| 1?
1 + 1/n

= |x + 2|
So the series must converge when |x + 2| ă 1 and must diverge when |x + 2| ą 1. So, its
radius of convergence is 1.

S-6: We apply the ratio test for the series whose nth term is an = (´1)n

n+1

(
x+1

3

)n
.

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(´1)n+1

n+2

(
x+1

3

)n+1

(´1)n

n+1

(
x+1

3

)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(´1)n+1

(´1)n

ˇ

ˇ

ˇ

ˇ

¨
ˇ

ˇ

ˇ

ˇ

n + 1
n + 2

ˇ

ˇ

ˇ

ˇ

¨
ˇ

ˇ

ˇ

ˇ

(x + 1)n+1

(x + 1)n

ˇ

ˇ

ˇ

ˇ

¨
ˇ

ˇ

ˇ

ˇ

3n

3n+1

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

(
n + 1
n + 2

)
¨
ˇ

ˇ

ˇ

ˇ

x + 1
3

ˇ

ˇ

ˇ

ˇ

=
|x + 1|

3

Therefore, by the ratio test, the series converges when |x+1|
3 ă 1 and diverges when

|x+1|
3 ą 1. In particular, it converges when

|x + 1| ă 3 ðñ ´3 ă x + 1 ă 3 ðñ ´4 ă x ă 2

and the radius of convergence is R = 3. (Alternatively, one can set An = (´1)n

(n+1)3n and

compute A = limnÑ8
ˇ

ˇ

An+1
An

ˇ

ˇ = 1
3 , so that R = 1

A = 3.)
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x
convergediverge diverge

´4 2´1

R = 3

S-7: We first apply the ratio test with an = (x´2)n

n4/5(5n´4) .

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

(x´ 2)n+1

(n + 1)4/5(5n+1 ´ 4)
¨ n4/5(5n ´ 4)

(x´ 2)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

n4/5(5n ´ 4)
(n + 1)4/5(5n+1 ´ 4)

|x´ 2|

= lim
nÑ8

(1´ 4/5n)

(1 + 1/n)4/5(5´ 4/5n)
|x´ 2|

=
|x´ 2|

5

Therefore the series converges if |x´ 2| ă 5 and diverges if |x´ 2| ą 5. So, its radius of
convergence is 5.

x
convergediverge diverge

´3 72

R = 5

S-8: We apply the ratio test with an = (x+2)n

n2 . Since

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

(x+2)n+1

(n+1)2

(x+2)n

n2

ˇ

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

n2

(n + 1)2 |x + 2| = lim
nÑ8

1

(1 + 1/n)2 |x + 2| = |x + 2|

we have convergence for

|x + 2| ă 1 ðñ ´1 ă x + 2 ă 1 ðñ ´3 ă x ă ´1

and divergence for |x + 2| ą 1. So, the largest possible open interval of convergence is
(´3,´1).

x
convergediverge diverge

´3 ´1

656



S-9: We apply the ratio test with an = 4n

n (x´ 1)n. Since

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

4n+1(x´ 1)n+1/(n + 1)
4n(x´ 1)n/n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

4|x´ 1| n
n + 1

= 4|x´ 1| lim
nÑ8

n
n + 1

= 4|x´ 1| ¨ 1.

the series converges if

4|x´ 1| ă 1 ðñ ´1 ă 4(x´ 1) ă 1 ðñ ´1
4
ă x´ 1 ă 1

4
ðñ 3

4
ă x ă 5

4

and diverges if 4|x´ 1| ą 1.

So the interval of convergence will be from 3
4 to 5

4 ; we don’t need to decide whether the
endpoints are included or not.

x
convergediverge diverge

3
4

5
4

S-10: We apply the ratio test with an = (´1)n (x´1)n

2n(n+2) . Since

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(x´ 1)n+1

2n+1(n + 3)
2n(n + 2)
(x´ 1)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

|x´ 1|
2

n + 2
n + 3

=
|x´ 1|

2
lim

nÑ8

1 + 2/n
1 + 3/n

=
|x´ 1|

2

the series converges if

|x´ 1|
2

ă 1 ðñ |x´ 1| ă 2 ðñ ´2 ă (x´ 1) ă 2 ðñ ´1 ă x ă 3

and diverges if |x´ 1| ą 2. So the series has radius of convergence 2. That means the
interval of convergence will be from ´1 to 3. We don’t need to decide which endpoints
are included.

x
convergediverge diverge

´1 3
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S-11: We apply the ratio test with an = (´1)nn2(x´ a)2n. Since

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(´1)n+1(n + 1)2(x´ a)2(n+1)

(´1)nn2(x´ a)2n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

|x´ a|2 (n + 1)2

n2

= |x´ a|2 lim
nÑ8

(
1 + 1/n

)2
= |x´ a|2 ¨ 1.

the series converges if

|x´ a|2 ă 1 ðñ |x´ a| ă 1 ðñ ´1 ă x´ a ă 1 ðñ a´ 1 ă x ă a + 1

and diverges if |x´ a| ą 1.

So the interval of convergence is from a´ 1 to a + 1. We don’t know which endpoints are
included.

x
convergediverge diverge

a´ 1 a + 1

S-12: (a) We apply the ratio test for the series whose kth term is Ak =
(x+1)k

k29k . Then

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

Ak+1

Ak

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

(x + 1)k+1

(k + 1)29k+1
k29k

(x + 1)k

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

|x + 1| 1
9

k2

(k + 1)2

= lim
kÑ8

|x + 1| 1
9

1
(1 + 1/k)2

=
|x + 1|

9

So the series must converge when |x + 1| ă 9 and must diverge when |x + 1| ą 9. So its
interval of convergence is from ´10 to 8. We don’t know whether ´10 and 8 are included.

x
convergediverge diverge

´10 8

(b) The partial sum

N
ÿ

k=1

( ak
ak+1

´ ak+1

ak+2

)
=
( a1

a2
´ a2

a3

)
+
( a2

a3
´ a3

a4

)
+ ¨ ¨ ¨+

( aN

aN+1
´ aN+1

aN+2

)
=

a1

a2
´ aN+1

aN+2
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We are told that
8
ÿ

k=1

( ak
ak+1

´ ak+1

ak+2

)
=

a1

a2
. This means that the above partial sum

converges to a1
a2

as N Ñ 8, or equivalently, that

lim
NÑ8

aN+1

aN+2
= 0

and hence that

lim
kÑ8

|ak+1(x´ 1)k+1|
|ak(x´ 1)k| = |x´ 1| lim

kÑ8

|ak+1|
|ak|

is infinite for any x ‰ 1. So, by the ratio test, this series converges only for x = 1.

S-13: We apply the ratio test for the series whose nth term is either an = xn

32n ln n or
an =

ˇ

ˇ

xn

32n ln n

ˇ

ˇ. For both series

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

xn+1

32(n+1) ln(n + 1)
32n ln n

xn

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

x ln n
32 ln(n + 1)

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

x ln n
32[ln(n) + ln(1 + 1/n)]

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

x
32[1 + ln(1 + 1/n)/ ln(n)]

ˇ

ˇ

ˇ

ˇ

=
|x|
9

Therefore, by the ratio test, our series converges absolutely when |x| ă 9 and diverges
when |x| ą 9.

For x = ´9,
8
ÿ

n=2

xn

32n ln n
=

8
ÿ

n=2

(´1)n

ln n
which converges by the alternating series test.

For x = +9,
8
ÿ

n=2

xn

32n ln n
=

8
ÿ

n=2

1
ln n

which is the same series as
8
ÿ

n=2

ˇ

ˇ

ˇ

(´1)n

ln n

ˇ

ˇ

ˇ
. We shall

shortly show that n ě ln n, and hence 1
ln n ě 1

n for all n ě 1. This implies that the series
8
ÿ

n=2

1
ln n

diverges by comparison with the divergent series
8
ÿ

n=2

1
np

ˇ

ˇ

ˇ

ˇ

p=1
. This yelds both

divergence for x = 9 and also the failure of absolute convergence for x = ´9.

Finally, we show that n´ ln n ą 0, for all n ě 1. Set f (x) = x´ ln x. Then f (1) = 1 ą 0
and

f 1(x) = 1´ 1
x
ě 0 for all x ě 1

So f (x) is (strictly) positive when x = 1 and is increasing for all x ě 1. So f (x) is (strictly)
positive for all x ě 1.
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S-14: By the divergence test, the fact that
8
ř

n=0
(1´ bn) converges guarantees that

lim
nÑ8

(1´ bn) = 0, or equivalently, that lim
nÑ8

bn = 1. So, by equation (6.1.2) in the text, the
radius of convergence is

R =

[
lim

nÑ8

ˇ

ˇ

ˇ

bn+1

bn

ˇ

ˇ

ˇ

]´1

=

[
1
1

]´1

= 1 (6.7)

S-15: (a) We know that the radius of convergence R obeys

1
R

= lim
nÑ8

an+1

an
= lim

nÑ8

n
n + 1

(n + 1)an+1

nan
= 1

C
C

= 1

because we are told that lim
nÑ8

nan = C. So R = 1.

x
convergediverge diverge

´1 10

R = 1

(b) Just knowing that the radius of convergence is 1, we know that the series converges
for |x| ă 1 and diverges for |x| ą 1.

x
convergediverge diverge

´1 1

Solutions to Exercises 6.2 — Jump to TABLE OF CONTENTS

S-1:

f (1) =
8
ÿ

n=0

(
3´ 1

4

)n

=
8
ÿ

n=0

(
1
2

)n

This is a geometric series with r = 1
2 .

=
1

1´ 1
2

= 2
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S-2: Note also that the centre of both power series is c = 3, and f (x) is represented by its
power series for all x obeying |x´ c| ă 5.

P is the derivative of the power series representation of f (x). By Theorem 6.2.1, P also
converges for all x obeying |x´ c| ă 5. In particular, P definitely converges when x = 0.

However, we do not know whether P (or even the original series) converges when x = 8.

S-3: First, let’s think about the radius of convergence of the original power function. It
has centre c = 3 and we know it converges on the interval (´3, 8). Since |3´ (´3)| = 6,
Theorem 6.1.9 tells us the radius of convergence of this function is at least 6. (The
diagram below illustrates the smallest possible value of R.)

x
convergediverge diverge

´3 93

R = 6

Just as in Question 2, Q is the derivative of the original series. By Theorem 6.2.1, Q also
converges for all x obeying |x´ c| ă 6. In particular, P definitely converges when x = 8.
However, we do not know whether Q (or even the original series) converges when
x = ´3.

S-4: The second series was generated by multiplying each term in the first by 4n.

1(40)+ 2(41)x+ (42)x2+ 2(43)x3+ (44)x4+ 2(45)x5+ ¨ ¨ ¨
= 1 + 23x + 24x2 + 27x3 + 28x4 + 211x5 + ¨ ¨ ¨

Essentially: if f (x) is given by the first series, then the second series is f (4x). In
Theorem 6.2.6, that corresponds to K = 4 (and k = 1). So, the new radius of convergence
is

k

d

R
|K| =

1

c

1
4
=

1
4

S-5: Following Theorem 6.2.1, we differentiate our function term-by-term.

f (x) =
8
ÿ

n=1

(x´ 5)n

n! + 2

f 1(x) =
8
ÿ

n=1

d
dx

"

(x´ 5)n

n! + 2

*

=
8
ÿ

n=1

n(x´ 5)n´1

n! + 2

Keep in mind that x is our variable, and for each term, n is constant.
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S-6: (a) We apply the ratio test for the series whose kth term is ak = (´1)k2k+1xk. Then

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ak+1

ak

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

(´1)k+12k+2xk+1

(´1)k2k+1xk

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

|2x| = |2x|

Therefore, by the ratio test, the series converges for all x obeying |2x| ă 1, i.e. |x| ă 1
2 , and

diverges for all x obeying |2x| ą 1, i.e. |x| ą 1
2 . So the radius of convergence is R = 1

2 .

Alternatively, one can set Ak = (´1)k2k+1 and compute

A = lim
kÑ8

ˇ

ˇ

ˇ

ˇ

Ak+1

Ak

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

(´1)k+12k+2

(´1)k2k+1

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

2 = 2

so that R = 1
A = 1

2 , again.

(b) The series is
8
ÿ

k=0

(´1)k2k+1xk = 2
8
ÿ

k=0

(´2x)k = 2
8
ÿ

k=0

rk
ˇ

ˇ

ˇ

r=´2x
= 2ˆ 1

1´ r
=

2
1 + 2x

for all |r| = |2x| ă 1, i.e. all |x| ă 1
2 .

S-7: Using the geometric series
8
ř

n=0
xn = 1

1´x ,

x3

1´ x
= x3

8
ÿ

n=0

xn =
8
ÿ

n=0

xn+3 =
8
ÿ

n=3

xn

S-8: We can find f (x) by differentiating its integral, or antidifferentiating its derivative.
In the latter case, we’ll have to solve for the arbitrary constant of integration; in the
former case, we do not. (Remember that many different functions have the same
derivative, but a single function has only one derivative.) To avoid the necessity of
finding the arbitrary constant, we can ignore the given equation for f 1(x), which makes
the problem much simpler. This is the method used in Solution 1.

Solution 1 Using the Fundamental Theorem of Calculus Part 1:

d
dx

"
ż x

5
f (t)dt

*

= f (x)

So, f (x) =
d
dx

#

3x +
8
ÿ

n=0

(x´ 1)n+1

n(n + 1)2

+

= 3 +
8
ÿ

n=1

(n + 1)(x´ 1)n

n(n + 1)2

= 3 +
8
ÿ

n=1

(x´ 1)n

n(n + 1)
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Solution 2 Suppose we had used f 1(x) instead. We would antidifferentiate to find:

f (x) =
ż

(
8
ÿ

n=0

(x´ 1)n

n + 2

)
dx

=

(
8
ÿ

n=0

(x´ 1)n+1

(n + 1)(n + 2)

)
+ C

=

(
8
ÿ

n=1

(x´ 1)n

n(n + 1)

)
+ C

Notice f (1) = 0 + C. So, to find C, we must find f (1). We can’t get that information
from f 1(x), so our only option is to consider the given formula for

şx
5 f (t)dt. Using

the Fundamental Theorem of Calculus Part 1:

f (1) =
d
dx

"
ż x

5
f (t)dt

*
ˇ

ˇ

ˇ

ˇ

x=1

=
d
dx

#

3x +
8
ÿ

n=1

(x´ 1)n+1

n(n + 1)2

+
ˇ

ˇ

ˇ

ˇ

ˇ

x=1

=

[
3 +

8
ÿ

n=1

(n + 1)(x´ 1)n

n(n + 1)2

]
x=1

=

[
3 +

8
ÿ

n=1

(x´ 1)n

n(n + 1)

]
x=1

= 3 +
8
ÿ

n=1

0n

n(n + 1)

= 3

So, f (x) = 3 +
8
ÿ

n=1

(x´ 1)n

n(n + 1)
.

Note that in Solution 2, we did the same calculation as Solution 1, and more.

S-9: We recognize
8
ÿ

n=3

n
5n´1 as f (x) =

8
ÿ

n=3

n ¨ xn´1, evaluated at x =
1
5

. We should figure

out what f (x) is in equation form (as opposed to power series form). Notice that this
looks similar to the derivative of the geometric series

ÿ

xn.
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1
1´ x

=
8
ÿ

n=0

xn when |x| ă 1

d
dx

"

1
1´ x

*

=
d
dx

#

8
ÿ

n=0

xn

+

1
(1´ x)2 =

8
ÿ

n=1

nxn´1

= 1x0 + 2x1 +
8
ÿ

n=3

nxn´1

= 1 + 2x +
8
ÿ

n=3

nxn´1

So,
1

(1´ x)2 ´ 1´ 2x =
8
ÿ

n=3

nxn´1

Setting x =
1
5

:
1

(1´ 1/5)2 ´ 1´ 2
5
=

8
ÿ

n=3

n
(

1
5

)n´1

(
5
4

)2

´ 1´ 2
5
=

8
ÿ

n=3

n
5n´1

So, our series evaluates to
25
16
´ 1´ 2

5
=

13
80

.

S-10: (a) Differentiating both sides of

8
ÿ

n=0

xn =
1

1´ x

gives
8
ÿ

n=0

nxn´1 =
1

(1´ x)2

Now multiplying both sides by x gives

8
ÿ

n=0

nxn =
x

(1´ x)2

as desired.

(b) Differentiating both sides of the conclusion of part (a) gives

8
ÿ

n=0

n2xn´1 =
(1´ x)2 ´ 2x(x´ 1)

(1´ x)4 =
(1´ x)(1´ x + 2x)

(1´ x)4 =
1 + x

(1´ x)3
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Now multiplying both sides by x gives

8
ÿ

n=0

n2xn =
x(1 + x)
(1´ x)3

We know that differentiation preserves the radius of convergence of power series. So this
series has radius of convergence 1 (the radius of convergence of the original geometric
series). So the series converges for ´1 ă x ă 1.

x
convergediverge diverge

´1 1

S-11: First, we differentiate.

f (x) =
8
ÿ

n=0

An(x´ c)n

f 1(x) =
8
ÿ

n=0

nAn(x´ c)n´1

=
8
ÿ

n=1

nAn(x´ c)n´1

f 1(c) =
8
ÿ

n=1

nAn ¨ 0n´1

= A1 ¨ 1 + 2A2 ¨ 0 + 3A3 ¨ 0 + ¨ ¨ ¨
= A1

So, if A1 = 0, then f 1(c) = 0. That is, f (x) has a critical point at x = c.

To determine the behaviour of this critical point, we use the second derivative test.

f 1(x) =
8
ÿ

n=1

nAn(x´ c)n´1

f 2(x) =
8
ÿ

n=1

n(n´ 1)An(x´ c)n´2

=
8
ÿ

n=2

n(n´ 1)An(x´ c)n´2

f 2(c) =
8
ÿ

n=2

n(n´ 1)An ¨ 0n´2

= 2(1)A2 ¨ 00 + 3(2)A3 ¨ 01 + 4(3)A4 ¨ 02 + ¨ ¨ ¨
= 2A2
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Following the second derivative test, x = c is the location of a local maximum if A2 ă 0,
and it is the location of a local minimum if A2 ą 0. (If A2 = 0, the critical point may or
may not be a local extremum.)

Solutions to Exercises 6.3 — Jump to TABLE OF CONTENTS

S-1: All functions A, B, and C intersect the function y = f (x) when x = 2. B is a constant
function, so this is the constant approximation. A is the tangent line, so A is the linear
approximation. C is a tangent parabola, so C is the quadratic approximation.

S-2: Following how a Taylor series is constructed, the Taylor series and the function
agree at the point chosen as the centre. So, T(5) = arctan3 (e5 + 7

)
.

If we were evaluating a Taylor series at a point other than its centre, we would generally
need to check that (a) the series converges, and (b) it converges to the same value as the
function we used to create it.

S-3: These are listed in Theorem 6.3.5 in the text. However, it’s possible to figure out
many of them without a lot of memorization. For example, e0 = cos(0) = 1

1´0 = 1, while
sin(0) = ln(1 + 0) = arctan(0) = 0. So by plugging in x = 0 to the series listed, we can
divide them into these two categories.

The derivative of sine is cosine, so we can also look for one series that is the derivative of
another. The derivative of ex is ex, so we can look for a series that is its own derivative.

Furthermore, sine and arctangent are odd functions and only II and IV are odd. Cosine is
an even function and only III is even.

Alternately, we can find the first few terms of each series using the definition of a Taylor
series, and match them up.

All together, the functions correspond to the following series:

A - V B - I C - IV D - VI E - II F - III

S-4: The definition of a Taylor series tells us we will be computing the coefficients in the
series

8
ÿ

n=0

f (n)(1)
n!

(x´ 1)n

That is, we need a general description of f (n)(1). To find this, we take a few derivatives,
and look for a pattern.
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f (x) = ln(x) f (1) = 0

f 1(x) = x´1 f 1(1) = 1

f 2(x) = (´1)x´2 f 2(1) = ´1

f (3)(x) = (´2)(´1)x´3 f (3)(1) = 2!

f (4)(x) = (´3)(´2)(´1)x´4 f (4)(1) = ´3!

f (5)(x) = (´4)(´3)(´2)(´1)x´5 f (5)(1) = 4!

f (6)(x) = (´5)(´4)(´3)(´2)(´1)x´6 f (6)(1) = ´5!
...

...

f (n)(x) = (´1)n´1(n´ 1)! x´n f (n)(1) = (´1)n´1(n´ 1)!

Using the convention 0! = 1, our pattern for f (n)(1) begins when n = 1.

8
ÿ

n=0

f (n)(1)
n!

(x´ 1)n = 0 +
8
ÿ

n=1

(´1)n´1(n´ 1)!
n!

(x´ 1)n =
8
ÿ

n=1

(´1)n´1

n
(x´ 1)n

S-5: To find the Taylor series for sine, centred at a = π, we’ll need to know the various
derivatives of sine at π.

f (x) = sin x f (π) = 0
f 1(x) = cos x f 1(π) = ´1
f 2(x) = ´ sin x f 2(π) = 0
f3(x) = ´ cos x f3(π) = 1

f (4)(x) = sin x = f (x) f (4)(π) = 0

Even derivatives are 0; odd derivatives alternate between ´1 and +1. (If you’re
following along with the derivation of the Maclaurin series for sine in the text, note
f (n)(π) = ´ f (n)(0).)

In our Taylor series, every even-indexed term will be zero, and we will be left with only
odd-indexed terms. If we let n be our index, then the term 2n + 1 will capture all the odd
numbers. Since the signs alternate, f (2n+1)(π) = (´1)n+1. So, our Taylor series is:

8
ÿ

k=0

f (k)(π)

k!
(x´ π)k =

8
ÿ

n=0

f (2n+1)(π)

(2n + 1)!
(x´ π)2n+1 (since the even terms are all zero)

=
8
ÿ

n=0

(´1)n+1

(2n + 1)!
(x´ π)2n+1
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S-6: The definition of a Taylor series tells us we will be computing the coefficients in the
series

8
ÿ

n=0

g(n)(10)
n!

(x´ 10)n

That is, we need a general description of g(n)(10). To find this, we take a few derivatives,
and look for a pattern.

g(x) = x´1 g(10) =
1

10

g1(x) = (´1)x´2 g1(10) =
´1
102

g2(x) = (´2)(´1)x´3 g2(10) =
(´1)22!

103

g(3)(x) = (´3)(´2)(´1)x´4 g(3)(10) =
(´1)33!

104

g(4)(x) = (´4)(´3)(´2)(´1)x´5 g(4)(10) =
(´1)44!

105

g(5)(x) = (´5)(´4)(´3)(´2)(´1)x´6 g(5)(10) =
(´1)55!

106

...
...

g(n)(x) = (´1)nn!x´(n+1) g(n)(10) =
(´1)nn!
10n+1

Using the convention 0! = 1, our pattern for g(n)(10) begins when n = 0.

8
ÿ

n=0

g(n)(1)
n!

(x´ 10)n =
8
ÿ

n=0

(´1)nn!
n!10n+1 (x´ 10)n

= ´
8
ÿ

n=0

(x´ 10)n

(´10)n+1

=
1

10

8
ÿ

n=0

(
10´ x

10

)n

For fixed x, we recognize this as a geometric series with r = 10´x
10 . So it converges

precisely when |r| ă 1, i.e.
ˇ

ˇ

ˇ

ˇ

10´ x
10

ˇ

ˇ

ˇ

ˇ

ă 1

|10´ x| ă 10
´10 ă x´ 10 ă 10

0 ă x ă 20
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So, its interval of convergence is (0, 20).

x
convergediverge diverge

0 20

S-7: The definition of a Taylor series tells us we will be computing the coefficients in the
series

8
ÿ

n=0

h(n)(a)
n!

(x´ a)n

That is, we need a general description of h(n)(a). To find this, we take a few derivatives,
and look for a pattern.

h(x) = e3x h(a) = e3a

h1(x) = 3e3x h1(a) = 3e3a

h2(x) = 32e3x h2(a) = 32e3a

h3(x) = 33e3x h3(a) = 33e3a

...
...

h(n)(x) = 3ne3x h(n)(a) = 3ne3a

The pattern for h(n)(a) holds for all (whole numbers) n ě 0. So, our Taylor series for h(x)
is

8
ÿ

n=0

3ne3a

n!
(x´ a)n

To find its radius of convergence, we use the ratio test.

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

3n+1e3a(x´ a)n+1

(n + 1)!
¨ n!

3ne3a(x´ a)n

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

3n+1

3n ¨ e3a

e3a ¨
n!

(n + 1)!
¨ (x´ a)n+1

(x´ a)n

ˇ

ˇ

ˇ

ˇ

= 3 ¨ 1
n + 1

¨ |x´ a|

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

[
3

n + 1
¨ |x´ a|

]
= 0

Our series converges for every value of x, so its radius of convergence is8.
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S-8: Substituting y = 2x into
1

1´ y
=

8
ÿ

n=0

yn (which is valid for all ´1 ă y ă 1) gives

f (x) =
1

2x´ 1
= ´ 1

1´ 2x
= ´

8
ÿ

n=0

(2x)n = ´
8
ÿ

n=0

2nxn for all ´1
2 ă x ă 1

2

S-9: Substituting first y = ´x and then y = 2x into
1

1´ y
=

8
ÿ

n=0

yn (which is valid for all

´1 ă y ă 1) gives

1
1´ (´x)

=
8
ÿ

n=0

(´x)n =
8
ÿ

n=0

(´1)nxn for all ´1 ă x ă 1

1
1´ (2x)

=
8
ÿ

n=0

(2x)n =
8
ÿ

n=0

2nxn for all ´1
2 ă x ă 1

2

Hence, for all ´1
2 ă x ă 1

2 ,

f (x) =
3

x + 1
´ 1

2x´ 1
=

3
1´ (´x)

+
1

1´ 2x
= 3

8
ÿ

n=0

(´1)nxn +
8
ÿ

n=0

2nxn

=
8
ÿ

n=0

(
3(´1)n + 2n)xn

So bn = 3(´1)n + 2n.

S-10: We found the Taylor series for e3x from scratch in Question 7. If we hadn’t just
done that, we could easily find it by modifying the series for ex.

Substituting y = 3x into the exponential series

ey =
8
ÿ

n=0

yn

n!

gives

e3x =
8
ÿ

n=0

(3x)n

n!
=

8
ÿ

n=0

3n xn

n!

so that c5, the coefficient of x5, which appears only in the n = 5 term, is c5 =
35

5!

S-11: Since

f 1(t) =
d
dt

ln(1 + 2t) =
2

1 + 2t
= 2

8
ÿ

n=0

(´2t)n if |2t| ă 1 i.e. |t| ă 1
2
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and f (0) = 0, we have

f (x) =
ż x

0
f 1(t)dt = 2

8
ÿ

n=0

ż x

0
(´1)n2ntn dt =

8
ÿ

n=0

(´1)n2n+1 xn+1

n + 1
for all |x| ă 1

2

S-12: We just need to substitute y = x3 into the known Maclaurin series for sin y, to get
the Maclaurin series for sin(x3), and then multiply the result by x2.

sin y = y´ y3

3!
+ ¨ ¨ ¨

sin(x3) = x3 ´ x9

3!
+ ¨ ¨ ¨

x2 sin(x3) = x5 ´ x11

3!
+ ¨ ¨ ¨

so a = 1 and b = ´ 1
3! = ´1

6 .

S-13: Recall that

ey =
8
ÿ

n=0

yn

n!
= 1 + y +

y2

2
+

y3

3!
+ ¨ ¨ ¨

Setting y = ´x2, we have

e´x2
= 1´ x2 +

x4

2
´ x6

3!
+ ¨ ¨ ¨

e´x2 ´ 1 = ´x2 +
x4

2
´ x6

6
+ ¨ ¨ ¨

e´x2 ´ 1
x

= ´x +
x3

2
´ x5

6
+ ¨ ¨ ¨

ż

e´x2 ´ 1
x

dx = C´ x2

2
+

x4

8
´ x6

36
+ ¨ ¨ ¨

S-14: Recall that

arctan(y) =
8
ÿ

n=0

(´1)n y2n+1

2n + 1
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Setting y = 2x, we have
ż

x4 arctan(2x)dx =

ż

(
x4

8
ÿ

n=0

(´1)n (2x)2n+1

2n + 1

)
dx

=

ż

(
8
ÿ

n=0

(´1)n 22n+1x2n+5

2n + 1

)
dx

=
8
ÿ

n=0

(´1)n 22n+1x2n+6

(2n + 1)(2n + 6)
+ C

=
8
ÿ

n=0

(´1)n 22nx2n+6

(2n + 1)(n + 3)
+ C

S-15: Substituting y = ´3x3 into
1

1´ y
=

8
ř

n=0
yn gives

d f
dx

= x ¨ 1
1 + 3x3 = x

8
ÿ

n=0

(´ 3x3)n
=

8
ÿ

n=0

(´1)n3nx3n+1

Now integrating,

f (x) =
8
ÿ

n=0

(´1)n3n x3n+2

3n + 2
+ C

To have f (0) = 1, we need C = 1. So, finally

f (x) = 1 +
8
ÿ

n=0

(´1)n 3n

3n + 2
x3n+2

S-16: The Taylor Series for ex is not alternating, so we’ll use Theorem 6.3.1-b in the text to
bound the error in a partial-sum approximation. The error in the partial-sum
approximation SN is

EN =
f (N+1)(c)
(N + 1)!

(x´ a)N+1

for some c strictly between a and x. In our case, a = 0 and x = 1. So, we want to find a
value of N such that

ˇ

ˇ

ˇ

ˇ

ˇ

f (N+1)(c)
(N + 1)!

(1´ 0)N+1

ˇ

ˇ

ˇ

ˇ

ˇ

=
ec

(N + 1)!
ă 5ˆ 10´11

for all c in (0, 1).

If c is between 0 and 1, then ec is between 1 and e. However, since the purpose of this
problem is to approximate e precisely, it doesn’t make much sense to use e in our bound.
Since e is less than 3, then ec ă 3 for all c in (0, 1). Now we can search for an appropriate
value of N.
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N
3

(N + 1)!

10
3

11!
=

1
910 « 8ˆ 10´8

11
3

12!
« 6ˆ 10´9

12
3

13!
« 5ˆ 10´10

13
3

14!
« 3ˆ 10´11

So, it suffices to use the partial sum S13.

S-17: The Taylor Series for ln(1´ x) is not alternating, so we’ll use Theorem 6.3.1-b in
the text to bound the error in a partial-sum approximation. The error in the partial-sum
approximation SN is

EN =
f (N+1)(c)
(N + 1)!

(x´ a)N+1

for some c strictly between a and x. In our case, a = 0 and x =
1
10

. So, we want to find a
value of N such that

ˇ

ˇ

ˇ

ˇ

ˇ

f (N+1)(c)
(N + 1)!

(
1
10

)N+1
ˇ

ˇ

ˇ

ˇ

ˇ

ă 5ˆ 10´11

for all c in (0, 1
10).

To find this N, we to know f (N+1)(x). Just like when we create a Taylor polynomial from
scratch, we’ll differentiate f (x) several times, and look for a pattern.

f (x) = ln(1´ x) f (6)(x) =
´2(3)(4)(5)
(1´ x)6

f 1(x) =
´1

1´ x
f (7)(x) =

´2(3)(4)(5)(6)
(1´ x)7

f 2(x) =
´1

(1´ x)2
...

f3(x) =
´2

(1´ x)3 f (N+1)(x) =
´N!

(1´ x)N+1

f (4)(x) =
´2(3)
(1´ x)4

f (5)(x) =
´2(3)(4)
(1´ x)5

Now we want a reasonable bound on f (N+1)(c), when c is in (0, 1
10). Note that in this
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range, 1´ c ą 0.

0 ă c ă 1
10

ñ 9
10
ă 1´ c ă 1

ñ
(

9
10

)N+1

ă (1´ c)N+1 ă 1

ñ 1 ă 1
(1´ c)N+1 ă

(
10
9

)N+1

ñ N! ă N!
(1´ c)N+1 ă N!

(
10
9

)N+1

This bound provides us with a “worst-case scenario” error. We don’t know exactly what
c is, but we don’t need to–the bound above holds for all c between 0 and 1

10 .

Now we’re ready to choose an N that results in a sufficiently small error bound.

ˇ

ˇ

ˇ

ˇ

ˇ

f (N+1)(c)
(N + 1)!

(
1

10

)N+1
ˇ

ˇ

ˇ

ˇ

ˇ

ă
N!
(

10
9

)N+1

(N + 1)!

(
1

10

)N+1

=
1

9N+1 ¨ (N + 1)

So, we want:
1

9N+1 ¨ (N + 1)
ă 5ˆ 10´11

To find an appropriate N, we test several values.

N
1

9N+1 ¨ (N + 1)

8
1

9 ¨ 99 =
1

910 « 3ˆ 10´10

9
1

10 ¨ 910 « 3ˆ 10´11

So, it suffices to use the partial sum S9.

S-18: We’ll use Theorem 6.3.1-b in the text to bound the error of a partial-sum
approximation. The error in the partial-sum approximation SN is

EN =
f (N+1)(c)
(N + 1)!

(x´ a)N+1

for some c strictly between a and x. In our case, a = 0 and x is in (´2, 1). So, we want to
find a value of N such that

ˇ

ˇ

ˇ

ˇ

ˇ

f (N+1)(c)
(N + 1)!

(x)N+1

ˇ

ˇ

ˇ

ˇ

ˇ

ă 5ˆ 10´11
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for all x in (´2, 1), and all c in (´2, 1).

To find this N, we to know f (N+1)(x). Just like when we create a Taylor polynomial from
scratch, we’ll differentiate f (x) several times, and look for a pattern.

f (x) = sinh(x) =
ex ´ e´x

2

f 1(x) =
ex + e´x

2

f 2(x) =
ex ´ e´x

2

f3(x) =
ex + e´x

2

That is, even derivatives of f (x) are f (x), and odd derivatives of f (x) are ex+e´x

2 (which,
incidentally, is the function called cosh x).

Now we want a reasonable bound on f (N+1)(c), when c is in (´2, 1). Since powers of e
are always positive, we begin by noting that 0 ă ex´e´x

2 ă ex+e´x

2 . So, all derivatives of
f (x) are bounded above by ex+e´x

2 .

´2 ă c ă 1

ñ e´2 ă ec ă e and e´1 ă e´c ă e2

ñ f (N+1)(c) ă ec + e´c

2
ă e2 + e2

2
= e2 ă 9

This bound provides us with a “worst-case scenario” error. We don’t know exactly what
c is, but we don’t need to–the bound above holds for all c between ´2 and 1.

We also don’t know exactly what x will be, only that it’s between ´2 and 1. So, we note
|x|N+1 ă 2N+1.

Now we’re ready to choose an N that results in a sufficiently small error bound.

ˇ

ˇ

ˇ

ˇ

ˇ

f (N+1)(c)
(N + 1)!

(x)N+1

ˇ

ˇ

ˇ

ˇ

ˇ

ă 9 ¨ 2N+1

(N + 1)!

So, we want:
9 ¨ 2N+1

(N + 1)!
ă 5ˆ 10´11

To find an appropriate N, we test several values.
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N
9 ¨ 2N+1

(N + 1)!

10
9 ¨ 211

(11)!
« 5ˆ 10´4

15
9 ¨ 216

(16)!
« 3ˆ 10´8

17
9 ¨ 218

(18)!
« 4ˆ 10´10

18
9 ¨ 219

(19)!
« 4ˆ 10´11 ă 5ˆ 10´11

So, it suffices to use the partial sum S18.

S-19: We’ll use Theorem 6.3.1-b in the text to bound the error in a partial-sum
approximation. The error in the partial-sum approximation SN is

EN =
f (N+1)(c)
(N + 1)!

(x´ a)N+1

for some c strictly between a and x. In our case, a =
1
2

, x = ´1
3

, and we are given the nth

derivative of f (x):

E6 =
f (7)(c)

7!

(
´1

3
´ 1

2

)7

=
1
7!
¨ 6!

2

[
(1´ c)´7 + (´1)6 (1 + c)´7

] (
´5

6

)7

=
´57

14 ¨ 67 ¨
[
(1´ c)´7 + (1 + c)´7

]
=

for some c in (´1
3 , 1

2).

We want to provide actual numeric bounds for this expression. That is, we want to find
the absolute max and min of

E(c) =
´57

14 ¨ 67 ¨
[
(1´ c)´7 + (1 + c)´7

]

over the interval
(
´1

3 , 1
2

)
. Absolute extrema occur at endpoints and critical points. So,

we’ll start by differentiating E(c), and finding its critical points (if any) in the interval(
´1

3 , 1
2

)
.
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E(c) =
´57

14 ¨ 67 ¨
[
(1´ c)´7 + (1 + c)´7

]
E1(c) =

´57

14 ¨ 67 ¨
[
7 (1´ c)´8 ´ 7 (1 + c)´8

]
= 0

(1´ c)´8 = (1 + c)´8

1´ c = 1 + c
c = 0

Since E1(c) is defined over our entire interval, its only critical point is c = 0.

• E(0) =
´57

14 ¨ 67 [2]

• E
(
´1

3

)
=

´57

14 ¨ 67

[(
4
3

)´7
+
(2

3

)´7
]
=

´57

14 ¨ 67

[(3
4

)7
+
(3

2

)7
]

• E
(

1
2

)
=

´57

14 ¨ 67

[(
1
2

)´7
+
(3

2

)´7
]
=

´57

14 ¨ 67

[
27 +

(2
3

)7
]

We want to decide which of these numbers is biggest, and which smallest. Note that 27 is
much, much bigger than (3/2)7, and both (3/4)7 and (2/3)7 are less than one.
Furthermore, (3/2)7 is much larger than 2. So:

[
27 + (2/3)7] ą [(3/2)7 + (3/4)7] ą 2.

Therefore,

´57

14 ¨ 67

[
27 +

(
2
3

)7
]
ă ´57

14 ¨ 67

[(
3
4

)7

+

(
3
2

)7
]
ă ´57

14 ¨ 67 [2]

We conclude that the error E6 is in the interval

(
´57

14 ¨ 67

[
27 +

(
2
3

)7
]

,
´57

14 ¨ 67 [2]

)

or, equivalently,

( ´57

14 ¨ 37

[
1 +

1
37

]
,

´57

7 ¨ 67

)

which is approximately (´0.199,´0.040).

S-20:
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(a) We’ll start, as we usually do, by finding a pattern for f (n)(0).

f (x) = (1´ x)´1/2

f 1(x) =
1
2
(1´ x)´3/2

f 2(x) =
1 ¨ 3
22 (1´ x)´5/2

f3(x) =
1 ¨ 3 ¨ 5

23 (1´ x)´7/2

f (4)(x) =
1 ¨ 3 ¨ 5 ¨ 7

24 (1´ x)´9/2

...

f (n)(x) =
1 ¨ 3 ¨ 5 ¨ . . . ¨ (2n´ 1)

2n (1´ x)´(2n+1)/2

f (n)(0) =
1 ¨ 3 ¨ 5 ¨ . . . ¨ (2n´ 1)

2n

We could leave it like this, but we simplify, to make our work cleaner later on.

=
1
2n ¨

(2n)!
2 ¨ 4 ¨ 6 ¨ . . . ¨ (2n)

=
1
2n ¨

(2n)!
2n ¨ n!

=
(2n)!
22n n!

This pattern holds for n ě 0. Now, we can write our Maclaurin series for f (x).

(1´ x)´1/2 =
8
ÿ

n=0

f (n)(0)
n!

xn =
8
ÿ

n=0

(2n)!
22n (n!)2 xn

To find the radius of convergence, we use the ratio test.

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

=
(2n + 2)!

22n+2((n + 1)!)2 ¨
22n (n!)2

(2n)!
¨ |x|

=
(2n + 2)!
(2n)!

(
n!

(n + 1)!

)2

¨ 22n

22n+2 |x|

= (2n + 2)(2n + 1)
(

1
n + 1

)2

¨ 1
4
|x|

=
4n2 + 4n + 2
4n2 + 8n + 4

|x|

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

[
4n2 + 4n + 2
4n2 + 8n + 4

|x|
]
= |x|

So, the radius of convergence is R = 1.
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x
convergediverge diverge

´1 10

R = 1

(b) We note the derivative of the arcsine function is
1?

1´ x2
= f (x2). With this insight,

we can manipulate our Taylor series for f (x) into a Taylor series for arcsine.

1?
1´ x

=
8
ÿ

n=0

(2n)!
22n (n!)2 xn

1?
1´ x2

=
8
ÿ

n=0

(2n)!
22n (n!)2 x2n

ż

1?
1´ x2

dx =

ż

(
8
ÿ

n=0

(2n)!
22n (n!)2 x2n

)
dx

arcsin x =
8
ÿ

n=0

(2n)!
22n (n!)2(2n + 1)

x2n+1 + C

arcsin x =
8
ÿ

n=0

(2n)!
22n (n!)2(2n + 1)

x2n+1

where we found the value of C by setting x = 0. Its radius of convergence is also 1,
by Theorem 6.2.1.

x
convergediverge diverge

´1 10

R = 1

S-21: We use that

ln(1 + y) =
8
ÿ

n=1

(´1)n´1 yn

n
for all ´ 1 ă y ď 1

with y =
x´ 2

2
to give

ln(x) = ln(2 + x´ 2) = ln
[

2
(

1 +
x´ 2

2

)]
= ln 2 + ln

(
1 +

x´ 2
2

)
= ln 2 +

8
ÿ

n=1

(´1)n´1

n 2n (x´ 2)n

It converges when ´1 ă y ď 1, or equivalently, 0 ă x ď 4.
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x
convergediverge diverge

0 4

S-22: Using the geometric series expansion with r = ´t4,

1
1´ r

=
8
ÿ

n=0

rn ùñ 1
1 + t4 =

8
ÿ

n=0

(´t4)
n
=

8
ÿ

n=0

(´1)nt4n

Substituting this into our integral,

I(x) =
ż x

0

1
1 + t4 dt

=

ż x

0

(
8
ÿ

n=0

(´1)nt4n

)
dt

=

[
8
ÿ

n=0

(´1)n t4n+1

4n + 1

]t=x

t=0

=
8
ÿ

n=0

(´1)n x4n+1

4n + 1

S-23: Using the Taylor series expansion of ex with x = ´t,

e´t =
8
ÿ

n=0

(´t)n

n!
ùñ e´t ´ 1 =

8
ÿ

n=1

(´1)n tn

n!
ùñ e´t ´ 1

t
=

8
ÿ

n=1

(´1)n tn´1

n!

Substituting this into our integral,

I(x) =
ż x

0

e´t ´ 1
t

dt =
8
ÿ

n=1

(´1)n
ż x

0

tn´1

n!
dt =

8
ÿ

n=1

(´1)n xn

n ¨ n!

S-24: (a) Using the Taylor series expansion of sin x with x = t,

sin t =
8
ÿ

n=0

(´1)n t2n+1

(2n + 1)!
ùñ sin t

t
=

8
ÿ

n=0

(´1)n t2n

(2n + 1)!

So

Σ(x) =
ż x

0

sin t
t

dt =
8
ÿ

n=0

(´1)n
ż x

0

t2n

(2n + 1)!
dt =

8
ÿ

n=0

(´1)n x2n+1

(2n + 1)(2n + 1)!

(b) The critical points of Σ(x) are the solutions of Σ1(x) = 0 or where Σ1(x) do not exist.
By the Fundamental Theorem of Calculus Σ1(x) = sin x

x . Σ1(x) = sin x
x is not defined at
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x = 0 and Σ1(x) = 0 at x = ˘π,˘2π, ¨ ¨ ¨ . So the critical points of Σ(x) are
x = 0,˘π,˘2π, ¨ ¨ ¨ . The absolute maximum occurs at x = π.

(c) Substituting in x = π,

Σ(π) =
8
ÿ

n=0

(´1)n π2n+1

(2n + 1)(2n + 1)!

= π ´ π3

3 ¨ 3!
+

π5

5 ¨ 5!
´ π7

7 ¨ 7!
+ ¨ ¨ ¨

= 3.1416´ 1.7226 + 0.5100´ 0.0856 + 0.0091´ 0.0007 + ¨ ¨ ¨

The series for Σ(π) is an alternating series (that is, the sign alternates) with successively
smaller terms that converge to zero. So the error introduced by truncating the series is no
larger than the first omitted term. So

Σ(π) = 3.1416´ 1.7226 + 0.5100´ 0.0856 + 0.0091 = 1.8525

with an error of magnitude at most 0.0007 + 0.0005 (the 0.0005 is the maximum possible
accumulated roundoff error in all five retained terms).

S-25: Using the Taylor series expansion of cos t,

cos t = 1´ t2

2!
+

t4

4!
´ t6

6!
+ ¨ ¨ ¨ =

8
ÿ

n=0

(´1)n t2n

(2n)!

cos t´ 1
t2 = ´ 1

2!
+

t2

4!
´ t4

6!
+ ¨ ¨ ¨ =

8
ÿ

n=1

(´1)n t2n´2

(2n)!

I(x) =
ż x

0

cos t´ 1
t2 dt = ´ x

2!
+

x3

4!3
´ x5

6!5
+ ¨ ¨ ¨ =

8
ÿ

n=1

(´1)n x2n´1

(2n)!(2n´ 1)

S-26: Using the Taylor series expansions of sin x and cos x with x = t,

sin t =
8
ÿ

n=0

(´1)n t2n+1

(2n + 1)!
=t´ t3

3!
+

t5

5!
´ t7

7!
+ ¨ ¨ ¨

t sin t =
8
ÿ

n=0

(´1)n t2n+2

(2n + 1)!
= t2 ´ t4

3!
+

t6

5!
´ t8

7!
+ ¨ ¨ ¨

= ´
8
ÿ

n=1

(´1)n t2n

(2n´ 1)!

cos t =
8
ÿ

n=0

(´1)n t2n

(2n)!
=1´ t2

2!
+

t4

4!
´ t6

6!
+

t8

8!
+ ¨ ¨ ¨

cos t´ 1 =
8
ÿ

n=1

(´1)n t2n

(2n)!
=´ t2

2!
+

t4

4!
´ t6

6!
+

t8

8!
+ ¨ ¨ ¨
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cos t + t sin t´1 =
8
ÿ

n=1

(´1)n t2n

(2n)!
´

8
ÿ

n=1

(´1)n t2n

(2n´ 1)!

=
8
ÿ

n=1

(´1)nt2n
(

1
(2n)!

´ 1
(2n´ 1)!

)
=
(

1´ 1
2!

)
t2 ´

( 1
3!
´ 1

4!

)
t4 + ¨ ¨ ¨

=
8
ÿ

n=1

(´1)nt2n
(

1
(2n)!

´ 2n
(2n)!

)

=
8
ÿ

n=1

(´1)nt2n
(

1´ 2n
(2n)!

)
=
( 2

2!
´ 1

2!

)
t2 ´

( 4
4!
´ 1

4!

)
t4 + ¨ ¨ ¨

=
8
ÿ

n=1

(´1)n+1t2n
(

2n´ 1
(2n)!

)
=

1
2!

t2 ´ 3
4!

t4 +
5
6!

t6 ´ 7
8!

t8 + ¨ ¨ ¨

cos t + t sin t´ 1
t2 =

8
ÿ

n=1

(´1)n+1t2n´2
(

2n´ 1
(2n)!

)
=

1
2!

t´ 3
4!

t2 +
5
6!

t4 ´ 7
8!

t6 + ¨ ¨ ¨

Now, we’re ready to integrate.

I(x) =
ż x

0

(
cos t + t sin t´ 1

t2

)
=

ż x

0

(
8
ÿ

n=1

(´1)n+1t2n´2
(

2n´ 1
(2n)!

))
dt

=

[
8
ÿ

n=1

(´1)n+1 t2n´1

(2n)!

]x

0

=
8
ÿ

n=1

(´1)n+1 x2n´1

(2n)!

S-27: (a) Substituting x = ´t into the known power series
ex = 1 + x + x2

2! +
x3

3! +
x4

4! + ¨ ¨ ¨ , we see that:

e´t = 1´ t +
t2

2!
´ t3

3!
+

t4

4!
´ ¨ ¨ ¨

1´ e´t = t´ t2

2!
+

t3

3!
´ t4

4!
+ ¨ ¨ ¨

1´ e´t

t
= 1´ t

2!
+

t2

3!
´ t3

4!
+ ¨ ¨ ¨

ż

1´ e´t

t
dt = C + x´ x2

2 ¨ 2!
+

x3

3 ¨ 3!
´ x4

4 ¨ 4!
+ ¨ ¨ ¨

Finally, f (0) = 0 (since f (0) is an integral from 0 to 0) and so C = 0. Therefore

f (x) =
ż x

0

1´ e´t

t
dt = x´ x2

2 ¨ 2!
+

x3

3 ¨ 3!
´ x4

4 ¨ 4!
+ ¨ ¨ ¨ .
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We can also do this calculation entirely in summation notation: ex =
8
ÿ

n=0

xn

n!
, and so

e´t =
8
ÿ

n=0

(´t)n

n!
= 1 +

8
ÿ

n=1

(´1)ntn

n!

1´ e´t = ´
8
ÿ

n=1

(´1)ntn

n!
=

8
ÿ

n=1

(´1)n´1tn

n!

1´ e´t

t
=

8
ÿ

n=1

(´1)n´1tn´1

n!

f (x) =
ż x

0

1´ e´t

t
dt =

8
ÿ

n=1

(´1)n´1xn

n ¨ n!

(b) We set an = Anxn =
(´1)n´1

n ¨ n!
xn and apply the ratio test.

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

(´1)nxn+1/((n + 1) ¨ (n + 1)!)
(´1)n´1xn/(n ¨ n!)

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

( |x|n+1

|x|n
n ¨ n!

(n + 1) ¨ (n + 1)!

)
= lim

nÑ8

(
|x| n

(n + 1)2

)
since (n + 1)! = (n + 1) n!

= 0

This is smaller than 1 no matter what x is. So the series converges for all x.

S-28:

ex = 1 + x +
x2

2!
+

x3

3!
+ ¨ ¨ ¨ ě 1 + x for all x ě 0

ùñ ex ´ 1 ě x

ùñ x3

ex ´ 1
ď x3

x
= x2

ùñ
ż 1

0

x3

ex ´ 1
dx ď

ż 1

0
x2 dx =

1
3

S-29: (a) We know that ex =
8
ř

n=0

xn

n! for all x. Replacing x by ´x, we also have

e´x =
8
ř

n=0

(´x)n

n! for all x and hence

cosh(x) =
1
2
[
ex + e´x] = 1

2

[ 8
ÿ

n=0

xn

n!
+

8
ÿ

n=0

(´x)n

n!

]
=

8
ÿ

n=0
n even

xn

n!
=

8
ÿ

n=0

x2n

(2n)!
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for all x. In particular, the interval of convergence is all real numbers.

(b) Using the power series expansion of part (a),

cosh(2) = 1 +
22

2!
+

24

4!
+

8
ÿ

n=3

22n

(2n)!
=

11
3

+
8
ÿ

n=3

22n

(2n)!

So it suffices to show that
ř8

n=3
22n

(2n)! ď 0.1. Let’s write bn = 22n

(2n)! . The first term in
ř8

n=3
22n

(2n)! is

b3 =
26

6!
=

26

6ˆ 5ˆ 4ˆ 3ˆ 2
=

4
45

The ratio between successive terms in
ř8

n=3
22n

(2n)! is

bn+1

bn
=

22n+2/22n

(2n + 2)!/(2n)!
=

4
(2n + 2)(2n + 1)

ď 4
8ˆ 7

=
1
14

for all n ě 3

Hence

8
ÿ

n=3

22n

(2n)!
ď

b3
hkkikkj

4
45

+

b4ď
hkkkikkkj

4
45
ˆ 1

14
+

b5ď
hkkkkikkkkj

4
45
ˆ 1

142 +

b6ď
hkkkkikkkkj

4
45
ˆ 1

143 + ¨ ¨ ¨

=
4

45
1

1´ 1
14

=
4

45
14
13

=
56

585
ă 1

10

(c) Comparing

cosh(t) =
8
ÿ

n=0

t2n

(2n)!
=

8
ÿ

n=0

(t2)
n

(2n)!
and e

1
2 t2

=
8
ÿ

n=0

(1
2 t2)

n

n!
=

8
ÿ

n=0

(t2)
n

2nn!

we see that it suffices to show that (2n)! ě 2nn!. Now. for all n ě 1,

(2n)! =

n factors
hkkkkkkkikkkkkkkj

1ˆ 2ˆ ¨ ¨ ¨ ˆ n

n factors
hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

(n + 1)ˆ (n + 2)ˆ ¨ ¨ ¨ ˆ 2n

ě
n factors

hkkkkkkkikkkkkkkj

1ˆ 2ˆ ¨ ¨ ¨ ˆ n

n factors
hkkkkkkkikkkkkkkj

2ˆ 2ˆ ¨ ¨ ¨ ˆ 2
= 2n n!

S-30:

(a) To sketch y = f (x), we note the following:

• f (x) is never negative.

• lim
xÑ˘8

f (x) = e0 = 1, so the curve has horizontal asymptotes in both directions at

y = 1.

684



• lim
xÑ˘0

f (x) = lim
xÑ˘0

1
e1/x2 = lim

uÑ+8

1
eu = 0 = f (0), so the curve is continuous at

x = 0.

• For x ‰ 0, f 1(x) = 2
x3 e´1/x2

, so our curve is decreasing on (´8, 0) and increasing
on (0,8)

• For x ‰ 0, f 2(x) = 2x´6(2´ 3x2)e´1/x2
, so our curve is concave up on

(´?2/3,
?

2/3), and concave down elsewhere.

x

y

1

´?2/3
?

2/3

y = f (x)

(b) Since f (n)(0) = 0 for all whole n (that is, the graph is really quite flat at the origin),

and since f (0) = 0, the Maclaurin series for f (x) is
8
ÿ

n=0

0
n!

xn = 0.

(c) The Maclaurin series converges for all real values of x (to the constant 0).

(d) Since ey ą 0 for any real y, we see f (x) = 0 only when x = 0. So, f (x) is only equal to
its Maclaurin series at the single point x = 0.

Remark: the function f (x) is an example of a function whose Maclaurin series converges,
but not to f (x)! To describe this behaviour, we say f (x) is non-analytic.

S-31:

Solution 1: Since f (x) is odd, f (´x) = ´ f (x) for all x in its domain. We plug this into
our power series, then consider the even-indexed terms and the odd-indexed terms
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separately.

f (´x) = ´ f (x)
8
ÿ

n=0

f (n)(0)
n!

(´x)n = ´
8
ÿ

n=0

f (n)(0)
n!

xn

8
ÿ

n=0

f (2n+1)(0)
(2n + 1)!

(´x)2n+1 +
8
ÿ

n=0

f (2n)(0)
(2n)!

(´x)2n = ´
8
ÿ

n=0

f (2n+1)(0)
n!

x2n+1´
8
ÿ

n=0

f (2n)(0)
n!

x2n

´
8
ÿ

n=0

f (2n+1)(0)
(2n + 1)!

x2n+1 +
8
ÿ

n=0

f (2n)(0)
(2n)!

x2n = ´
8
ÿ

n=0

f (2n+1)(0)
n!

x2n+1´
8
ÿ

n=0

f (2n)(0)
n!

x2n

8
ÿ

n=0

f (2n)(0)
(2n)!

x2n = ´
8
ÿ

n=0

f (2n)(0)
n!

x2n

2
8
ÿ

n=0

f (2n)(0)
(2n)!

x2n = 0

8
ÿ

n=0

f (2n)(0)
(2n)!

x2n = 0

Solution 2: Alternately, we could note the following:

• Since all derivative of f (x) exist, all its derivatives are continuous.

• The derivative of an odd function is even, and the derivative of an even
function is odd.

• So, the even-indexed derivatives of f (x) are continuous, odd functions.

• Every continuous, odd function passes through the origin. That is,
f (2n)(0) = 0.

• So, every term in the series is 0.

S-32: Recall the Taylor series for arctangent is:

arctan x =
8
ÿ

n=0

(´1)n x2n+1

2n + 1

There are similarities between this and our given series: skipping powers of x, and a
denominator that’s not factorial. We’ll try to manipulate it to look like our series. First,
we antidifferentiate, to get a factor of (2n + 2) on the bottom.

ż

arctan x dx =
8
ÿ

n=0

(´1)n x2n+2

(2n + 1)(2n + 2)
+ C

We can find the antiderivative of arctangent using integration by parts. Let u = arctan x
and dv = dx; then du = 1

1+x2 dx and v = x.
ż

arctan x dx = x arctan x´
ż

x
1 + x2 dx + C
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Now, we use the substitution w = 1 + x2, dw = 2xdx.

= x arctan x´ 1
2

ln(1 + x2) + C

So,
8
ÿ

n=0

(´1)n x2n+2

(2n + 1)(2n + 2)
= x arctan x´ 1

2
ln(1 + x2) + C

To find C, we evaluate both sides of the equation at x = 0.

0 = 0 arctan 0´ 1
2

ln(1) + C = C

Therefore,
8
ÿ

n=0

(´1)n x2n+2

(2n + 1)(2n + 2)
= x arctan x´ 1

2
ln(1 + x2)

Multiplying both sides by x2,

8
ÿ

n=0

(´1)n x2n+4

(2n + 1)(2n + 2)
= x3 arctan x´ x2

2
ln(1 + x2)

S-33: By Theorem 6.2.1, it must be the case that a is an endpoint of an interval of
convergence.

Theorem 6.3.5 has lots of series to look at for ideas.

Solution 1: Note that the Maclaurin series for arctangent converges on the interval
[´1, 1], while the geometric series diverges at both x = 1 and x = ´1. Since the
derivative of arctangent vaguely resembles 1

1´x , this feels like a good place to start.

arctan x =
8
ÿ

n=0

(´1)n x2n+1

2n + 1
= x´ x3

3
+

x5

5
´ ¨ ¨ ¨ for all ´1 ď x ď 1

d
dx

[arctan x] =
1

1 + x2 =
8
ÿ

n=0

(´1)n ¨ x2n = 1´ x2 + x4 ´ ¨ ¨ ¨

When x = 1, f 1(x) = 1
2 . However,

8
ÿ

n=0

(´1)n ¨ 12n =
8
ÿ

n=0

(´1)n, which diverges by the

divergence test.

Solution 2: Similarly, ln(1 + x) has a convergent Maclaurin series at x = 1; its derivative
vaguely resembles 1

1´x , whose Maclaurin series diverges at x = 1. So, we can try this one
as well.

ln(1 + x) =
8
ÿ

n=0

(´1)n xn+1

n + 1
= x´ x2

2
+

x3

3
´ x4

4
+ ¨ ¨ ¨ for all ´1 ă x ď 1

d
dx

[ln(1 + x)] =
1

1 + x
=

8
ÿ

n=0

(´1)nxn = 1´ x + x2 ´ x3 + ¨ ¨ ¨
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When x = 1, 1
1+x = 1

2 , but
ř8

n=0(´1)n(1)n =
ř8

n=0(´1)n diverges by the divergence test.

Solutions to Exercises 6.4 — Jump to TABLE OF CONTENTS

S-1: Every series used shows up in the list of Theorem 6.3.5.

(a) From the list, we see

8
ÿ

n=0

(´1)n 1
(2n)!

x2n = cos(x) =

for all values of x. In particular, then:

8
ÿ

n=0

(´1)n 1
(2n)!

(π

4

)2n
= cos

(π

4

)
=

1?
2

= sin
(π

4

)
So this part is true.

(b) It’s tempting to plug in x = e´ 1 to the Maclaurin series ln(1 + x) =
8
ÿ

n=0

(´1)n xn+1

n + 1
.

However, this Maclaurin series only converges to ln(x + 1) when ´1 ă x ď 1.

Indeed, lim
nÑ8

(e´1)n+1

n+1 = 8, so
ř8

n=0(´1)n (e´1)n+1

n+1 diverges by the divergence test.

This part is false.

(c) From the list,

arctan x =
8
ÿ

n=0

(´1)n x2n+1

2n + 1

whenever ´1 ď x ď 1. In particular, when x = 1,

arctan 1 =
8
ÿ

n=0

(´1)n 1
2n + 1

Since arctan 1 = π
4 , this part is true.

S-2:

(a) Using the definition of a Taylor series, we know

8
ÿ

n=0

n2

(n! + 1)
(x´ 3)n =

8
ÿ

n=0

f (n)(3)
n!

(x´ 3)n
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So, the coefficient of (x´ 3)20 is f (20)(3)
20! (using the definition). Using the given series,

the coefficient of (x´ 3)20 is 202

20!+1 . So,

f (20)(3)
20!

=
202

20! + 1

ñ f (20)(3) = 202
(

20!
20! + 1

)

(which is extremely close to 202).

(b) Using the definition of a Taylor series, we know
8
ÿ

n=0

n2

(n! + 1)
(x´ 3)2n =

8
ÿ

k=0

g(k)(3)
k!

(x´ 3)k

So, the coefficient of (x´ 3)20 is g(20)(3)
20! (using the definition). Looking at the given

series, the coefficient of (x´ 3)20 occurs when n = 10, so it is 102

10!+1 . So,

g(20)(3)
20!

=
102

10! + 1

ñ g(20)(3) = 102
(

20!
10! + 1

)

(c) With the previous two examples in mind, we find the Maclaurin series (i.e. Taylor
series with a = 0) for h(x). (Using the series representation will be much easier than
differentiating h(x) directly twenty times.) Recall from the text that we know the
Maclaurin series for arctan x.

arctan(x) =
8
ÿ

n=0

(´1)n x2n+1

2n + 1

arctan(5x2) =
8
ÿ

n=0

(´1)n (5x2)2n+1

2n + 1
=

8
ÿ

n=0

(´1)n 52n+1

2n + 1
x4n+2

arctan(5x2)

x4 =
8
ÿ

n=0

(´1)n 52n+1

2n + 1
x4n´2

8
ÿ

k=0

h(k)(0)
k!

xk =
8
ÿ

n=0

(´1)n 52n+1

2n + 1
x4n´2

Using the definition of a Maclaurin series, the coefficient of x22 is
h(22)(0)

22!
. This

occurs in the given series when n = 6, so

h(22)(0)
22!

= (´1)6 52ˆ6+1

2ˆ 6 + 1
=

513

13

ñ h(22)(0) =
22! ¨ 513

13

689



Similarly, the coefficient of x20 in the Maclaurin series is
h(20)(0)

20!
. Since no term x20

occurs in our series, that coefficient is 0, so h(20)(0) = 0.

S-3: We’re given a big hint: that our series resembles the Taylor series for arctangent.

The terms of arctangent are (´1)n x2n+1

2n + 1
. Our terms resemble those terms, with x2n+1

replaced by
1
3n .

Since 3n =
(?

3
)2n

= 1?
3

(?
3
)2n+1:

8
ÿ

n=0

(´1)n

(2n + 1)3n =
?

3
8
ÿ

n=0

(´1)n

(2n + 1)
(?

3
)2n+1 =

?
3
8
ÿ

n=0

(´1)n x2n+1

2n + 1

ˇ

ˇ

ˇ

ˇ

x= 1?
3

=
?

3 arctan
1?
3

=
?

3
π

6
=

π

2
?

3

S-4: Recall that ex =
8
ÿ

n=0

xn

n!
. So

8
ÿ

n=0

(´1)n

n!
=
[ 8
ÿ

n=0

xn

n!

]
x=´1

=
[
ex
]

x=´1
= e´1

S-5: Recall that ex =
8
ÿ

k=0

xk

k!
. So

8
ÿ

k=0

1
ekk!

=
[ 8
ÿ

k=0

xk

k!

]
x=1/e

=
[
ex
]

x=1/e
= e1/e

S-6: Recall that ex =
8
ÿ

k=0

xk

k!
. So

8
ÿ

k=0

1
πkk!

=
[ 8
ÿ

k=0

xk

k!

]
x=1/π

=
[
ex
]

x=1/π
= e1/π

This series differs from the given one only in that it starts with k = 0 while the given
series starts with k = 1. So

8
ÿ

k=1

1
πkk!

=
8
ÿ

k=0

1
πkk!

´ 1
loomoon

k=0

= e1/π ´ 1
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S-7: Recall, from Theorem 6.3.5 in the text, that, for all ´1 ă x ď 1,

ln(1 + x) =
8
ÿ

k=0

(´1)k xk+1

k + 1
=

8
ÿ

n=1

(´1)n´1 xn

n

(To get from the first sum to the second sum we substituted n = k + 1. If you don’t see
why the two sums are equal, write out the first few terms of each.) So

8
ÿ

n=1

(´1)n´1

n 2n =
[ 8
ÿ

n=1

(´1)n´1 xn

n

]
x=1/2

=
[

ln(1 + x)
]

x=1/2
= ln(3/2)

S-8: Write
8
ÿ

n=1

n + 2
n!

en =
8
ÿ

n=1

n
n!

en +
8
ÿ

n=1

2
n!

en

=
8
ÿ

n=1

en

(n´ 1)!
+ 2

8
ÿ

n=1

en

n!

= e
8
ÿ

n=1

en´1

(n´ 1)!
+ 2

8
ÿ

n=1

en

n!

= e
8
ÿ

n=0

en

n!
+ 2

8
ÿ

n=1

en

n!

Recall that ex =
8
ÿ

n=0

xn

n!
. So

8
ÿ

n=1

n + 2
n!

en = e
[ 8
ÿ

n=0

xn

n!

]
x=e

+ 2
[ 8
ÿ

n=1

xn

n!

]
x=e

= e
[
ex
]

x=e
+ 2
[
ex ´ 1

]
x=e

= ee+1 + 2(ee ´ 1)

= (e + 2)ee ´ 2

S-9: Let’s use the ratio test:

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

2n+1

n+1
2n

n

ˇ

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

2
n

n + 1
= 2 ą 1

So, the series diverges.

Remark: it’s tempting to note that ln(1 + y) =
8
ÿ

n=0

(´1)n yn+1

n + 1
= ´

8
ÿ

n=1

(´y)n

n
, and try to

substitute in y = ´2. But, the Maclaurin series for ln(1 + y) has radius of convergence
R = 1, so it doesn’t converge at y = ´2. Furthermore, ln(1 + (´2)) = ln(´1), but this is
undefined.

691



S-10: Our series looks something like the Taylor series for sine,

sin x =
8
ÿ

n=0

(´1)n

(2n + 1)!
x2n+1.

8
ÿ

n=0

(´1)n

(2n + 1)!

(π

4

)2n+1 (
1 + 22n+1

)
=

8
ÿ

n=0

(´1)n

(2n + 1)!

[(π

4

)2n+1
+
(π

2

)2n+1
]

=
8
ÿ

n=0

(´1)n

(2n + 1)!

(π

4

)2n+1
+

8
ÿ

n=0

(´1)n

(2n + 1)!

(π

2

)2n+1

= sin
(π

4

)
+ sin

(π

2

)
=

1?
2
+ 1 =

1 +
?

2?
2

S-11: (a)

Solution 1: The naive strategy is to set an =
x2n

(2n)!
and apply the ratio test.

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x2n+2

(2n+2)!
x2n

(2n)!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

x2n+2

x2n ¨ (2n)!
(2n + 2)(2n + 1)(2n)!

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

x2

(2n + 2)(2n + 1)
= 0

This is smaller than 1 no matter what x is. So the series converges for all x.

Solution 2: Alternatively, the sneaky way is to observe that both ex =
8
ÿ

n=0

xn

n!
and

e´x =
8
ÿ

n=0

(´x)n

n!
are known to converge for all x. So

1
2
(
ex + e´x) = ÿ

n even

xn

n!
=

8
ÿ

n=0

x2n

(2n)!

also converges for all x.
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(b) Recall that ex =
8
ÿ

n=0

xn

n!
. Then:

e =
8
ÿ

n=0

1
n!

e´1 =
8
ÿ

n=0

(´1)n

n!

e + e´1 =
8
ÿ

n=0

1 + (´1)n

n!
= 2

8
ÿ

n even

1
n!

= 2
8
ÿ

n=0

1
(2n)!

Hence
8
ÿ

n=0

1
(2n)!

=
1
2

(
e +

1
e

)
.

S-12: The factor (n + 1)(n + 2) reminds us of a derivative. Start with the geometric
series.

1
1´ x

=
8
ÿ

n=0

xn

d
dx

"

1
1´ x

*

=
d
dx

#

8
ÿ

n=0

xn

+

1
(1´ x)2 =

8
ÿ

n=0

nxn´1 =
8
ÿ

n=1

nxn´1

d
dx

"

1
(1´ x)2

*

=
d
dx

#

8
ÿ

n=1

nxn´1

+

2
(1´ x)3 =

8
ÿ

n=1

n(n´ 1)xn´2 =
8
ÿ

n=2

n(n´ 1)xn´2

=
8
ÿ

n=0

(n + 2)(n + 1)xn

Let x = 1
7 . Then |x| ă 1, so our series converges.

2
(1´ 1/7)3 =

8
ÿ

n=0

(n + 2)(n + 1)
(

1
7

)n

2
(6/7)3 =

8
ÿ

n=0

(n + 2)(n + 1)
7n

Solutions to Exercises 6.5 — Jump to TABLE OF CONTENTS
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S-1:

First, we note that we have an indeterminate form:

lim
xÑ0

8
ÿ

n=c
Anxn = lim

xÑ0

8
ÿ

n=c
0 = 0

lim
xÑ0

8
ÿ

n=c
Bnxn = lim

xÑ0

8
ÿ

n=c
0 = 0

To simplify things, we’ll divide the numerator and denominator by the lowest power of
x, xc.

lim
xÑ0

[ř8
n=c Anxn

ř8
n=c Bnxn

]
= lim

xÑ0

[
1
xc
ř8

n=c Anxn

1
xc
ř8

n=c Bnxn

]

= lim
xÑ0

[ř8
n=c Anxn´c

ř8
n=c Bnxn´c

]
= lim

xÑ0

[ř8
n=0 An+cxn

ř8
n=0 Bn+cxn

]
= lim

xÑ0

[
Ac +

ř8
n=1 An+cxn

Bc +
ř8

n=1 Bn+cxn

]
=

[
Ac +

ř8
n=1 0

Bc +
ř8

n=1 0

]
=

Ac

Bc

Equivalently, we could have written the above with fewer sigmas:

lim
xÑ0

[ř8
n=c Anxn

ř8
n=c Bnxn

]
= lim

xÑ0

[
Acxc + Ac+1xc+1 + Ac+2xc+2 + Ac+1xc+3 + ¨ ¨ ¨
Bcxc + Bc+1xc+1 + Bc+2xc+2 + Bc+1xc+3 + ¨ ¨ ¨

]
= lim

xÑ0

[
xc (Ac + Ac+1x1 + Ac+2x2 + Ac+1x3 + ¨ ¨ ¨ )
xc (Bc + Bc+1x1 + Bc+2x2 + Bc+1x3 + ¨ ¨ ¨ )

]

= lim
xÑ0

[
Ac + Ac+1x1 + Ac+2x2 + Ac+1x3 + ¨ ¨ ¨
Bc + Bc+1x1 + Bc+2x2 + Bc+1x3 + ¨ ¨ ¨

]
=

Ac + 0 + 0 + 0 + ¨ ¨ ¨
Bc + 0 + 0 + 0 + ¨ ¨ ¨

=
Ac

Bc
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S-2: Using the Maclaurin series expansions of cos x and ex,

cos x = 1´ x2

2!
+

x4

4!
+ ¨ ¨ ¨

1´ cos x =
x2

2!
´ x4

4!
+ ¨ ¨ ¨

ex = 1 + x +
x2

2!
+

x3

3!
+ ¨ ¨ ¨

1 + x´ ex = ´x2

2!
´ x3

3!
+ ¨ ¨ ¨

1´ cos x
1 + x´ ex =

x2

2! ´ x4

4! + ¨ ¨ ¨
´ x2

2! ´ x3

3! + ¨ ¨ ¨
=

1
2! ´ x2

4! + ¨ ¨ ¨
´ 1

2! ´ x
3! + ¨ ¨ ¨

we have

lim
xÑ0

1´ cos x
1 + x´ ex = lim

xÑ0

1
2! ´ x2

4! + ¨ ¨ ¨
´ 1

2! ´ x
3! + ¨ ¨ ¨

=
1
2!

´ 1
2!

= ´1

S-3: Using the Maclaurin series expansion of sin x,

sin x = x´ x3

3!
+

x5

5!
´ x7

7!
+ ¨ ¨ ¨

sin x´ x +
x3

6
=

x5

5!
´ x7

7!
+ ¨ ¨ ¨

sin x´ x + x3

6
x5 =

1
5!
´ x2

7!
+ ¨ ¨ ¨

we have

lim
xÑ0

sin x´ x + x3

6
x5 = lim

xÑ0

( 1
5!
´ x2

7!
+ ¨ ¨ ¨

)
=

1
5!

=
1

120

Remark: to solve this using l’Hôpital’s rule we would differentiate five times, making
series a practical alternative.

S-4: Our limit has the indeterminate form 18; as with l’Hôpital’s rule, we can change it
to a friendlier form using the natural logarithm.

f (x) =
(

1 + x + x2
)2/x

ln( f (x)) = ln
[(

1 + x + x2
)2/x

]
=

2
x

ln
(

1 + x + x2
)

Recall ln(1 + y) =
8
ÿ

n=1

(´1)n+1yn

n
, and set y = x + x2. The series converges when |y| ă 1,

and since we only consider values of x that are very close to 0, we can assume
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|x + x2| ă 1.

ln( f (x)) =
2
x

ln
(

1 + (x + x2)
)
=

2
x

8
ÿ

n=1

(´1)n+1(x + x2)n

n

=
2
x

[
(x + x2)´ (x + x2)2

2
+

(x + x2)3

3
´ ¨ ¨ ¨

]
= 2 + 2x´ (x + x2)2

2x
+

(x + x2)3

3x
´ ¨ ¨ ¨

= 2 + 2x´ (x2 + x)(1 + x)
2

+
(x2 + x)2(1 + x)

3
´ ¨ ¨ ¨

lim
xÑ0

ln( f (x)) = lim
xÑ0

[
2 + 2x´ (x2 + x)(1 + x)

2
+

(x2 + x)2(1 + x)
3

´ ¨ ¨ ¨
]

= 2 + 0 + 0 ¨ ¨ ¨ = 2

lim
xÑ0

f (x) = lim
xÑ0

eln f (x) = e2

S-5: We have an indeterminate form 18. We can use a natural logarithm to change this to

a friendlier form. Furthermore, to avoid negative powers, we substitute y =
1

2x
. As x

grows larger and larger, y gets closer and closer to zero, while staying positive.

ln
[(

1 +
1

2x

)x]
= x ln

(
1 +

1
2x

)
=

1
2y

ln(1 + y)

=
1

2y

8
ÿ

n=1

(´1)n+1

n
yn

=
1

2y

[
y´ y2

2
+

y3

3
´ y4

4
+ ¨ ¨ ¨

]
=

[
1
2
´ y

4
+

y2

6
´ y3

8
+ ¨ ¨ ¨

]
lim
xÑ8

ln
[(

1 +
1

2x

)x]
= lim

yÑ0+

[
1
2
´ y

4
+

y2

6
´ y3

8
+ ¨ ¨ ¨

]
=

1
2

lim
xÑ8

[(
1 +

1
2x

)x]
= e1/2 =

?
e

696


	How to use this book
	I Questions
	Geometry in Three Dimensions
	Points
	Functions of Two Variables
	Sketching Surfaces in 3d

	Partial Derivatives
	Partial Derivatives
	Higher Order Derivatives
	Local Maximum and Minimum Values
	Absolute Minima and Maxima
	Lagrange Multipliers
	 Utility and Demand Functions

	Integration
	Definition of the Integral
	Basic properties of the definite integral
	The Fundamental Theorem of Calculus
	Substitution
	Integration by parts
	Numerical Integration
	Improper Integrals
	Overview of Integration Techniques
	Differential Equations

	Probability
	Introduction
	Probability Mass Function (PMF)
	Cumulative Distribution Function (CDF)
	Probability Density Function (PDF)
	Expected Value
	Variance and Standard Deviation

	Sequences and Series
	Sequences
	Musical Scales

	Series
	The Integral and Divergence Tests
	Comparison Tests
	The Ratio Test
	Absolute and Conditional Convergence

	Power Series
	Radius of Convergence
	Working With Power Series
	Extending Taylor Polynomials
	Computing with Taylor Series
	Evaluating Limits using Taylor Expansions


	II Hints to questions
	1.1   Points
	1.2   Functions of Two Variables
	1.3   Sketching Surfaces in 3d
	2.1   Partial Derivatives
	2.2   Higher Order Derivatives
	2.3   Local Maximum and Minimum Values
	2.4   Absolute Minima and Maxima
	2.5   Lagrange Multipliers
	2.6    Utility and Demand Functions
	3.1   Definition of the Integral
	3.2   Basic properties of the definite integral
	3.3   The Fundamental Theorem of Calculus
	3.4   Substitution
	3.5   Integration by parts
	3.6   Numerical Integration
	3.7   Improper Integrals
	3.8   Overview of Integration Techniques
	3.9   Differential Equations
	4.1   Introduction
	4.2   Probability Mass Function (PMF)
	4.3   Cumulative Distribution Function (CDF)
	4.4   Probability Density Function (PDF)
	4.5   Expected Value
	4.6   Variance and Standard Deviation
	5.1   Sequences
	5.1.1   Musical Scales
	5.2   Series
	5.3   The Integral and Divergence Tests
	5.4   Comparison Tests
	5.5   The Ratio Test
	5.6   Absolute and Conditional Convergence
	6.1   Radius of Convergence
	6.2   Working With Power Series
	6.3   Extending Taylor Polynomials
	6.4   Computing with Taylor Series
	6.5   Evaluating Limits using Taylor Expansions


	III Answers to questions
	1.1   Points
	1.2   Functions of Two Variables
	1.3   Sketching Surfaces in 3d
	2.1   Partial Derivatives
	2.2   Higher Order Derivatives
	2.3   Local Maximum and Minimum Values
	2.4   Absolute Minima and Maxima
	2.5   Lagrange Multipliers
	2.6    Utility and Demand Functions
	3.1   Definition of the Integral
	3.2   Basic properties of the definite integral
	3.3   The Fundamental Theorem of Calculus
	3.4   Substitution
	3.5   Integration by parts
	3.6   Numerical Integration
	3.7   Improper Integrals
	3.8   Overview of Integration Techniques
	3.9   Differential Equations
	4.1   Introduction
	4.2   Probability Mass Function (PMF)
	4.3   Cumulative Distribution Function (CDF)
	4.4   Probability Density Function (PDF)
	4.5   Expected Value
	4.6   Variance and Standard Deviation
	5.1   Sequences
	5.1.1   Musical Scales
	5.2   Series
	5.3   The Integral and Divergence Tests
	5.4   Comparison Tests
	5.5   The Ratio Test
	5.6   Absolute and Conditional Convergence
	6.1   Radius of Convergence
	6.2   Working With Power Series
	6.3   Extending Taylor Polynomials
	6.4   Computing with Taylor Series
	6.5   Evaluating Limits using Taylor Expansions


	IV Solutions to questions
	1.1   Points
	1.2   Functions of Two Variables
	1.3   Sketching Surfaces in 3d
	2.1   Partial Derivatives
	2.2   Higher Order Derivatives
	2.3   Local Maximum and Minimum Values
	2.4   Absolute Minima and Maxima
	2.5   Lagrange Multipliers
	2.6    Utility and Demand Functions
	3.1   Definition of the Integral
	3.2   Basic properties of the definite integral
	3.3   The Fundamental Theorem of Calculus
	3.4   Substitution
	3.5   Integration by parts
	3.6   Numerical Integration
	3.7   Improper Integrals
	3.8   Overview of Integration Techniques
	3.9   Differential Equations
	4.1   Introduction
	4.2   Probability Mass Function (PMF)
	4.3   Cumulative Distribution Function (CDF)
	4.4   Probability Density Function (PDF)
	4.5   Expected Value
	4.6   Variance and Standard Deviation
	5.1   Sequences
	5.1.1   Musical Scales
	5.2   Series
	5.3   The Integral and Divergence Tests
	5.4   Comparison Tests
	5.5   The Ratio Test
	5.6   Absolute and Conditional Convergence
	6.1   Radius of Convergence
	6.2   Working With Power Series
	6.3   Extending Taylor Polynomials
	6.4   Computing with Taylor Series
	6.5   Evaluating Limits using Taylor Expansions



