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Chapter 1

VECTORS AND GEOMETRY IN

TWO AND THREE DIMENSIONS

Before we get started doing calculus in two and three dimensions we need to brush up
on some basic geometry that we will use a lot. We are already familiar with the Cartesian
plane!, but we’ll start from the beginning.

1.14 Points

Each point in two dimensions may be labeled by two coordinatesi (x,y) which specify the
position of the point in some units with respect to some axes as in the figure below.

~N

(z,9)

- J

The set of all points in two dimensions is denoted® IR?. Observe that
°

1 René Descartes (1596-1650) was a French scientist and philosopher, who lived in the Dutch Republic l
for roughly twenty years after serving in the (mercenary) Dutch States Army. He is viewed as the father
of analytic geometry, which uses numbers to study geometry.

2 This is why the xy-plane is called “two dimensional” — the name of each point consists of two real
numbers.

3 Not surprisingly, the 2 in R? signifies that each point is labelled by two numbers and the R in R?
signifies that the numbers in question are real numbers. There are more advanced applications (for
example in signal analysis and in quantum mechanics) where complex numbers are used. The space of
all pairs (z1,z), with z; and z; complex numbers is denoted C2.

1



VECTORS AND GEOMETRY 1.1 POINTS

e the distance from the point (x, y) to the x-axis is |y|
e the distance from the point (x, y) to the y-axis is |x|
e the distance from the point (x,y) to the origin (0,0) is 1/x% + y?

Similarly, each point in three dimensions may be labeled by three coordinates (x,y, z),
as in the two figures below.

\
z z
"(:'U7 y7 Z) "(I7 y? Z)
z z
y y
i
/i
Y /Y
i T

. J

The set of all points in three dimensions is denoted IR. The plane that contains, for exam-
ple, the x- and y-axes is called the xy-plane.

e The xy-plane is the set of all points (x, y, z) that satisfy z = 0.
e The xz-plane is the set of all points (x,y, z) that satisfy y = 0.
e The yz-plane is the set of all points (x,y, z) that satisfy x = 0.

More generally,

e The set of all points (x,y, z) that obey z = c is a plane that is parallel to the xy-plane
and is a distance |c| from it. If ¢ > 0, the plane z = c is above the xy-plane. If
¢ < 0, the plane z = c is below the xy-plane. We say that the plane z = c is a signed
distance c from the xy-plane.

* The set of all points (x, y, z) that obey y = b is a plane that is parallel to the xz-plane
and is a signed distance b from it.

 The set of all points (x, y, z) that obey x = a is a plane that is parallel to the yz-plane
and is a signed distance a from it.

~




VECTORS AND GEOMETRY 1.2 VECTORS

Observe that our 2d distances extend quite easily to 3d.

e the distance from the point (x,y, z) to the xy-plane is |z|

e the distance from the point (x,y, z) to the xz-plane is |y|

e the distance from the point (x,y, z) to the yz-plane is |x|
(x,y,2)

to the origin (0,0,0) is y/x? + y? + z2

To see that the distance from the point (x, v, z) to the origin (0,0, 0) is indeed /x2 4+ y2 + 22,

¢ the distance from the point (x, y,

* apply Pythagoras to the right-angled triangle with vertices (0,0,0), (x,0,0) and
(x,y,0) to see that the distance from (0,0,0) to (x,y,0) is 4/x% + y? and then

e apply Pythagoras to the right-angled triangle with vertices (0,0,0), (x,y,0) and
(x,y,z) to see that the distance from (0,0,0) to (x,y,z) is \/(«/xz +y2)2 +22 =

X2+ y? + 22

N
z
(2,9, 2)
z
Yy
x
(x,0,0) 7 b (z,y,0)
x
\\§ J

More generally, the distance from the point (x,y, z) to the point (x’,y/,2’) is

V=P -y P+ (-2

Notice that this gives us the equation for a sphere quite directly. All the points on a sphere
are equidistant from the centre of the sphere. So, for example, the equation of the sphere
centered on (1,2, 3) with radius 4, that is, the set of all points (x, y, z) whose distance from
(1,2,3) is 4, is

(x—1)2+(y—-2)*+(z-3)*=16

If you're having a hard time picturing the three-dimensional axes, Appendix section A.1
will lead you through folding a model out of a piece of paper.

1.24 Vectors

In many of our applications in 2d and 3d, we will encounter quantities that have both a
magnitude (like a distance) and also a direction. Such quantities are called vectors. That is,
a vector is a quantity which has both a direction and a magnitude, like a velocity. If you are
moving, the magnitude (length) of your velocity vector is your speed (distance travelled

3



VECTORS AND GEOMETRY 1.2 VECTORS

per unit time) and the direction of your velocity vector is your direction of motion. To
specify a vector in three dimensions you have to give three components, just as for a
point. To draw the vector with components 4, b, ¢ you can draw an arrow from the point
(0,0,0) to the point (a,b,c). Similarly, to specify a vector in two dimensions you have to

 (a, b, ¢)

give two components. To draw the vector with components a and b , you can draw an
arrow from the point (0,0) to the point (a,b).

There are many situations in which it is preferable to draw a vector with its tail at
some point other than the origin. For example, it is natural to draw the velocity vector
of a moving particle with the tail of the velocity vector at the position of the particle,
whether or not the particle is at the origin. The sketch below shows a moving particle and
its velocity vector at two different times.

/4v
/v

As a second example, suppose that you are analyzing the motion of a pendulum. There
are three forces acting on the pendulum bob: gravity g, which is pulling the bob straight
down, tension t in the rod, which is pulling the bob in the direction of the rod, and air
resistance r, which is pulling the bob in a direction opposite to its direction of motion. All
three forces are acting on the bob. So it is natural to draw all three arrows representing the
forces with their tails at the ball.




VECTORS AND GEOMETRY 1.2 VECTORS

~

. J

In this text, we will used bold faced letters, like v, t, g, to designate vectors. In hand-
writing, it is clearer to use a small overhead arrowf, asin 7, f, g, instead. Also, when we
want to emphasize that some quantity is a number, rather than a vector, we will call the
number a scalar.

Both points and vectors in 2d are specified by two numbers. Until you get used to this,
it might confuse you sometimes — does a given pair of numbers represent a point or a
vector? To distinguish® between the components of a vector and the coordinates of the
point at its head, when its tail is at some point other than the origin, we shall use angle
brackets rather than round brackets around the components of a vector. For example, the
figure below shows the two-dimensional vector (2,1) drawn in three different positions.
In each case, when the tail is at the point (1, v) the head is at (2 + u,1 4 v). We warn you
that, out in the real worldf, no one uses notation that distinguishes between components
of a vector and the coordinates of its head — usually round brackets are used for both. It
is up to you to keep straight which is being referred to.

N
6,3)
Y %( ’
(2,1) (42 ( (10,1)
2t
(0,0) 8.0 @
- J
By way of summary,
—[Notationl.z.l.] ~

we use

* bold faced letters, like v, t, g, to designate vectors, and

e angle brackets, like (2,1), around the components of a vector, but use

e round brackets, like (2,1), around the coordinates of a point, and use

¢ “scalar” to emphasise that some quantity is a number, rather than a vector.

- J

4 Some people use an underline, as in v, rather than an arrow.
5  Or, in the Wikipedia jargon, disambiguate.
6  OK.OK. Out in that (admittedly very small) part of the real world that actually knows what a vector is.

5



VECTORS AND GEOMETRY

1.2.1 » Addition of Vectors and Multiplication of a Vector by a Scalar

Just as we have done many times in the texts, when we define a new type of object, we
want to understand how it interacts with the basic operations of addition and multipli-
cation. Vectors are no different, and the following is a natural way to define addition of
vectors. Multiplication will be more subtle, and we start with multiplication of a vector

by a number (rather than with multiplication of a vector by another vector).

These two operations have the obvious definitions

a= (a,az), b= (b1, by) e a+b = (a;+by,a+by)
a = (a1,ap), s anumber — sa = (say,sap)

and similarly in three dimensions.

- J

Pictorially, you add the vector b to the vector a by drawing b with its tail at the head
of a and then drawing a vector from the tail of a to the head of b, as in the figure on the

left below. For a number s, we can draw the vector sa, by just

* changing the vector a’s length by the factor |s|, and,
¢ if s < 0, reversing the arrow’s direction,

as in the other two figures below.

\-

as + by a+b 2ay 94
bg{ b .
Qa
(05} 2 a
a —2a

The special case of multiplication by s = —1 appears so frequently that (—1)a is given the
shorter notation —a. That is,

—(a1,a2) = (—a1, —a2)

Of course a + (—a) is 0, the vector all of whose components are zero.

To subtract b from a pictorially, you may add —b (which is drawn by reversing the

direction of b) to a. Alternatively, if you draw a and b with their tails at a common point,
then a — b is the vector from the head of b to the head of a. That is, a — b is the vector you
must add to b in order to get a.

1.2 VECTORS
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~N

. J

The operations of addition and multiplication by a scalar that we have just defined are
quite natural and rarely cause any problems, because they inherit from the real numbers
the properties of addition and multiplication that you are used to.

— Theorem1.2.3 (Properties of Addition and Scalar Multiplication). ~N
Let a, b and ¢ be vectors and s and ¢ be scalars. Then
(1) a+b=b+a (2) a+(b+c)=(a+b)+c
(3) a+0=a (4) a+(-a)=0
(5) s(a+b)=sa+sb (6) (s+t)a=sa+ta
(7) (st)a=s(ta) (8) la=a
- J

We have just been introduced to many definitions. Let’s see some of them in action.

I—LExample 1.2.4} l

For example, if

a=(1,23) b=(321 c¢=(1,0,1)

then
2a=2(1,2,3) =(2,4,6)
-b=-(3,21)=(-3,-2,-1)
3¢=3(1,0,1) =(3,0,3)

and

2a—b+3c=(2,4,6)+ (-3,-2,-1) + (3,0,3)
—(2-3+43,4-24+0,6-1+3)
= (2,2,8)

t [Example 1.2.4]—I
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There are some vectors that occur sufficiently commonly that they are given special
names. One is the vector 0. Some others are the “standard basis vectors”.

~(Definition1.25.) )

(a) The standard basis vectors in two dimensions are

i=(1,0) j=1(0,1)

(b) The standard basis vectors in three dimensions are

i=(1,0,0) 7 =1(0,1,0) k =(0,0,1)

- J

We'll explain the little hats in the notation 7, j, k shortly. Some people rename i, j and
k to e, e; and ej3 respectively. Using the above properties we have, for all vectors,

(a1,a2) = mi+azj (a1,a2,a3) = ai+axj+ a3 k

A sum of numbers times vectors, like a11 + a5] is called a linear combination of the vectors.
Thus all vectors can be expressed as linear combinations of the standard basis vectors.
This makes basis vectors very helpful in computations. The standard basis vectors are unit
vectors, meaning that they are of length one, where the length of a vector a is denoted” |a|
and is defined by

g e e N

a = (ay,a) — |a| = 4/a% + a3
a = (ay,az,a3) — la| = /a7 + a3 + a3

A unit vector is a vector of length one. We'll sometimes use the accent " to em-
phasise that the vector a is a unit vector. That is, |a] = 1.

- J

I—[Example 1.2.7}

Recall that multiplying a vector a by a positive number s, changes the length of the vector

by a factor s without changing the direction of the vector. So (assuming that |a| # 0) |%:‘

is a unit vector that has the same direction as a. For example, <1\’1/é1> is a unit vector that

points in the same direction as (1,1, 1).

[
7  The notation ||a| is also used for the length of a.
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t [Example 1 .2.7]—I

1.2.2 » The Dot Product

Let’s get back to the arithmetic operations of addition and multiplication. We will be using
both scalars and vectors. So, for each operation there are three possibilities that we need
to explore:

Zaawri

* “scalar plus scalar”, “scalar plus vector” and “vector plus vector”

e “gcalar times scalar”, “scalar times vector” and “vector times vector”

We have been using “scalar plus scalar” and “scalar times scalar” since childhood. “Vector
plus vector” and “scalar times vector” were just defined above. There is no sensible way
to define “scalar plus vector”, so we won't. This leaves “vector times vector”. There are
actually two widely used such products. The first is the dot product, which is the topic of
this section, and which is used to easily determine the angle 6 (or more precisely, cos 0)
between two vectors. (The second widely-used product of two vectors, the cross product,
is not a part of this course.)

- N

The dot product of the vectors a and b is denoted a - b and is defined by

a— <a1,a2>, b = <b1,b2> = a-b=ab +ab
a= <a1,a2, Ll3> , b= <b1, b,, b3> = a-b=a1b; +axby + azb;

in two and three dimensions respectively.

- J

The properties of the dot product are as follows:

— Theorem1.2.9 (Properties of the Dot Product). ~N
Let a, b and ¢ be vectors and let s be a scalar. Then

0
1

(0) a,b are vectors and a - b is a scalar
(1) a-a=a®

(2) a-b=b-a

(3) a-(b+c)=a-b+a-c, (a+b)-c=a-c+b-c
(4) (sa)-b=s(a-b)
(5) 0-a=0

(6) a-b = |a||b| cosf where 6 is the angle between a and b
(7) a-b=0 < a=0orb=0oralb
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Proof. Properties 0 through 5 are almost immediate consequences of the definition. For
example, for property 3 (which is called the distributive law) in dimension 2,

a-(b+c)=(ay,a2) (b1 +c1,br+c2)

= al(bl + C1) + llz(bz + Cz) = mby + aic1 + axby + axco
a-b+a-c=(ay,a) (b, b))+ (a1,a2) - {c1,¢2)

= a1by + azby +ayc1 + axcr

Property 6 is sufficiently important that it is often used as the definition of dot product.
It is not at all an obvious consequence of the definition. To verify it, we just write |a — b|?
in two different ways. The first expresses |a — b|? in terms of a - b. It is

a-bf=(a-b) (a-b)
2a.a—a-b-b-a+b-b
2 a2+ b2 -2a-b
Here, =, for example, means that the equality is a consequence of property 1. The second
way we write |a — b|? involves cos 8 and follows from the cosine law for triangles. Just

in case you don’t remember the cosine law, we’ll derive it right now! Start by applying
Pythagoras to the shaded triangle in the right hand figure of

. J

That triangle is a right triangle whose hypotenuse has length |a — b| and whose other two
sides have lengths (|b| — |a| cos 0) and |a| sin 6. So Pythagoras gives

la—b[> = (|b| - |a C089)2 + (|al sinQ)2
= |b|?> — 2|a| |b| cos 8 + |a|? cos? 8 + |a|* sin?
= [b|> —2|a| [b| cos 8 + |a|?
This is precisely the cosine law®. Observe that, when 6 = %, this reduces to, (surpise!)
Pythagoras’ Theorem. -
Setting our two expressions for |a — b|? equal to each other,
la—b|?> = |a]®>+ [b|*—2a-b = |b> — 2|a| |b| cos 8 + |a|?

8  You may be used to seeing it written as c> = a? + b> — 2abcos C, where 4, b and c are the lengths of the l
three sides of the triangle and C is the angle opposite the side of length c

10
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cancelling the |a|? and |b|?> common to both sides
—2a-b = —2|a| |b| cos
and dividing by —2 gives
a-b=|a||b| cosb

which is exactly property 6.

Property 7 follows directly from property 6. First note that the dot product a-b =
|a| |b| cosf is zero if and only if at least one of the three factors |a|, |b|, cos 8 is zero. The
tirst factor is zero if and only if a = 0. The second factor is zero if and only if b = 0. The

third factor is zero if and only if 6 = +7 + 2k, for some integer k, which in turn is true if
and only if a and b are mutually perpendicular. O

Because of Property 7 of Theorem 1.2.9, the dot product can be used to test whether or
not two vectors are perpendicular to each other. That is, whether or not the angle between
the two vectors is 90°. Another name’ for “perpendicular” is “orthogonal”. Testing for
orthogonality is one of the main uses of the dot product.

Example 1.2.10)
— J )

Consider the three vectors
a=(1,1,0) b=(1,0,1) c=(-1,11)

Their dot products
a-b=(1,10)-(1,0,1) =1x1+1x0+0x1 =1
a-c=(1,1,0)-(-1,1,1) =1x(-1)+1x14+0x1=0
b-c=(1,0,1)-(-1,1,1) =1x (-1)+0x1+1x1=0

tell us that ¢ is perpendicular to both a and b. Since both |a| = |b| = V12 +12 4+ 02 = /2
the first dot product tells us that the angle, 6, between a and b obeys

a-b 1 7T
6: = — 6:—
VT T2 73
\
i (—1,1,1)
(1,0,1>
Yy
T <1,1,0>
\_ Y,
t [Example 1.2.10]—I

9  The concepts of the dot product and perpendicularity have been generalized a lot in mathematics (for l
example, from 2d and 3d vectors to functions). The generalization of the dot product is called the “inner
product” and the generalization of perpendicularity is called “orthogonality”.

11
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1.34 Equations of Planes in 3d

Specifying one point (xo, Yo,z0) on a plane and a vector d parallel to the plane does not
uniquely determine the plane, because it is free to rotate about d. On the other hand,
giving one point on the plane and one vector n = (11, 1, 1, ) with direction perpendicular

( |
2o, Yo; 20

(550, Yo, Zo)

-

to that of the plane does uniquely determine the plane. If (x,y, z) is any point on the line
then the vector (x — xo,y — Yo,z — 2z0), whose tail is at (xg,yo,z0) and whose head is at
(x,v,z), lies entirely inside the plane and so must be perpendicular to n. That is,

Equation 1.3.1(The Equation of a Plane). —

n-(x—x0,y—Yyo,z—20) =0
Writing out in components
ny(x —x0) +ny(y —yo) +nz(z—20) =0 or nyx+ny+nz=d

where d = nyxg + nyyo + n:zo.

\ J

Again, the coefficients ny,n,,n, of x, y and z in the equation of the plane are the com-
ponents of a vector (n,,ny, 1) perpendicular to the plane. The vector n is often called a
normal vector for the plane. Any nonzero multiple of n will also be perpendicular to the
plane and is also called a normal vector.

I—[Example 1.3.2 (Equation of a plane from a point and a normal Vector)}

Give an equation of the plane that passes through the point (5,7, 13) and has normal vec-
tor (8,4, 2).

Solution. As we saw in Equation 1.3.1, the terms of the normal vector are the coefficients
of the variables:
8x+4y+2z=d

and
d=8,42)-(57,13)=8-5+4-7+2-13=9%4

So, the equation of the plane is
8x+4y +2z=94

12
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t [Example 1.3.2 }—]

The normal vector to a plane determines the orientation of the plane in space.

L e O g A N

Two planes are orthogonal if their normal vectors are orthogonal. Two planes
are parallel if their normal vectors are parallel.

A plane is parallel to itself, but when we ask for parallel planes, it is usually
implied that they are distinct.

- J

7
I—[Example 134 ] l

We have just seen that if we write the equation of a plane in the standard form

ax +by+cz=d

then it is easy to read off a normal vector for the plane. It is just (a,b,c). So for example
the planes
P: x+2y+3z=4 P :3x+6y+9z=7

have normal vectors n = (1,2,3) and n’ = (3,6,9), respectively. Since n’ = 3n, the two
normal vectors n and n’ are parallel to each other. This tells us that the planes P and P’
are parallel to each other.

When the normal vectors of two planes are perpendicular to each other, we say that
the planes are perpendicular to each other. For example the planes

P: x4+2y+3z=4 P':2x-y=7
have normal vectors n = (1,2,3) and n” = (2, —1,0), respectively. Since
nn"=1x2+4+2x(-1)+3x0=0

the normal vectors n and n” are mutually perpendicular, so the corresponding planes P
and P” are perpendicular to each other.

1 [Example 1.3.4 }—]
)
I—[Example 1.3.5 ] )

In this example, we’ll sketch the plane

P: 4x+3y+2z=12

A good way to prepare for sketching a plane is to find the intersection points of the plane
with the x-, y- and z-axes, just as you are used to doing when sketching lines in the xy-
plane. For example, any point on the x axis must be of the form (x,0,0). For (x,0,0)

13
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to also be on P we need x = 12/4 = 3. So P intersects the x-axis at (3,0,0). Similarly,
P intersects the y-axis at (0,4,0) and the z-axis at (0,0,6). Now plot the points (3,0,0),
(0,4,0) and (0,0,6). P is the plane containing these three points. Often a visually effective
way to sketch a surface in three dimensions is to

¢ only sketch the part of the surface in the first ocatant. That is, the part with x > 0,
y=0andz > 0.

* To do so, sketch the curve of intersection of the surface with the part of the xy-plane
in the first octant and,

¢ similarly, sketch the curve of intersection of the surface with the part of the xz-plane
in the first octant and the curve of intersection of the surface with the part of the
yz-plane in the first octant.

That’s what we’ll do. The intersection of the plane P with the xy-plane is the straight line
through the two points (3,0,0) and (0,4,0). So the part of that intersection in the first
octant is the line segement from (3,0,0) to (0,4,0). Similarly the part of the intersection
of P with the xz-plane that is in the first octant is the line segment from (3,0,0) to (0,0, 6)
and the part of the intersection of P with the yz-plane that is in the first octant is the line
segment from (0,4,0) to (0,0,6). So we just have to sketch the three line segments joining
three axis intercepts (3,0,0), (0,4,0) and (0,0,6). That's it.

\
z
(0,0,6)
Y
(3,0,0) (0,4,0)
x
. J

t [Example 1.3.5 }—]

I—[Example 1.3.6 (Three points determine a plane)} )

Find the equation of the plane that contains the three points (1, —1,0), (2,0,1),and (5,0, —1).

Solution. Solution 1

We know that the equation of the plane will have the form ax + by + cz = d, where
{(a,b,c) is a normal vector to the plane. So, we will start by finding a normal vector.

First, let’s find two vectors in the plane. We do this by choosing two pairs of points (it
doesn’t matter which two) and subtracting their coordinates.

14
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e (2,0,1)

The normal vector will be a vector (g, b, c) that is perpendicular (orthogonal) to the two
vectors (4,1, —1) and (1,1, 1). The usual way of finding such a vector is by using the cross
product, but that’s a topic for another course. We find it by solving a system of equations.
Remember two nonzero vectors are perpendicular if their dot products are zero.

{a,b,c)-{4,1,—1) =0implies4a +b—c=0.Soc = 4a + b.
{a,b,c)-{(1,1,1) = 0impliesa+b+c=0.Soc = —a—b.

Combining the last two results, 42 +b = —a —b,so 1 — 5%17. Thenalsoc = —a—b =
2h—b = —2p.
5 5

There will be infinitely many normal vectors, all parallel to one another (i.e. scalar
multiples of one another). So, it’s fine that we have all our coordinates in terms of
b. Our normal vectors have the forms (20, b, —%b>. Setting b = 5 gives us integer
coordinates:

(-2,5,-3)

Now that we have a normal vector, we know our plane equation will look like
—2x+5y—3z=d

for some constant d. Plugging in any of our three points will let us find d. For
example, the point (1,-1,0) tellsus -2 -5+0=d,sod = 7.

All together, an equation of our plane is

—2x+5y—3z=-7

Solution 2 We know that the equation of the plane will have the form ax + by + cz = 4.
The three points give us a system of linear equations, which we can solve using substitu-

tion.

(1,—1,0) in the plane tellsusa —b =d,soa = b+ d.
(2,0,1) in the plane tellsus 2a +¢c =d,so2(b +d) +c=d,soc = —2b —d.

(5,0,—1) in the plane tellsus 5a — ¢ = d, s0 5 (b +d) — (—2b—d) = d, so b = —3d.
Now we can get a and c in terms of d, as well.

Sincec = —-2b—d,and b = —%d, thenc = %d

Sincea =b-+dand b = —;d, then a = %d

15
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¢ All together, the equation of our line is

(3 (35 ()=

Any nonzero value of 4 will give an equation to our line. To get integer coefficients,
weletd =7.
2x -5y +3z=7

Notice this answer is the negative of the answer from Solution 1. They are equivalent
expressions, as is (for example)

1x_i +iz—1
7R VAR VR

t [Example 1.3.6 }—]

1.4a Functions of Two Variables

First, a quick review of dependent and independent variables. Independent variables are
the variables we think of as changing somehow on their own; the dependent variables are
the variables whose change we think of as being caused by the independent variables.
For example, if you want to describe the relationship between the age of a cup of cottage
cheese, and the number of bacteria in that cup, we generally choose age (time) to be the
independent variable and population of bacteria to be the dependent variable: we think
of age changing on its own, then that age causing the bacterial population to change.

We could of course go the other way, and write time as a function of bacteria. This
could be useful if we were trying to figure out how old the cheese was by counting its
bacteria. So the difference between an independent variable and a dependent variable
has to do with how we want to interpret a function.

In a single-variable function, by convention we write

y = f(x)

where vy is the dependent variable and x is the independent variable. Similarly, in a two-
variable function, we generally write

z=f(xy)
We think of the variables x and y as independent, and the variable z as dependent.

If we’re not too concerned with independent vs dependent variables; or if the rela-
tionship between the dependent and independent variables is difficult (or impossible) to
write explicitly in this form; then we can also define multivariable functions implicitly.
For example, in the equation

2x+22y+xyz—1=0

16
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we can think of z as an implicitly defined function of x and y. You've already seen two
families of implicitly defined functions: planes and spheres.

7
I—[Example 1.4.1 ] l

Which points (1,y,1) in IR® satisfy the equation

Px+2y+ayz—1=02
Solution. If x = z = 1, then the equation becomes

1+y+y—-1=0

which has solution y = 0. So the only such pointis (1,0,1).

t [Example 1 .4.1]—I

It’s common to see a multivariable equation like

f(x,y) = sin(x +y)

or s
glxy) =e

and think that the sine and exponential functions are different from the sine and exponen-

tial functions we’ve seen in two dimensions. They aren’t! When x and y are real numbers,

then (x + y) and (x? + y?) are real numbers as well. We're taking the sine of a real number

in the first equation, and e to a real power in the second equation, just as we always have.
Functions of two (or more) variables are not so different from functions of one variable

in other ways as well.

R R e N

Let f(x,y) be a function that takes pairs of real numbers as inputs, and gives a
real number as its output.

The set of points (x,y) that can be input to f is the domain of that function. The
set of outputs of f over its entire domain is the range of that function.

- J

[—LExample 1.4.3 (Domain and Range)} l

Find the domain and range of the function
flry) = Ve v -2

Solution. There are three operations in our function: exponentiation, subtraction, and
taking of a square root. We can subtract anything from anything; and we can raise e to
any power. So the only thing that could “break” our function is if we tried to take the

17
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square root of a negative number. This tells us that, in order for f(x,y) to be defined, we

need
(ex2+y2 _ 2) 0
e gszry >2
— 2+ y*>1n2

One way of describing the domain of this function is to call it “all points (x,y) with
x> +y?> > In2.” A more standard way is to describe the shape this set makes in R?: all
points on or outside the circle centred at the origin with radius vIn2 ~ 0.83.

y

To help you visualize what we mean, take a point in the shaded area above. For exam-
ple, (1,.5). If we plug that into our function, it causes no problems:

= elP+5 — 1 =1/e125 -2 ~ /149 ~ 1.22

On the other hand, take a point in the white area. For example, (.5,.5). If we try to plug
this into our function, we end up with

£(5,.75) = VeP+57 —2 = /e05 — 2 ~ \/1.65— 2 ~ v/—0.35

which is not a real number.

18
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Now, let’s think about range. By choosing larger and larger values of x and y, we can
make x? + y? into larger and larger numbers. So within our restricted domain, the range
of x2 + 2 is [In2, ); so the range of ¥ ¥ is [¢!"2,00) = [2,%0); so the range of e¥ %" — 2
is [0, o0); so the range of f(x,y) is [0, ).

Again, note that the domain of f consists of ordered pairs of real numbers, while its
range consists of real numbers.

t [Example 1.4.3 }—]
1
I—[Example 144 ] l

Find the domain and range of the function

f(x,y) = sin (\%)

Solution. Let’s start with domain. We can take the sine of any number we like, so that
part of the function doesn’t limit the domain. The things limiting the domain are that we
cannot take the square root of a negative number, and we can’t divide by zero.

* Because we can’t take the square root of a negative number, we must have y > 0.

* Because we can’t divide by 0, we must have VY # 0,ie.y #0.

Combining these restrictions, we can only have values of y in the interval (0, 0); x can be
any real number. So, our domain is the upper half of the xy plane, excluding the x-axis:

In general, the range of sinx is [-1,1]. So, we certainly can’t get a larger range than
this. We should check that our range is no smaller. When y = 1, our function becomes
f(x,1) = sin(x/1) = sinx. Since x can be any real number, indeed the range of our
function is [-1, 1].

19
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t [Example 1.4.4]—I
)
I—LExample 1.4.5 ) l

Find the domain and range of the function

f(x,y) = In(arctan(x +y))

Solution. First, let’s think about the arctangent and logarithm function in the context of
single-variable functions. The domain of arctangent is all real numbers, and its range is
(=%,5). The domain of the natural logarithm is all positive numbers, and its range is all
real numbers.

SE

z — arctan t z=Int
1\ J

Since only positive numbers may be input into the natural logarithm, we require arctan(x +
y) > 0. That requires (x + y) > 0. So, our domain is the collection of all points (x,y) such
that x + vy > 0; put another way, all points above the line y = —x.

y

20
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If our domain is points (x,y) such that x + y > 0, then the range of the function (x +
y) is (0,0); so the numbers being plugged into the arctangent function are (0, ). So,
the numbers coming out of the arctangent function are (0, ). Then the numbers from
(0, %) are being input into the natural logarithm function, leading to a range of the entire
function of (—o0,In (%)).

NI
|
\

In (

NI
SN—r
|
\

NI —

If0 < t, then 0 < arctant < § If0<t<%, then—w <Int <In (%)

J
t [Example 1.4.5 }—]

We may sometimes restrict the domain of a function more than is mathematically nec-
essary in order for it to make sense in a model. For example, we may have a function
that only makes sense in our model when it gives positive values. In this case, we might
restrict the domain to a model domain, the set of inputs for which the function is not only
defined, but sensible in the context of our model.

W
I—[Example 1.4.6 ) l

A large pharmaceutical company determines its research budget for a new vaccine accord-
ing to the formula

R(x,y) = In(xy)

where x is the size of the customer base they expect to have and y is the revenue they
expect per dose.

Then for each variable x, y, and R, negative values don’t make sense in the model. So
although we could compute R(—1,—1) = 1, and we could compute R(0.5,0.5) ~ —1.39,
they wouldn’t be sensible in the context of our model.

* Since x and y need to be nonnegative, we will only consider points (x,y) in the first
quadrant of the Cartesian plane: x > 0 and y > 0.

e Since R needs to be nonnegative, we will further restrict xy > 1. Thatis, y > 1.
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The two restrictions above give us the model domain shaded below.

Y

Depending on the specifics of how the function is being used, the model domain may
be restricted even further. For example, perhaps the firm has a maximum budget for any
given project; perhaps the amount they can charge is limited by law; etc.

t [Example 1.4.6 }—]

1.54 Sketching Surfaces in 3d

In practice students taking multivariable calculus regularly have great difficulty visual-
ising surfaces in three dimensions, despite the fact that we all live in three dimensions.
We'll now develop some technique to help us sketch surfaces in three dimensions!?.

We all have a fair bit of experience drawing curves in two dimensions. Typically the
intersection of a surface (in three dimensions) with a plane is a curve lying in the (two
dimensional) plane. Such an intersection is usually called a cross-section. In the special
case that the plane is one of the coordinate planes, or parallel to one of the coordinate

planes, the intersection is sometimes called a trace.

The trace of a surface is the intersection of that surface with a plane that is parallel
to one of the coordinate planes.

So, one trace (the intersection with the xy plane) is found by setting z equal to a con-
stant; another trace (the intersection with the yz plane) is found by setting x equal to a
constant; and the final trace (the intersection with the xz plane) is found by setting y equal
to a constant.

10  Of course you could instead use some fancy graphing software, but part of the point is to build intuition. l
Not to mention that you can’t use fancy graphing software on your exam.

22
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One can often get a pretty good idea of what a surface looks like by sketching a bunch
of cross-sections. Here are some examples.

I—[Example 152 (4x? +y* — 22 = 1)}

Sketch the surface that satisfies 4x? + y* — z2 = 1.

Solution. We'll start by fixing any number zy and sketching the part of the surface that
lies in the horizontal plane z = z.

\

- J

The intersection of our surface with that horizontal plane is a horizontal cross-section.
Any point (x,y, z) lying on that horizontal cross-section satsifies both
z=1zp and 4x* 4> -2 =1
«z=1z) and 4x* +y> =1+ 23

Think of zg as a constant. Then 4x* + y?> = 1+ z3 is a curve in the xy-plane. As 1+ z}
is a constant, the curve is an ellipse. To determine its semi-axes!!, we observe that when

y =0, we have x = i%q /1+ z3 and when x = 0, we have y = +4/1 + z3. So the curve is
just an ellipse with x semi-axis %4 /1+ z3 and y semi-axis 4 /1 + z3. It's easy to sketch.

~

Yy
(0, 1+z§)\

o

- J

[

11 The semi-axes of an ellipse are the line segments from the centre of the ellipse to the farthest point on l
the curve and to the nearest point on the curve. For a circle the lengths of both of these line segments
are just the radius.
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Remember that this ellipse is the part of our surface that lies in the plane z = zp. Imagine
that the sketch of the ellipse is on a single sheet of paper. Lift the sheet of paper up, move
it around so that the x- and y-axes point in the directions of the three dimensional x- and
y-axes and place the sheet of paper into the three dimensional sketch at height zy. This
gives a single horizontal ellipse in 3d, as in the figure below.

g}

- J

\

We can build up the full surface by stacking many of these horizontal ellipses — one for
each possible height zg. So we now draw a few of them as in the figure below. To reduce
the amount of clutter in the sketch, we have only drawn the first octant (i.e. the part of
three dimensions that has x > 0, y > 0 and z > 0).

~
z
z=3
/__// =9
/ z=1
Yy
x
|\ J

Here is why it is OK, in this case, to just sketch the first octant. Replacing x by —x in
the equation 4x2 + y? — z2 = 1 does not change the equation. That means that a point
(x,v,z) is on the surface if and only if the point (—x,y, z) is on the surface. So the surface
is invariant under reflection in the yz-plane. Similarly, the equation 4x2 + y? — z2 = 1 does
not change when y is replaced by —y or z is replaced by —z. Our surface is also invariant
reflection in the xz- and yz-planes. Once we have the part in the first octant, the remaining
octants can be gotten simply by reflecting about the coordinate planes.

We can get a more visually meaningful sketch by adding in some vertical cross-sections.
The x = 0 and y = 0 cross-sections (also called traces — they are the parts of our surface
that are in the yz- and xz-planes, respectively) are

x=01y"-22=1 and y=04x>-22=1
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These equations describe hyperbolae'?. If you don’t remember how to sketch them, don’t
worry. We'll do it now. We'll first sketch them in 2d. Since

¥=1+2z> — |y/=>1 and y=+lwhenz=0 and forlargez, y ~ +z
4t =1+722 — x| >3 and x=4Jwhenz=0 and forlargez, x~ +1z

the sketchs are

Now we’ll incorporate them into the 3d sketch. Once again imagine that each is a single
sheet of paper. Pick each up and move it into the 3d sketch, carefully matching up the
axes. The red (blue) parts of the hyperbolas above become the red (blue) parts of the 3d
sketch below (assuming of course that you are looking at this on a colour screen).

\
z
z=3
«7 z=1
Y
x
\_ J

Now that we have a pretty good idea of what the surface looks like we can clean up and
simplify the sketch. Here are a couple of possibilities.

12 It’s not just a figure of speech!
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~

- J

This type of surface is called a hyperboloid of one sheet.

There are also hyperboloids of two sheets. For example, replacing the 41 on the right
hand side of x? + y? — z2 = 1 gives x> + y* — z2 = —1, which is a hyperboloid of two
sheets. We'll sketch it quickly in the next example.

t [Example 152 }—]

I—[Example 153 (4x? +y? — 22 = —1)} 1

Sketch the surface that satisfies 4x? + y? — z2 = —1.

Solution. As in the last example, we'll start by fixing any number zy and sketching the
part of the surface that lies in the horizontal plane z = zg. The intersection of our surface
with that horizontal plane is

z=1zp and 4x* 4> =25 -1
Think of z as a constant.
e If |zo| < 1, then z3 — 1 < 0 and there are no solutions to x> + y> = z3 — 1.
e If |zg| = 1 there is exactly one solution, namely x = y = 0.

o If |zo| > 1 then 4x> +y? = z3 — 1 is an ellipse with x semi-axis 34/z3 — 1 and y

semi-axis 4/z3 — 1. These semi-axes are small when |zo| is close to 1 and grow as |z
increases.

The first octant parts of a few of these horizontal cross-sections are drawn in the figure
below.
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\
z
z=3
/_ z=1.02
Yy
x
\\ 4

Next we add in the x = 0 and y = 0 cross-sections (i.e. the parts of our surface that are in

the yz- and xz-planes, respectively)

x=022=1+¢ and y=0,22=1+4x°
~N
z

z=3

‘7 z=2

- 2 =1.05

Y

x

\- J

Now that we have a pretty good idea of what the surface looks like we clean up and

simplify the sketch.

z

i

~

<~~~
—
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[Example 1.5.3}—I
Example 1.54 (yz = 1)W
— J )

Sketch the surface yz = 1.

This type of surface is called a hyperboloid of two sheets.

Solution. This surface has a special property that makes it relatively easy to sketch. There
are no x’s in the equation yz = 1. That means that if some yy and zy obey ypzp = 1, then
the point (x, Yo, zo) lies on the surface yz = 1 for all values of x. As x runs from —o to o,
the point (x, yo,zo) sweeps out a straight line parallel to the x-axis. So the surface yz = 1
is a union of lines parallel to the x-axis. It is invariant under translations parallel to the
x-axis. To sketch yz = 1, we just need to sketch its intersection with the yz-plane and then
translate the resulting curve parallel to the x-axis to sweep out the surface.
We'll start with a sketch of the hyperbola yz = 1 in two dimensions.

yz =1

- J

Next we’ll move this 2d sketch into the yz-plane, i.e. the plane x = 0, in 3d, except that
we’ll only draw in the part in the first octant.

- J

The we’ll draw in x = x( cross-sections for a couple of more values of xg
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~N
z
Y
i

\- J

and clean up the sketch a bit
~N

x

\- J

t [Example 1.5.4]—I
I—LExample 155 (xyz=1)

Sketch the surface xyz = 4.

-/

Solution. We'll sketch this surface using much the same procedure as we used in Examples
1.5.2 and 1.5.3. We’ll only sketch the part of the surface in the first octant. The remaining
parts (in the octants with x,y < 0,z > 0, with x,z < 0,y > 0 and with y,z < 0, x > 0) are
just reflections of the first octant part.

As usual, we start by fixing any number zp and sketching the part of the surface that
lies in the horizontal plane z = zp. The intersection of our surface with that horizontal
plane is the hyperbola

z=2z9 and xy = 1
20
Note that x — 0 as y — 0 and that y — o0 as x — 0. So the hyperbola has both the x-axis
and the y-axis as asymptotes, when drawn in the xy-plane. The first octant parts of a few
of these horizontal cross-sections (namely, zp = 4, zop = 2 and zp = %) are drawn in the
tigure below.
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N
i z=4
/ z =2
———
/ 2 =1/2
/ |
N ' J

Next we add some vertical cross-sections. We can’t use x = 0 or y = 0 because any point
on xyz = 1 must have all of x, y, z nonzero. So we use

x=4,yz=1 and y=4, xz=1

instead. They are again hyperbolae.

Finally, we clean up and simplify the sketch.
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~

Often the reason you are interested in a surface in 3d is that it is the graph z = f(x,y)
of a function of two variables f(x,y). Another good way to visualize the behaviour of a
function f(x,y) is to sketch what are called its level curves.

A level curve of f(x,y) is a curve whose equation is f(x,y) = C, for some con-
stant C.

A level curve is the set of points in the xy-plane where f takes the value C. Because
it is a curve in 2d, it is usually easier to sketch than the graph of f. Here are a couple of
examples.

[Example 1.5.5]—I

[—[Example 157 (f(x,y) = x> + 4% — 2x + 2)}
Sketch the level curves of f(x,y) = x> + 4y* — 2x + 2.

Solution.  Fix any real number C. Then, for the specified function f, the level curve
f(x,y) = Cis the set of points (x, y) that obey

4P —2x42=C «— ¥*—2x+1+4>+1=C
— (x-12?+42=C-1
Now (x — 1)? + 4y? is the sum of two squares, and so is always at least zero. Soif C—1 < 0,
i.e. if C <1, thereisnocurve f(x,y) =C.If C—1=0,1e.if C=1,then f(x,y) =C—-1=
0 if and only if both (x — 1)? = 0 and 4y? = 0 and so the level curve consists of the single

point (1,0). If C > 1, then f(x,y) = C become (x —1)? + 4y> = C — 1 > 0 which describes
an ellipse centred on (1,0). It intersects the x-axis when y = 0 and

(x=1)*=C-1 <= x-1=4VC-1 < x=1++/C—-1
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and it intersects the line x = 1 (i.e. the vertical line through the centre) when
42=C-1 <= 2y=4+VC-1 = y=+1VC-1

So, when C > 1, f(x,y) = C is the ellipse centred on (1,0) with x semi-axis v/C — 1 and
y semi-axis %\/C — 1. Here is a sketch of some representative level curves of f(x,y) =
x% 4+ 4y? —2x + 2.

N
y |
1_ 1
! F=17
/ ﬂf_
=1
1\ J

It is often easier to develop an understanding of the behaviour of a function f(x,y) by
looking at a sketch of its level curves, than it is by looking at a sketch of its graph. On
the other hand, you can also use a sketch of the level curves of f(x,y) as the first step in
building a sketch of the graph z = f(x,y). The next step would be to redraw, for each C,
the level curve f(x,y) = C, in the plane z = C, as we did in Example 1.5.2.

t [Example 1.5.7]—I

If you've ever used a topographic map, you've seen examples of level curves. Mod-
elling the z-axis as a measure of elevation, with z = 0 as sea level, the contours shown on
topographic maps show the level curves associated with different elevations. The exam-
plef below shows the area around Gambier, Anvil, and Keats Islands, north of UBC. The
lines show level curves for z = 0 metres, z = 100 metres, z = 200 metres, etc.

®
13 generated by Natural Resources Canada’s Atlas of Canada - Toporama, included under an open gov- l
ernment license

32


https://atlas.gc.ca/toporama/en/index.html?id=map1&extent=-1998580.6625611694,497431.8360192778,-1972987.465541442,510925.6130068317&legend=762eb7ed-0001-242f-6fcf-af08f5605eb1,0,0,0.23;e5511402-0002-5cbe-0d3c-f537c612b7df,0,0,0.69;cc7fde4c-0003-1cf2-8358-7ca86eefb13c,0,0,1;762eb7ed-cccc-242f-6fcf-af08f5605eb1,0,1,1;8a57b0ba-c004-f03d-7cd4-b3d9b35a8b83,0,0,1;4118b52e-66fe-6b4d-b826-a8f309338f76,0,0,1;e5511402-0029-5cbe-0d3c-f537c612b7dg,0,0,1;e5511402-0029-5cbe-0d3c-f537c612b7df,0,1,1;e5511402-0028-5cbe-0d3c-f537c612b7df,0,0,1;e5511402-0628-5cbe-0d3c-f537c612b7df,0,1,1;e5511402-0528-5cbe-0d3c-f537c612b7df,0,1,1;8a9bb0ab-0005-32b1-6715-be42194945aa,1,1,1;e5511402-0027-5cbe-0d3c-f537c612b7df,0,0,0.92;e5511402-0026-5cbe-0d3c-f537c612b7df,0,0,1;e5511402-0025-5cbe-0d3c-f537c612b7df,0,0,0.97;8a9bb0ab-0021-32b1-6715-be42194945aa,0,0,1;e5511402-0023-5cbe-0d3c-f537c612b7df,0,1,1;e5511402-0022-5cbe-0d3c-f537c612b7df,0,1,1;8a9bb0ab-0018-32b1-6715-be42194945aa,0,1,1;e5511402-0020-5cbe-0d3c-f537c612b7df,0,0,1;e5511402-0019-5cbe-0d3c-f537c612b7df,1,1,1;8a9bb0ab-0014-32b1-6715-be42194945aa,0,0,1;e5511402-0017-5cbe-0d3c-f537c612b7df,0,1,1;e5511402-0016-5cbe-0d3c-f537c612b7df,0,1,1;e5511402-0015-5cbe-0d3c-f537c612b7df,0,1,1;8a9bb0ab-0010-32b1-6715-be42194945aa,0,0,1;e5511402-0013-5cbe-0d3c-f537c612b7df,0,1,1;e5511402-0012-5cbe-0d3c-f537c612b7df,0,1,1;e5511402-0011-5cbe-0d3c-f537c612b7de,0,1,1;e5511402-0011-5cbe-0d3c-f537c612b7df,0,1,1;e5511402-0009-5cbe-0d3c-f537c612b7df,0,0,1;e5511402-0007-5cbe-0d3c-f537c612b7df,0,0,1;e5511402-0004-5cbe-0d3c-f537c612b7df,0,0,1
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I—LExample 1.5.8 (e¥TV+= = 1)}

The function f(x, y) is given implicitly by the equation e* %% = 1. Sketch the level curves
of f.
Solution. This one is not as nasty as it appears. That “f(x,y) is given implicitly by the

equation e*¥% = 1” means that, for each x, y, the solution z of e*¥™% = 1is f(x,y). So,

for the specified function f and any fixed real number C, the level curve f(x,y) = C is the
set of points (x,y) that obey

Ve =1 «—— x+y+C=0  (by taking the In of both sides)
= x+y=-C

This is of course a straight line. It intersects the x-axis when y = 0 and x = —C and it
intersects the y-axis when x = 0 and y = —C. Here is a sketch of some level curves.
\
Y
1 s
r
1 f=-2
f=—1
=3 N/f=2 \/=1 \f=0
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t [Example 1.5.8 }—]

We have just seen that sketching the level curves of a function f(x,y) can help us
understand the behaviour of f. We can generalise this to functions F(x, y,z) of three vari-
ables. A level surface of F(x,y,z) is a surface whose equation is of the form F(x,y,z) = C
for some constant C. It is the set of points (x, y,z) at which F takes the value C.

I—[Example 159 (F(x,y,z) = x>+ > + zz)} )l

Let F(x,y,z) = x*> 4+ y? + z2. If C > 0, then the level surface F(x,y,z) = C is the sphere of
radius v/C centred on the origin. Here is a sketch of the parts of the level surfaces F = 1
(radius 1), F = 4 (radius 2) and F = 9 (radius 3) that are in the first octant.

DS
=

- J

t [Example 159 }—]

I—[Example 1.5.10 (F(x,y,z) = x* + ZZ)} 1

Let F(x,y,z) = x*> 4+ z%? and C > 0. Consider the level surface x> + z> = C. The variable
y does not appear in this equation. So for any fixed y, the intersection of the our surface
x? 4 z2 = C with the plane y = yj is the circle of radius /C centred on x = z = 0. Here is
a sketch of the first quadrant part of one such circle.

34



VECTORS AND GEOMETRY 1.5 SKETCHING SURFACES IN 3D

~N

- J

The full surface is the horizontal stack of all of those circles with v running over R. It is
the cylinder of radius +/C centred on the y-axis. Here is a sketch of the parts of the level
surfaces F = 1 (radius 1), F = 4 (radius 2) and F = 9 (radius 3) that are in the first octant.

~N
z

F=9

F=4

per ]

I,
x

\ J

t [Example 1.5.10J—I

I—[Example 1511 (F(x,v,2) = e"”*")} 1

Let F(x,y,z) = ¢*"Y*Z and C > 0. Consider the level surface e* V"% = C, or equivalently,
x+y+z = InC. Itis the plane that contains the intercepts (InC,0,0), (0,InC,0) and
(0,0,InC). Here is a sketch of the parts of the level surfaces

e F = e (intercepts (1,0,0), (0,1,0), (0,0,1)),
e [ = ¢? (intercepts (2,0,0), (0,2,0), (0,0,2)) and
o F=¢3 (intercepts (3,0,0), (0,3,0), (0,0,3)

that are in the first octant.
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{ {Example 1.5.11]—I

There some classes of relatively simple, but commonly occurring, surfaces that are
given their own names. One such class is cylindrical surfaces. You are probably used to
thinking of a cylinder as being something that looks like x> + y? = 1.

~

- J

In Mathematics the word “cylinder” is given a more general meaning.

—Definition.5:12 (Cytinder). N

A cylinder is a surface that consists of all points that are on all lines that are

¢ parallel to a given line and
* pass through a given fixed plane curve (in a plane not parallel to the given
line).

- J

I—[Example 1.5.13} )

Here are sketches of three cylinders. The familiar cylinder on the left below
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~

?+y?=1 P+ (y—2)P2=1
\- J

is called a right circular cylinder, because the given fixed plane curve (x*> + y> =1,z = 0)
is a circle and the given line (the z-axis) is perpendicular (i.e. at right angles) to the fixed
plane curve.

The cylinder on the left above can be thought of as a vertical stack of circles. The
cylinder on the right above can also be thought of as a stack of circles, but the centre of the
circle at height z has been shifted rightward to (0,z,z). For that cylinder, the given fixed
plane curve is once again the circle X2+ y2 =1,z =0, but the given lineis y = z, x = 0.

We have already seen the third cylinder

~N
z
Y
T yz =1
x,y,z >0
\_ J

in Example 1.5.4. It is called a hyperbolic cylinder. In this example, the given fixed plane
curve is the hyperbola yz = 1, x = 0 and the given line is the x-axis.
[Example 1.5.13]—I

1.5.1 » Quadric Surfaces

Another named class of relatively simple, but commonly occurring, surfaces is the quadric
surfaces.
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A quadric surface is surface that consists of all points that obey Q(x,y,z) = 0,

with Q being a polynomial of degree two'?.

For Q(x,y,z) to be a polynomial of degree two, it must be of the form
Q(x,y,z) = Ax* + By*> + Cz*> + Dxy + Eyz + Fxz + Gx + Hy + Iz + ]

for some constants A, B, ---, J. Each constant z cross section of a quadric surface has an
equation of the form

AxX* + Dxy+By* +gx+hy+j=0, z=z2

If A= B = D = 0but g and / are not both zero, this is a straight line. If A, B, and D
are not all zero, then by rotating and translating our coordinate system the equation of the
cross section can be brought into one of the forms!®

o ax? + By? = y with a, B > 0, which, if v > 0, is an ellipse (or a circle),
o nx2— ,Byz = ¢ witha, B > 0, which, if v # 0, is a hyperbola, and if y = 0 is two lines,
e 0y, which, if § # 0 is a parabola, and if 6 = 0 is a straight line.

There are similar statements for the constant y cross sections and the constant z cross
sections. Hence quadratic surfaces are built by stacking these three types of curves.
We have already seen a number of quadric surfaces in the last couple of sections.

* We saw the quadric surface 4x? + y*> — z2 = 1 in Example 1.5.2.

—_
Vee(
Lo

Its constant z cross sections are ellipses and its x = 0 and y = 0 cross sections are
hyperbolae. It is called a hyperboloid of one sheet.

* We saw the quadric surface x* + y? = 1 in Example 1.5.13.

14 Technically, we should also require that the polynomial can’t be factored into the product of two poly- l
nomials of degree one.

15 This statement can be justified using a linear algebra eigenvalue/eigenvector analysis. It is beyond
what we can cover here, but is not too difficult for a standard linear algebra course.
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~N
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Its constant z cross sections are circles and its x = 0 and y = 0 cross sections are
straight lines. It is called a right circular cylinder.

e the quadric surface x> + (y — z)?> = 1 in Example 1.5.13, and
¢ We saw the quadric surface yz = 1 in Example 1.5.4.

Appendix A.2 contains other quadric surfaces.

I—[Example 1.5.15 (Indifference curves)}

Suppose a function U(x,y) gives the happiness'® (or utility) a consumer gains when they
purchase x units of Good X and y units of Good Y. The level curves of the surface
z = U(x,y) are called indifference curves, because every point along that curve results
in the same benefit to the consumer.

Suppose U(x,y) = x,/y. The purchasing 2 units of Good X and one unit of Good Y
produces the same benefit as purchasing 1 unit of Good X and 4 units of Good Y, because

both these combinations are on the level curve U(x,y) = 2.

16(

Let’s make a small contour map of our surface U(x,y) = x,/y, plotting several indif-

terence curves. (Note x,/y = c is equivalent toy = i_i in our model domain.)

16 An amusing thought experiment is to propose units for measuring happiness. “The one-point increase l
in GDP was associated with an average increase of 3.7 wrinkly puppy faces of happiness nation-wide.”
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Not surprisingly, if we move roughly in the direction of the vector (1,1) (that is, in-
creasing both x and y), our happiness U(x, y) goes up.

Note that none of the indifference curves touch either of the x or y axes. It is clear
enough from the formula that U(0,y) = U(x,0) = 0. This is a common feature of utility
functions: that to maximize utility, a consumer will have at least a little of both products,

rather than consuming only one type.
[Example 1.5.15]—I

Chapter 1 (excluding Section 1.4) was adapted from Chapter 1 of CLP-3 Multivari-
able Calculus by Feldman, Rechnitzer, and Yeager under a Create Commons Attribution-
NonCommercial-ShareAlike 4.0 International license.
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Chapter 2

PARTIAL DERIVATIVES

In this chapter we are going to generalize the definition of “derivative” to functions of
more than one variable, and then we are going to use those derivatives. We can speed
things up considerably by recycling what we have already learned in the single-variable
case.

2.1a Partial Derivatives

First, recall how we defined the derivative, f'(a), of a function of one variable, f(x). We
imagined that we were walking along the x-axis, in the positive direction, measuring, for
example, the temperature along the way. We denoted by f(x) the temperature at x. The
instantaneous rate of change of temperature that we observed as we passed through x = a

was df ) = m LW = Fl) _ f) = F(a)

dx h—0 h x—a X —a

Next suppose that we are walking in the xy-plane and that the temperature at (x,y) is
f(x,y). We can pass through the point (x,y) = (a,b) moving in many different directions,
and we cannot expect the measured rate of change of temperature if we walk parallel to
the x-axis, in the direction of increasing x, to be the same as the measured rate of change
of temperature if we walk parallel to the y-axis in the direction of increasing y. We'll start
by considering just those two directions. other directions (like walking parallel to the line
y = x) later.

Suppose that we are passing through the point (x,y) = (a,b) and that we are walking
parallel to the x-axis (in the positive direction). Then our y-coordinate will be constant, al-
ways taking the value y = b. So we can think of the measured temperature as the function
of one variable B(x) = f(x,b) and we will observe the rate of change of temperature

dB B(a+h)—B(a) .. f(a+hDb)—f(ab)
= lim p

E(a) - }llffl) h h—0

This is called the “partial derivative f with respect to x at (a,b)” and is denoted (Z—J;)y (a,b).
Here
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o the symbol ¢, which is read “partial”, indicates that we are dealing with a function

of more than one variable and

o the subscript y on ( )y indicates that y is being held fixed, i.e. being treated
constant, and

o the xin g—f; indicates that we are differentiating with respect to x.

of

o 7 isread ” partial dee f dee x”.

as a

Do not write % when g—x is appropriate. (There exist situations when % fand % f are both

defined and have different meanings.)

If, instead, we are passing through the point (x,y) = (a,b) and are walking parallel to
the y-axis (in the positive direction), then our x-coordinate will be constant, always taking
the value x = a. So we can think of the measured temperature as the function of one

variable A(y) = f(a,y) and we will observe the rate of change of temperature

AA ) i AR —AB) e b k)~ f(ab)
ay (D) = fim 7 ~ oo 7

This is called the “partial derivative f with respecttoy at (a,b)” and is denoted (Z—J;)x (a,b).

df

Just as was the case for the ordinary derivative 3 (x), it is common to treat the partial

derivatives of f(x,y) as functions of (x,y) simply by evaluating the partial derivtives at

(x,y) rather than at (a,b).

The x- and y-partial derivatives of the function f(x,y) are

(2) 5 = iy L 1) = f2)
Y

ox h—0 h
of i SRy )~ f(y)
() 0 ==

respectively. The partial derivatives of functions of more than two variables are
defined analogously.

.

J

Partial derivatives are used a lot. And there many notations for them.
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—[Notationz.l.z.] ~N

The partial derivative (%) of a function f(x, y) is also denoted
y

O N Y

The subscript 1 on D; f indicates that f is being differentiated with respect to its
first variable. The partial derivative (%) (a,b) is also denoted
y

of

ox

(a,b)

with the subscript (a,b) indicating that % is being evaluated at (x,y) = (a,b).

The abbreviated notation % for (%) is extremely commonly used. But it is

dangerous to do so, when it is not clear from the context, that it is the variable y
that is being held fixed.

- J

Remark 2.1.3 (The Geometric Interpretation of Partial Derivatives). ~We’ll now develop
a geometric interpretation of the partial derivative

ox h—0

(a—f) (a,b) = lim flath, b}z — f(a,b)
Yy

in terms of the shape of the graph z = f(x,y) of the function f(x,y). That graph appears
in the figure below. It looks like the part of a deformed sphere that is in the first octant.

The definition of (g—fg) (a,b) concerns only points on the graph that have y = b. In
Yy

other words, the curve of intersection of the surface z = f(x,y) with the plane y = b. That

is the red curve in the figure. The two blue vertical line segments in the figure have heights

f(a,b) and f(a + h,b), which are the two numbers in the numerator of JM.
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~
z
z= f(z,y)
y=b
fla+h,b) = f(a,b) M < f(a,b)
< fla+h,b)
)
(a,b,0)
Pa—
(a+ h,b,0)
x
. J

A side view of the curve (looking from the left side of the y-axis) is sketched in the figure
below.  Again, the two blue vertical line segments in the figure have heights f(a,b)

~
z
<— f(a+h,b) — f(a,b)
\ZZf(:v,b), y=>
< f(a,b)
<—— f(a+ h,b)
° x
(a,b,0) (a+ h,b,0)
\\§ J

and f(a + h,b), which are the two numbers in the numerator of Jw. So the
numerator f(a + h,b) — f(a,b) and denominator / are the rise and run, respectively, of

the curve z = f(x,b) from x = ato x = a + h. Thus (%)y(&l,b) is exactly the slope of (the
tangent to) the curve of intersection of the surface z = f(x,y) and the plane y = b at the point
(a,b, f(a,b)). In the same way (%)x(a, b) is exactly the slope of (the tangent to) the curve of
intersection of the surface z = f(x,y) and the plane x = a at the point (a, b, f(a,b)).
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»»» Evaluation of Partial Derivatives

From the above discussion, we see that we can readily compute partial derivatives g—x by
using what we already know about ordinary derivatives %. More precisely,

* to evaluate % (x,y), treat the y in f(x,y) as a constant and differentiate the resulting

function of x with respect to x.
e To evaluate % (x,y), treat the x in f(x, y) as a constant and differentiate the resulting
function of y with respect to y.

e To evaluate g—f: (a,b), treat the y in f(x,y) as a constant and differentiate the resulting
function of x with respect to x. Then evaluate the result at x = a, y = b.

e To evaluate % (a,b), treat the x in f(x,y) as a constant and differentiate the resulting
function of y with respect to y. Then evaluate the resultat x = a, y = b.

Now for some examples.

)
I—[Example 214 ] l
Let

flx,y) =2 +y* + 4xy?

Then, since g—x treats y as a constant,

Of _(Of\ _ 0 5y, @ oy, @ g2
ox - (ax)y_ ax(x )+ ax(y )+ ‘Jx(4xy )
= 3x? +O+4y2%(x)
= 3x% + 4y?
and, since (% treats x as a constant,
o () 0 oy a D g e
y <0y)x BARARTA AR IR
0
= 0+2y+4x@(y2)
=2y + 8xy
In particular, at (x,y) = (1,0) these partial derivatives take the values
a—f(1,0) =3(1)2+4(0)* =3
ox
L1,0) =20 +801)(0) =0

t [Example 2.1.4]—I
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)
[—[Example 2.1.5 ] l
Let

f(x,y) = ycosx + xe*V

Then, since g—x treats i as a constant, g_xeyx = ye¥* and

i—j;(x,y) = —ysinx + e* 4 xye'V
0”_f(x y) = cos x + x2e™
oy’

t [Example 2.1.5]—I

Let’s move up to a function of four variables. Things generalize in a quite straight forward

way.
)
[—[Example 2.1.6 ] l
Let

f(x,y,2,t) = xsin(y 4+ 2z) + *¢¥ Inz

Then

(x,y,z,t) = sin(y + 2z)

of
ox
of 2,3
a—y(x,y,z,t) = xcos(y +2z) + 3t°¢¥ Inz
of 2,3
E(x,y,z,t) = 2xcos(y +2z) +t¢eY/z
of
ot

(x,y,2,t) = 2t Inz

t [Example 2.1.6 }—]

Now here is a more complicated example — our function takes a special value at (0,0).
To compute derivatives there we have to revert to the definition.

)
I—[Example 217 ] l
Set

COS X—COS Y

ifx#y
- Xy
flxy) {0 ifx=y

If b # a, then for all (x,y) sufficiently close to (a,b), f(x,y) = % and we can
compute the partial derivatives of f at (a,b) using the familiar rules of differentiation.
However that is not the case for (a,b) = (0,0). To evaluate fy(0,0), we need to set y = 0
and find the derivative of

cosx—1 if x £ 0

f(x,()):{ *

0 ifx=0
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with respect to x at x = 0. To do so, we basically have to apply the definition

h,0) — £(0,0)

£+(0,0) = lim f

h—0 h
cosh—1 0
= llqin}) hT (Recall that /1 # 0 in the limit.)
i <8 h—1
N h—0 h?
. —sinh RT
= lim — (By 'Hopital’s rule.)
—cosh
= llqin}) o8 (By 'Hopital again.)
__1
2

t [Example 2.1.7]—I
)
I—[Example 2.1.8 ] )

Again set
COSX—COSY s . £y
X, = x=y
foy) {0 ifx=y
We'll now compute f,(x,y) for all (x,y).
The casey # x: Wheny # x,
0 cosx —cosy
fy(x’y)_ay x_y
x — 1)< (cosx —cosy) — (cosx — cosy) < (x —
= =y) Y ( (yx)_ y()z y) % b= y) by the quotient rule

_ (x—y)siny +cosx —cosy
(x—y)?

The casey = x: Wheny = x,

fly+m) = foy) o flx+h) = f(x)

fy(x,y) = lim

h—0 h h—0 h
cosx—cos(x+h) 0
= }Zirr(l) x_(Hhh ) (Recall that /1 # 0 in the limit.)
. cos(x+h)—cosx
=0 2

Now we apply L'Hopital’s rule, remembering that, in this limit, x is a constant and # is
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the variable — so we differentiate with respect to h.

. —sin(x+h)
fy(x,y) = hmT

h—0
i cos(x + h)
h—0
COs X

2

The conclusion:
(x—y) sin y+cos x—cos y

flxy) = { (x=y)?

ifx#y

__Ccosx

> ifx=y

t [Example 2.1.8 }—]

Our next example uses implicit differentiation.

I—LExample 2.1.9} l

The equation

2ty +e =0
implicitly determines z as a function of x and y. For example, when x = y = 0, the
equation reduces to
5_
z2=-1

which forces! z(0,0) = —1. Let’s find the partial derivative $(0,0).

We are not going to be able to explicitly solve the equation for z(x, y). All we know is
that

z(x, y)5 + yzez(x,y) + er -0

for all x and y. We can turn this into an equation for % (0,0) by differentiatingi the whole
equation with respect to x, giving

0z

ox
and then setting x = y = 0, giving

0
52(x,y)* = (x,y) +y?eY) —(xy) +267 =0

Z
X

0z
52(0,0)* ==(0,0) +2 =0
2(0,0)* 52(0,0) +

As we already know that z(0,0) = —1,

0z 2 2

22(0,0) = — ==

6x( ) 5z(0,0)% 5

@

1  The only real number z which obeys z°> = —1isz = —1. However there are four other complex numbers l

which also obey z° = —1.
2 You should have already seen this technique, called implicit differentiation, in your first Calculus
course.
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t [Example 219 }—]

Next we have a partial derivative disguised as a limit.

Example 2_1_107
— J )

In this example we are going to evaluate the limit

3_ 3
o by ()
20 (x+y)z

The critical observation is that, in taking the limit z — 0, x and y are fixed. They do not
change as z is getting smaller and smaller. Furthermore this limit is exactly of the form
of the limits in the Definition 2.1.1 of partial derivative, disguised by some obfuscating
changes of notation. -

Set ( 3
X+Yy+z
X,Y,z) = ——F—
floy2) = =275
Then
3_ 3 _ _
i &ty +2)° =4y . fey2) —floy,0) . fxy,0+h) — f(xy,0)
20 (x+y)z 20 z h—0 h
_of
—g(x,y,O)
_ [ x+y+2)°
B 0z X+y z=0

Recalling that % treats x and y as constants, we are evaluating the derivative of a function

t+2)°
of the form % So
3_ 3 2
o Gy - () (xhy )
20 (x+y)z x+y o |,

=3(x+vy)

t [Example 2.1.10]—]

2.2a Higher Order Derivatives

You have already observed, in your first Calculus course, that if f(x) is a function of x,
then its derivative, %(x), is also a function of x, and can be differentiated to give the

2
second order derivative %(x), which can in turn be differentiated yet again to give the

third order derivative, (3 (x), and so on.
We can do the same for functions of more than one variable. If f(x,y) is a function of x

and y, then both of its partial derivatives, % (x,y) and % (x,y) are also functions of x and

49



PARTIAL DERIVATIVES 2.2 HIGHER ORDER DERIVATIVES

y. They can both be differentiated with respect to x and they can both be differentiated
with respect to y. So there are four possible second order derivatives. Here they are,
together with various alternate notations.

f_ <Z_£> (x,y) = %(x,y) = fxx(%,y)

o
(D) = L= faty)
(D) e = S sty
(D) = ) = fulo)

— Warning2.2.1. N

2 2 L o . o
In gy—(;; = ayaﬁ f, the derivative closest to f, in this case g—x, is applied first. So we

work through the variables in the bottom right-to-left.
In fxy, the derivative with respect to the variable closest to f, in this case x, is
applied first. So we work through the subscript variables left-to-right.

- J

The difference in “direction” highlighted in the warning seems confusing at first, but
it stems from the way the first partial derivative is written. In the fractional notation, if f

is being differentiated with respect to x, we write % or % f. So the operator g—x is added

to the left of the function. Now suppose we want to differentiate g—ﬁz with respect to y.

By analogy, we would write % [%] , Or g;—afx. This leads to the order of variables being
right-to-left.

With the subscript notation, if f is being differentiated with respect to x, we write fy,
with the variable on the right of the function. So now if we take the second derivative with

respect to y, it makes sense by analogy to add that new variable to the right: (fx)y, or fxy,
in left-to-right order.

)
I—[Example 222 ] l

Let f(x,y) = ™ cos(nx). Then

fx = —ne™ sin(nx) fy = me"™Y cos(nx)
fxx — 2™y Cos(nx) fyx = —mne™ sin(nx)
fry = —mne™ sin(nx) fyy = m*e™ cos(nx)

t [Example 2.2.2]—I
)
I—[Example 223 ] l
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Let f(x,y) = e®*PY. Then

fx — e tHBY fy — ﬁezxer/Sy
fxx = “2€“x+ﬁy fyx = ,BD(@MH_ﬁy
fxy _ aﬁeax-i-ﬁy fyy _ [BZeax—&-ﬁy
More generally, for any integers m,n > 0,
§m+nf _ amﬁnetxxﬂiy
oxm oy

t [Example 2.2.3]—I
)
[—[Example 224 ] )

_ 4.3.2
If f(x1,x2,X3,X4) = X7 X5 X5 X4, then

* f _ » (x4 3 x2>
(33(1 5JC2 6x3 53(4 6x1 8x2 63&‘3 17273
02 (

= (2x%x3 x3)
53(1 aX2 172
o

= 6 x% x3 x3>
axl 142

= 24 x3 x3 x3

and
o* f & 3.3.2
0x4 0x30xp 0X1  0X4 0X3 0X2 <4x1 X273 x4>
i 3.2.2
= %1 0% (12 X7 X5 X3 x4>
0
= ) (24 x{’ X5 X3 x4>

= 24 x3 x5 x3

t [Example 2.2.4]—I

Notice that in Example 2.2.2,

fry = fyx = —mne™ sin(nx)

and in Example 2.2.3
fxy = fyx — aﬁe”‘x+ﬁy

and in Example 2.2.4

ot f B ot f

= =24 x3 53
0x10xp 0X30X4  0X4 0X3 0Xp 0X1 X243
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In all of these examples, it didn’t matter what order we took the derivatives in. The fol-
lowing theorem?® shows that this was no accident.

— Theorem?2.2.5 (Clairaut’s Theorem* or Schwarz’s Theorem®). ~N
If the partial derivatives 24 and 2L exist and ti t (x0,0), th
e partial derivatives 77 and 75 exist and are continuous at (xo, Jo), then

ﬁzf azf
axay(xofyo) = %(xo,yo)

- J

The Proof of Theorem 2.2.5 can be found in Appendix A.3.1. An example of a function
2 — —
f(x,y) where gx—aj;(xo, Yo) # %(xo, o) can be found in Appendix A.3.2.

[—[Example 2.2.6 (Mixed Partial Detective Work)} )

Suppose a function f(x,y) has continuous partial derivatives of all orders over all of R?.
Suppose further

frx(x,y) = ye*
What is fryxy(x,y)?

Solution. Since the partial derivatives are continuous, Theorem 2.2.5 applies. So:

Far(09) = ((F)y), (o) = ((f)sy ), = From ()

fexy(x, ) = 5_]/ lye'] = e*
faxyy(x,y) = s_y [e*] =0

t [Example 2.2.6 }—]
)
I—[Example 2'2'7j l

Is it possible for a function f(x,y) to have fx(x,y) = f,(x,y) = xy?

Solution. Itisnot. If fi(x,y) = xy, then fy,(x,y) = x, which is continuous over all R?.
Similarly, if f,(x,y) = xy, then fy«(x,y) = y, which is continuous over all R?. But then by
Clairaut’s theorem, since fy, and fy, are continuous at (say) (1,2), they must be equal at
that point. But fy,(1,2) = 1 and f,x(1,2) = 2.

t [Example 2.2.7]—]

3 The history of this important theorem is pretty convoluted. See “A note on the history of mixed partial l
derivatives” by Thomas James Higgins which was published in Scripta Mathematica 7 (1940), 59-62.

4  Alexis Clairaut (1713-1765) was a French mathematician, astronomer, and geophysicist.

5 Hermann Schwarz (1843-1921) was a German mathematician.
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2.34 Local Maximum and Minimum Values

One of the core topics in single variable calculus courses is finding the maxima and min-
ima of functions of one variable. We’ll now extend that discussion to functions of more
than one variable®. To keep things simple, we’ll focus on functions with two variables.
It's worth noting, though, that many of the techniques we use will generalize to func-
tions with even more. To start, we have the following natural extensions to some familiar
definitions.

~(Definition2.3.1. \

Let the function f(x,y) be defined for all (x,y) in some subset R of R?. Let (a,b)
be a point in R.

(a,b) is a local maximum of f(x,y) if f(x,y) < f(a,b) for all (x,y) close to
(a,b). More precisely, (a,b) is a local maximum of f(x,y) if thereisan r > 0
such that f(x,y) < f(a,b) for all points (x,y) within a distance r of (a, b).

(a,b) is a local minimum of f(x,y) if f(x,y) > f(a,b) for all (x,y) close to
(a,b).

Local maximum and minimum values are also called extremal values.

(a,b) is an absolute maximum or global maximum of f(x,y) if f(x,y) < f(a,b)
for all (x,y) in R.

(a,b) is an absolute minimum or global minimum of f(x,y) if f(x,y) = f(a,b)
for all (x,y) in R.

- J

Another complication is that more variables lead to more (partial) derivatives. It’s
convenient to group the partial derivatives into a vector.

The vector (fx(a,b), f,(a,b)) is denoted V£ (a,b) and is called “the gradient of
the function f at the point (a,b)”.

2.3.1 » Critical Points

One of the first things you did when you were developing the techniques used to find the
maximum and minimum values of f(x) was to ask yourself”

Suppose that the largest value of f(x) is f(a). What does that tell us about a?
°

6 Life is not (always) one-dimensional and sometimes we have to embrace it.
7 Or perhaps your instructor asked you.
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After a little thought you answered

If the largest value of f(x) is f(a) and f is differentiable at a, then f'(a) = 0.

Let’s recall why that’s true. Suppose that the largest value of f(x) is f(a). Then for all
h >0,

fla+h) < f(a) = fla+h)—f(a) <0 = f(a—HZ_f(a) <0 ifh>0

Taking the limit 1 — 0 tells us that f'(a) < 0. Similarly, for all h <0,

fa+h) < fla) — fla+h)—fla) <0 — f(”h;‘f(“) >0 ifh<0

Taking the limit # — 0 now tells us that f'(a) > 0. So we have both f'(a) > 0and f'(a) <0
which forces f'(a) = 0.

You also observed at the time that for this argument to work, you only need f(x) <
f(a) for all x’s close to a, not necessarily for all x’s in the whole world. (In the above
inequalities, we only used f(a + h) with & small.) Since we care only about f(x) for x near
a, we can refine the above statement.

If f(a) is a local maximum for f(x) and f is differentiable at a, then f’(a) = 0.
Precisely the same reasoning applies to minima.
If f(a) is a local minimum for f(x) and f is differentiable at a, then f'(a) = 0.

Let’s use the ideas of the above discourse to extend the study of local maxima and
local minima to functions of more than one variable. Suppose that the function f(x,y)
is defined for all (x,y) in some subset R of R?, that (a,b) is point of R that is not on the
boundary of R, and that f has a local maximum at (a, b). See the figure below.
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~

(a,b, f(a,b))

- J

Then the function f(x,y) must decrease in value as (x,y) moves away from (a,b) in any
direction. If we change the x-coordinate a little, f(x,y) must not increase. So for all & > 0:

f(a+h,b) < f(a,b) = f(a+h,b)—f(a,b) <0 = f(a+h,b2—f(a,b) <0 ifh>0

Taking the limit 1 — 0 tells us that f,(a,b) < 0.
Similarly, for all h < 0,

Fa+hb) < f(ab) — fla+thb)—flab) <0 — f(”h'blz‘f(“'b) =0 ifh<0

Taking the limit # — 0 now tells us that fx(a,b) > 0. So we have both fy(a,b) > 0 and
fx(a,b) < 0which forces fy(a,b) = 0. The same reasoning tells us f,(a,b) = 0 as well, and
that these partial derivatives are zero for minima as well as maxima. If both f,(a,b) = 0
and fy(a,b) =0, then Vf(a,b) = 0.

This is an important and useful result, so let’s theoremise it.

— Theorem?2.3.3. ~N

Let the function f(x,y) be defined for all (x,y) in some subset R of R?>. Assume
that

o (a,b) is a point of R that is not on the boundary of R and
o (a,b) is a local maximum or local minimum of f and that
o the partial derivatives of f exist at (a,b).

Then
Vf(a,b) =0.
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~(Definition2.3.4. )

Let f(x,y) be a function and let (4, b) be a point in its domain. Then we call (4, b)
a critical point (or a stationary point) of the function if either

e Vf(a,b) does not exist, or

e Vf(a,b) exists and is zero.
- J

—[Warning2.3.59 ~N

Note that some people (and texts) do not include the case "V f(a,b) does not
exist” in the definition of a critical point. These points where the gradient does
not exists would (usually) be referred as a singular point of the function. We do
not use this terminology.

- J

—EWarning2.3.6.J ~N

Theorem 2.3.3 tells us that every local maximum or minimum (in the interior of
the domain of a differentiable function) is a critical point. Beware that it does not®
tell us that every critical point is either a local maximum or a local minimum.

- J

In fact, as we shall see in Example 2.3.13, critical points that are neither local maxima
nor a local minima. None-the-less, Theorem 2.3.3 is very useful because often functions
have only a small number of critical points. To find local maxima and minima of such
functions, we only need to consider its critical points. We’ll return later to the question of
how to tell if a critical point is a local maximum, local minimum or neither. For now, we’ll
just practice finding critical points.

I—[Example 237 (f(x,y) = x* —2xy + 2y> + 2x — 6y + 12)}

Find all critical points of f(x,y) = x* — 2xy + 2y? + 2x — 6y + 12.
Solution. To find the critical points, we need to find the gradient. To find the gradient we
need to find the first order partial derivatives. So, as a preliminary calculation, we find
the two first order partial derivatives of f(x,y).

fr(x,y) =2x—2y+2

fy(x,y) = —2x+4y—6

These functions are defined everywhere (so the gradient exists at every point in the do-
main). So the critical points are the solutions of the pair of equations

2x -2y+2=0 —2x+4y—-6=0

8 A very common error of logic that people make is “Affirming the consequent”. “If P then Q” is true, l
does not imply that “If Q then P” is true . The statement “If he is Shakespeare then he is dead” is true.
But concluding from “That sheep is dead” that “He must be Shakespeare” is just silly.
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or equivalently (dividing by two and moving the constants to the right hand side)

x—y=-1 (E1)
—x+2y=3 (E2)

This is a system of two equations in two unknowns (x and y). One strategy for solving
system like this is to

e First use one of the equations to solve for one of the unkowns in terms of the other
unknown. For example, (E1) tells us that y = x + 1. This expresses y in terms of x.

We say that we have solved for y in terms of x.

¢ Then substitute the result, y = x 4 1 in our case, into the other equation, (E2). In our
case, this gives

—x+2(x+1):3 = x+2=3 <<= x=1

¢ Wehave now found that x = 1,y = x +1 = 2 is the only solution. So the only critical
point is (1,2). Of course it only takes a moment to verify that Vf(1,2) = (0,0). Itis
a good idea to do this as a simple check of our work.

An alternative strategy for solving a system of two equations in two unknowns, like (E1)
and (E2), is to

¢ add equations (E1) and (E2) together. This gives
(E1)+(E2): 1-1)x+(-14+2)y=-143 < y=2
The point here is that adding equations (E1) and (E2) together eliminates the un-
known x, leaving us with one equation in the unknown y, which is easily solved.
For other systems of equations you might have to multiply the equations by some
numbers before adding them together.

¢ We now know that y = 2. Substituting it into (E1) gives us

x—2=-1 = x=1

* Once again (thankfully) we have found that the only critical point is (1,2).

[Example 2.3.7]—]

This was pretty easy because we only had to solve linear equations, which in turn was a
consequence of the fact that f(x,y) was a polynomial of degree two. Here is an example
with some slightly more challenging algebra.
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I—[Example 238 (f(x,y) =2x> —6xy + 1> + 4]/)}
Find all critical points of f(x,y) = 2x% — 6xy + y* + 4y.

Solution. As in the last example, we need to find where the gradient does not exist or is
zero, and to find the gradient we need the first order partial derivatives.

fe=6x"—6y  f,=—6x+2y+4
These functions are defined everywhere. So the critical points are the solutions of
6x>—6y =0  —6x+2y+4=0

We can rewrite the first equation as y = x?, which expresses y as a function of x. We can
then substitute y = x? into the second equation, giving

—6x4+2y+4=0 — —6x+2x24+4=0 < 2*—3x+2=0 «— (x—1)(x—=2)=0
< x=1or2

When x = 1,y = 12 = 1 and when x = 2, y = 22 = 4. So, there are two critical points:
(1,1), (2,4).

Alternatively, we could have also used the second equation to write y = 3x — 2, and
then substituted that into the first equation to get

6x> —6(3x—2) =0 < x> —3x+2=0

just as above.

And here is an example for which the algebra requires a bit more thought.

[Example 2.3.8]—I

I—[Example 239 (f(x,y) = xy(5x +y —15)) |
Find all critical points of f(x,y) = xy(5x +y — 15).

Solution. The first order partial derivatives of f(x,y) = xy(5x +y — 15) are

fx(x,y) = ybx+y—15)+xy(5) = y(5x+y—15) +y(5x) = y(10x +y —15)
fy(x,y) = x(bx +y—15) +xy(1) = x(5x +y—15) + x(y) = x(5x +2y —15)
Therefore the gradient of the function exists everywhere in the domain of the function.

The critical points are the solutions of f(x,y) = f,(x,y) = 0. That is, we need to find all
x,y that satisfy the pair of equations

y(10x +y —15) =0 (E1)
x(5x+2y—15) =0 (E2)

The first equation, y(10x +y — 15) = 0, is satisfied if at least one of the two factors y,
(10x + y — 15) is zero. So the first equation is satisfied if at least one of the two equations

y=0 (Ela)
10x +y =15 (E1b)
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is satisfied. The second equation, x(5x + 2y — 15) = 0, is satisfied if at least one of the two
factors x, (5x + 2y — 15) is zero. So the second equation is satisfied if at least one of the
two equations

x=0 (E2a)
5x +2y =15 (E2b)

is satisfied.

So both critical point equations (E1) and (E2) are satisfied if and only if at least one
of (Ela), (E1b) is satisfied and in addition at least one of (E2a), (E2b) is satisfied. So both
critical point equations (E1) and (E2) are satisfied if and only if at least one of the following
four possibilities hold.

¢ (Ela) and (E2a) are satisfied if and only if x =y =0
* (Ela) and (E2b) are satisfied ifand onlyif y =0, 5x +2y =15 < y =0, 5x =15
¢ (Elb) and (E2a) are satisfied if and only if 10x +y =15, x =0 < y =15, x=0

¢ (Elb) and (E2b) are satisfied if and only if 10x 4y = 15, 5x + 2y = 15. We can use, for
example, the second of these equations to solve for x in terms of y: x = £(15 —2y).
When we substitute this into the first equation we get 2(15 — 2y) 4+ y = 15, which we
can solve for y. This gives —3y = 15— 30 or y = 5 and then x = %(15 —2x5)=1.

In conclusion, the critical points are (0,0), (3,0), (0,15) and (1, 5).
A more compact way to write what we have just done is

flty)=0  and fy(y) =0
— y(10x+y—15) =0 and x(5x+2y—15) =0
— {y=0o0r 10x+y=15} and {x=0 or 5x+2y =15}
— {y=0,x=0}or{y=0,5x+2y =15} or {10x+y =15, x = 0} or
{10x +y = 15, 5x 4+ 2y = 15}
— {x=y=0}or{y=0x=3lor{x=0,y=15}or{x =1, y =5}

t [Example 2.3.9 }—]

Let’s try a more practical example — something from the real world. Well, a mathe-

4 “

matician’s “real world”. The interested reader should search-engine their way to a dis-

cussion of “idealisation”, “game theory” “Cournot models” and “Bertrand models”. But
don’t spend too long there. A discussion of breweries is about to take place.

[—LExample 2.3.10} l

In a certain community, there are two breweries in competition’, so that sales of each neg-
atively affect the profits of the other. If brewery A produces x litres of beer per month and

®
9  We have both types of music here — country and western. l
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brewery B produces y litres per month, then the profits of the two breweries are given by

2x% + y? B 4% + x?

100 Q= 2 x 100
respectively. Find the sum of the two profits if each brewery independently sets its own
production level to maximize its own profit and assumes that its competitor does likewise.
Then, assuming cartel behaviour, find the sum of the two profits if the two breweries
cooperate so as to maximize that sumlo

P=2x—

Solution. 1f A adjusts x to maximize P (for y held fixed) and B adjusts y to maximize Q
(for x held fixed) then we want to find the (x, y) using

106
Qy=2- 2><106
Note that Py and Q, exists everywhere. Then x and y are determined by the equations
Py =0 (E1)
Qy=0 (E2)

Equation (E1) yields x = %106 and equation (E2) yields y = %106. Knowing x and y we
can determine P, Q and the total profit
P+Q=2(x+y) — g5 (33> +317)
=10°(1+1-3-3) = 310°

On the other hand if (A, B) adjust (x,y) to maximize P+ Q = 2(x +y) — 156 (522 +3y?),
then x and y are determined by

(P+Q)x=2-25=0 (E1)
(P+Q)y=2-2=0 (E2)

Equation (E1) yields x = %106 and equation (E2) yields y = %106. Again knowing x and y
we can determine the total profit
P+Q=2(x+y) - 55 (3%* +3y%)
—10°(3+3-7- 1) = J0°
So cooperating really does help their profits. Unfortunately, like a very small tea-pot,
consumers will be a little poorer!’.

t [Example 2.3.10 }—]

Moving swiftly away from the last pun, let’s do something a little more geometric.

I—LExample 2.3.11} l

Equal angle bends are made at equal distances from the two ends of a 100 metre long fence
so the resulting three segment fence can be placed along an existing wall to make an en-
closure of trapezoidal shape. What is the largest possible area for such an enclosure?

10 This sort of thing is generally illegal. l
11 The authors extend their deepest apologies.
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./

Solution. This is a very geometric problem (fenced off from pun opportunities), and as
such we should start by drawing a sketch and introducing some variable names.

Xii /x/xsiTnﬁ
0 o |

100 — 2z

-

The area enclosed by the fence is the area inside the blue rectangle (in the figure on the
right above) plus the area inside the two blue triangles.

A(x,0) = (100 — 2x)xsinf +2- 3 - xsin - x cos 6
= (100x — 2x2) sinf + x*sin 6 cos O

To maximize the area, we need to solve

0= g—? = (100 — 4x) sin 6 4 2x sin 6 cos 0
0= 6@_12 = (100x — 2x?) cos 0 + x*{ cos® § — sin® 0}

Note that %—‘;‘ and %—’g are defined everywhere in their domain (so here the critical points are
the points where the gradient is zero). Both terms in the first equation contain the factor
sinf and all terms in the second equation contain the factor x. If either sin 6 or x are zero
the area A(x, 0) will also be zero, and so will certainly not be maximal. So we may divide
the first equation by sin 6 and the second equation by x, giving

(100 — 4x) + 2x cos§ = 0 (E1)
(100 — 2x) cos 6 + x{ cos® § —sin?0} = 0 (E2)

These equations might look a little scary. But there is no need to panic. They are not as
bad as they look because 6 enters only through cos 6 and sin? #, which we can easily write
in terms of cos 6. Furthermore we can eliminate cos 6 by observing that the first equation

_ 100—4x (100—4x)?
2x 4x2

forces cos 6 = and hence sin®§ = 1 —cos?f = 1 —
into the second equation gives

. Substituting these

—(100 — 2x)

_ Y
100 4x , [(100-4x ] _
2x?2

—  —(100 — 2x)(100 — 4x) + (100 — 4x)> = 2x* = 0

— 6x% —200x = 0
100 -100/3 1 5
S X = — 059——200/3—5 6 =60
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and the maximum area enclosed is

2 2
A (100@_2100 )\/_5 L 1100°v3 2500
3 "3 /)2 T2 2 B

t [Example 2.3.11]—I

Now here is a very useful (even practical!) statistical example — finding the line that
best fits a given collection of points.

I—[Example 2.3.12 (Linear regression)} l

An experiment yields n data points (x;,y;), i = 1,2,--- ,n. We wish to find the straight
line y = mx + b which “best” fits the data. The definition of “best” is “minimizes the

\

yzmx+b/

- J

root mean square error”, i.e. minimizes

n

E(m,b) = Z(mxi +b—vy;)?
i=1

Note that

e term number i in E(m, b) is the square of the difference between v;, which is the ith

measured value of y, and [mx + b] , which is the approximation to y; given by
X=X;

the line y = mx + b.

* All terms in the sum are positive, regardless of whether the points (x;,y;) are above
or below the line.

Our problem is to find the m and b that minimizes E(m, b). This technique for drawing a
line through a bunch of data points is called “linear regression”. It is used a lot'? 13. Even

[
12 Proof by search engine. l
13 And has been used for a long time. It was introduced by the French mathematician Adrein-Marie
Legendre, 1752-1833, in 1805, and by the German mathematician and physicist Carl Friedrich Gauss,
1777-1855, in 1809.

62



PARTIAL DERIVATIVES 2.3 LOCAL MAXIMUM AND MINIMUM VALUES

in the real world — and not just the real world that you find in mathematics problems.
The actual real world that involves jobs.

Solution. We wish to choose m and b so as to minimize E(m, b). So we need to determine
where the gradient of E does not exist or it exists and it is equal to zero.

9E _ i 2(mx; +b—y;)x;= M[: Zﬂﬂ T b[é in] - L

n
ZXin}
i=1 ! =1

O;—b :Zn:Z(mxier—yi) :m[iini]er[iZ}—[

n
2}/11
= i1 iz

There are a lot of symbols here. But remember that all of the x;’s and y;’s are given con-
stants. They come from, for example, experimental data. The only unknowns are m and
b. To emphasize this, and to save some writing, define the constants

n n

n n
Sx:in S}/:Z]/i szzzxiz SX]/:inyi
i=1 i=1 i=1 i=1

The partial derivatives of E exists everywhere so we only need to find where they are
equal to zero. The equations which determine the critical points are (after dividing by
two)

0=S2m+S:b—Sy = Sam+S:b=_5y (E1)
0=Sm+nb-S, = Sym+nb=S5, (E2)

These are two linear equations on the unknowns m and b. They may be solved in any of
the usual ways. One is to use (E2) to solve for b in terms of m

_1
_Tl

b= —(Sy — Sym) (E3)

and then substitute this into (E1) to get the equation
1
Sam+ Sy (Sy—Sum) =Sy = (nSe- S2)m = nSxy — SxSy
for m. We can then solve this equation for m and substitute back into (E3) to get b. This

gives
. nSxy - SxSy b - _SxSxy - SySXZ

nsz — 5325 - nsz — S%
Another way to solve the system of equations is
n(E1) — Sy(E2) : [nsxz - s,%] m = nSyy — S:S,
—S(E1) + S (E2) : [nsxz - s,%] b = —SySyy + SySy2

which gives the same solution.
So given a bunch of data points, it only takes a quick bit of arithmetic — no calculus
required — to apply the above formulae and so to find the best fitting line. Of course while
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you don’t need any calculus to apply the formulae, you do need calculus to understand
where they came from. The same technique can be extended to other types of curve fitting
problems. For example, polynomial regression.

t [Example 2.3.12]—I

2.3.2 » Classifying Critical Points

Now let’s start thinking about how to tell if a critical point is a local minimum, local maxi-
mum, or neither. We’ll start with an intuitive approach, then introduce the (multivariable)
Second Derivative Test.

You have already encountered single variable functions that have a critical point which
is neither a local max nor a local min. This can also happen for functions of two variables.
We'll start with the simplest possible such example.

[—[Example 2.3.13 (f(x,y) = 22— y2)} 1

The first partial derivatives of f(x,y) = x> — y? are fy(x,y) = 2x and f,(x,y) = —2y. So
the only critical point of this function is (0, 0). Is this a local minimum or maximum? Well
let’s start with (x,y) at (0,0) and then move (x,y) away from (0,0) and see if f(x,y) gets
bigger or smaller. At the origin f(0,0) = 0. Of course we can move (x, y) away from (0, 0)
in many different directions.

e First consider moving (x,y) along the x-axis. Then (x,y) = (x,0) and f(x,y) =
f(x,0) = x2. So when we start with x = 0 and then increase x, the value of the
function f increases — which means that (0,0) cannot be a local maximum for f.

e Next let’'s move (x,y) away from (0,0) along the y-axis. Then (x,y) = (0,y) and
f(x,y) = f(0,y) = —y>. So when we start with y = 0 and then increase y, the value
of the function f decreases — which means that (0,0) cannot be a local minimum
for f.

So moving away from (0, 0) in one direction causes the value of f to increase, while mov-
ing away from (0,0) in a second direction causes the value of f to decrease. Consequently
(0,0) is neither a local minimum or maximum for f. It is called a saddle point, because the
graph of f looks like a saddle. (The full definition of “saddle point” is given immediately
after this example.) Here are some figures showing the graph of f.

{

. J

~N

The figure below show some level curves of f. Observe from the level curves that

* fincreases as you leave (0,0) walking along the x axis
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e f decreases as you leave (0,0) walking along the y axis

[Example 2.3.13]—I

Approximately speaking, if a critical point (a, b) is neither a local minimum nor a local
maximum, then it is a saddle point. For (a,b) to not be a local minimum, f has to take
values smaller than f(a,b) at some points nearby (a,b). For (a,b) to not be a local max-
imum, f has to take values bigger than f(a,b) at some points nearby (a,b). Writing this
more mathematically we get the following definition.

—(Definition2.3.14. )

The critical point (a, b) is called a saddle point for the function f(x,y) if, for each
r>0,

e there is at least one point (x,y), within a distance r of (a,b), for which

f(x,) > f(a,b) and

e there is at least one point (x,y), within a distance r of (a,b), for which
f(xy) < f(a,b).

- J

Understanding what the graph of a function looks like is a powerful tool for classifying
critical points, but it can be very time-consuming. The Second Derivative Test (below) is
a more algebraic approach to classification. This test is often faster than graphing, but the
drawback is that it is sometimes inconclusive.
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— Theorem2.3.15 (Second Derivative Test). ~N

Let r > 0 and assume that all second order derivatives of the function f(x,y) are
continuous at all points (x, y) that are within a distance r of (a,b). Assume that
fx(a,b) = fy(a,b) = 0. Define

D(x,y) = fax(%,y) fyy(x, ) _fxy(x/y)Z
It is called the discriminant of f. Then
e if D(a,b) > 0and fxx(a,b) > 0, then f(x,y) has a local minimum at (a, b),
e if D(a,

)
) > 0and fyr(a,b) <0, then f(x,y) has a local maximum at (a,b),
) <0, then f(x,y) has a saddle point at (a,b), but

)

(a,b
e if D(a,b
(a,b

¢ if D(a,b) = 0, then we cannot draw any conclusions without more work.

- J

The proof of Theorem 2.3.15 is beyond the scope of Math 105, but there is some intu-
ition supporting it that is more accessible. Extremely informally, we can think of saddle
points as places with inconsistent concavity: in some directions the surface looks concave
up, in other directions it looks concave down. On the other hand, at a local extremum, the
concavity is the same in all directions.

Let’s do thought experiments on a few simple cases to expand those ideas.

J

Let (a,b) be a critical point of the function f(x,y) with Vf(a,b) = 0, and assume all
second-order derivatives fo f(x,y) are continuous.

I—[Example 2.3.16 (Second Derivative Test In’cui’don)w

1. Suppose at (a,b), the surface looks like a minimum if y is held constant, but it looks
like a maximum if x is held constant. (In particular, this means (a,b) is the location
of a saddle point.)

(a,b, f(a,b))

IS

Holding y = b constant, we can think of z = f(x,b) as a one-variable function, in
which case fyx(a,b) = 0 by the single-variable second derivative test. Holding x = a
constant, we can think of z = f(a,y) as a one-variable function (whose variable is
y). In that case, f,;(a,b) < 0 by the single-variable second derivative test.
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J f(x,b) ,
B VA
f(a,y)

Since fxx(a,b) and f,y(a,b) have different signs (or at least one of them is zero):

frx(a,0) fyy(a,b) <0
fxx(a,b) fyy(a, b) —ffy(ﬂ/b) S - ,%y)(a,b) <0
D(a,b) <0

So in this simple saddle-point example, we expect D(a,b) < 0. This accords with the
third bullet point in Theorem 2.3.15.

2. Suppose D(a,b) > 0.

0 < frx(a,b) fyy(a,b) — fz,(a,b)
f)%y(a/ b) < frx(a,b) fyy(a,b)

Since fy, is raised to an even power, it’s nonnegative.

0< fa%y(”rb) < fxx(a,0) fyy(a,b)
0 < fax(a,b)fyy(a,b)

This tells us that fyy(a,b) and f,,(a,b) have the same sign — either they’re both pos-
itive or they’re both negative. So, the function’s concavity is the same whether we
hold the x-value or the y-value constant. The function might have the same concav-
ity in all directions — unlike the saddle point example we saw above. So, it seems
plausible that critical points with positive discriminants are local extrema, rather
than saddle points.

3. Suppose the surface has a local maximum at (a,b).

Holding y = b constant, we can think of z = f(x,b) as a one-variable function, in
which case fyxx(a,b) < 0 by the single-variable second derivative test.

z=f(xy) z = f(x,b)
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This doesn’t go so far as to show us that D(a,b) > 0, but it does accord with the test
of fxx(a,b) in the second bullet point of Theorem 2.3.15.

4. Similarly, suppose the surface has a local minimum at (a, b).

Holding y = b constant, we can think of z = f(x,b) as a one-variable function, in
which case fxx(a,b) = 0 by the single-variable second derivative test.

2= f(x,y) 2= f(x,b)

a

X

Again, although this doesn’t go so far as to show us that D(a,b) = 0, it does accord
with the test of fyx(a,b) in the first bullet point of Theorem 2.3.15.

[Example 2.3.16]—I

You might wonder why, in the local maximum/local minimum cases of Theorem
2.3.15, fxx(a,b) appears rather than f,,(a,b). The answer is only that x is before y in the
alphabet!'®. You can use f(a,b) just as well as fix(a,b). The reason is that if D(a,b) > 0
(as in the first two bullets of the theorem), then because D(a,b) = fxx(a,b) fy,(a,b) —
fwy(a,b)* > 0, we necessarily have fix(a,b) fyy(a,b) > 0 so that fxx(a,b) and f,,(a,b)
must have the same sign — either both are positive or both are negative.

You might also wonder why we cannot draw any conclusions when D(a,b) = 0 and
what happens then. The second derivative test for functions of two variables was derived
in precisely the same way as the second derivative test for functions of one variable is
derived — you approximate the function by a polynomial that is of degree two in (x — a),
(y — b) and then you analyze the behaviour of the quadratic polynomial near (a,b). For
this to work, the contributions to f(x,y) from terms that are of degree two in (x — a),
(y — b) had better be bigger than the contributions to f(x,y) from terms that are of degree
three and higher in (x —a), (y — b) when (x —a), (y — b) are really small. If this is not
the case, for example when the terms in f(x,y) that are of degree two in (x —a), (y — b)
all have coefficients that are exactly zero, the analysis will certainly break down. That'’s
exactly what happens when D(a,b) = 0. Here are some examples. The functions

Ay =2+t hly) =—x'—y"  fply) = +y  falvy) =2 -y
all have (0,0) as the only critical point and all have D(0,0) = 0. The first, f; has its

minimum there. The second, f;, has its maximum there. The third and fourth have a
saddle point there.

14 The shackles of convention are not limited to mathematics. Election ballots often have the candidates l
listed in alphabetic order.
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Here are sketchs of some level curves for each of these four functions (with all renamed
to simply f).

N
>~
f=4
\ .
W =4 f=1 f=4
k :0 x x
f=—1
_m /—
level curves of f(z,y) = 23 + ¢3 level curves of f(z,y) = 2% —y*
- J

I—[Example 2317 (f(x,y) = 2x3 — 6xy + y* + 4y) }

Find and classify all critical points of f(x,y) = 2x3 — 6xy + y> + 4y.

Solution. Thinking a little way ahead, to find the critical points we will need the gradient
and to apply the second derivative test of Theorem 2.3.15 we will need all second order
partial derivatives. So we need all partial derivatives of order up to two. Here they are.

f=2x%—6xy+y* +4y
fx - 6x2 - 6y fxx - 12x fxy — _6
fy=-6x+2y+4  fyy=2 fyx = —6
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(Of course, fy, and f,x have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

We have already found, in Example 2.3.8, that the critical points are (1,1), (2,4). The
classification is -

C;icg;il Fexfyy = fay frx type
(1,1) [ 12x2—(-6)2 <0 saddle point

(2,4) [24x2—(-6)>>0| 24 | local min

We were able to leave the fy, entry in the top row blank, because

* we knew that fr,(1,1)fy(1,1) — f,%y(l, 1) <0, and
* we knew, from Theorem 2.3.15, that fy,(1,1)f,,(1,1) — J%y(l, 1) < 0, by itself, was

enough to ensure that (1,1) was a saddle point.

Here is a sketch of some level curves of our f(x,y). They are not needed to answer this

\

I\

o
IENINVAE 7
\_ J

question, but can give you some idea as to what the graph of f looks like.

[Example 2.3.17]—I

I—[Example 2318 (f(x,y) = xy(5x +y — 15))] 1
Find and classify all critical points of f(x,y) = xy(5x +y — 15).

Solution. We have already computed the first order partial derivatives

fx(x,y) = y(10x +y — 15) fy(x,y) = x(5x + 2y — 15)
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of f(x,y) in Example 2.3.9. Again, to classify the critical points we need the second order
partial derivatives. They are

frex(x,y) = 10y

fyy(x,y) =2x

fry(x,y) = (1)(10x +y — 15) + y(1)= 10x + 2y — 15
fyx(x,y) = (1)(5x + 2y — 15) + x(5)= 10x 42y — 15

(Once again, we have computed both fy, and f,» to guard against mechanical errors.) We
have already found, in Example 2.3.9, that the critical points are (0,0), (0,15), (3,0) and
(1,5). The classification is

C;gi;il Jaxfyy = f J%y fxx type
(0,0) |0x0—(-15)2 <0 saddle point
(0,15) | 150 x 0 —15% < 0 saddle point
(3,0) 0x6—-152 <0 saddle point
(1,5) | 50x2—-52>0 | 50 | local min

Here is a sketch of some level curves of our f(x,y). f is negative in the shaded re-
gions and f is positive in the unshaded regions. Again this is not needed to answer this

§
\\
(0,15), £(0,15)=0
f(1,5)=—25, (1,5)
£=20
£(0,0)=0, (0,0)
£=0
xZ
\_ J

question, but can give you some idea as to what the graph of f looks like.
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[—[Example 2.3.19} l

Find and classify all of the critical points of f(x,y) = x> + xy? — 3x> — 4y> + 4.

Solution. We know the drill now. We start by computing all of the partial derivatives of f
up to order 2.

f=xd+xy? —3x> —4y* +4
fx:3x2—|—y2—6x fxx =6x—06 fxy:2y
fy = 2xy — 8y fyy =2x—8 fyx =2y

fx and fy are defined everywhere. So the critical points are then the solutions of fy = 0,
fy = 0. That is

fe=3x+1y* —6x=0 (E1)
fy=2y(x—4)=0 (E2)

The second equation, 2y(x —4) = 0, is satisfied if and only if at least one of the two
equations y = 0 and x = 4 is satisfied.

¢ When y = 0, equation (E1) forces x to obey
0 =3x>+0%—6x =3x(x—2)
sothatx =0orx = 2.
* When x = 4, equation (E1) forces y to obey
0=3x4>+1>—6x4=24+1>
which is impossible.

So, there are two critical points: (0,0), (2,0). Here is a table that classifies the critical

points.
critical _ 2 t
point fxxfyy fxy fxx ype
(0,0) | (—6) x (—8)—0>>0| -6 <0 | local max
(2,0) | 6x(—4)—-0%><0 saddle point

( [Example 2.3.19]—I
)
I—[Example 2.3.20 ] l

A manufacturer wishes to make an open rectangular box of given volume V using the least
possible material. Find the design specifications.

Solution. Denote by x, y and z, the length, width and height, respectively, of the box.
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- J

The box has two sides of area xz, two sides of area yz and a bottom of area xy. So the total
surface area of material used is

S =2xz +2yz + xy

However the three dimensions x, y and z are not independent. The requirement that the
box have volume V imposes the constraint

xyz =1V

We can use this constraint to eliminate one variable. Since z is at the end of the alphabet
(poor z), we eliminate z by substituting z = x—‘; Note that if x (or y) is equal to zero then
the volume of the box would equal zero. What is the point of a box with zero volume?!
So if we assume the box has non-zero volume then x 4 0 and y + 0. So we have find the
values of x and y that minimize the function

2V 2V
S(x,y) = m +— -ty
Let’s start by finding the critical points of S. Since
2V
Sx(x,y) = 2 Ty
2V
Sy(x,y) = —— +x

Note that the partial derivatives are not defined for (x,y) = (0,0) but we have already
eliminated the case where x or y is equal to zero. So (x,y) is a critical point if and only if

X’y =2V (E1)
xy? =2V (E2)
Solving (E1) for y gives y = Zx—‘z/ Substituting this into (E2) gives

N x=+v2V and 2V V2V

_— —r = —r = = =

X T aves

As there is only one critical point, we would expect it to give the minimum!®. But let’s use
the second derivative test to verify that at least the critical point is a local minimum. The

15 Indeed one can use the facts that 0 < x < o, that 0 < y < o0, and that S - wasx — 0andasy — 0 l
and as x — o0 and as y — oo to prove that the single critical point gives the global minimum.
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various second partial derivatives are

Sxx(x,y) = i—‘; Sxx(V2V, V2V) =2

Sxy(x,y) =1 Sxy(V2V,V2V) =1
4v

Syy(x,y) = 7 Sy (V2V, V2V) =2

So
Sex(V2V, V2V Sy (V2V, V2V) = Suy (V2V, ¥2V)? =3 >0 Su(V2V,¥2V) =20

and, by Theorem 2.3.15.b, (\S/ZV, \3/2V) is a local minimum and the desired dimensions

are
|V
x=y=+v2V 2:31

Note that our solution has x = y. That’s a good thing — the function S(x, y) is symmetric
in x and y. Because the box has no top, the symmetry does not extend to z.

t [Example 2.3.20 }—]

2.4a Absolute Minima and Maxima

Of course a local maximum or minimum of a function need not be the absolute maximum
or minimum. We’ll now consider how to find the absolute maximum and minimum. Let’s
start by reviewing how one finds the absolute maximum and minimum of a function of
one variable on an interval.

For concreteness, let’s suppose that we want to find the extremal® values of a function
f(x) on the interval 0 < x < 1. If an extremal value is attained at some x = a which is in
the interior of the interval, i.e. if 0 < a < 1, then a is also a local maximum or minimum
and so has to be a critical point of f. But if an extremal value is attained at a boundary
point a of the interval, i.e. if a = 0 or a = 1, then a need not be a critical point of f. This
happens, for example, when f(x) = x. The largest value of f(x) on the interval 0 < x < 1
is 1 and is attained at x = 1, but f’(x) = 1 is never zero, so that f has no critical points.

116

~
Y y:f(I)ZI

—
8

- J

So to find the maximum and minimum of the function f(x) on the interval [0, 1], you:

@
16 Recall that “extremal value” means “either maximum value or minimum value”. l
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1. build up a list of all candidate points 0 < a < 1 at which the maximum or miminum
could be attained, by finding all a’s for which either

(@) 0 <a < 1and f'(a) does not exist or
(b) 0<a<1land f'(a) =0or

(c) ais aboundary point,i.e.a =0ora =1,

2. and then you evaluate f(a) at each a on the list of candidates. The biggest of these
candidate values of f(a) is the absolute maximum and the smallest of these candi-
date values is the absolute minimum.

The procedure for finding the maximum and minimum of a function of two variables
f(x,y) in a set like, for example, the unit disk x> + y? < 1, is similar. You again:

1. build up a list of all candidate points (a,b) in the set at which the maximum or
minimum could be attained, by finding all (a, b)’s for which either!”

(a) (a,b) is in the interior of the set and fy(a,b) or f,(a,b) does not exist or

(b) (a,b) is in the interior of the set (for our example, a> + b*> < 1) and fy(a,b) =
fy(a,b) =0 or

(c) (a,b) is a boundary'® point, (for our example, a® + b*> = 1), and could give the
maximum or minimum on the boundary — more about this shortly —

2. and then you evaluate f(a,b) at each (a,b) on the list of candidates. The biggest of
these candidate values of f(a,b) is the absolute maximum and the smallest of these
candidate values is the absolute minimum.

The boundary of a set in R? (like x> + y? < 1) is a curve (like x> + y?> = 1). This curve is a
one dimensional set, meaning that it is like a deformed x-axis. We can find the maximum
and minimum of f(x, y) on this curve by converting f(x,y) into a function of one variable
(on the curve) and using the standard function of one variable techniques. This is best
explained by some examples.

[—[Example 2.4.1}

Find the maximum and minimum values of f(x,y) = x% + xy? — 3x? — 4y* + 4 on the disk
?+yr<1

y-s L
Solution. Again, we first find all critical points, and then we analyze the boundary.
Interior: If f takes its maximum or minimum value at a point in the interior, x> +y? < 1,
then that point must be a critical point of f. To find the critical points'® we compute the
tirst order derivatives.

fx:3x2+y2—6x fy:2xy—8y

17 This is probably a good time to review the statement of Theorem 2.3.3.

18 It should intuitively obvious from a sketch that the boundary of the disk x* + y?> < 1 is the circle
x? +y? = 1. But if you really need a formal definition, here it is. A point (a,b) is on the boundary of a
set S if there is a sequence of points in S that converges to (a,b) and there is also a sequence of points
in the complement of S that converges to (a,b).

19 We actually found the critical points in Example 2.3.19. But, for the convenience of the reader, we’ll
repeat that here.
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These are polynomials (in two variables) and they are defined everywhere. So the critical
points are the solutions of

fe=3x2+y*—6x=0 (E1)
fy=2y(x—4)=0 (E2)

The second equation, 2y(x —4) = 0, is satisfied if and only if at least one of the two
equations y = 0 and x = 4 is satisfied.

¢ When y = 0, equation (E1) forces x to obey
0 =3x2 4+ 0% — 6x = 3x(x — 2)
sothatx =0orx = 2.
¢ When x = 4, equation (E1) forces y to obey
0=3x4>+1y>—6x4=24+1>
which is impossible.

So, there are only two critical points: (0,0), (2,0).

Boundary: Our boundary is x> + y?> = 1 We know that (x,y) satisfies x> + y> = 1, and
hence y? = 1 — x?. Examining the formula for f(x,y), we see that it contains only even®”
powers of y, so we can eliminate y by substituting y?> = 1 — x? into the formula.

f=x+x(1-x%) —3x% —4(1 - x*) +4=x+ 2
The max and min of x + x? for —1 < x < 1 must occur either
e whenx =—-1(=y=f=0)or
* whenx =+1(=y=0,f=2)or
. whenOzZ—x(x+x2):1+2x(sox:—%,y:i %,f:—%),

Here is a sketch showing all of the points that we have identified.

~
(39~
(_170)/ (070) (1)0) (2,0)1,
(3-8
. J

20 If it contained odd powers too, we could consider the cases y > 0 and y < 0 separately and substitute l
¥y = V1 —x?% in the former case and y = —v/1 — x2 in the latter case.
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21

Note that the point (2,0) is outside the allowed region. So all together, we have the

following candidates for max and min, with the max and min indicated.

point | (0,0) | (-1,0) | (1,0) | (- 5,
valueof f | 4 2 0 _}I

max min

t [Example 2.4.1]—I
)
[—[Example 242 ] )

Find the maximum and minimum values of f(x,y) = xy — x>y? when (x, y) runs over the
square0 <x <1, 0<y <1

Solution. As usual, let’s examine the critical points and boundary in turn.

Interior: If f takes its maximum or minimum value at a point in the interior, 0 < x < 1,
0 < y < 1, then that point must be a critical point of f. To find the critical points we
compute the first order derivatives.

ol y) =y =32 fy(x,y) =x-2xy

Again, these functions are polynomials in two variables and they are smooth everywhere
in their domain, so the gradient is exists everywhere in the interior. This means that the
critical points are the solutions of

fr=0 <= y(1-3x*%)=0 < y=0or3x?y=1
fy=0 < x(1-2xy)=0 <« x=0or2x%y=1
¢ If y = 0, we cannot have 2x2y =1, so we must have x = 0.
e If 3x?y = 1, we cannot have x = 0, so we must have 2x?y = 1. Dividing gives
X

_ %y _ 3
1_2x2y_7

which is impossible.

So the only critical point in the square is (0,0). There f = 0. Boundary: The region is a
square, so its boundary consists of its four sides.

¢ First, we look at the part of the boundary with x = 0. On that entire side f = 0.
* Next, we look at the part of the boundary with y = 0. On that entire side f = 0.

* Next, we look at the part of the boundary with y = 1. There f = f(x,1) = x — x°. To
find the maximum and minimum of f(x,y) on the part of the boundary with y = 1,
we must find the maximum and minimum of x — x> when 0 < x < 1.

Recall that, in general, the maximum and minimum of a function k(x) on the interval
a < x < b, must occur either at x = g or at x = b or at an x for which either /'(x) =0
or /(x) does not exist. In this case, 4-(x — x3) = 1 - 3x%, so the max and min of

x — x3 for 0 < x < 1 must occur

[ 4
21 We found (2,0) as a solution to the critical point equations (E1), (E2). That’s because, in the course of l
solving those equations, we ignored the constraint that x2 + y? < 1.
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— either at x = 0, where f =0,
_ 1 _ 2
- oratx = —, where f = ==

\/gr
— oratx =1, where f = 0.

* Finally, we look at the part of the boundary with x = 1. There f = f(1,y) = y — y*
As Z—y(y —y?) = 1 -2y, the only critical point of y — y* is at y = 1. So the max and

min of y — y? for 0 < y < 1 must occur

— either aty = 0, where f =0,
- oraty = %,wheref = zly

- oraty =1, where f = 0.

All together, we have the following candidates for max and min, with the max and min
indicated.

point | (0,0) | (0o<y<1) | (0<x<10) | (1,0) | (1,3) | (1,1) | (0,1) (\/%,1)
1 2
valueof f | 0 0 0 0 i 0 0 33~ 0.385
min min min min min | min max
~N
Yy 1
01 &Y a1
I(Lé)
— —
(0,0) 1 (1,0)
|\ 4

[Example 2.4.2]—I

—{Warning2.4.3 (Checking Entire Boundaries).}

A common misconception when students are first learning about “checking
boundaries” is that the absolute extrema will occur on the “corners” of the
boundaries. In the example we just finished, Example 2.4.2, the four corners
of our square boundary were indeed points we needed to check. But if we had
only checked the corners, we wouldn’t have found the absolute maximum.

In your homework, if you notice that the extrema often occur at “corners” of
boundaries, or at point with x or y equal to 0, you should not take this to be a
general rule.
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To really see why corners don’t need to be important, consider the image?? below of an
area northeast of UBC. The central body of water in the image is Indian Arm. Indian Arm
extends into the ocean, so its elevation is pretty close to sea level. If we're thinking of the
z axis as height above sea level, the surface of Indian Arm is probably the global minimum
height in the rectangular region shown. So, the global minimum along the boundary is not
at a corner. It's somewhere in the middle of the left vertical boundary segment.

Similarly, looking at the mountains in the image, there’s no reason to imagine the absolute
highest point along the boundary must specifically happen at a corner.

I—[Example 2.4.4}

Find the high and low points of the surface z = 4/x? + y? with (x,y) varying over the
square |x| <1,|y| <1.

Solution. The function f(x,y) = +/x?+ y? has a particularly simple geometric interpre-
tation — it is the distance from the point (x, y) to the origin. So

¢ the minimum of f(x,vy) is achieved at the point in the square that is nearest the
origin — namely the origin itself. So (0,0,0) is the lowest point on the surface and
is at height 0.

e The maximum of f(x,y) is achieved at the points in the square that are farthest from
the origin — namely the four corners of the square ( +1,+1). At those four points

z = /2. So the highest points on the surface are (+£1, +1,+/2).

Even though we have already answered this question, it will be instructive to see what
we would have found if we had followed our usual protocol. The partial derivatives of

f(x,y) = +/x% + y? are defined for (x,y) # (0,0) and are
X

fr(xy) = Ny fy(x,y) = ﬁ

22 image generated by Natural Resources Canada’s Atlas of Canada - Toporama and shared under the l
open government license
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PARTIAL DERIVATIVES 2.4 ABSOLUTE MINIMA AND MAXIMA

* As we mentioned above, at the point (x,y) = (0,0) the gradient is not defined. But
(0,0) is inside the interior of the domain of our function. Therefore, (0,0) is a critical
point.

¢ There are no other critical points because

- fx = 0only for x =0, and

- fy =0only fory = 0.

— So (0,0) is the only critical point because fy and f, are not defined there.
¢ The boundary of the square consists of its four sides. One side is

{(xy) |x=1 -1<y<1}

On this side f = /1 + y2. As 4/1 + 2 increases with |y|, the smallest value of f on
that side is 1 (when y = 0) and the largest value of f is v2 (wWhen y = +1). The same
thing happens on the other three sides. The maximum value of f is achieved at the
four corners. Note that f, and f, are both nonzero at all four corners.

t [Example 244 }—]

[—LExample 2.4.5 (Disconnecting a Complete Graph)}

In graph theory, a complete graph is a collection of n vertices (visualized as dots), every pair
of which is connected by an edge (visualized as lines). The complete graphs on 10 vertices
and on 30 vertices are shown below.

Suppose you start with the complete graph on 30 vertices. You delete edges (but not
vertices) one-by-one until the graph is broken into three parts. Every part has at least one
vertex (otherwise it wouldn’t be a part, it would be a nothing) and there are no edges
between vertices of different parts. Some possibilities are shown below to demonstrate.
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What is the minimum number of edges you could have deleted, in order to break the
graph into three pieces?

Solution. Let’s name the pieces X, Y, and W, and say the numbers of vertices they contain
are x, y, and w, respectively. Thenx > 1,y >1,w > 1, and x + y + w = 30.

For every vertex in one piece of the broken graph, you must have deleted the edges
connecting it to every vertex in every other piece. So, to delete all the edges from X to
Y, you deleted at least xy edges; to delete all the edges from X to W, you deleted at least
xw edges; and to delete all the edges from Y to W, you deleted at least yw edges. So all
together, you deleted at least this many edges:

Xy + xw + yw

Since x +y +w = 30, we can eliminate one of these from our expression, and say the
minimum number of edges deleted was:

fxy) = xy+x(30 —x—y) +y(30 —x —y)
= 30x + 30y — x* — xy — y?

The domain of this function is all integer pairs in the region bounded by x > 1,y > 1, and
x+y<29.

Y

x+y =29
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To find the minimum value of f(x,y) in this region, we should check for critical points,
and check all three boundary lines.

e First, let’s check for critical points.
fx,y) = 30x + 30y — x> — xy — y*
fe=30-2x—y fy =30 -2y —x
Solving fy = 0 for y, we find y = 30 — 2x. Plugging into the equation f, = 0, we get:
0=f,=30-2(30—2x) —x
=3x—30
x =10
y=30—-2x=10
So, our only critical point is (10, 10), and this is inside our region.

£(10,10) = 300 + 300 — 100 — 100 — 100 = 300

* Second, let’s check the boundary line y = 1, 1 < x < 28. On this portion of the
boundary:
f(x,y) = 30x + 30y — x* — xy —
=30x+30—-x—x—1
= 28x +29
This is an increasing function, so its minimum will be at the smallest value of x in

our interval: x = 1.
f(1,1) =57

¢ Third, we check the boundary line x = 1,1 < y < 28. On this portion of the
boundary:
fx,y) = 30x + 30y — x* — xy — y*
=304+30y-1-y—y
= 28y +29
This is an increasing function, so its minimum will be at the smallest value of y in

our interval: y = 1.
f(1,1) =57

¢ Fourth, we check the final boundary line, y = 29 — x, 1 < x < 28. On this portion of
the boundary:

f(x,y) = 30x + 30y — x* — xy — y*
= 30x 4+ 30(29 — x) — x% — x(29 — x) — (29 — x)?
= —x* +29x + 29

The one-variable function g(x) = —x? 4+ 29x + 29 is a parabola pointing down, so its
minimum will occur at and endpoint of our interval: x = 1 or x = 28.

£(1,28) =57  f(28,1) =57
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Comparing the values from the four bullet points, we find the minimum number of edges
we could have deleted in order to break the complete graph into 3 pieces is 57. We achieve
that minimum by having two pieces of one vertex each, and the remaining piece with all
other vertices.

Remark 1: making use of sketching and symmetry can reduce the amount of work
involved in solving this problem. If we recognize that f(x,y) is a paraboloid opening
down, then we know its critical point will actually be an absolute max —not the minimum
we’re looking for.

We can see the x and y are symmetric in f(x,y) and in our region, so we also could
have checked only the boundary x = 1, and not the boundary y = 1, understanding that
their minimum values would be the same.

Remark 2: Our model domain for this problem actually restricts x and y to whole-
number values, as opposed to real numbers. We showed that 57 was the minimum value
of f(x,y) over all real numbers in the sketched region. Since whole numbers are them-
selves reals, and the minimum occurred at integer value of x and y (i.e. the minimum is
in our model domain), we can be sure that 57 is the minimum over all whole numbers in
our domain. If the minimum had occurred at, say x = } and y = 1, then it wouldn’t have
been in our model domain — and this would be a problem for a different course!

t [Example 245 }—]

2.4.1 » (Optional) Parametrization

To find the extrema of a surface along a boundary, we turn the boundary into a function
of one variable. So far we’ve done this by some combination of (1) solving the boundary
equation for one variable or one carefully-chosen expression, and (2) plugging that into
our surface function to eliminate one variable.

When boundaries are roughly circular (circles, ellipses), there’s another method for
turning them into a function of one variable: parametrization. To parametrize the curve
x? + y? = 1 (the unit circle), we define a third variable 6. The points (x, ) on the curve all
satisfy x = cosf and y = sin 6. This can sometimes make the work go more smoothly.

)
I—[Example 2.4.6 ] l
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Find the maximum and minimum of T(x,y) = (x + y)e_xz_y2 on the region defined by
x? 4+ y? < 1 (i.e. on the unit disk).

Solution. Let’s follow our checklist. First the critical points (where the gradient of our
function does not exist or it exists and is zero), then the boundary.

Interior: If T takes its maximum or minimum value at a point in the interior, X2+ y2 <1,
then that point must be a critical point of T. To find the critical points we compute the first

order derivatives.
2

Te(x,y) = (1-2% —2xy)e ™V Ty(x,y) = (1-2xy —2%)e =

Ty and Ty exist everywhere in their domain, so the gradient is defined at every point in

o . : : 2,
the interior of the function. Moving on, because the exponential e™* ~¥" is never zero, the

critical points are the solutions of

T, =0 <— 2x(x-|-y)=1
T,=0 <— 2y(x+y) =1

e As both 2x(x + y) and 2y(x + y) are nonzero, we may divide the two equations,
which gives § = 1, forcing x = y.

* Substituting this into either equation gives 2x(2x) = 1 so that x = y = +1/2.
So the only critical points are (1/2,1/2) and (—1/2, —1/2). Both are in x2 4+ yz < 1.

Boundary: Points on the boundary satisfy x> + y? = 1. That is they lie on a circle. We may
use the figure below to express x = cost and y = sint, in terms of the angle t. This will
make the formula for T on the boundary quite a bit easier to deal with. On the boundary,

T = (cost+sint)e” cos® f—sin’f (cost + sint)e?

As all t’s are allowed, this function takes its max and min at zeroes of

N
Yy
—_(cost,sint)
LD
NV
\\§ J
aT
5 = (—sint +cost‘)e*1

That is, (cost + sint)e~! takes its max and min
e whensint = cost,

e thatis, whenx =yand x> + > =1,
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* which forces x> + x> = 1 and hence x =y = +

S

All together, we have the following candidates for max and min, with the max and min

indicated.
point G 3D &R [&H-5
value of T \/LE ~ 0.61 _\/LE @ ~ 052 @
max min

The following sketch shows all of the critical points. It is a good idea to make such a sketch
so that you don’t accidentally include a critical point that is outside of the allowed region.

N
Yy
1 1
—~\7 %)
- R
(=5 -5 —\, /
<_%7_%)\

J
t [Example 2.4.6]—I

In the last example, we analyzed the behaviour of f on the boundary of the region
of interest by using the parametrization x = cost, y = sint of the circle x*> + y*> = 1.
Sometimes using this parametrization is not so clean. And worse, some curves don’t have
such a simple parametrization. For our purposes, we’ll only use parametrization on circles
and ellipses.

)
I—[Example 247 ] l

The temperature at a point (x,y) in the disc x* + y? < 4 is given by

2

2
T(x,y) = (x +y)e 7.
Find the maximum and minimum temperatures on the disc.

Solution. The specified temperature and its first order derivatives are
T(x,y) = (x+y)e

Te(x,y) = (1—2x* — 2xy)e ™ Y

Ty(x,y) = (1-2xy ~2%)e ™

* First, we find the critical points. Ty and T} are defined at all points in the interior
and therefore the critical points are the solutions of

2

T.=0 <= 2x(x+y)=1
T,=0 <— 2yx+y) =1
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As x + y may not be equal to 0, this forces x = y and then x = y = i%. So the only
critical points are (%, 1) and (—4, —%).

¢ The boundary x? + y? = 4 is a circle of radius 2 centred at the origin. So, on the
boundary, x = 2cosf and y = 2sin6.

T(x,y) = (x +y)e )

2
T(2cos6,2sinf) = (2sinf +2cosh) e * = i (sin@ + cos )

This is a periodic function and so takes its max and min at zeroes of

g—g = e%( —sin 6 + cos 9). That is, when sin @ = cos 6, which forces sinf = cosf =
1
i%.

All together, we have the following candidates for max and min.

location interior interior boundary boundary
point | (L3 | (LD | (5L | (L1
value of T | -~ 061 | - ~ —0.61 2v2 005 | ~22 ~ —0.05
max min

The largest and smallest values of T in this table are

min = ——— max =

NG

{ [Example 2.4.7]—I

2.54 Lagrange Multipliers

Sl

In the last section we had to solve a number of problems of the form “What is the maxi-
mum value of the function f on the curve C?” In those examples, the curve C was simple
enough that we could reduce the problem to finding the maximum of a function of one
variable. For more complicated problems this reduction might not be possible. In this sec-
tion, we introduce another method for solving such problems. First some nomenclature.

~(Definition2.5.1. \

A problem of the form

“Find the maximum and minimum values of the function f(x,y) for (x,y) on
the curve g(x,y) = 0.”

is one type of constrained optimization problem. The function being maximized or
minimized, f(x,y), is called the objective function. The function, g(x,y), whose
zero set is the curve of interest, is called the constraint function.
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Such problems are quite common. As we said above, we have already encountered
them in the last section on absolute maxima and minima, when we were looking for the
extreme values of a function on the boundary of a region. In economics “utility functions”
are used to model the relative “usefulness” or “desirability” or “preference” of various
economic choices. For example, a utility function U(w, k) might specify the relative level
of satisfaction a consumer would get from purchasing a quantity w of wine and « of coffee.
If the consumer wants to spend $100 and wine costs $20 per unit and coffee costs $5 per
unit, then the consumer would like to mazimize U(w, k) subject to the constraint that
20w + 5k = 100.

To this point we have always solved such constrained optimization problems either by

e solving g(x,y) = 0 for y as a function of x (or for x as a function of y) or by

e (if you did the optional section) parametrizing the curve g(x,y) = 0. This means
writing all points of the curve in the form (x(t),y(t)) for some functions x(t) and
y(t). For example we used x(t) = cost, y(t) = sint as a parametrization of the circle
x? +y* = 1in Example 2.4.6.

However, quite often the function g(x, y) is so complicated that one cannot explicitly solve
g(x,y) = 0 for y as a function of x or for x as a function of y and one also cannot explicitly
parametrize g(x,y) = 0. Or sometimes you can, for example, solve ¢(x,y) = 0 for y as
a function of x, but the resulting solution is so complicated that it is really hard, or even
virtually impossible, to work with. Direct attacks become even harder in higher dimen-
sions when, for example, we wish to optimize a function f(x,y, z) subject to a constraint

g(x,y,2z) =0.

There is another procedure called the method of “Lagrange* multipliers” that comes
to our rescue in these scenarios. Here is the two-dimensional version of the method. There
are obvious analogues is other dimensions.

23 Joseph-Louis Lagrange was actually born Giuseppe Lodovico Lagrangia in Turin, Italy in 1736. He
moved to Berlin in 1766 and then to Paris in 1786. He eventually acquired French citizenship and then
the French claimed he was a French mathematician, while the Italians continued to claim that he was
an Italian mathematician.
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— Theorem?2.5.2 (Lagrange Multipliers). ~

Let f(x,y) and g(x,y) have continuous first partial derivatives?* in a region of

IR? that contains the surface S given by the equation g(x, y) = 0. Further assume
that Vg(x,y) # 0on S.

If f, restricted to the surface S, has a local extreme value at the point (a,b) on S,
then there is a real number A such that

Vf(a,b) =AVg(a,b)
that is

fx(a,b) = Agx(a,b)
fy(a,b) = Agy(a,b)

The number A is called a Lagrange multiplier.

- J

A proof of this theorem can be found in Appendix A.5.

So to find the maximum and minimum values of f(x,y) on a surface g(x,y) = 0,
assuming that both the objective function f(x,y) and constraint function g(x, y) have con-
tinuous first partial derivatives and that Vg(x,y) # 0, you

1. build up a list of candidate points (x, y, z) by finding all solutions to the equations

Note that there are three equations and three unknowns, namely x, y, and A.

2. Then you evaluate f(x,y) at each (x, y) on the list of candidates. The biggest of these
candidate values is the absolute maximum, if an absolute maximum exists. The
smallest of these candidate values is the absolute minimum, if an absolute minimum
exists..

Theorem 2.5.2 can be extended to functions of more variables in a natural way. Using
higher-dimensional Lagrange isn’t in our learning goals, but for interest, we want you to
see how easily the method generalizes. The calculus is the same —it’s only the algebra that
gets longer.

24 Note that this implies the gradients of these functions are defined in this region
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— Theorem?2.5.3 ((Optional) Lagrange Multipliers for Functions of Three Variables).

Let f(x,y,z) and g(x,y,z) have continuous first partial derivatives in a region
of R3 that contains the surface S given by the equation g(x,y,z) = 0. Further
assume that Vg(x,y,z) # 0 on S.

If f, restricted to the surface S, has a local extreme value at the point (a,b,c) on
S, then there is a real number A such that

Vf(ab,c)=AVg(ab,c)
that is

fx(a,b,c) = Agx(a,b,c)
fy(a,b,c) = Agy(a,b,c)
fz(a,b,c) = Agz(a,b,c)

The number A is called a Lagrange multiplier.

- J

Now for a bunch of examples.

I—LExample 2.5.4}

Find the maximum and minimum of the function x?> — 10x — 3 on the ellipse whose equa-
tion is x? + 4> = 16.

Solution. For this first example, we’ll do out the algebra in truly gory detail. Once you
get the hang of it, it'll go much faster.

Our objective function (the one we want to maximize and/or minimize) is f(x,y) =
x? — 10x — y? and the constraint function is g(x,y) = x? + 4y? — 16. To apply the method
of Lagrange multipliers we need V f and Vg. So we start by computing the first-order
derivatives of these functions.

fxr=2x-10 fy:—Zy gx = 2x gy =8y

So, according to the method of Lagrange multipliers, we need to find all solutions to the
following system of equations.

frx = Agx 2x — 10 = A(2x) (E1)
fy = Agy = —2y = A(8y) (E2)
g(x,y) =0 2+ 42 -16=0 (E3)

(E1) In equation (E1), if 2x is nonzero, then we can divide both sides of the equation by it,
x—>5
x

to find A = 2"2;10, ie. [A =

. If 2x = 0, then the equation becomes —10 = 0A,

which is not true for any A.
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(E2) In equation (E2), if 8y is nonzero, then we can divide both sides of the equation by it,

_ 1
to find A = 8_2yy’ ie. |A = ——| If 8y = 0, then we also get a solution |y = 0| for any

4
A.

(E1)+(E2) We need all three equations to be true at the same time (that is, for the same
values of x, y, and A. We’ve found two ways for both (E1) and (E2) to be true.

S —=

¢ First way: A = "7_5 and A = —

e Second way: A = *>2 and y = 0

X

(E3) Now we'll see which points make (E1) and (E2) true while also making (E3) true.

'Filrstway:/\:’CT_5and/\:_}I
x—>5 1
A= dAr=—=
an 1
x—5__1
x 4
= —4x +20=x
x =4

In order to satisty (E3):

0 =42+ 4y> - 16
0=y

So, the point | (x,y) = (4,0) | satisfies all three equations.

* Second way: A = % and y = 0. If y = 0, then from E3, we see

0=x*+4-0>2-16
16 = x?
x = +4

So the points to consider are | (x,y) = (+4,0) |

Now we’ve found the only possible solutions to all three equations: (+4,0). (A has
to exist, but we don’t actually care what it is.) So the method of Lagrange multipliers,
Theorem 2.5.2, gives that the only possible locations of the maximum and minimum of
the function f are (4,0) and (—4,0). To complete the problem, we only have to compute f
at those points.

point (4,0) | (—4,0)
valueof f | —24 56

min max
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Hence the maximum value of x?> — 10x — y? on the ellipse is 56 and the minimum value is
—24.

~N

—X

-

- J

t [Example 2.5.4:]—I

In the previous example, we had to make a lot of decisions about how to solve for the
solutions to the system of three equations. Actually, we can start our Lagrange system-
solving the same way every time. The first observation we make is that the partial deriva-
tives of ¢ can be 0, or nonzero. If they’'re zero, this may or may not lead to a solution; if
they’re nonzero, this tells us something about A.

In the textbook and problem book, we will consistently use the same method to solve
the system of equations. It’s certainly not the only way, and you are free to use other
methods. Once you get used to the computations, you'll probably start finding ways to
make them faster based on the specifics of individual problems.

I—LExample 2.5.5 (Solving Lagrange in General)} 1
Suppose you want to find all points (x, y) for which a solution exists to the system below.
fx = Agx (E1)
fy = A8y (E2)
gx,y) =0 (E3)

where A is some real constant. Our method below will hinge on the observation from the
last example that we get different solutions for zero vs. nonzero partial derivatives of the
constraint.

e If ¢x # 0and gy # 0, then from (E1) we see A = g—i, and from (E2) we see A = i:—i. So,
choosing a pair (x,y) such that
fr _ v
8x &y
means that for some A, that pair makes (E1) and (E2) true. Simplify the equation

above to find the necessary relationship between x and y, then find which pairs with
that relationship make (E3) true.

o If gy = 0, then from (E1) we see also f; = 0. Then (E1) is true for any A that we like.
We can check that there exists some A that makes (E2) true as well. Then, we find
the points (x, y) that make (E3) true as well as gy = fx = 0.
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* If gy = 0, then from (E2) we see also f, = 0. Then (E2) is true for any A that we like.
We can check that there exists some A that makes (E1) true as well. Then, we find
the points (x,y) that make (E3) true as well as g, = fx = 0.

Sometimes, one or more of these cases won't lead to any solutions. In Example 2.5.4,
we were immediately able to discard the possibility g, = 0, because it didn’t lead to
a solution. Once you're practiced with these types of problems, you’ll often see quite
quickly which cases you get to discard.

t [Example 2.5.5]—I

We'll apply our three-case breakdown in subsequent examples.

)
[—[Example 2.5.6 ] l

Find the minimum and maximum values of the objective function

f(x,y) =In <x2—2x+5> +1In <y2—4y—|—13>

subject to the constraint
X —2x+y*—4y =20

Solution. Our constraint function is
g(x,y) =x*—2x+y>—4y—20=0

We start by setting up the first two equations from the method of Lagrange multipliers.

2x —2

= A —_—— = A2x -2 El
fx 8x 12— 2x +5 ( X ) ( )
_ y—4
fy = Ay Ay 13 A2y —4) (E2)
g(x,y)=0 X2 —2x +y* — 4y =20 (E3)
Now we consider our three cases.
* ¢x #0and g, # 0. From (E1), this means A = m From (E2), A = m.

1 1
x2-2x+5 y?—4y+13
x> —2x+5=y>—4y+13

X2 2x=y*—4y+8
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This gives us the relationship between x and y that must hold for (E1) and (E2) to be
true under the assumption g, # 0 and g, # 0. Now, in order for (E3) to be true as
well:

= (x* —2x) +y* — 4y — 20
= (> — 4y +8) +y* —4y —20

=2y —8y—12
0=y>—4y—6
y:4ixﬂ6;MD0%):4i;@0:2i¢m

So, 0 = (x* — 2x) + y* — 4y — 20
2
::ﬂ—ax+(2ivﬂﬂ —4(2 +/10) — 20
:x2—2x+(4i4¢ﬁ+40)—814%@—20

Note +4v/2 F44/2 =0
= x> —2x+4+10-8—-20
= x*—2x — 14
2+4/4—-4(-14 +
X =— ( ):2_2\/ﬁzli\/ﬁ
2 2
This gives us four points to consider:

(1++/15, 24 v10), (1 -+v15, 2++/10), (1+ V15, 2—+/10),and (1 - /15, 2 - V/10).

e If gy = 0, then x = 1, and (E1) is true for any A. Then we can choose whatever A is
necessary to make (E2) true. By (E3):

0= x*—2x+y*—4y —20

This gives us two points to consider: (1,7) and (1, —3).

e If gy = 0, then y = 2, and (E2) is true for any A. Then we can choose whatever A is
necessary to make (E1) true. By (E3):
0=x>—2x+y>—4y—20
=x*—2x+4-8-20
= x? —2x — 24
=(x—6)(x+4)

x=6 x=-4

This gives us two points to consider: (—4,2) and (6, 2).
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So, all together we have eight points that satisfy our three Lagrange equations. It’s left
only to decide which of those points lead to maxima and to minima.

point | (1++/15,2++/10) | (1-+/15,2++/10) | (1++/15,2—+/10) | (1 —+/15,2—+/10)
value of f In 361 In 361 In 361 In 361
max max max max
point (—4,2) | (6,2) | (1,7) | (1,-3)
valueof f | In261 | In261 | In136 | In136
min min

Our maximum value is In 361, and our minimum value is In 136.

I—[Example 2.5.7}

[Example 2.5.6]—]

Find the ends of the major and minor axes of the ellipse 3x> — 2xy + 3y?> = 4. They are the
points on the ellipse that are farthest from and nearest to the origin.

Solution. Let (x,y) be a point on 3x? — 2xy + 3y? = 4. This point is at the end of a major
axis when it maximizes its distance from the centre of the ellipse, (0,0). It is at the end
of a minor axis when it minimizes its distance from (0,0). So we wish to maximize and
minimize the distance 4/x? + y? subject to the constraint

g(x,y) =3x> —2xy +3y* —4=0

Now maximizing/minimizing A/ X%+ y2 is equivalentf to maximizing/minimizing its
square (/22 +12)> = x* + y2. So we are free to choose the objective function

fxy) =x*+y°

which we will do, because it makes the derivatives cleaner. Again, we use Lagrange
multipliers to solve this problem, so we start by finding the partial derivatives.

fr(oy)=2x  fy(x,y) =2y

We need to find all solutions to

gx(x,y) =6x-2y  gy(x,y) = —2x +6y

2x = A(6x —2y) (E1)
2y = A(—2x + 6y) (E2)
3x* —2xy +3y> -4 =0 (E3)

25 The function S(z) = Z2isa strictly increasing function for z > 0. So, for a,b > 0, the statement “a < b” l
is equivalent to the statement “S(a) < S(b)”.
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e Ifgy #0and g, # 0, then A = 6x2—ny = ﬁ by (E1), and A = _ﬁﬂéy = —xZ—By by
(E2).

X Yy

3x—-y —x+3y
—x% + 3xy = 3xy — v
2=y
X =+ty

Soif x = +y, then the appropriate A will make both (E1) and (E2) true. Now let’s see
what makes (E3) true.

4 = 3x% — 2xy + 31
4 =3(+y)* —2(xy)y + 3y

= 312 7212 + 3y
= (672)y”
1
4: 6+2x2 — x:i—whenx:_
(6+2) 7 y
4= (6-2)x? — x=+*1lwhenx =y
This gives us four points to check: the two points + (%ﬁ’ —%) and the two points

+(1,1)

o If g =0, then6x —2y = 0,ie. y = 3x. By (E1), x = 0, s0 y = 0. Then (E3) doesn’t
hold, so this leads to no solutions.

e If ¢y =0, then —2x + 6y = 0, i.e. x = 3y. By (E2), y = 0, so x = 0. Then (E3) doesn’t
hold, so this leads to no solutions.

The distance from (0,0) to +(1,1), namely /2, is larger than the distance from (0, 0)
to + (\/LE’ —\%), namely 1. So the ends of the minor axes are + (\%, —%) and the ends of
the major axes are +(1,1). Those ends are sketched in the figure on the left below. Once
we have the ends, it is an easy matter®® to sketch the ellipse as in the figure on the right

below.

26 if you tilt your head so that the line through (1,1) and (—1, —1) appears horizontal
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N
Yy Yy
(1,1) — (LD
(-L1)/V2 (-1L1)/V2 /
(1,-1)/v2 (1,-1)/V2
(-1.-1) (~1-1) \_//
322 —2zy + 3y* =4
\\ 4

t [Example 257 }—]

In the previous examples, the objective function and the constraint were specified ex-
plicitly. That will not always be the case. In the next example, we have to do a little
geometry to extract them.

Example 25.8]
— ) )

Find the rectangle of largest area (with sides parallel to the coordinates axes) that can be
inscribed in the ellipse x> + 2y? = 1.

Solution. Since this question is so geometric, it is best to start by drawing a picture.

N
4+ 2% =1 |
| ~_(,9)
/| A
\ /
(=2, —y) >~—1 — (2, ~y)
. Y,

Call the coordinates of the upper right corner of the rectangle (x,y), as in the figure
above. Note that x > 0 and y > 0; and if x = 0 or y = 0, then the area of the rectangle is
0, which is certainly not a maximum. So the global maximum must occur at some point
where x and y are both positive. This will also be a local maximum, so we should be able
to find it using the method of Lagrange multipliers.

The four corners of the rectangle are (+x, £y) so the rectangle has width 2x and height
2y and the objective function is f(x,y) = 4xy. The constraint function for this problem is
g(x,y) = x* + 2y* — 1. Again, to use Lagrange mutlipliers we need the first order partial
derivatives.

fx =4y fy:4x 9x = 2x gy =4y
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So, according to the method of Lagrange multipliers, we need to find all solutions to

4y = A(2x) (E1)
4x = A(4y) (E2)
X422 -1=0 (E3)

e Ifgy #0and g, # 0, then A = ;L—Z = 27}/ from (E1) and A = 4—; = 5 from (E2). So,

2y _x
Xy
292 = 12
x = (+V2)y

From (E3),

2y2+2y2 _
47 =1
Y=
1
X = (i\@)y = i\_ﬁ

; ; . 1 1
So there are four points to consider: <ir ol J_r§> .

o If gy = 0,ie. 2x = 0, then x = 0; by (E1) also y = 0; but then (E3) fails. So this
doesn’t give us any more points to consider.

e If gy = 0,ie 4y = 0, theny = 0; by (E2) also x = 0; but then (E3) fails. So this
doesn’t give us any more points to consider either.

We now have four possible values of (x,y), namely (1/v2, 1/2), (—=1/v2, =1/2), (1/v2, —=1/2)
and ( -1/2,1/ 2). They are the four corners of a single rectangle. We said that we wanted
(x,y) to be the upper right corner, i.e. the corner in the first quadrant. Itis (1/v2, 1/2).

How do we interpret the other three points we found? The global min of the function
4xy subject to the constraint x? + 2y?> = 1 will occur at one of these points, but those
points aren’t in our model domain. When x and y have different signs, 4xy no longer
gives the area of a rectangle, since it’s negative. Over our model domain, we kind of
have “endpoints:” x = 0 and y = 0. Our maximum occurred somewhere between our

endpoints; our model minimum occurs at the endpoints.
[Example 2.5.8]—I
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PARTIAL DERIVATIVES 2.5 LAGRANGE MULTIPLIERS

2.5.1 » Bounded vs Unbounded Constraints

In the last example, we had to think a little extra about whether the solution to the La-
grange equations gave a maximum or minimum. Take a closer look at Theorem 2.5.2: all
local extrema will occur at a solution point. So when do the solution points definitely also
include all absolute extrema?

1. If our constraint function is a closed curve (circle, ellipse, square, etc.) and our ob-
jective function is continuous over it, then there will certainly be an absolute max
and absolute min over the constraint; and these will certainly also be local extrema.
So when our constraint is a closed curve, and our objective function is continuous
over it, we are guaranteed that the absolute max and min exist, and are at points that
satisfy the Lagrange equations.

- Dﬁ L

n Section 2.4 we considered domains that were bounded by a closed curve, so we
only considered boundaries of this type.

2. If our constraint function is not a closed curve (e.g. a line, a line segment, a function
like xy = 1, etc.) then the system is more complicated. Assume that the objective
function is continuous over the constraint curve. Since our constraint curve is one-
dimensional (like a line, but a line that has some orientation in space), we're in a
similar position as we were in single-variable calculus: extrema can occur at end-
points, or at “critical points.” In our case, “critical points” translate to solutions to
the Lagrange equations; “endpoints” mean pretty much the same thing they always
have.

(a) If the constraint function is bounded, we must consider its endpoints as well
as solutions to the Lagrange system. There will be an absolute maximum and
minimum, and these will definitely occur at solutions to the Lagrange system
or at the endpoints of the constraint.
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(b) If the constraint function is unbounded, there may or may not exist absolute
extrema. This is where you’ll most heavily rely on your intuition about function
shape and behaviour. Limits can be useful here.
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Find the values of w > 0 and x > 0 that maximize the utility function
U(w,x) = 6wk subject to the constraint 4w +2x =12

Solution. The constraint 4w + 2x = 12 is simple enough that we can easily use it to

express k in terms of w, then substitute xk = 6 — 2w into U(w, x), and then maximize
U(w,6 —2w) = 6w”?(6 —2w)"/? using the techniques of last semester.

However, for practice purposes, we'll use Lagrange multipliers with the objective func-
tion U (w, k) = 6w™*c"/*> and the constraint function ¢(w, x) = 4w + 2x — 12. The first order
derivatives of these functions are

Uy = 4wk Uy =20k qu=4 g =2

The boundary values (“endpoints”) w = 0 and x = 0 give utility 0, which is obviously not
going to be the maximum utility. So it suffices to consider only local maxima. According
to the method of Lagrange multipliers, we need to find all solutions to

4w PP = 40 (E1)
207Kk =27 (E2)
dw+2Kk—-12=0 (E3)

Then we see g, # 0 and g # 0, so we only have one of our usual three cases.
e equation (E1) gives A = w™"/3¢"/>.
e Substituting this into (E2) gives w”*k~*/* = A = w™"*x"/? and hence w = .
* Then substituting w = « into (E3) gives 6x = 12.

So w = k = 2 and the maximum utility is U(2,2) = 12.

Note in this example we had a bounded (but not closed) curve. It has endpoints (0, 6)
and (3,0). Since the maximum didn’t occur at the endpoints, then the global maximum
was also a local maximum, and so it showed up as a solution to the system of Lagrange

equations.
[Example 2.5.9]—I

Chapter 2 was adapted from Chapter 2 of CLP 3 — Multivariable Calculus by Feldman,
Rechnitzer, and Yeager under a Create Commons Attribution-NonCommercial-ShareAlike
4.0 International license.
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PARTIAL DERIVATIVES 2.6 (OPTIONAL) UTILITY AND DEMAND FUNCTIONS

2.6a2 (Optional) Utility and Demand Functions

Economists use the concept of utility to define the welfare of an entity or an individual.
The utility function measures the level of satisfaction or happiness that a consumer gains
from various actions, like consumption, leisure, etc. One such form of utility function,
discussed below, represents a constrained optimization problem: where consumers, given
their preferences for two goods, maximize welfare or level of happiness from consuming
particular combinations of goods or services, given finite resources or income.

The amount consumed should be a non-negative number, so we'll restrict our domains
accordingly.

Let x be a variable representing a quantity of good X, and let u(x) be the utility func-
tion for that good. If “more is better,” then we expect % > 0 for all nonnegative x (i.e. for

all x in the model domain). We can think of % as marginal utility: the gain in happiness
of getting just a little more of something.

Suppose good X is subject to “diminishing returns.” That is, as we get more of the
good (i.e. as x increases) each additional unit brings us less happiness than the last. Then
our marginal utility % is decreasing, meaning % < 0. Since most goods are subject to
diminishing returns, we often choose utility functions that are concave down.

Utility functions can encompass more than one good. A multivariable utility func-
tion u(x,y) might give the happiness associated with consuming quantity x of good X
alongside quantity y of good Y. Just like with single-variable utility functions, if “more is
better” than g—’; > 0 and ‘3—; > 0 everywhere. If there are diminishing returns, then also
%u

2
52 <0Oand 272‘ < 0 everywhere.

2.6.1 » Constrained Optimization of the Utility Function

[—LExample 2.6.1}

Suppose a consumer’s preferences lead to the utility function

u(x,y) = x> +2y

for consuming a combination of x units of good X and y units of good Y.

For these goods, “more is better” (because u, > 0 and uy >0 for all non-negative x
and y) without diminishing returns.?’

Good X costs 2 dollars per unit, good Y costs 3 dollars per unit, and the consumer has
10 dollars to spend on these two goods.

Find the combined consumption of goods X and Y that maximizes the utility function,
subject to the constraint that the consumer spends at most 10 dollars. What is that maxi-
mum utility?

°

27 Indeed, 827”2’ > 0, meaning each subsequent unit of the good associated with x brings more happiness
than the last — a hallmark that this equation is fabricated for practice purposes, and probably isn’t a
realistic utility function of actual goods. The idea of increasing (rather than diminishing) returns can
make for an interesting thought experiment, though.
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PARTIAL DERIVATIVES 2.6 (OPTIONAL) UTILITY AND DEMAND FUNCTIONS

Solution. This is a constrained optimization problem. Our objective function (what we
want to maximize) is
u(x,y) = x> +2y

Our constraint function comes from our budget and the prices of the two goods:
g(x,y)=2x+3y—-10=0

(Since “more is better,” there’s no incentive to spend less than our budget of ten dollars.)
We can solve this by substitution. From our constraint, we see y = %. That turns
our utility function into the following:

2 4 2
u(x,y) = 2+ 2y = 2%+ 2 (10— 2x) = 2% — 2x 4 2
3 3 3
This is a parabola pointing up, so its maximum will be at an endpoint of our interval.

Since x and y are quantities, we require x > 0 and y > 0.

~ 10—-2x
3
Our model domain is 0 < x < 5. The endpoint x = 5 corresponds to all $10 going to the

tirst good (and y = 0). The endpoint x = 0 corresponds to all $10 going to the second
good (with y = 12).

O<y

u(5,0) = 5% +2(0) = 25

10\ 5 . (10\ 20

Our utility is maximized when we spend all $10 on the first good, purchasing x = 5
and y = 0. That maximum utility is 25.

t [Example 2.6.1]—]
)
I—[Example 2.6.2 ] l

Alejandro has recently found a true passion for baking. He likes making two types of
bread: ciabatta (c) and pita (p). Ciabatta costs 20 dollars per unit to make and pita 10
dollars per unit. Alejandro wants to spend 60 dollars on bread, and his utility function®®
is as follows:

u(c, p) = In(c) +2In(p)
Find the optimal consumption for Alejandro and the corresponding maximum utility.

Solution. The utility function will be the objective function and the constraint will be the

@
28 We're not averse to having negative utility values. Again, utility doesn’t have absolute units, but rather l
is useful as a relative scale. Higher utility is better, whether the numbers are positive or not.
For this particular utility function, ¢ = 0 or p = 0 will minimize utility. This is actually a common
property of utility functions. It avoids having an optimal solution where one good is not consumed at
all.
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PARTIAL DERIVATIVES 2.6 (OPTIONAL) UTILITY AND DEMAND FUNCTIONS

budget constraint. The budget constraint is 20c + 10p = 60. We can find the maximum
utility using substitution or the method of Lagrange multipliers.

Solution 1: substitution
Since 20c + 10p = 60, we see p = 6 — 2c. Then our utility function is:

u(c,p) =In(c) +2In(p) = In(c) +21In (6 — 2¢)

Using log rules,
u(c,p) = In(c) +In ((6 - 2c)2)
=1In <c(7 - 2c)2>

Much like the square root function, natural logarithm is an increasing function. So, the
maximum of In(c(6—2c)?) will occur at the same place as the maximum of

c(6 — 2c)?, provided that maximum is positive (and thus in the domain of the logarith-
mic function).

fle) = c(6~2c)?
Using the product rule,
f'(c) = c-2(6 —2¢)(—2) + (6 — 2¢)?

= (6 —2c) [-4c+ (6 —2¢)]
=12(3—c¢)(1—¢)

The critical points of f(c) arec = 1and c = 3.

f(1)=16
f3)=0
We also need to check the endpoints of our interval. Since p > 0, then:
O0<Kp=6-2c = c<3

The endpoints of our interval are ¢ = 0 (all pita) and ¢ = 3 (all ciabatta). We’ve already
found f(3) = 0.

f(0)=0

The function ¢(6 — 2c)? has a maximum of 16 when ¢ = 1, so the function In (c(6 — 2c)?)
has a maximum of In 16 when ¢ = 1. Since ¢ = 1 means p = 4, utility is maximized when
Alejandro spends $20 on ciabatta, and $40 on pita.

Solution 2: Lagrange

Ue = Agc % =A-20
U =gy — % =A-10
g(c,p) =0 20c+10p—60 =0
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From the first two equations, we see

_1_2
~ 20c  10p
p = 4c

From the constraint equation,

0 = 20c + 10p — 60 = 10c + 10(4c) — 60
c=1 p=4

So, the point ¢ = 1 is a point to check. We should also check the endpoints of our
interval, c = 0 and ¢ = 3. Note both these cause the utility to go to negative infinity — so
they are minima. That tells us c = 1, p = 4 gives us our constrained maxima. The utility
of spending $20 on ciabatta and $40 on pitaisIn1+2In4 = In(16).

t [Example 2.6.2]—I

2.6.2 » Demand Curves

A demand curve gives the relationship between the quantity of a good a consumer would
buy and the price of that good. We assume the consumer would buy the quantity that
maximizes their utility function, given their budget constraints. In Examples 2.6.1 and
2.6.2 we found “optimal consumption” when the price and budget were fixed numbers.
So secretly, we were finding a point on a demand curve.

Instead of keeping price and budget fixed, we can assign them variables. We can still
tind the amount a consumer would buy to maximize their utility, but now that amount
will be a function of price and budget, rather than a fixed number. The consumer’s opti-
mal consumption (as a function of price and budget) gives the general demand function.
This is sometimes formally referred to as Marshallian demand. That is, Marshallian demand
describes the relationship between the price of a good, the budget for that good, and the
quantity of that good demanded.

P o P el éend)) N

Let x be a quantity of good X, let y be a quantity of good Y, and let u(x, y) be the
utility function of these two goods.

Let px be the unit price for good X, and p, be the unit price for good Y. Let I be
the amount of a consumer’s income they budget for buying X and Y. Then the
function

x"(px, Py, I)

giving the optimal consumption of x to maximize u(x,y) subject to the budget
constraint pyx + pyy = I is called the Marshallian demand function.
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Note: the superscript m in the function name x™ isn’t a power. Rather than denoting a
variable, m simply stands for “Marshallian.”

I—[Example 2.6.4}

Let’s go back to Alejandro and his passion for baking. This weekend he would like to
make ciabatta (c) and focaccia (f). Ciabatta costs p. dollars to make and focaccia py dollars.
For this weekend, Alejandro wants to spend I dollars on bread, and his utility function is

as follows:
u(c, f) = In(c) +2In(f)

Find the optimal consumption for Alejandro of each bread type.

Solution. The utility function is the objective function, because that’s the function we want
to maximize. The constraint is p.c + p¢f = [ = b(c, f) = cpc + fpr — L.

As in Example 2.6.2, the endpoints of our interval (¢ = 0, f = 0) minimize utility, so
the maximum will be at some interior point. We can find it using the method of Lagrange

multipliers.
l/lc — )\ N bc % - )\« : p(j
lef =A- bf - % =A- pf
be,f) =0 cpet fpr—1 =0
From the first two equations, we see
cpe frpy
Pc
=2c
From the budget constraint,
0=cpe+ fps—1
Pe
=Ccpe+2c| — -1
Pc ( Pf) Pf
=cpe+2cp.— 1
I = 3cp,
L
3pc
Using the relationship between f and c,
f=2c pe) _ 2L
Pr)  3pf
The point ¢ = ﬁ, f = % is the only point to consider for a max. Since ¢ > 0 and

f = 0, the point is within our model domain. So, it gives the optimal consumption of
ciabatta and focaccia.
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Let’s think of the optimal consumption of each bread type (as functions of prices and
income allocated to bread), and name these functions ¢ and f™ (m for “Marshallian”).

Then
21

m I m
(Lpepr) =75 f (I/PCrPf):%

Pe

give the Marshallian demand curves for ciabatta and focaccia, respectively.

[Example 2.6.4]—I

We use the Marshallian demand to define certain types of goods. A normal good is defined
as a product for which quantity demanded increases as income increases. An inferior good
is defined as a product for which quantity demanded decreases as income increases.

R R ol s Co) N

Let x™ (px, py, I) be the Marshallian demand function of a good when the price of
that good is py, the price of another good is py, and the amount of a consumer’s
income budgeted for these goods is I. If

ox™(px, Py, I)

a1 >0

everywhere then the good is a normal good. If

0x" (px, py, 1)
ol
everywhere then the good is an inferior good.

<0

- J

In the case of Alejandro’s example 2.6.4, you can verify that both goods are normal
goods.

— Theorem2.6.6 (Normal and Inferior Goods).

Let X and Y be two goods with positive unit prices p, and p,, respectively, subject
to the budget constraint pyx + p,y = I. If X is an inferior good, then Y is a normal
good.

-

Proof. Let x™ and y™ be the Marshallian demand functions of X and Y/, respectively.
For any quantities x and y, we must satisfy the budget constraint pyx + p,y = I. So:

I —pxx

Y Py
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When x = x™, then y = y"", so:

m o _ I—pxxm

Yy
Py
= M:ﬁﬂzg i[—&xm
or oLl py oL Lpy Py
L ope
py py Ol
Since X is an inferioi good, by Definition 2.6.5, % < 0. Since also py and p, are positive,
then the term —2—;% is positive:
m

oL~ py

So, Y is a normal good by Definition 2.6.5. O

Using the first partial derivative, we can also analyse how changes in prices affect the
Marshallian Demand.

P o G Fitee i N

Let x™(px, py, I) be a Marshallian demand function for a good X whose quantity
is given by x and unit price is given by py, in relation to another good Y whose
quantity is given by y and whose unit price s given by p,,.

ox™ (px, Py, I)
Opx

is the rate of change of x (the optimal consumption of X) relative to the price of
X. We call this the price effect of X on x™. Similarly,

ox™ (px, py, 1)
opy

the rate of change of x (the optimal consumption of X) relative to the price of Y.
This is the price effect of Y on x™.

- J

I—[Example 2.6.8 (Price effects)}

In this example, we revisit Example 2.6.4.

(a) Are the ciabatta and focaccia from Example 2.6.4 normal goods, or inferior goods?

(b) If the price of making foccacia increases, how will this effect the amount of ciabatta
Alejandro makes? (Assume everything else stays the same — the utility function stays
the same, the price of ciabatta stays the same, the portion of income I allotted to bread
stays the same, and the assumption remains that Alejandro will maximize utility sub-
ject to his budget constraint.)
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Solution.
To decide whether ciabatta and focaccia are normal or inferior goods, we should take
their partial derivatives with respect to I.

21
m J— m e —
¢ (II pCl pf) - 3pc f (II pCI pf) 3pf
acm 1 ofm 2

o “ap 0 o0 " 3p Y

Since both derivatives are positive everywhere, ciabatta and focaccia are both normal
goods.

Surprisingly, the price of focaccia doesn’t affect the consumption of ciabatta at all! The
Marshallian demand of ciabatta is

Cm(I, Pes pf) = ?)—pc

Since py doesn’t even show up, the derivative is easy to take:
a m
o _ o
That means the price effect of focaccia on Alejandro’s ciabatta baking is zero. (If the price
of focaccia goes up, the impact on his baking habits are that he will make less focaccia.)

[ [Example 2.6.8 }—]
I—LExample 2.6.9} l

Kenechukwu is doing groceries for the week, and as usual he has I dollars to spend on
fruits and berries. If he consumes a kg of apples and s kg of strawberries, then his utility
function is:

u(a,s) = a'/?s1/4

Apples cost p, dollars per kg, and strawberries cost ps dollars per kg.
Find Kenechukwu’s Marshallian demand function for apples. What is the price effect
of ps on apples? Are apples normal or inferior goods?

Solution. The utility function will be the objective function, because utility is what we
want to maximize. As in Example 2.6.2, the endpoints a = 0 and s = 0 are minima of the
utility function. (We see this because setting either 2 = 0 or s = 0 leads to u = 0; and since
u involves even roots, it never returns a negative value.) So, the maximum will happen at
some internal point, which we can find using Lagrange multipliers.

The budget constraint is p,a + pss = [ = b(a,s) = paa + pss — L.

U, = A-b, Ta—1/2g1/4 =A-pg
i —Ab, — %a1/25—3/4 = A ps
b(a,s) =0 pad+pss—1 =0
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From the first two equations, we see

1 1
N g 1/25/4 — 1 1/2,-3/4

2pa 4ps
2}9511_1/251/4 _ paa1/25_3/4
2p551/4+3/4 _ pua1/2+1/2
2psS = paa
2
s,
Pa

Now, to satisfy the budget constraint,

2ps
Pa (is) +pss =1

Pa
3pss =1
N N B
3Ps Pa Pa 3ps  3pa

So, our Marshilian demand function are

m m I
a" (pa, ps, 1) s" (Pa, ps, 1) = 3_275

:%

The price effect of ps on apples is nothing, since

m
oa™ _ 0
ops
The goods are both normal, because
ol 3p, ol 3ps

The optimal consumption is 1 kg of strawberries and 4 kg of apples. This leads to the

maximum utility, u(4,1) = 2.
[Example 2.6.9]—]

So far, our paradigm has been to optimize happiness, given a fixed budget. We could
instead fix the desired amount of utility, and try to minimize the cost required to achieve
it. In this paradigm, our utility function is our constraint, while our cost function is the
objective function we want to minimize. This gives rise to the Hicksian demand.
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Qs 06 (s dwtanl). N

Let goods X and Y have utility function u(x, y), where x is the quantity of X and
y is the quantity of Y. Let p, be the unit price of good X, and p,, be the unit price
of good Y. Let U be the minimum level of utility required by the consumer — that
is, the consumer requires u(x,y) > U.

The Hicksian demand function of good X, denoted

xh (Px/ Py/ u)l

gives the value of x that minimizes the cost function f(x,y) = pxx + p,y subject
to the constraint u(x,y) > U. That is, the Hicksian demand function gives the
quantity of good X that minimizes the amount of money spent on the two goods
while still achieving some fixed level of utility.

- J

Note: the superscript / in the function name x”"

variable, h simply stands for “Hicksian.”

The definition requires that the utility be at least some fixed constant. In practice, we
can usually assume that the utility is equal to that fixed constant. That’s because if we have
a higher utility than necessary, we can usually save some money by bringing our utility
down to its minimum allowable level. This could fail only if, at some point, our utility
function had a negative partial derivative. A negative partial derivative indicates that we
might increase utility as we decrease consumption.

isn’t a power. Rather than denoting a

I—[Example 2.6.11}

Lets go back to Alejandro and his passion for baking. This weekend he would like to make
ciabatta (c) and baguettes (B). Ciabatta costs p. dollars to make and baguettes p; dollars.
His utility function is as follows:

u(c,b) = Veb

Fixing Alejandro’s utility as the constant u(c,b) = U, find his Hicksian demand for both
types of bread.

Solution. In Hicksian demand, we minimize cost, so cost is our objective function. That is,
f(c,b) = pcc + ppb. Our constraint is U = v/cb. We can find the constrained minimum of
f(c, b) using substitution.

U=+cb
Uz =cb

uZ
C:T

Plugging this into our objective function,

u? 2 -1
f(c,b) = pec+ ppb = pe (7) + ppb = (U pc> b= + pyb
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This is a function of one variable. Let’s find the critical points.

_ (Uzpc> b2+ p,
(Uzpc) b2 = py
wpe

— b?
Pb
b=u,/F
Pv
u? Pb
At that point,c = — = U, | —
b Pe

To verify that this critical point gives a global minimum, consider the second derivative
of our one-variable function.

i - ()2 ] =2 1)

Our model domain only allows for non-negative values of b, so the second derivative is
non-negative everywhere. That means its global minimum is at its sole critical point. In

particular, the quantities ¢ = U, /% and b = U, /% minimize the cost function f(c,b) =

pec + ppb subject to the constraint u(c, b) = U. So, our Hicksian demand functions are:

(pe, pr,U) = U % and bh(pc,pb,l,l):u\/%

t [Example 2.6.11]—I

ac
. aph . . .
the price effects of one good’s price on the other good’s consumption were both 0. Hick-

sian demand is sometimes used to study the substitution effect, where a change in price in
one good causes a change in consumption of another good. This discussion is, however,
beyond the scope of the current text.

In Example 2.6.11, note # 0. This is in contrast to examples 2.6.8 and 2.6.9, where

I—[Example 2.6.12 (Contrasting Marshallian and Hicksian Demand)}

In Marshallian demand, the consumer has a fixed budget, and tries to be as happy as pos-
sible. In Hicksian demand, the consumer has a fixed utility need, and tries to be as thrifty
as possible. These different models fit different types of transactions.

You have $1000 to invest in stocks. You choose the combination of stocks that you
think will have the best mix of risk and reward, spending your entire budget. You're
operating under a generally Marshallian mindset, because you want the most utility for a
fixed budget.

After you purchase your stocks, you're so excited that you accidentally spill ramen on
your laptop, and need a new one right away. Your laptop needs to be of a sufficient quality
for your needs — some combination of available soon, reliable, fast enough, and so on. You
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go to your local gadget store and identify all the models that will meet your needs. You
buy the cheapest of those options. For the laptop, your demand is more Hicksian — you

(

want to find the cheapest option that still meets your needs.
LExarnple 2.6.12]—I
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Chapter 3

INTEGRATION

Calculus is built on two operations — differentiation and integration.

¢ Differentiation — as we saw last term, differentiation allows us to compute and
study the instantaneous rate of change of quantities. At its most basic it allows
us to compute tangent lines and velocities, but it also led us to quite sophisticated
applications including approximation of functions through Taylor polynomials and
optimisation of quantities by studying critical points.

¢ Integration — at its most basic, allows us to analyse the area under a curve. Of
course, its application and importance extend far beyond areas and it plays a central
role in solving differential equations.

~N
(differentia,te to get slope ( integrate to get area

- J

It is not immediately obvious that these two topics are related to each other. However, as
we shall see, they are indeed intimately linked.

3.1a Definition of the Integral

Arguably the easiest way to introduce integration is by considering the area between the
graph of a given function and the x-axis, between two specific vertical lines — such as is
shown in the figure above. We'll follow this route by starting with a motivating example.
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INTEGRATION 3.1 DEFINITION OF THE INTEGRAL

» A Motivating Example

Let us find the area under the curve y = e* (and above the x—-axis) for 0 < x < 1. That is,
theareaof { (v,y) |0<y<e’,0<x<1}

~N

- J

This area is equal to the “definite integral”

1
Area = f e¥dx
0

Do not worry about this notation or terminology just yet. We discuss it at length below.
In different applications this quantity will have different interpretations — not just area.
For example, if x is time and e* is your velocity at time x, then we'll see later (in Exam-
ple 3.1.12) that the specified area is the net distance travelled between time 0 and time 1.
After we finish with the example, we’ll mimic it to give a general definition of the integral

Ss f(x)dx.

I—[Example 3.1.1}

We wish to compute the area of { (x,) |0 <y < ¢*,0 < x < 1 }. We know, from our
experience with e* in differential calculus, that the curve y = e* is not easily written in
terms of other simpler functions, so it is very unlikely that we would be able to write the
area as a combination of simpler geometric objects such as triangles, rectangles or circles.

So rather than trying to write down the area exactly, our strategy is to approximate the
area and then make our approximation more and more precise!. We choose? to approx-
imate the area as a union of a large number of tall thin (vertical) rectangles. As we take
more and more rectangles we get better and better approximations. Taking the limit as
the number of rectangles goes to infinity gives the exact area’.

As a warm up exercise, we'll now just use four rectangles. In Example 3.1.2, below,
we’ll consider an arbitrary number of rectangles and then take the limit as the number of

rectangles goes to infinity. So

1  This should remind the reader of the approach taken to compute the slope of a tangent line way way
back at the start of differential calculus.

2 Approximating the area in this way leads to a definition of integration that is called Riemann integra-
tion. This is the most commonly used approach to integration. However we could also approximate the
area by using long thin horizontal strips. This leads to a definition of integration that is called Lebesgue
integration. We will not be covering Lebesgue integration in these notes.

3 If we want to be more careful here, we should construct two approximations, one that is always a little
smaller than the desired area and one that is a little larger. We can then take a limit using the Squeeze
Theorem and arrive at the exact area. More on this later.
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INTEGRATION 3.1 DEFINITION OF THE INTEGRAL

¢ subdivide the interval 0 < x < 1 into 4 equal subintervals each of width 1/4, and

* subdivide the area of interest into four corresponding vertical strips, as in the figure
below.

The area we want is exactly the sum of the areas of all four strips.

xT

y=e

/

N[

o=

NI
—_

- J

Each of these strips is almost, but not quite, a rectangle. While the bottom and sides are
fine (the sides are at right-angles to the base), the top of the strip is not horizontal. This
is where we must start to approximate. We can replace each strip by a rectangle by just
levelling off the top. But now we have to make a choice — at what height do we level off
the top?

Consider, for example, the leftmost strip. On this strip, x runs from 0 to 1/4. As x
runs from 0 to 1/4, the height y runs from e to ¢"/*. It would be reasonable to choose the
height of the approximating rectangle to be somewhere between ¢ and e"/*. Which height

\
x

Y y=¢e

o1/

N

- J

should we choose? Well, actually it doesn’t matter. When we eventually take the limit of
infinitely many approximating rectangles all of those different choices give exactly the
same final answer. We’ll say more about this later.

In this example we’ll do two sample computations.

¢ For the first computation we approximate each slice by a rectangle whose height is
the height of the left hand side of the slice.

— On the first slice, x runs from 0 to 1/4, and the height y runs from e, on the left
hand side, to ¢"/*, on the right hand side.
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— So we approximate the first slice by the rectangle of height ¢’ and width 1/,

and hence of area % eV = }l.

— On the second slice, x runs from 1/4 to 1/2, and the height y runs from ¢"* and
1/2
e’

— So we approximate the second slice by the rectangle of height ¢"/* and width

1/4, and hence of area 411 14,

— And so on.

— All together, we approximate the area of interest by the sum of the areas of the
four approximating rectangles, which is

1
[1+e 42+ 6] 7 = 15124

— This particular approximation is called the “left Riemann sum approximation
to Sé e*dx with 4 subintervals”. We’ll explain this terminology later.
— This particular approximation represents the shaded area in the figure on the

left below. Note that, because e increases as x increases, this approximation is
definitely smaller than the true area.

- J

¢ For the second computation we approximate each slice by a rectangle whose height
is the height of the right hand side of the slice.

— On the first slice, x runs from 0 to 1/4, and the height y runs from e, on the left
hand side, to /4, on the right hand side.

— So we approximate the first slice by the rectangle of height ¢'/* and width 1/4,
and hence of area } e"/*.

— On the second slice, x runs from 1/4 to 1/2, and the height y runs from ¢/* and
1/2
e’?.
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— So we approximate the second slice by the rectangle of height ¢"/? and width
1/4, and hence of area }1 ez,

— And so on.

— All together, we approximate the area of interest by the sum of the areas of the
four approximating rectangles, which is

1
[61/4 ez oy el] 1 = 1.9420

— This particular approximation is called the “right Riemann sum approximation
to &1) e*dx with 4 subintervals”.

- This particular approximation represents the shaded area in the figure on the
right above. Note that, because e* increases as x increases, this approximation is
definitely larger than the true area.

t [Example 3.1.1 }—]

Now for the full computation that gives the exact area.

I—LExample 3.1.2} l

Recall that we wish to compute the area of { (x,y) [0 <y < ¢, 0 < x <1 } and that our
strategy is to approximate this area by the area of a union of a large number of very thin
rectangles, and then take the limit as the number of rectangles goes to infinity. In Exam-
ple 3.1.1, we used just four rectangles. Now we’ll consider a general number of rectangles,
that we'll call n. Then we'll take the limit n — 0. So

¢ pick a natural number n and
¢ subdivide the interval 0 < x < 1 into n equal subintervals each of width 1/x, and
* subdivide the area of interest into corresponding thin strips, as in the figure below.

The area we want is exactly the sum of the areas of all of the thin strips.

N
:eCE
y /y
12 n &
n n n
. J
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Each of these strips is almost, but not quite, a rectangle. As in Example 3.1.1, the only
problem is that the top is not horizontal. So we approximate each strip by a rectangle, just
by levelling off the top. Again, we have to make a choice — at what height do we level off
the top?

Consider, for example, the leftmost strip. On this strip, x runs from 0 to 1/x. As x runs
from 0 to 1/, the height y runs from e” to ¢"/". It would be reasonable to choose the height
of the approximating rectangle to be somewhere between ¢” and e'/”. Which height should
we choose?

Well, as we said in Example 3.1.1, it doesn’t matter. We shall shortly take the limit
n — oo and, in that limit, all of those different choices give exactly the same final answer.
We won't justify that statement in this example, but Appendix section A.10 provides the
justification. For this example we just, arbitrarily, choose the height of each rectangle to be
the height of the graph y = ¢* at the smallest value of x in the corresponding strip*. The
tigure on the left below shows the approximating rectangles when n = 4 and the figure
on the right shows the approximating rectangles when n = 8.

- J

Now we compute the approximating area when there are n strips.

* We approximate the leftmost strip by a rectangle of height ¢?. All of the rectangles
have width 1/x. So the leftmost rectangle has area 1.

* On strip number 2, x runs from % to 2. So the smallest value of x on strip number 2
is 1, and we approximate strip number 2 by a rectangle of height ¢"/” and hence of

1 n X
area %e /n,

e And so on.

* On the last strip, x runs from ”T_l to % = 1. So the smallest value of x on the last strip

1=l and we approximate the last strip by a rectangle of height ¢”~"/" and hence

n 7
of area %e(”_l)/".

is

4 Notice that since e” is an increasing function, this choice of heights means that each of our rectangles is l
smaller than the strip it came from.
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The total area of all of the approximating rectangles is

1 1 1 1 -
L R UV

Total approximating area = 160 + —e e
PP & T n n n n n

1 _
:;(14—61/”4—62/”—|—€3/n+--'—|—e(n 1)/n>

Now the sum in the brackets might look a little intimidating because of all the exponen-

tials, but it actually has a pretty simple structure that can be easily seen if we rename
Un _

e’" =r. Then

e the first termis 1 = ¥ and
e the second term is ¢"/” = r! and
e the third term is ¢”" = r? and
e the fourth term is ¢¥/" = 3 and
¢ and so on and

(n=1)/n _ n—1

e thelasttermise =7

So
; 3 1 2, ... n—1
Total approx1mat1ng area — 1+r+r+ +7r

The sum in brackets is known as a geometric sum and satisfies a nice simple formula:

Equation 3.1.3(Geometric sum).

n

1+r+r2+...+r”—1:r_

p_— provided r # 1

The derivation of the above formula is not too difficult. So let’s derive it in a little aside.
»»» Geometric Sum

Denote the sum as

S=1+r+r+ - +r"!
Notice that if we multiply the whole sum by r we get back almost the same thing:

rS :r<1—i—r+r2+-~—|—r”_1)

=r+rP 44"

This right hand side differs from the original sum S only in that

¢ the right hand side is missing the “1+4 " that S starts with and
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¢ the right hand side has an extra “+r" ” at the end that does not appear in S.
That is
rS=S—-1+4+1r"

Moving this around a little gives

(r—1)S=(r"-1)
-1
5= r—1

as required. Notice that the last step in the manipulations only works providing r # 1
(otherwise we are dividing by zero).

»»» Back to Approximating Areas

Now we can go back to our area approximation armed with the above result about geo-
metric sums.

1
Total approximating area = " (1 +r4+r 4+ r"_1>

17" -1

= = remember that r = ¢/"
nr—1
len/m—1

T nel/n—1

_ 1 e—-1

T onel/n—1

To get the exact area’ all we need to do is make the approximation better and better
by taking the limit n — co. The limit will look more familiar if we rename 1/» to X. As n
tends to infinity, X tends to 0, so

.1 e—-1
Area = g A1

) 1/n
= (e—l)nh_r)rolo—el/n_1
= — i i =1
(e—1) )1(1_1% X1 (with X = 1/n)

Examining this limit we see that both numerator and denominator tend to zero as X —
0, and so we cannot evaluate this limit by computing the limits of the numerator and
denominator separately and then dividing the results. Despite this, the limit is not too
hard to evaluate; here we give two ways:

[
5  We haven'’t proved that this will give us the exact area, but it should be clear that taking this limit will l
give us a lower bound on the area. To complete things rigorously we also need an upper bound and

the Squeeze Theorem. We do this in the next optional subsection.
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o Perhaps the easiest way to compute the limit is by using ’'Hopital’s rule®. Since both
numerator and denominator go to zero, this is a 9/0 indeterminate form. Thus
£X 1
lim —— = lim —3&%~ = lim — =1
X-0eX -1 x-04 (eX—1) Xx-0e

* Another way’ to evaluate the same limit is to observe that it can be massaged into
the form of the limit definition of the derivative. First notice that

X 117"
— |1
L?EB X }

lim
X—0 €X -1

provided this second limit exists and is nonzero. This second limit should look a
little familiar:

X

lime —1 im
X—0 X Xx—0 X —0

which is just the definition of the derivative of e* at x = 0. Hence we have

lim = _lim X e
x>0eX -1  |Xx-0 X—0
_d _1
= —ex‘
| dX X—O]
- -1
_ [,x
- _e ‘X:O}

=1

So, after this short aside into limits, we may now conclude that

Area:((3—1))1(iinoex_1

=e—1

( [Example 3.1.2]—I

A more rigorous area computation can be found in Appendix A.6

3.1.1 » Summation Notation

As you can see from the above example (and the more careful rigorous computation), our
discussion of integration will involve a fair bit of work with sums of quantities. To this
end, we make a quick aside into summation notation. While one can work through the

6 If you do not recall L'Hopital’s rule and indeterminate forms then we recommend you skim over your l
differential calculus notes on the topic.
7 Say if you don’t recall 'Hopital’s rule and have not had time to revise it.
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material below without this notation, proper summation notation is well worth learning,
so we advise the reader to persevere.
Writing out the summands explicitly can become quite impractical — for example, say
we need the sum of the first 11 squares:
1+2%+3%+4>+52+ 6>+ 72+ 8 + 9>+ 10* + 117

This becomes tedious. Where the pattern is clear, we will often skip the middle few terms
and instead write

1+22 4. 4112,

A far more precise way to write this is using X (capital-sigma) notation. For example, we
can write the above sum as

11

2.k

k=1
This is read as

The sum from k equals 1 to 11 of k2.

More generally

—[Notation3.l.4.] ~

Let m < n be integers and let f(x) be a function defined on the integers. Then we
write

>, fk)
k=m
to mean the sum of f (k) for k from m to n:
fm)+f(m+1)+f(m+2)+---+f(n—1)+ f(n).

Similarly we write

n
2.
i=m
to mean

Am + i1 +Amy2 + -+ a1+ ay

for some set of coefficients {ay,, ..., a,}.

- J
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Consider the example

1 1 1 1 1 1
Lig=mteptetata
k=3
It is important to note that the right hand side of this expression evaluates to a number®; it
does not contain “k”. The summation index k is just a “dummy” variable and it does not

have to be called k. For example
7 7 7 7
1 1 1 1
IR EDICEDI:
k=3 i=3 j=3 /=3

Also the summation index has no meaning outside the sum. For example

has no mathematical meaning; it is gibberish.

A sum can be represented using summation notation in many different ways. If you
are unsure as to whether or not two summation notations represent the same sum, just
write out the first few terms and the last couple of terms. For example,

m=>3 m=4 m=>5 m=14 m=15
15 — = —
ST T T
omr 32 4 52 142 152
m=4 m=>5 m=6 m=15 m=16

—
126: U U U T T
o (m-1)2 32 42 52 142 152

are equal.
Here is a theorem that gives a few rules for manipulating summation notation.

— Theorem3.1.5 (Arithmetic of Summation Notation). ~N

Let n > m be integers. Then for all real numbers c and a;,b;, m <i < n.
n n
@ Eai=cLa)
1=m

i=m

i=m

® S@+u)=( La)+(En)
(

(c) _ﬁ] (a; — b;) =

- J

8  Some careful addition shows it is 14766148010.
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Proof. We can prove this theorem by just writing out both sides of each equation, and
observing that they are equal, by the usual laws of arithmetic’. For example, for the first
equation, the left and right hand sides are

n n

i=m i=m

They are equal by the usual distributive law. The “distributive law” is the fancy name for

c(a+b) = ca+cb. O
Not many sums can be computed exactly!?. Here are some that can. The first few are
used a lot.
— Theorem3.1.6. ~N

n ) .
(@) > ar' = al_lr_: ", for all real numbers a and r # 1 and all integers n > 0.
i=0

n
(b) >, 1=mn,forall integers n > 1.

n
( > i= %n(n + 1), for all integers n > 1.

~
I
—_

or

(d) X 2= in(n+1)(2n+1), for all integers n > 1.

i=1

n 2
(e) D i®= [%n(n + 1)] , for all integers n > 1.
=1

i

- J

10

Since all the sums are finite, this isn’t too hard. More care must be taken when the sums involve an l
infinite number of terms. We will examine this in Chapter 5.

Of course, any finite sum can be computed exactly — just sum together the terms. What we mean by
“computed exactly” in this context, is that we can rewrite the sum as a simple, and easily evaluated,
formula involving the terminals of the sum. For example

rn+1 _

n
2 T’k = 1/_71 prOVided r # 1
k=m

No matter what finite integers we choose for m and n, we can quickly compute the sum in just a few
arithmetic operations. On the other hand, the sums,

n
2,
k=m

cannot be expressed in such clean formulas (though you can rewrite them quite cleanly using integrals).
To explain more clearly we would need to go into a more detailed and careful discussion that is beyond
the scope of this course.

=1
=
Dl =
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»»» Proof of Theorem 3.1.6

Proof. (a) The first sum is
n .
Zarl =ar® +arl +ar* + . +ar"
i=0

which is just the left hand side of equation (3.1.3), with n replaced by n + 1 and then
multiplied by a.

(b) The second sum is just n copies of 1 added together, so of course the sum is n.

(¢) The sum Z i=1+243+--- 4 n can be visualized as the area of the red stairsteps

=1
below: the first column has area 1, the second column has area 2, and so on.

123 n

If we duplicate those stairsteps and spin them around, we make a rectangle with base
n + 1 and height n.

Since the red stairsteps are exactly half the total area of that rectangle,

n

Yi=m)n+1)

i=1

(d) The last two identities are proved in Question 32 of Section 5.2 of the practice book.
O
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3.1.2 » The Definition of the Definite Integral

b
In this section we give a definition of the definite integral J f(x)dx generalising the ma-

a
chinery we used in Example 3.1.1. But first some terminology and a couple of remarks to
better motivate the definition.

—[Notation3.1.7.] ~

b
The symbol J f(x)dx is read “the definite integral of the function f(x) from
a

a to b”. The function f(x) is called the integrand of Ss f(x)dx and a and b are
called!! the limits of integration. The interval a < x < b is called the interval of
integration and is also called the domain of integration.

- J

Before we explain more precisely what the definite integral actually is, a few remarks
(actually — a few interpretations) are in order.

b
e If f(x) > 0and a < b, one interpretation of the symbol J f(x)dx is “the area of the
a
region { (x,y) [a<x<b, 0<y < f(x)}"

\

y oy

. J

In this way we can rewrite the area in Example 3.1.1 as the definite integral S(l) e*dx.

e This interpretation breaks down when either 2 > b or f(x) is not always positive,
but it can be repaired by considering “signed areas”.

e Ifa < b, but f(x) is not always positive, one interpretation of Ss f(x)dx is “the signed
area between y = f(x) and the x—axis for 4 < x < b”. For “signed area” (which
is also called the “net area”), areas above the x—axis count as positive while areas
below the x—axis count as negative. In the example below, we have the graph of the
function

-1 ifl<x<
flx)=<K2 if2<x<
0 otherwise

2
4

11 aand b are also called the bounds of integration.
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The 2 x 2 shaded square above the x—axis has signed area +2 x 2 = +4. The 1 x 1
shaded square below the x—axis has signed area —1 x 1 = —1. So, for this f(x),

fr)f(x)dx: +4-1=3
0

~N
Y
2 -
signed area= +4
T 1 G
signed area= —1
—1-
. J

o We’ll come back to the case b < a later.

We're now ready to define Ss f(x)dx. The definition is a little involved, but essentially
mimics what we did in Example 3.1.1 (which is why we did the example before the defini-
tion). The main differences are that we replace the function e* by a generic function f(x)
and we replace the interval from 0 to 1 by the generic interval'? from a to b.

¢ We start by selecting any natural number n and subdividing the interval from a to b
into n equal subintervals. Each subinterval has width bn;“.

* Just as was the case in Example 3.1.1 we will eventually take the limit as n — oo,
which squeezes the width of each subinterval down to zero.

* For each integer 0 < i < n, definex; = a+i- bn;“. Note that this means that xg = a
and x, = b. It is worth keeping in mind that these numbers x; do depend on 7 even

though our choice of notation hides this dependence.

* Subinterval number i is x; 1 < x < x;. In particular, on the first subinterval, x
runs from xp = atox; = a+ % On the second subinterval, x runs from x; to
Xp = a-+ Zb%“.

12 We'll eventually allow a and b to be any two real numbers, not even requiring a < b. But it is easier to l
start off assuming a < b, and that’s what we’ll do.
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~

e ™~ v =f()

- J

* On each subinterval we now pick x;, between x;_; and x;. We then approximate

f(x) on the it subinterval by the constant function y = f(x¥,). We include 7 in the
subscript to remind ourselves that these numbers depend on .

Geometrically, we're approximating the region
{ (x,y) | x is between x;_; and x;, and y is between 0 and f(x) }
by the rectangle

{ (x,y) | x is between x;_1 and x;, and y is between 0 and f(x},) }

- J

In Example 3.1.1 we chose x}, = x;_; and so we approximated the function e¢* on
each subinterval by the value it took at the leftmost point in that subinterval.

* So, when there are n subintervals our approximation to the signed area between the
curve y = f(x) and the x—axis, with x running from a to b, is

> )

* b—a
n) - 75t need not be

We interpret this as the signed area since the summands f(x =

positive.

* Finally we define the definite integral by taking the limit of this sum as n — co.
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Oof! This is quite an involved process, but we can now write down the definition we

b
need. (A more mathematically rigorous definition of the definite integral f f(x)dx can
a

be found in Appendix A.7.)

-

~(Definition3.1.8. \

Let a and b be two real numbers and let f(x) be a function that is defined for all
x between a and b. Then we define

4 « b—a
| £ = tim 3 £

i=1

n

when the limit exists and takes the same value for all choices of the x;‘n’s. In this
case, we say that f is integrable on the interval from a to b.

J

Of course, it is not immediately obvious when this limit should exist. Thankfully it is
easier for a function to be “integrable” than it is for it to be “differentiable”.

.

— Theorem3.1.9. ~N

Let f(x) be a function on the interval [a, b]. If

e f(x) is continuous on [a, b], or
* f(x) has a finite number of jump discontinuities on [a, b] (and is otherwise

continuous)

then f(x) is integrable on [a, b].

J

We will not justify this theorem. But a slightly weaker statement is proved in (the
optional) Section A.7. Of course this does not tell us how to actually evaluate any definite
integrals — but we will get to that in time.

Some comments:

Note that, in Definition 3.1.8, we allow 4 and b to be any two real numbers. We do
not require that a < b. That is, even when a > b, the symbol SZ f(x)dx is still defined

by the formula of Definition 3.1.8. We'll get an interpretation for Ss f(x)dx, when
a > b, later.

It is important to note that the definite integral Si f (x)dx represents a number, not a
function of x. The integration variable x is another “dummy” variable, just like the
summation index 7 in >}/ a; (see Section 3.1.1). The integration variable does not
have to be called x. For example o

| ’ fla)dx = | ’ F(tyde = | ’ Flw)du
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Just as with summation variables, the integration variable x has no meaning outside
of f(x)dx. For example

are both gibberish.

The sum inside definition 3.1.8 is named after Bernhard Riemann!3® who made the first
rigorous definition of the definite integral and so placed integral calculus on rigorous
footings.

13 Bernhard Riemann was a 19th century German mathematician who made extremely important con- l
tributions to many different areas of mathematics — far too many to list here. Arguably two of the
most important (after Riemann sums) are now called Riemann surfaces and the Riemann hypothesis
(he didn’t name them after himself).
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.

The sum inside definition 3.1.8

where Ax = bn;“.

o If we choose each x¥, = x; 1 = a + (i — 1)%-2 to be the left hand end point
of the it interval, [x;_1, x;], we get the approximation

if(a+(i_1)b;a> b;a

which is called the “left Riemann sum approximation to Ss f(x)dx with n
subintervals”. This is the approximation used in Example 3.1.1.

* In the same way, if we choose x}, = x; = a+1 b%“ we obtain the approxi-
mation

n
Zf(aJrib_a) b—a
i=1 n n

which is called the “right Riemann sum approximation to SZ f(x)dx with n
subintervals”. The word “right” signifies that, on each subinterval [x; 1, x;]
we approximate f by its value at the right-hand end—point, x; = a + i b%“,
of the subinterval.

¢ A third commonly used approximation is

Br(eravate) 1yt

which is called the “midpoint Riemann sum approximation to Ss f(x)dx
with 7 subintervals”. The word “midpoint” signifies that, on each subin-
terval [x;_1, x;] we approximate f by its value at the midpoint, xl%“ =

a+ (i —1/2)%4, of the subinterval.

J

In order to compute a definite integral using Riemann sums we need to be able to
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compute the limit of the sum as the number of summands goes to infinity. This approach is
not always feasible and we will soon arrive at other means of computing definite integrals
based on antiderivatives. However, Riemann sums also provide us with a good means of
approximating definite integrals — if we take n to be a large, but finite, integer, then the
corresponding Riemann sum can be a good approximation of the definite integral. Under
certain circumstances this can be strengthened to give rigorous bounds on the integral.
Let us revisit Example 3.1.1.

I—[Example 3.1.11}

Let’s say we are again interested in the integral Sé e*dx. We can follow the same procedure
as we used previously to construct Riemann sum approximations. However since the in-
tegrand f(x) = e* is an increasing function, we can make our approximations into upper
and lower bounds without much extra work.

More precisely, we approximate f(x) on each subinterval x;_; < x < x;

* by its smallest value on the subinterval, namely f(x;_;), when we compute the left
Riemann sum approximation and

e by its largest value on the subinterval, namely f(x;), when we compute the right
Riemann sum approximation.

This is illustrated in the two figures below. The shaded region in the left hand figure is
the left Riemann sum approximation and the shaded region in the right hand figure is the
right Riemann sum approximation.

~N

3=
3o
313
3N
313

3=

. J

We can see that exactly because f(x) is increasing, the left Riemann sum describes an area
smaller than the definite integral while the right Riemann sum gives an area larger'* than
the integral.

When we approximate the integral Sé e*dx using n subintervals, then, on interval num-
ber i,

® x runs from % to % and

14 When a function is decreasing the situation is reversed — the left Riemann sum is always larger than the
integral while the right Riemann sum is smaller than the integral. For more general functions that both
increase and decrease it is perhaps easiest to study each increasing (or decreasing) interval separately.
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* y = ¢* runs from e"U/" when x is at the left hand end point of the interval, to el
when x is at the right hand end point of the interval.

Consequently, the left Riemann sum approximation to S(l) e¥dx is S, e/ "% and the
right Riemann sum approximation is Y7, e/ - % So

1y, 1 1 L |
Z e(z— n < f *dx < Z ez/n L
: n 0 P n

Thus L, = 3", e /" 1 which for any n can be evaluated by computer, is a lower bound
on the exact value of Sé e*dxand R, = Y1 e/ %, which for any n can also be evaluated by
computer, is an upper bound on the exact value of Sé e*dx. For example, when n = 1000,

L, = 1.7174 and R, = 1.7191 (both to four decimal places) so that, again to four decimal
places,

1

1.7174 < J e*dx < 1.7191
0

t Recall that the exact valueise —1 = 1.718281828....

[Example E’>.1.11]—I

So far, we have only a single interpretation'® for definite integrals — namely areas
under graphs. In the following example, we develop a second interpretation.

I—[Example 3.1.12 (Another Interpretation for Definite Integrals)} l
Suppose that a particle is moving along the x—axis and suppose that at time ¢ its velocity is
v(t) (with v(t) > 0 indicating rightward motion and v(t) < 0 indicating leftward motion).
What is the change in its x—coordinate between time a2 and time b > a?

We’ll work this out using a procedure similar to our definition of the integral. First
pick a natural number n and divide the time interval from a to b into n equal subintervals,
each of width bn;”. We are working our way towards a Riemann sum (as we have done
several times above) and so we will eventually take the limit n — .

e The first time interval runs from a to a + bn;”. If we think of 1 as some large number,
the width of this interval, % is very small and over this time interval, the velocity
does not change very much. Hence we can approximate the velocity over the first
subinterval as being essentially constant at its value at the start of the time interval —
v(a). Over the subinterval the x-coordinate changes by velocity times time, namely
v(a) 1,

e Similarly, the second interval runs from time a + %2 to time a + 2%, Again, we
can assume that the velocity does not change very much and so we can approximate
the velocity as being essentially constant at its value at the start of the subinterval

15 If this were the only interpretation then integrals would be a nice mathematical curiosity and unlikely l
to be the core topic of a large first year mathematics course.
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— namely v (a + %) . So during the second subinterval the particle’s x—coordinate

b—a
.

changes by approximately v (a + bn;”>

e In general, time subinterval number i runs froma + (i — 1) % toa+i b%“ and during
this subinterval the particle’s x—coordinate changes, essentially, by

v(a+(i—1)b_a)b_a.

n n

So the net change in x—coordinate from time a to time b is approximately

b—
n

v(a)

b—a) b—a

° b—a)b—a+

a—f—v(a—l— +-~~+v<a+(i—1) ”

b—a> b—a

—l—v(a—i—(n—l) ”

:iv(a—l—(i—l)b;a) b;”
i=1

This exactly the left Riemann sum approximation to the integral of v from a to b with
n subintervals. The limit as n — o0 is exactly the definite integral Ss v(t)dt. Following
tradition, we have called the (dummy) integration variable t rather than x to remind us
that it is time that is running from a to b.

The conclusion of the above discussion is that if a particle is moving along the x—axis
and its x—coordinate and velocity at time f are x(t) and v(t), respectively, then, for all
b>a,

b

x(b) —x(a) = J v(t)dt.

a

t [Example 3.1.12 }—]

3.1.3 » Using Known Areas to Evaluate Integrals

One of the main aims of this course is to build up general machinery for computing def-
inite integrals (as well as interpreting and applying them). We shall start on this soon,
but not quite yet. We have already seen one concrete, if laborious, method for computing
definite integrals — taking limits of Riemann sums as we did in Example 3.1.1. A second
method, which will work for some special integrands, works by interpreting the definite
integral as “signed area”. This approach will work nicely when the area under the curve
decomposes into simple geometric shapes like triangles, rectangles and circles. Here are
some examples of this second method.

)
I—[Example 3'1'13J l

The integral Ss 1dx (which is also written as just Sg dx) is the area of the shaded rectangle
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(of width b — a and height 1) in the figure on the right below. So

Y

b 1
de:(b—a)x(l):b—a

} )

[ [Example 3.1.13 }—]
1
I—LExample 3'1'14J l

Let b > 0. The integral Sg xdx is the area of the shaded triangle (of base b and of height b)
in the figure on the right below. So

Y y=2x

b 2
1 b
Lde—EbXb—?

[')$

The integral gﬂb xdx is the signed area of the shaded triangle (again of base b and of height
b) in the figure on the right below. So

0 b2
Jb xdx = 5

t [Example 3.1.14 }—]

Notice that it is very easy to extend this example to the integral Sg cxdx for any real num-
bers b, ¢ > 0 and find

b ¢,
chdxzzb.

)
I—[Example 3'1'15J l

In this example, we shall evaluate Sl_l (1 — |x|) dx. Recall that
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so that

1 x| = 1+x ifx
Cl1—x ifx

To picture the geometric figure whose area the integral represents observe that

* at the left hand end of the domain of integration x = —1 and the integrand 1 — |x| =
1-|-1=1-1=0and

* as x increases from —1 towards 0, the integrand 1 — |x| = 1 + x increases linearly,
until

* when x hits 0 the integrand hits 1 — |[x| = 1 — |0] = 1 and then

* as x increases from 0, the integrand 1 — |x| = 1 — x decreases linearly, until

* when x hits +1, the right hand end of the domain of integration, the integrand hits
1—-|x|=1-[1=0.

So the integral 5171 (1 — |x|) dx is the area of the shaded triangle (of base 2 and of height 1)
in the figure on the right below and

! 1
J (I—|x)dx = = x2x1=1
» 2

1 1 *

\ (Example 3.1.15 ]
)
I—[Example 3.1.16J l

The integral S(ll V1 — x2dx has integrand f(x) = V1 — x2. So it represents the area under
y = V1 — x2 with x running from 0 to 1. But we may rewrite

y=+1-—x2 as 2+ =1y=0

But this is the (implicit) equation for a circle — the extra condition that y > 0 makes it
the equation for the semi-circle centred at the origin with radius 1 lying on and above the
x-axis. Thus the integral represents the area of the quarter circle of radius 1, as shown in
the figure on the right below. So

1
f V1—x2dx = }Ln(l)2 = %
0

—
8
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t [Example 3.1.16 }—]

This next one is a little trickier and relies on us knowing the symmetries of the sine
function.

)
I—[Example 3'1'17j l

The integral {” _sin xdx is the signed area of the shaded region in the figure on the right
below. It naturally splits into two regions, one on either side of the y-axis. We don’t know
the formula for the area of either of these regions (yet), however the two regions are very
nearly the same. In fact, the part of the shaded region below the x—axis is exactly the re-
flection, in the x—axis, of the part of the shaded region above the x—axis. So the signed area
of part of the shaded region below the x—axis is the negative of the signed area of part of
the shaded region above the x—axis and

Y
14
7T
f sinxdx =0 —
7 - ™
—1-

t [Example 3.1.17]—I

3.1.4 » (Optional) Surplus

In Section 2.6, we saw demand curves that depended on a consumer’s income, their pref-
erences (utility function), and the prices of goods. Now let’s use a simplified demand
curve: D(q) is the per-unit price at which a consumer will purchase a quantity g of a
good!®. Rather than think about individuals’ varying utility functions and income, the
demand curve imagines a hypothetical “average” consumer.

Similarly, we can make a supply curve S(g) giving the per-unit price at which a sup-
plier is willing to sell g units.

In simple examples, D(gq) has a negative slope (since, to be motivated to buy a higher
quantity, the consumer demands a lower price) and S(g) has a positive slope (since, to be
motivated to sell a higher quantity, the supplier demands a higher price). The quantity
and price where the two curves meet are called the equilibrium quantity and equilibrium
price, respectively, and are denoted g, resp. p.. In theory, suppliers would aim to sell g,

[
16 The more natural way of thinking about this is reversed: given the price, how much quantity will the l
consumer purchase. But formulating the relationship where price is a function of quantity (rather than
the other way around) is standard practice in economics texts, so we follow it here.
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products at a unit price of p,. (If they make more goods, to sell them all they’d have to
charge less than they are willing to accept. If they make fewer goods, they will not meet
consumer demand.)

Price p

Pe

D(q)
Quantity ¢

The consumer would have been happy to buy their first good at the price D(1). We can
say then that the first good a value of D(1) for the consumer. If they paid a lower price pe,
then the number D(1) — p, is a surplus to the consumer: they gained D(1) units of value
by paying only p. units of value. This surplus can be visualized as the shaded area below.

Price p
5(q)
D(1)
Pe
D(q)
x .
1 ge Quantity ¢

Similarly, the consumer would have been happy to buy their second good at the unit
price D(2). If they paid a smaller price p,, then their surplus from that second good is
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D(2) — pe: its value to them, minus what they actually paid. Their combined surplus after
buying two goods can be visualized as the shaded rectangles below.

Price p

Pe

D(q)
1 2 ge Quantity ¢q

All together, we expect the consumer to buy g, units. Their total surplus is represented
by the shaded rectangles below.

Price p

Pe

D(q)
Quantity ¢

This motivates the definition of consumer surplus. Producer surplus behaves similarly.

138



INTEGRATION 3.1 DEFINITION OF THE INTEGRAL

~(Definition3.1.18., )

Consider a supply curve S(g) and a demand curve D(gq) with intersection point
(Ge, Pe), graphed on the (g, p)-plane. The consumer surplus is the area from g = 0
to g = g, under D(q) and above the line p = p,. The producer surplus is the area
from g = 0 to g = g, over S(q) and under the line p = p,. The total surplus is the
sum of consumer surplus and producer surplus.

Price p

Pe

D(q)
Quantity ¢

Given a sale of g, items at unit price p,, we think of the consumer surplus as the net
benefit to the consumer, and the producer surplus as the net benefit to the producer. To
calculate these, we need a little geometric intuition. The consumer surplus is the area
§o’ D(gq) dg minus the area of the rectangle with width g, and height p,. So, the consumer
surplus is

e
C= L D(q)dq — peqe

Similarly, the consumer surplus is the area of the rectangle with width g, and height
pe, minus the area {{° S(q) dg. So, the producer surplus is

e
P = peqe _f() S(q)dq

Finally, the total surplus is the value gained by everybody, producers and consumers

combined:
e

e
T:C—l—P:f D(q)dg — S(g)dq
0 0
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3.24 Basic Properties of the Definite Integral

When we studied limits and derivatives, we developed methods for taking limits or
derivatives of “complicated functions” like f(x) = x? + sin(x) by understanding how
limits and derivatives interact with basic arithmetic operations like addition and subtrac-
tion. This allowed us to reduce the problem into one of computing derivatives of simpler
functions like x? and sin(x). Along the way we established simple rules such as

. . . d df dg
lim(£(x) +g(x)) = lim f(x) + limg(x) and  $-(f(x) +g(x)) = L+
Some of these rules have very natural analogues for integrals and we discuss them below.
Unfortunately the analogous rules for integrals of products of functions or integrals of
compositions of functions are more complicated than those for limits or derivatives. We
discuss those rules at length in subsequent sections. For now let us consider some of the
simpler rules of the arithmetic of integrals.

— Theorem3.2.1 (Arithmetic of Integration).

~
Leta,band A, B, C be real numbers. Let the functions f(x) and g(x) be integrable
on an interval that contains a and b. Then
b b b
@ |t +etnas = [ fxax+ [ g
a a a
b b b
®) | ) —genax = [ feax— | goax
a a a
b b
() f Cf(x)dx =C J f(x)dx
a a
Combining these three rules we have
b b b
(d) f (Af(x) + Bg(x))dx = AJ f(x)dx + Bf g(x)dx
a a a
That is, integrals depend linearly on the integrand.
b b
(e) dezfl-dx:b—a
a a
- J

It is not too hard to prove this result from the definition of the definite integral. Addi-
tionally we only really need to prove (d) and (e) since

* (a) follows from (d) by setting A = B =1,
¢ (b) follows from (d) by setting A =1,B = —1, and
¢ (c) follows from (d) by setting A = C, B = 0.
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Proof. As noted above, it suffices for us to prove (d) and (e). Since (e) is easier, we will
start with that. It is also a good warm-up for (d).

* The definite integral in (e), SZ 1dx, can be interpreted geometrically as the area of the
rectangle with height 1 running from x = a to x = b; this area is clearly b —a. We
can also prove this formula from the definition of the integral (Definition 3.1.8):

b %, .. b-a L

L dx = lim 1; f(xi,) — by definition
~ fim 31221 ince f(x) = 1
= nl_r)rolog " since f(x) =

n

= 1111_1%10 (b—a) 1; - since a, b are constants
= fim (b—a)
=b—a

as required.

e To prove (d) let us start by defining h(x) = Af(x) + Bg(x) and then we need to
express the integral of /i(x) in terms of those of f(x) and g(x). We use Definition 3.1.8
and some algebraic manipulations'” to arrive at the result.

b n —
J h(x)dx = Y h(xf,)- b - a by Definition 3.1.8
a =1
ln .
= 3 (Af(t) + Bgx,) -
i=1
< «\ b—a . —a
= Z Af(xi,n) ' + Bg(xzn) "
i=1
= iAf(x’-“)-b_a + Zn:B (xf")-b;a by Theorem 3.1.5(b)
- P Ln n P 8 Ln n y et
=A Zn:f(x*)-b_a +B ” (x*)-b_a by Theorem 3.1.5(a)
- P in n P 8\ Xin n y b
b b
=A| f(x)dx+B | g(x)dx by Definition 3.1.8
a a

as required.
O

Using this Theorem we can integrate sums, differences and constant multiples of functions
we know how to integrate. For example:

17 Now is a good time to look back at Theorem 3.1.5.
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[—[Example 3.2.2} l

In Example 3.1.1 we saw that S(l) e*dx =e—1. So

Jl (ef+7)dx = Jl e“dx + 7[1 1dx
0 0 0
by Theorem 3.2.1(d) with A =1, f(x) =¢e*,B =7,g(x) =1
=(e—1)+7x(1-0)
by Example 3.1.1 and Theorem 3.2.1(e)

=e+6

t [Example 3.2.2 }—]

When we gave the formal definition of Ss f(x)dx in Definition 3.1.8 we explained that
the integral could be interpreted as the signed area between the curve y = f(x) and the
x-axis on the interval [, b]. In order for this interpretation to make sense we required that
a < b, and though we remarked that the integral makes sense when a > b we did not

explain any further. Thankfully there is an easy way to express the integral Ss f(x)dx in
terms of {; f(x)dx — making it always possible to write an integral so the lower limit of
integration is less than the upper limit of integration. Theorem 3.2.3, below, tell us that, for
example, S; efdx = — S; e*dx. The same theorem also provides us with two other simple
manipulations of the limits of integration.

— Theorem3.2.3 (Arithmetic for the Domain of Integration). ~

Let a, b, c be real numbers. Let the function f(x) be integrable on an interval that
contains a, b and c. Then

(a) | fdx =0
:a b
(b) fl)dx =~ |
Jfb c ’ b
(c) \Ja f(x)dx = L f(x)dx—kfc f(x)dx

- J

The proof of this statement is not too difficult.
Proof. Let us prove the statements in order.

¢ Consider the definition of the definite integral

[ e = pim 3 s 2

n
=1
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If we now substitute b = a in this expression we have

a—a
Lf( dx_nlgrolto zn' n
——
=0
:nlE}C}to zn ’
l 1H—/
= 1m0
n—>00
=0

as required.

¢ Consider now the definite integral Sb f(x)dx. We will sneak up on the proof by first
examining Riemann sum approx1mat10ns to both this and {; f(x)dx. The midpoint

Riemann sum approximation to Sa f (x)dx with 4 subintervals (so that each subinter-

val has width %) is
Vo2 5 (o 35 1 5+ P01 5

e e G B)Ge )

Now we do the same for Sb x)dx with 4 subintervals. Note that b is now the lower
limit on the integral and a is now the upper limit on the integral. This is likely to
cause confusion when we write out the Riemann sum, so we’ll temporarily rename

bto A and a to B. The midpoint Riemann sum approximation to Sﬁ f(x)dx with 4
subintervals is

Plas 35 3) +i(a+ 3550 i (4 3550 +r(as 550) | 2

{f@“ B) +f(3A+ B>+f(§A+§B)+f<%A+gB)}'¥

Now recalling that A = b and B = 4, we have that the midpoint Riemann sum
approximation to {; f(x)dx with 4 subintervals is

7, 1 5 3 3. 5 1.7 a—>b
{f(§b+§“> +(gb+g7) + (50 +57) +f(§b+§”>}' i
Thus we see that the Riemann sums for the two integrals are nearly identical — the

only difference being the factor of IQ%“ versus ”4;1’. Hence the two Riemann sums are
negatives of each other.

The same computation with n subintervals shows that the midpoint Riemann sum
approximations to {, f(x)dx and S f(x)dx with n subintervals are negatives of each
other. Taking the limit n — oo gives {; f(x)dx = — S f(x
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* Finally consider (c) — we will not give a formal proof of this, but instead will inter-
pret it geometrically. Indeed one can also interpret (a) geometrically. In both cases
these become statements about areas:

f: f(x)dx =0 and Lbf(x)dx = ch(x)dx + ff(x)dx

are
Area{ (x,y) [a<x<a, 0<y<f(x)}=0
and
Area{ (x,y) [a<x<b 0<y<f(x)}=Area{ (v,y)|a<x<c 0<y<f(x)}
+ Area{ (x,y) |[c<x<b 0<y<f(x)}

respectively. Both of these geometric statements are intuitively obvious. See the
tigures below.

-

Note that we have assumed that a < ¢ < b and that f(x) > 0. One can remove these
restrictions and also make the proof more formal, but it becomes quite tedious and
less intuitive.

O

I—[Example 3.2.4}

Back in Example 3.1.14 we saw that when b > 0 Sg xdx = 7. We'll now verify that

Sg xdx = % is still true when b = 0 and also when b < 0.

. . 2
e First consider b = 0. Then the statement Sg xdx = % becomes

0
fxdxzo
0

This is an immediate consequence of Theorem 3.2.3(a).
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¢ Now consider b < 0. Let us write B = —b, so that B > 0. In Example 3.1.14 we saw
that
0 2
xdx = ——
J—B 2
So we have
b -B 0
f xdx = J xdx = —J xdx by Theorem 3.2.3(b)
0 0 ~B —
BZ
= — (—?> by Example 3.1.14
B> b?

We have now shown that

b b2
J xdx = > for all real numbers b
0

[Example 3.2.4]—I
T
I—[Example 3.2.5 ] l

Applying Theorem 3.2.3 yet again, we have, for all real numbers 4 and b,

b 0 b
J xdx = J xdx + J xdx by Theorem 3.2.3(c) with c = 0

0

a llb p
= f xdx — j xdx by Theorem 3.2.3(b)

0 0

b2 . aZ

-— by Example 3.2.4, twice

We can also understand this result geometrically.

7 ;
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¢ (left) When 0 < a < b, the integral represents the area in green which is the difference
of two right-angle triangles — the larger with area b?/2 and the smaller with area
a%/2.

* (centre) When a < 0 < b, the integral represents the signed area of the two displayed
triangles. The one above the axis has area b?/2 while the one below has area —a?/2
(since it is below the axis).

¢ (right) When a < b < 0, the integral represents the signed area in purple of the
difference between the two triangles — the larger with area —a?/2 and the smaller
with area —b2/2.

t [Example 3.2.5 }—]

Theorem 3.2.3(c) shows us how we can split an integral over a larger interval into one
over two (or more) smaller intervals. This is particularly useful for dealing with piece-
wise functions, like |x|.

[—LExample 3.2.6} l

Using Theorem 3.2.3, we can readily evaluate integrals involving |x|. First, recall that

X ifx>0
x| =

—x ifx<0

Now consider (for example) Siz |x|dx. Since the integrand changes at x = 0, it makes
sense to split the interval of integration at that point:

3 0 3
J |x|dx = J |x|dx + J |x|dx by Theorem 3.2.3
-2 -2 0
0 3
= J (—x)dx + f xdx by definition of |x|
-2 0
0 3
= J xdx + J xdx by Theorem 3.2.1(c)
—2 0

= —(=22/2)+(3%/2) = (44 9)/2
=13/2

We can go further still — given a function f(x) we can rewrite the integral of f(]x|) in
terms of the integral of f(x) and f(—x).

1
0

= Jol f(—x)dx + Ll f(x)dx

f_llf(lxl)dx:f_olf(|x|)dx+J F(lx])dx

146



INTEGRATION 3.2 BASIC PROPERTIES OF THE DEFINITE INTEGRAL

t [Example 3.2.6 }—]

Here is a more concrete example.

)
I—[Example 327 ] l

Let us compute 51_1 (1 — |x|)dx again. In Example 3.1.15 we evaluated this integral by in-
terpreting it as the area of a triangle. This time we are going to use only the properties
given in Theorems 3.2.1 and 3.2.3 and the facts that

b b 2 2
fdx:b—a and dex:b 4
a 2

a

That Ss dx = b—ais part (e) of Theorem 3.2.1. We saw that Ss xdx = bzgaz in Example 3.2.5.
First we are going to get rid of the absolute value signs by splitting the interval over
which we integrate. Recalling that |x| = x whenever x > 0 and |x| = —x whenever x <0,

we split the interval by Theorem 3.2.3(c),

1

(1— |x])dx +f0 (1— |x])dx

r0

J-1

Jll (1—|x|)dx =
= (" (1—(—x))dx + Jl (1—x)dx

J-1 0

0 1

= (1+x)dx+J (1-x)dx
J-1 0

Now we apply parts (a) and (b) of Theorem 3.2.1, and then

1 0 0 1 1
f [1—|x|}dx:J 1dx—|—J xdx—i—f 1dx—f xdx
-1 -1 -1 0 0

02_(_1)2 12_02
2 00

t [Example 3.2.7]—I

3.2.1 » More Properties of Integration: Even and Odd Functions

RecallE the following definition

®
18 We haven'’t done this in this course, but you should have seen it in your differential calculus course or l

perhaps even earlier.
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~(Definition3.28.) )

Let f(x) be a function. Then,

e we say that f(x) is even when f(x) = f(—x) for all x, and

e we say that f(x) is odd when f(x) = —f(—x) for all x.
- J

Of course most functions are neither even nor odd, but many of the standard functions
you know are.

I—LExample 3.2.9 (Even functions)} )

 Three examples of even functions are f(x) = |x|, f(x) = cosx and f(x) = x2.

fact, if f(x) is any even power of x, then f(x) is an even function.

In

* The part of the graph y = f(x) with x < 0, may be constructed by drawing the part
of the graph with x > 0 (as in the figure on the left below) and then reflecting it in
the y—axis (as in the figure on the right below).

NN
REANIVARNE

e In particular, if f(x) is an even function and a > 0, then the two sets

{(xy)|0<
{(xy)|—a

are reflections of each other in the y—axis and so have the same signed area. That is

< aand y is between 0 and f(x) }

X
< x < 0and y is between 0 and f(x) }

[ reax = " Fx)ds
0 —a

t [Example 3.29 }—]

I—[Example 3.2.10 (Odd functions)} )
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* Three examples of odd functions are f(x) = sinx, f(x) = tanx and f(x) = x°. In
fact, if f(x) is any odd power of x, then f(x) is an odd function.

e The part of the graph y = f(x) with x < 0, may be constructed by drawing the part
of the graph with x > 0 (like the solid line in the figure on the left below) and then
reflecting it in the y—axis (like the dashed line in the figure on the left below) and
then reflecting the result in the x—axis (i.e. flipping it upside down, like in the figure

on the right, below).
\
Y Y
1 1
I : I I
—T 7T —T ™
—1 —1-
- J

e In particular, if f(x) is an odd function and a > 0, then the signed areas of the two
sets

{ (x,y) |0 < x <aandyisbetween0and f(x) }
{ (x,y) | —a < x <0andyisbetween 0 and f(x) }

are negatives of each other — to get from the first set to the second set, you flip it
upside down, in addition to reflecting it in the x—axis. That is

a 0
fo flde == [ flr)dx

[Example 3.2.10]—I

We can exploit the symmetries noted in the examples above, namely

J:f(x)dx = Jl f(x)dx for f even
f:f(x)dx =— Joaf(x)dx for f odd

together with Theorem 3.2.3

[ - _Oaf(X)der [ ras

in order to simplify the integration of even and odd functions over intervals of the form
[—a,a].
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— Theorem3.2.11 (Even and Odd). ~N

Leta > 0.

(a) If f(x) is an even function, then
a a
f(x)dx = ZJ f(x)dx
—a 0
(b) If f(x) is an odd function, then

Jaaf(x)dx =0

- J

Proof. For any function

a a 0
| Fx)dx = L flde+ [ flx)ds

When f is even, the two terms on the right hand side are equal. When f is odd, the two
terms on the right hand side are negatives of each other. O
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3.2.2 » More Properties of Integration: Inequalities for Integrals

We are still unable to integrate many functions, however with a little work we can infer
bounds on integrals from bounds on their integrands.

— Theorem3.2.12 (Inequalities for Integrals). ~

Let 2 < b be real numbers and let the functions f(x) and g(x) be integrable on
the interval 2 < x < b.

(@) If f(x) = 0foralla < x <D, then

be(x)dx >0

(b) If there are constants m and M such that m < f(x) < M foralla < x <D,
then

(d) We have

[ s < [ 0osa

- J

Proof. (a) By interpreting the integral as the signed area, this statement simply says that if
the curve y = f(x) lies above the x—axis and a < b, then the signed area of { (x,y) | a <
x <b, 0 <y < f(x) } is at least zero. This is quite clear. Alternatively, we could argue
more algebraically from Definition 3.1.8. We observe that when we define Ss f(x)dx
via Riemann sums, every summand,f—(xi*,n) b%” > 0. Thus the whole sum is nonnega-
tive and consequently, so is the limit, and thus so is the integral.

(b) We can argue this from (a) with a little massaging. Let ¢(x) = M — f(x), then since
f(x) < M, wehave g(x) = M — f(x) > 0so that

Lb (M~ f(x))dx = ng(x)dx >0,
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(©)

(d)

but we also have

Lb (M= f(x))dx = Lb Mdx — Lbf(x)dx
— M(b—a) —Lbf(x)dx

Thus

M(b—a)— (x)dx =0 rearrange

as required. The argument showing SZ f(x)dx = m(b — a) is similar.

lt\}IlolN let h(x) = g(x) — f(x). Since f(x) < g(x), we have h(x) = g(x) — f(x) = 0so

Lb (8(x) = f(x))dx = Lbh(X)dx 0

But we also have that

Lb (g(x) = f(x))dx = Lb g(x)dx — Lbf(x)dx

Thus

b b
J g(x)dx —f f(x)dx =0 rearrange
a a

Lb g(x)dx = Lbf(x)dx

as required.

For any x, |f(x)]| is either f(x) or —f(x) (depending on whether f(x) is positive or
negative), so we certainly have

f(x) < [f(x)] and —f(x) < |f(%)]
Applying part (c) to each of those inequalities gives
b b b b
L Flx)dx < f f(x)[dx and _ f Flx)dx <L f(x)|dx

Now | SZ f(x)dx| is either equal to Sz f(x)dxor — Ss f(x)dx (depending on whether the
integral is positive or negative). In either case we can apply the above two inequalities
to get the same result, namely

| ' Fl)dx] < | o)l
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I—[Example 3.2.13 (Sg/S deﬂ 1

Consider the integral

n/3
J \/cos xdx

0

This is not so easy to compute exactly'®, but we can bound it quite quickly.
For x between 0 and 7, the function cos x takes values?’ between 1 and % Thus the

function 4/cos x takes values between 1 and Lz That is

V2
ié cosx <1 for0 < x < =
V2 3
Consequently, by Theorem E(b) witha =0,b= 3, m= \/Li and M =1,
T /3 T
32 < L v/cos xdx < 3

Plugging these expressions into a calculator gives us

/3
0.7404804898 < f y/cos xdx < 1.047197551
0

t [Example 3.2.13 }—]

3.34 The Fundamental Theorem of Calculus

We have spent quite a few pages (and lectures) talking about definite integrals, what
they are (Definition 3.1.8), when they exist (Theorem 3.1.9), how to compute some spe-
cial cases (Section 3.1.3), some ways to manipulate them (Theorem 3.2.1 and 3.2.3) and
how to bound them (Theorem 3.2.12). Conspicuously missing from all of this has been a
discussion of how to compute them in general. It is high time we rectified that.

The single most important tool used to evaluate integrals is called “the Fundamental
Theorem of Calculus”. Its grand name is justified — it links the two branches of calculus
by connecting derivatives to integrals. In so doing it also tells us how to compute integrals.
Very roughly speaking the derivative of an integral is the original function. This fact
allows us to compute integrals using antiderivatives?!. Of course “very rough” is not
enough — let’s be precise.

[
19 Itis not too hard to use Riemann sums and a computer to evaluate it numerically: 0.948025319.. .. l
20 You know the graphs of sine and cosine, so you should be able to work this out without too much
difficulty.
21 You learned these near the end of your differential calculus course. Now is a good time to revise — but
we’ll go over them here since they are so important in what follows.
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— Theorem3.3.1 (Fundamental Theorem of Calculus). ~N

Leta < b and let f(x) be a function which is defined and continuous on [a, b].

X

Part 1: Let F(x) = J f(t)dt for any x in the interval [a,b]. Then the function
F(x)is differentiable and further

Part 2: Let G(x) be any function which is defined and continuous on [a, b]. Fur-
ther let G(x) be differentiable with G'(x) = f(x) foralla < x < b. Then

b b
L f(x)dx = G(b) — G(a) or equivalently L G'(x)dx = G(b) — G(a)

- J

Before we prove this theorem and look at a bunch of examples of its application, it
is important that we recall one definition from differential calculus — antiderivatives. If
F'(x) = f(x) on some interval, then F(x) is called an antiderivative of f(x) on that inter-
val. So Part 2 of the Fundamental Theorem of Calculus tells us how to evaluate the definite
integral of f(x) in terms of any of its antiderivatives — if G(x) is any antiderivative of f(x)
then

b
| £t = 60) - Gla)

The form Sz G'(x)dx = G(b) — G(a) of the Fundamental Theorem relates the rate of
change of G(x) over the interval 4 < x < b to the net change of G between x = a and
x = b. For that reason, it is sometimes called the “net change theorem”.

We'll start with a simple example. Then we’ll see why the Fundamental Theorem is
true and then we’ll do many more, and more involved, examples.

I—[Example 3.3.2 (A first example)}

Consider the integral Si’ xdx which we have explored previously in Example 3.2.5.

e The integrand is f(x) = x.

e We can readily verify that G(x) = %2 satisfies G'(x) = f(x) and so is an antideriva-
tive of the integrand.

e Part 2 of Theorem 3.3.1 then tells us that
b
| Foar=60) - 6@
a

b b2 aZ
dv =~ - %
Lxx I

which is precisely the result we obtained (with more work) in Example 3.2.5.
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[Example 3.3.2]—I

We do not give completely rigorous proofs of the two parts of the theorem — that is
not really needed for this course. We just give the main ideas of the proofs so that you can
understand why the theorem is true.

Part 1. We wish to show that if
X
F(x) = J F(H)dt then F(x) = f(x)
a

e Assume that F is the above integral and then consider F’'(x). By definition

F(x) = }112% F(x+h})l — F(x)

e To understand this limit, we interpret the terms F(x), F(x + h) as signed areas. To
simplify this further, let’s only consider the case that f is always nonnegative and
that i > 0. These restrictions are not hard to remove, but the proof ideas are a bit
cleaner if we keep them in place. Then we have

F(x 4 h) = the area of the region { (f,
F(x) = the area of the region { (¢,

t<x+h,
F<x

NN
V/ANV/AN

y)|a
y)|a ,
¢ Then the numerator

F(x +h) — F(x) = the area of theregion { (t,y) |x <t <x+h 0<y < f(t) }

This is just the more darkly shaded region in the figure

a T T+ h
\\§ J

¢ We will be taking the limit # — 0. So suppose that & is very small. Then, as f runs
from x to x = h, f(t) runs only over a very narrow range of values®?, all close to

f(x).
e So the darkly shaded region is almost a rectangle of width & and height f(x) and so
has an area which is very close to f(x)h. Thus w is very close to f(x).

L
22 Notice that if f were discontinuous, then this might be false. l
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e In the limit & — 0, w becomes exactly f(x), which is precisely what we
want.

]

We can make the above more rigorous using the Mean Value Theorem?3.

Part 2. We want to show that Ss f(t)dt = G(b) — G(a). To do this we exploit the fact that
the derivative of a constant is zero.

e Let
H@yifﬂwm—qm+cw)

Then the result we wish to prove is that H(b) = 0. We will do this by showing that
H(x) = 0 for all x between a and b.

» We first show that H(x) is constant by computing its derivative:

H(x) = 5 [ f0d— £ (6(0) + 5 (6la)

Since G(a) is a constant, its derivative is 0 and by assumption the derivative of G(x)
isjust f(x), so

d X
= — t)dt —
& | rod- s
Now Part 1 of the theorem tells us that this derivative is just f(x), so

=f(x) - f(x)=0
Hence H is constant.

* To determine which constant we just compute H(a):
a
mwszmm_qw+cw
a

a

= J f(t)dt by Theorem 3.2.3(a)
a

=0

as required.

23 The MVT tells us that there is a number ¢ between x and x + & so that
x+h)—F(x) F(x+h)—F(x)
(x+h)—x h

But since F/(x) = f(x), this tells us that

F(x+h)—F(x)
Fot W 2D _ pe)

where c is trapped between x + h and x. Now when we take the limit as 1 — 0 we have that this number
c is squeezed to x and the result follows.

Fle)= &
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]

The simple example we did above (Example 3.3.2), demonstrates the application of
part 2 of the Fundamental Theorem of Calculus. Before we do more examples (and there
will be many more over the coming sections) we should do some examples illustrating
the use of part 1 of the fundamental theorem of calculus. Then we’ll move on to part 2.

I—{Example 3.3.3 (% SS tdt)} l

Consider the integral {; t df. We know how to evaluate this — it is just Example 3.3.2 with
a =0,b = x. So we have two ways to compute the derivative. We can evaluate the in-
tegral and then take the derivative, or we can apply Part 1 of the Fundamental Theorem.
We’ll do both, and check that the two answers are the same.

First, Example 3.3.2 gives

X xZ
F(x) _L ="

So of course F'(x) = x. Second, Part 1 of the Fundamental Theorem of calculus tells us that
the derivative of F(x) is just the integrand. That is, Part 1 of the Fundamental Theorem of
Calculus also gives F'(x) = x.

t [Example 3.3.3 }—]

In the previous example we were able to evaluate the integral explicitly, so we did not
need the Fundamental Theorem to determine its derivative. Here is an example that really
does require the use of the Fundamental Theorem.

I—[Example 3.34 <% getzdtﬂ l

We would like to find % 5o e~ dt. In the previous example, we were able to compute the
corresponding derivative in two ways — we could explicitly compute the integral and
then differentiate the result, or we could apply part 1 of the Fundamental Theorem of cal-
culus. In this example we do not know the integral explicitly. Indeed it is not possible

to express® the integral ) e~’dt as a finite combination of standard functions such as
polynomials, exponentials, trigonometric functions and so on.

Despite this, we can find its derivative by just applying the first part of the Fundamen-

[
24 Theintegral {; e~dtis closely related to the “error function” which is an extremely important function l
in mathematics. While we cannot express this integral (or the error function) as a finite combination of
polynomials, exponentials etc, we can express it as an infinite series

7 9 x2k+1

J"e-tzdt_x_xggxf’_x+x+...+(_1)+...
7 3.1 5.2 7.3 9.4 (2k +1) - k!

0

But more on this in Chapter 5.
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tal Theorem of Calculus with f(t) = e~** and a = 0. That gives

d (* _p d (*

=fx)=e™

t [Example E’>.3.4]—I

Let us ratchet up the complexity of the previous example — we can make the limits
of the integral more complicated functions. So consider the previous example with the
upper limit x replaced by x?:

I—[Example 3.35 (% SSZ €t2dt>J 1

Consider the integral ng e~ dt. We would like to compute its derivative with respect to x
using part 1 of the fundamental theorem of calculus.

The Fundamental Theorem tells us how to compute the derivative of functions of the
form § f(t)dt but the integral at hand is not of the specified form because the upper limit
we have is x2, rather than x, — so more care is required. Thankfully we can deal with this
obstacle with only a little extra work. The trick is to define an auxiliary function by simply
changing the upper limit to x. That is, define

E(x) = Jx et dt

0
Then the integral we want to work with is
2

x 2
E(x?) = J e~ dt

0

The derivative E’(x) can be found via part 1 of the Fundamental Theorem of calculus (as

we did in Example 3.3.4) and is E'(x) = e~*". We can then use this fact with the chain rule
to compute the derivative we need:

2

d x 7t2 d 2 .
af e dt = aE(x ) use the chain rule
0
= 2xE'(x?)
— 2xe™

t [Example 3.3.5]—I

What if both limits of integration are functions of x? We can still make this work, but
we have to split the integral using Theorem 3.2.3.
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I—[Example 3.3.6 (% S;CZ €_t2dt>} l

Consider the integral

2
X
f e_tzdt
X

As was the case in the previous example, we have to do a little pre-processing before we
can apply the Fundamental Theorem.

This time (by design), not only is the upper limit of integration x? rather than x, but the
lower limit of integration also depends on x — this is different from the integral § f(t)dt
in the Fundamental Theorem where the lower limit of integration is a constant.

Fortunately we can use the basic properties of integrals (Theorem 3.2.3(b) and (c)) to

2
split §; e~ dt into pieces whose derivatives we already know.

2 2

x 2 0 2 * 2
J e dt = J e~ dt +J e~ Idt by Theorem 3.2.3(c)
x X 0

2

X X
- — f e dt + f e dt by Theorem 3.2.3(b)
0 0

With this pre-processing, both integrals are of the right form. Using what we have learned

in the previous two examples,
d 2 d Y op 2,
— dt=— | - —hdt Pt
de e " dt ir ( Jo e +L e
2

_d [* e d (v _p

— ¥ + 2xe~*"
t [Example 3.3.6 }—]

3.3.1 » Indefinite Integration

Before we start to work with part 2 of the Fundamental Theorem, we need a little termi-
nology and notation. First some terminology — you may have seen this definition in your
differential calculus course.

Let f(x) and F(x) be functions. If F/(x) = f(x) on an interval, then we say that
F(x) is an antiderivative of f(x) on that interval.
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As we saw above, an antiderivative of f(x) = xis F(x) = x?/2 — we can easily verify
this by differentiation. Notice that x2/2 + 3 is also an antiderivative of x, as is x2/2 + C
for any constant C. This observation gives us the following simple lemma.

— Lemma3.3.8.

Let f(x) be a function and let F(x) be an antiderivative of f(x). Then F(x) + C
is also an antiderivative for any constant C. Further, every antiderivative of f(x)
must be of this form.

&

Proof. There are two parts to the lemma and we prove each in turn.

e Let F(x) be an antiderivative of f(x) and let C be some constant. Then

d d d
T (F() +C) = - (F) + - (©)

= f(x)+0

since the derivative of a constant is zero, and by definition the derivative of F(x) is
just f(x). Thus F(x) 4 C is also an antiderivative of f(x).

e Now let F(x) and G(x) both be antiderivatives of f(x) — we will show that G(x) =
F(x) 4 C for some constant C. To do this let H(x) = G(x) — F(x). Then

d d d d
ToH(x) = 5 (G(x) — F(x)) = 5-G(x) — -F(x) = f(x) ~ f(x) =0

Since the derivative of H(x) is zero, H(x) must be a constant function®. Thus
H(x) = G(x) — F(x) = C for some constant C and the result follows.

Based on the above lemma we have the following definition.

25 This follows from the Mean Value Theorem. Say H(x) were not constant, then there would be two l
numbers a < b so that H(a) # H(b). Then the MVT tells us that there is a number ¢ between a and b so
that

H(b) — H(a)
H'(¢c) = —F—+—2.
() —
Since both numerator and denominator are non-zero, we know the derivative at ¢ is nonzero. But
this would contradict the assumption that derivative of H is zero. Hence we cannot have a < b with
H(a) # H(b) and so H(x) must be constant.

160



INTEGRATION 3.3 THE FUNDAMENTAL THEOREM OF CALCULUS

~(Definition3.3.9. )

The “indefinite integral of f(x)” is denoted by { f(x)dx and should be regarded
as the general antiderivative of f(x). In particular, if F(x) is an antiderivative of
f(x) then

where the C is an arbitrary constant. In this context, the constant C is also often
called a “constant of integration”.

- J

Now we just need a tiny bit more notation.

—[Notation3.3.10.] ~N

The symbol

| Fx)ax

a

denotes the change in an antiderivative of f(x) from x = a to x = b. More
precisely, let F(x) be any antiderivative of f(x). Then

b=Hmm=Hm—Hw

a

|

- J

Notice that this notation allows us to write part 2 of the Fundamental Theorem as

b
a

b
|| Fde = | fx)ax
a
b
= F(x), = F(b) — F(a)
Some texts also use an equivalent notation using square brackets:

b b
J f)dx = [F(x)] = F(b) ~ F(a).
a a
You should be familiar with both notations.

We’ll soon develop some strategies for computing more complicated integrals. But for
now, we'll try a few integrals that are simple enough that we can just guess the answer.
Of course, any antiderivative that we can guess we can also check — simply differentiate
the guess and verify you get back to the original function:

& [ rwar =
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We do these examples in some detail to help us become comfortable finding indefinite
integrals.

I—[Example 3.3.11}

Compute the definite integral S% xdx.

Solution. We have already seen, in Example 3.2.5, that S% xdx = # = % We shall now

rederive that result using the Fundamental Theorem of Calculus.

¢ The main difficulty in this approach is finding the indefinite integral (an antideriva-
tive) of x. That is, we need to find a function F(x) whose derivative is x. So think
back to all the derivatives you computed last term?® and try to remember a function
whose derivative was something like x. B

¢ This shouldn’t be too hard — we recall that the derivatives of polynomials are poly-
nomials. More precisely, we know that

d

n n—1
—X
dx

= nx

So if we want to end up with just x = x!

us

, we need to take n = 2. However this gives

d ,
— 2 =0
T X

¢ This is pretty close to what we want except for the factor of 2. Since this is a constant
we can just divide both sides by 2 to obtain:

1 d , 1 .

E.ax _E.Zx which becomes
d 2
dx 2

which is exactly what we need. It tells us that x?/2 is an antiderivative of x.

* Once one has an antiderivative, it is easy to compute the indefinite integral
1
dex = Exz +C

as well as the definite integral:

2 2
1
f xdx = Exz since x2/2 is the antiderivative of x
1 1
1 1 3
=-22_212="=
2 2 2

[

26 Of course, this assumes that you did your differential calculus course last term. If you did that course at l
a different time then please think back to that point in time. If it is long enough ago that you don’t quite
remember when it was, then you should probably do some revision of derivatives of simple functions
before proceeding further.
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t [Example 3.3.11]—I

While the previous example could be computed using signed areas, the following example
would be very difficult to compute without using the Fundamental Theorem of Calculus.

)
[—[Example 3'3'12J l

Compute Sg/ ?sin xdx.

Solution.

* Once again, the crux of the solution is guessing the antiderivative of sin x — that is
finding a function whose derivative is sin x.
¢ The standard derivative that comes closest to sin x is

d .
— Ccosx = —sinx
dx

which is the derivative we want, multiplied by a factor of —1.

¢ Just as we did in the previous example, we multiply this equation by a constant to
remove this unwanted factor:

(—1)- %cosx = (1) (—sinx) giving us

a(—cosx) =sinx

This tells us that — cos x is an antiderivative of sin x.

* Now it is straightforward to compute the integral:

/2
f sinxdx = — cos x|g/ 2 since — cos x is the antiderivative of sin x
0

T
= —cosE—i—cosO

=0+1=1

( [Example 3.3.12]—I

Solution.

* Once again, the crux of the solution is guessing a function whose derivative is %

Our standard way to differentiate powers of x, namely

— " =nx"" L

dx
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doesn’t work in this case — since it would require us to pick n = 0 and this would

give
d o d
ax = al =0
o Fortunately, we also know?’ that
d Inx = !
dx 7 «x

which is exactly the derivative we want.

¢ We’re now ready to compute the prescribed integral.

2
f ;dx =In x|% since In x is an antiderivative of 1/x
1
=In2-1Inl sinceln1 =0
=In2

[Example 3.3.13]—I

Solution.
¢ As we saw in the last example,

ilnx— 1
dx X

and if we naively use this here, then we will obtain

J_l Ldx = In(~1) — In(~2)

2 X
which makes no sense since the logarithm is only defined for positive numbers®.

* We can work around this problem using a slight variation of the logarithm — In |x|.

27  To align with what you probably saw in high school, we’ll use In x to denote the natural logarithm. l
This is unambiguous - In x is always the same as log, x.
On the other hand, the precise meaning of log x is not universal. The implied base may be 10 (com-
mon in chemistry and physics), e (common in math and computer languages like Java, C, Python, and
MATLAB), or 2 (common in computer science).

28 This is not entirely true — one can extend the definition of the logarithm to negative numbers, but to
do so one needs to understand complex numbers which is a topic beyond the scope of this course.
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— When x > 0, we know that |x| = x and so we have

In|x| =Inx differentiating gives us

iln|x\ = ilnx— 1
dx ~dx X

— When x < 0 we have that |[x| = —x and so

In |x| = In(—x) differentiating with the chain rule gives

d
aln|x| = —xln(—x)

- Indeed, more generally we should write the indefinite integral of 1/x as
1
J—dx =Inlx|+C
X

which is valid for all positive and negative x. It is, however, undefined at x = 0.

¢ We’re now ready to compute the prescribed integral.

-1
f Lax = x|
2 X

-1
since In |x| is an antiderivative of 1/x

-2
=In|-1-In|-2/=In1-1In2
= —-In2=1In1/2

[Example 3.3.14]—I

This next example raises a nasty issue that requires a little care. We know that the
function 1/x is not defined at x = 0 — so can we integrate over an interval that contains
x = 0 and still obtain an answer that makes sense? More generally can we integrate a
function over an interval on which that function has discontinuities?

Solution. Beware that this is a particularly nasty example, which illustrates a booby trap
hidden in the Fundamental Theorem of Calculus. The booby trap explodes when the
theorem is applied sloppily.

¢ The sloppy solution starts, as our previous examples have, by finding an antideriva-
tive of the integrand. In this case we know that
d1 1

dxx a2

1

which means that —x~1 is an antiderivative of x 2.
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* This suggests (if we proceed naively) that

1 1
1
J x2dx = 3 since —1/x is an antiderivative of 1/ x>
-1 -1
= (-5)
1 -1
= -2
Unfortunately,

¢ At this point we should really start to be concerned. This answer cannot be correct.
Our integrand, being a square, is positive everywhere. So our integral represents the
area of a region above the x—axis and must be positive.

* So what has gone wrong? The flaw in the computation is that the Fundamental
Theorem of calculus, which says that

if F/(x) = f(x) then f " Fx)dx = E(b) — F(a),

is only applicable when F’(x) exists and equals f(x) for all x between a and b.

e In this case F/(x) = 2 does not exist for x = 0. So we cannot apply the Fundamental
Theorem of Calculus as we tried to above.

An integral, like 5171 %dx, whose integrand is undefined somewhere in the domain of
integration is called improper. We’ll give a more thorough treatment of improper integrals
later in the text. For now, we’ll just say that the correct way to define (and evaluate)
improper integrals is as a limit of well-defined approximating integrals. We shall later see

that, not only is Sl_l %dx not negative, it is infinite.

[Example 3.3.15]—]

The above examples have illustrated how we can use the fundamental theorem of
calculus to convert knowledge of derivatives into knowledge of integrals. We are now in
a position to easily build a table of integrals. Here is a short table of the most important
derivatives that we know.

* | In|x| | arcsinx | arctan x

f(x)=F(x) | 0| nx"! | cosx | —sinx | sec?x | e* | 1 \/11_)(2 1+1x2

F(x) 1] x" |sinx | cosx | tanx |e

Of course we know other derivatives, such as those of sec x and cot x, however the ones
listed above are arguably the most important ones. From this table (with a very little
massaging) we can write down a short table of indefinite integrals.
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INTEGRATION
— Theorem3.3.16 (Important indefinite integrals). ~
f(x) F(x) = § f(x)dx

1 -

x" X" + C provided that n # —1
% In|x|+C
e* e*+C

sin x —cosx +C

Cos x sinx 4+ C

sec? x tanx + C

1 .

N arcsinx + C

7 —&xz arctanx 4 C
J

.

I—LExample 3.3.17}

Find the following integrals

(i) SZ e*dx
(i) §2, piydx
(iii) §3(2x% 4 7x —2)dx

Solution. We can proceed with each of these as before — find the antiderivative and then
apply the Fundamental Theorem. The third integral is a little more complicated, but we
can split it up into monomials using Theorem 3.2.1 and do each separately.
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(i) An antiderivative of e* is just e*, so

7
J e¥dx = ¢e*
2

7

2
= —e? =e*(e’ —1).

1

77,2 is arctan(x), so

(i) An antiderivative of

2

2
1
J—z T dx = arctan(x)

-2
= arctan(2) — arctan(—2)

We can simplify this a little further by noting that arctan(x) is an odd function, so
arctan(—2) = — arctan(2) and thus our integral is

= 2arctan(2)

(iii) We can proceed by splitting the integral using Theorem 3.2.1(d)

3

3 3 3
J (2x° +7x —2)dx = J 2x3dx —i—f 7xdx — J 2dx
0 0 0 0

3 3 3
:2J x3dx+7f xdx—ZJ dx
0 0 0

and because we know that x*/4,x%/2, x are antiderivatives of x3,x, 1 respectively,
this becomes

x4r [7x2r 3
=2 + 22—y
Bk
81 7.9
==+ "_6

2+ 2

81 +63—-12 132
= > = = 66.

We can also just find the antiderivative of the whole polynomial by finding the an-
tiderivatives of each term of the polynomial and then recombining them. This is
equivalent to what we have done above, but perhaps a little neater:

3

3 4 2
J (2x% +7x —2)dx = {x—+7i—2x]
0 2 2 0
1 7.
:87+—9—6:66.

[Example 3.3.17]—I
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3.3.2 » (Optional) Marginal Cost and Marginal Revenue

~(Definition3.3.18., )

The total cost function, TC(g), is the cost of producing g of units of a good.

* We call TC(0) (the cost incurred for producing g = 0 units) the fixed cost,
FC.

e The quantity TC(g) — TC(0) is the variable cost, which we call VC(g).

Total cost is, therefore, the sum of fixed and variable costs:

TC(gq) = FC+ VC(q)

Fixed cost encompasses all expenses that do not change with quantity (such as rent on
a factory space, which is the same whether you make 1 or 1000 units). Fixed cost is a
constant, and generally nonzero. We can think of these expenses as the cost of setting up a
business, incurred before the first unit is ever produced, hence the definition of fixed costs
as TC(0).

Variable cost consists of expenses that depend on the quantity produced. A typical
example of such an expense is raw materials: producing more units means using more
raw materials. Note that the variable cost varies with the quantity g produced, while the
fixed cost is independent of 4.

Consider the cost of making “one more unit” of output, after having already made ¢
units: TC(g + 1) — TC(g). Using the definition of the derivative, we can approximate this

quantity by %:

dTC I TC(g+h)—-TC(q) TC(gq+1)—TC(q)
—— = lim A
dg k-0 h 1

This motivates the definition of a marginal cost.

~(Definition3.3.19., \

Let TC(gq) be the total cost of producing g units of output of a particular good.
The marginal cost of producing the good is defined as

MC(q) = 5 [TC(9)]

- J

The marginal cost is generally interpreted as the change in cost due to producing one
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additional unit. This interpretation follows from the definition of the derivative:

MC(q) = 5-[TC(9)]
_ m TC(q+h) —TC(q)
h—0 h
~ TC(g +1) — TC(q)

where we set i = 1 for our approximation.

Suppose we know the marginal cost function, MC(g), and we want to find the total
cost function, TC(gq). By the Fundamental Theorem of Calculus,

TC(q) = fMC(q) dg+C
for some constant C. In order to find C, we use the initial value

TC(0) = FC.

I—[Example 3.3.20 (From marginal cost to total cost)} )

Suppose a product has fixed cost of $100, and its marginal cost function is MC(g) =
e~ 7+ 3. What is its total cost function?

Solution. Using the Fundamental Theorem of Calculus Part 1, given the definition MC(g) =
3—11 [TC], we see:

TC(q) :JMqu—FC:f(e_q—FB)dq—FC

Antidifferentiating by inspection,
= T+3¢g+C
Using FC=T(0):

100=T(0)=—¢"+3.0+C=-1+C
101 =C

All together,

TC(q) = —e~ 7439+ 101

t [Example 3.3.20 }—]

In addition to considering total and marginal costs, we can consider total and marginal
revenue.
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—(Definition3.3.21., )

Suppose the total revenue collected from g units of output is given by the func-
tion TR(g), with TR(0) = 0 (since selling no products leads to no revenue). We
define the marginal revenue to be

MR(s) = 3 [TR(9)].

We define the unit price to be

for g > 0.

- J

We think of marginal revenue as the extra revenue gained by producing one extra unit
of output. As with the interpretation of marginal cost, this follows from the definition of
the derivative, approximated with h = 1.

For unit price, we assume that each unit is sold for the same amount, but that amount is
determined by the number of units of output 4. So if 100 units are sold, each unit is priced
at P(100); but a larger production of 1000 units would lead to each unit being priced at
P(1000).

[—LExample 3.3.22}
3

Suppose the marginal revenue function for a product is MR(g) = 10 — Thg Let P be the

price at which each unit is sold, and suppose 10 units are sold. Find P.

Solution. First, we use the Fundamental Theorem of Calculus Part 1 to find the total
revenue function.

TR = JMqu—FC: f <10—%qz) dg+C
Referring to Theorem &,
= 10g — 3arctang + C
Now we use the initial value TR(0) = 0.

0 = TR(0) = 10(0) — 3arctan0+ C
0=C

All together,
TR(g) = 10q — 3 arctang

If 10 units are sold, the unit price is

TR(10)  10(10) — 3 arctan(10)
10 10

P(10) = =10 — 0.3 arctan(10) ~ 10.44
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t [Example 3.3.22]—]

3.4a Substitution

In the previous section we explored the Fundamental Theorem of Calculus and the link it
provides between definite integrals and antiderivatives. Indeed, integrals with simple in-
tegrands are usually evaluated via this link. In this section we start to explore methods for
integrating more complicated integrals. We have already seen — via Theorem 3.2.1 — that
integrals interact very nicely with addition, subtraction and multiplication by constants:

Lb (Af(x)+ Bg(x))dx = ALbf(x)dx n Bng(x)dx

for A, B constants. By combining this with the list of indefinite integrals in Theorem 3.3.16,
we can compute integrals of linear combinations of simple functions. For example

4 4 4 4
J (ex—Zsinx+3x2) dx:f exdx—Zf sinxdx+3f x2dx
1 1 1 1
<A

= (ex +(—2) - (—cosx) + 3?)

and so on

1

Of course there are a great many functions that can be approached in this way, however
there are some very simple examples that cannot.

: X X
Jsm(nx)dx Jxe dx f—xz “hr 6dx

In each case the integrands are not linear combinations of simpler functions; in order to
compute them we need to understand how integrals (and antiderivatives) interact with
compositions, products and quotients. We reached a very similar point in our differential
calculus course where we understood the linearity of the derivative,

d df _dg
I (Af(x)+Bg(x)) = Aa + Ba,

but had not yet seen the chain, product and quotient rules?”. While we will develop tools
to find the second and third integrals in later sections, we should really start with how to
integrate compositions of functions.

It is important to state up front, that in general one cannot write down the integral of
the composition of two functions — even if those functions are simple. This is not because
the integral does not exist. Rather it is because the integral cannot be written down as
a finite combination of the standard functions we know. A very good example of this,

®
29 If your memory of these rules is a little hazy then you really should go back and revise them before l
proceeding. You will definitely need a good grasp of the chain rule for what follows in this section.
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which we encountered in Example 3.3.4, is the composition of e* and —x2. Even though
we know

Jexdx =e*+C and f—xzdx = —%xg’ +C

there is no simple function that is equal to the indefinite integral

fe_xzdx.

even though the indefinite integral exists. In this way integration is very different from
differentiation.

With that caveat out of the way, we can introduce the substitution rule. The substitu-
tion rule is obtained by antidifferentiating the chain rule. In some sense it is the chain rule
in reverse. For completeness, let us restate the chain rule:

— Theorem3.4.1 (The chain rule). ~

Let F(u) and u(x) be differentiable functions and form their composition
F(u(x)). Then

Equivalently, if y(x) = F(u(x)), then
dy _ dF du

dx  du dx’
\_ J

Consider a function f(u), which has antiderivative F(u). Then we know that

Jf(u)du - JF’(u)du — F(u)+C

Now take the above equation and substitute into it u = u(x) — i.e. replace the variable u
with any (differentiable) function of x to get

ff(u)du

u=u(x)

But now the right-hand side is a function of x, so we can differentiate it with respect to x
to get

L Fu(x) = F(u(x)) - '(x)
dx

This tells us that F(u(x)) is an antiderivative of the function F'(u(x)) - u/(x) = f(u(x))u'(x).
Thus we know

ff(u(x)) ' (x)dx = F(u(x)) +C = ff(u) du

u=u(x)

This is the substitution rule for indefinite integrals.
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— Theorem3.4.2 (The substitution rule — indefinite integral version). —

For any differentiable function u(x):

| e yas = [ fayas

u=u(x)

- J

In order to apply the substitution rule successfully we will have to write the integrand
in the form f(u(x)) - #/(x). To do this we need to make a good choice of the function u(x);
after that it is not hard to then find f(u) and #’(x). Unfortunately there is no one strategy
for choosing u(x). This can make applying the substitution rule more art than science®.

Here we suggest two possible strategies for picking u(x): o

(1) Factor the integrand and choose one of the factors to be #/(x). For this to work, you
must be able to easily find the antiderivative of the chosen factor. The antiderivative
will be u(x).

(2) Look for a factor in the integrand that is a function with an argument that is more
complicated than just “x”. That factor will play the role of f(u(x)) Choose u(x) to be
the complicated argument.

Here are two examples which illustrate each of those strategies in turn.

I—[Example 3.4.3}

Consider the integral
f 9sin®(x) cos(x)dx

We want to massage this into the form of the integrand in the substitution rule — namely
f(u(x)) - u'(x). Our integrand can be written as the product of the two factors

9sin®(x) - cos(x)
—_—— ——
first factor second factor

and we start by determining (or guessing) which factor plays the role of u'(x). We can
choose u/(x) = 9sin®(x) or u/(x) = cos(x).

e If we choose u/(x) = 9sin®(x), then antidifferentiating this to find u(x) is really not
very easy. So it is perhaps better to investigate the other choice before proceeding
further with this one.

e If we choose u’(x) = cos(x), then we know (Theorem 3.3.16) that u(x) = sin(x). This
also works nicely because it makes the other factor simplify quite a bit 9sin®(x) =
9u8. This looks like the right way to go.

30 Thankfully this does become easier with experience and we recommend that the reader read some l
examples and then practice a LOT.
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So we go with the second choice. Set 1/(x) = cos(x), u(x) = sin(x), then

J9 sin®(x) cos(x)dx = f9u(x)8 u'(x)dx

= J9u8du

We are now left with the problem of antidifferentiating a monomial; this we can do with

Theorem 3.3.16.

by the substitution rule
u=sin(x)

= (u9+C>

= sin’(x) 4+ C

u=sin(x)

Note that 9sin®(x) cos(x) is a function of x. So our answer, which is the indefinite integral
of 9sin®(x) cos(x), must also be a function of x. This is why we have substituted u =
sin(x) in the last step of our solution — it makes our solution a function of x.

t [Example 3.4.3 }—]
1
I—LExample 344 ] l

Evaluate the integral

Jsz cos(x%)dx

Solution. Again we are going to use the substitution rule and helpfully our integrand is a

product of two factors

3x2 . cos(x®)
S~—— P —

first factor gecond factor

The second factor, cos (x%) is a function, namely cos, with a complicated argument, namely

x3. So we try u(x) = x3. Then u'(x) = 3x%, which is the other factor in the integrand. So
the integral becomes

J3x2 cos(x®)dx = fu’(x) cos (u(x))dx just swap order of factors
= Jcos (u(x))u'(x)dx by the substitution rule
= Jcos(u)du

u=x3

— (sin(u) + C)

using Theorem 3.3.16)
u=x3

= sin(x®) + C
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( [Example 3.4.4]—I

Now let’s look at a definite integral.

[—LExample 345 (Sé e’ sim(e")dx)} ]

Compute

1
J e* sin (e)dx.

0

Solution. Again we use the substitution rule.

* The integrand is again the product of two factors and we can choose #'(x) = ¢* or
u'(x) = sin(e¥).

e If we choose u'(x) = e* then u(x) = e* and the other factor becomes sin(u) —
this looks promising. Notice that if we applied the other strategy of looking for a
complicated argument then we would arrive at the same choice.

e Sowetry u/(x) = e* and u(x) = e*. This gives (if we ignore the limits of integration
for a moment)

Jex sin (¢*)dx = fsin (u(x))u'(x)dx apply the substitution rule

= fsin(u)du

u=e*

= (—cos(u) +C)

u=e*

= —cos (¢¥) +C

¢ But what happened to the limits of integration? We can incorporate them now. We
have just shown that the indefinite integral is — cos(e*), so by the fundamental the-
orem of calculus

(. 1
Jo e*sin (e¥)dx = [ — cos (ex)}o
= —cos(e!) — (—cos(e?))

= —cos(e) + cos(1)

t [Example 3.4.5 }—]

The example below introduces a special case where the “inside” function is linear.
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I—[Example 3.4.6} l

Compute the indefinite integrals

f\/ 2x + 1dx and fe?’x_zdx
Solution.

¢ Starting with the first integral, we see that it is not too hard to spot the complicated
argument. If we set u(x) = 2x + 1 then the integrand is just /u.
* Hence we substitute 2x +1 — u and dx — ﬁdu = %du:

j V2x + 1dx = j Visdu

1
= Jul/zzdu

- 2 3/2 1
—(3u 2~|—C>

1
== 5(23{ + 1)3/2 + C

u=2x+1

e We can evaluate the second integral in much the same way. Set u(x) = 3x — 2 and

replace dx by ﬁdu = ldu:

Jeg’xzdx = Je“ldu
3
e

1 3x—2
== C
3e +

t [Example 3.4.6 }—]

This last example illustrates that substitution can be used to easily deal with arguments of
the form ax + b, i.e. that are linear functions of x, and suggests the following theorem.

u=3x—2

— Theorem3.4.7. ~N

Let F(u) be an antiderivative of f(u) and let a, b be constants. Then

ff(aerb)dx = %F(aerb) +C
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Proof. We can show this using the substitution rule. Let u(x) = ax + b so u’(x) = a, then

Jf(ax +b)dx = Jf(u) : u’zx) du

= Jlf(u)du

J f(u since a is a constant

+C since F(u) is an antiderivative of f(u)

:_p (1)
a u=ax+b

= %P(aerb) +C.

3.4.1 » Substitution and Definite Integrals

Theorem 3.4.2, the substitution rule for indefinite integrals, tells us that if F(u) is any
antiderivative for f(u), then F(u(x)) is an antiderivative for f(u(x))u’(x). So the Funda-
mental Theorem of Calculus gives us

x=b

N—
<
~
—
=
—~
=
N—
v
| |
]
—
Q
R
\_/

I

=

E
Q.
=

since F(u) is an antiderivative for f(u)

and we have just found

— Theorem3.4.8 (The substitution rule — definite integral version). ~

For any differentiable function u(x):

b u(b)
| Fuepwear= | faan
a u(a)

- J

Notice that to get from the integral on the left hand side to the integral on the right
hand side you

e substitute® u(x) — u and ¥’/(x)dx — du,

e set the lower limit for the u integral to the value of u (namely u(a)) that corresponds
to the lower limit of the x integral (namely x = a), and

31 A good way to remember this last step is that we replace d“ dx by just du — which looks like we l

cancelled out the dx terms: 9%d4 = du. While using “cancel the dx” is a good mnemonic (memor
7 g g y

du

aid), you should not think of the derivative § as a fraction — you are not dividing du by dx.
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e set the upper limit for the u integral to the value of u (namely u(b)) that corresponds
to the upper limit of the x integral (namely x = b).

Also note that we now have two ways to evaluate definite integrals of the form Sab f(u(x))u'(x)dx.

* We can find the indefinite integral { f (u(x))u’(x) dx, using Theorem 3.4.2, and then
evaluate the result between x = 2 and x = b. This is what was done in Example 3.4.5.

e Or we can apply Theorem 3.4.2. This entails finding the indefinite integral { f (1) du
and evaluating the result between u = u(a) and u = u(b). This is what we will do
in the following example.

[—LExample 349 (Sé x% sin(x + 1)‘“)} 1

Compute

1
J x? sin (x3 +1)dx
0

Solution.

¢ In this example the integrand is already neatly factored into two pieces. While we
could deploy either of our two strategies, it is perhaps easier in this case to choose
u(x) by looking for a complicated argument.

e The second factor of the integrand is sin (x° 4 1), which is the function sin evaluated
at x> + 1. So set u(x) = x® + 1, giving u'(x) = 3x? and f(u) = sin(u)

e The first factor of the integrand is x*> which is not quite #/(x), however we can easily
massage the integrand into the required form by multiplying and dividing by 3:

x*sin (2 +1) = % :3x? -sin (x* +1).

¢ We want this in the form of the substitution rule, so we do a little massaging;:

1 1
J x% sin (x3 +1)dx = J %-3x2 - sin (x3 +1)dx
0 0

1
= % J sin (x° 4 1) - 3x2dx by Theorem 3.2.1(c)
. D.2.0
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* Now we are ready for the substitution rule:

I 2 1. 5 2
gLsm(x +1)-3xdx—§J[)sm(x +1)- 3x* dx
=flu(x) =0

1
( fu(x))u'(x)dx with u(x) = x®> + 1 and f(u) = sin(u)

(&
o

f(u)du by the substitution rule

(&
=
—
(=)
=

sin(u)du since #(0) = 1and u(1) =2

— e
0

@]

2}

—~

<

~—
[—

—_

Wl W= W= W= W=

(@)
o
»n
—~
—_
~—
|
0
@]
»
—
N
~—

t [Example 3.4.9 }—]

There is another, and perhaps easier, way to view the manipulations in the previous
example. Once you have chosen u(x) you

* make the substitution u(x) — u,

1
* replace dx —» ——du.

w'(x)
In so doing, we take the integral

u(b

b )

u(a)

u(b)
= J f(u)du exactly the substitution rule
u(a)

but we do not have to manipulate the integrand so as to make u'(x) explicit. Let us redo
the previous example by this approach.

I—[Example 3410 (Example 3.4.9 revisited) | )

Compute the integral

1
J xZ sin (x3 +1)dx
0

Solution.
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* We have already observed that one factor of the integrand is sin (x> + 1), which is
sin evaluated at x> + 1. Thus we try setting u(x) = x> + 1.

e This makes u'(x) = 3x2, and we replace u(x) = x> +1 — u and dx — ﬁdu =
1
Tdu:

3x2

1 ru(1) 1

J x% sin (x3 +1)dx = x? sin (x3 +1) =—du
0 Ju(0) —_——— 3x2

=sin(u)

r\Z ) X2

= A sm(u)@du

21 q

=] 3 sin(u)du

1 2
= EJ sin(u)du

1

which is precisely the integral we found in Example 3.4.9.

t [Example E’>.4.10]—I

We can do the following example using the substitution rule or Theorem 3.4.7:

I—{Example 3.4.11 <Sg/2 cos (3x)dx> J 1

Compute Sg/ ? cos(3x)dx.

¢ In this example we should set u = 3x, and substitute dx — ﬁdu = %du. When

we do this we also have to convert the limits of the integral: #(0) = 0 and u(7/2) =
37t/2. This gives

/2 371/2 1
f cos(3x)dx—f cos(u ) du

0
37r/z
= { sin u)}

0
sin 37‘(/2) —sin(0

_ —1-0 1

3

* We can also do this example more directly using the above theorem. Since sin(x) is

(3x)

an antiderivative of cos(x), Theorem 3.4.7 tells us that % is an antiderivative of
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cos(3x). Hence

/2 . /2
f cos(3x)dx = {sm(?)x)}
0 3 Jo

sin(371/2) — sin(0)

( [Example 3.4.11]—I

3.4.2 » More Substitution Examples

The rest of this section is just more examples of the substitution rule. We recommend
that you after reading these that you practice many examples by yourself under exam
conditions. Practice is integral to the learning process — there is no substitution for it.

[—LExample 34.12 (Sé x%sin(1 — x3)dx)J 1

This integral looks a lot like that of Example 3.4.9. It makes sense to try u(x) = 1 — x> since
it is the argument of sin(1 — x3). We

e substitute u = 1 — x3 and

¢ replace dx with u,%x) du = —%x-’- du,

e whenx =0,wehaveu =1—-0%=1and
e whenx =1,wehaveu =1-13=0.

So

1 0
1
Jo x?sin (1-x°) -dx = fl x?sin(u) - _3x2du

01
:J —=sin(u)du.
. 3

Note that the lower limit of the u—integral, namely 1, is larger than the upper limit, which
is 0. There is absolutely nothing wrong with that. We can simply evaluate the u—integral
in the normal way. Since — cos(u) is an antiderivative of sin(u):

- {Mr

3 I
_ cos(0) —cos(1)
3
1—cos(1)
=—""
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t [Example 3.4.12]—]
[—LExample 3.4.13 (Xé Q;Tpdxﬂ )

Compute S(l) mdx.

We could do this one using Theorem 3.4.7, but its not too hard to do without. We can
think of the integrand as the function “one over a cube” with the argument 2x 4 1. So it
makes sense to substitute u = 2x + 1. That is

e setu =2x-+1and

* replace dx — ﬁdu = %du.

¢ Whenx =0,wehaveu =2x0+1=1and
e whenx =1, wehaveu =2x1+1=23.

So

t [Example 3.4:.13]—I
I—LExample 3.4.14 (S(l) T dx)} l

Evaluate S(l) H%dx.

Solution.

1
1+x2°
try setting u = 1 + x> — and so we interpret the second factor as the function “one
over” evaluated at argument 1 + x2.

* Theintegrand can be rewritten as x - This second factor suggests that we should

e With this choice we
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—setu =1+ x2,
— substitute dx — %du, and

— translate the limits of integration: when x = 0, we have u = 1+ 0> = 1 and
whenx =1, wehaveu =1+ 12 = 2.

¢ The integral then becomes

1 2
J X dx:f fidu
o 1+ x2 1 u2x

2
1
—du
1
1 2
:§[1