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Disjoint Cycles and Equitable Coloring

Theorem (Corradi-Hajnal 1963)

Let k > 1,n > 3k, and let H be an n-vertex graph with
d(H) > 2k. Then H contains k vertex-disjoint cycles.
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Enomoto, Wang: Ore Version
Definition
02(G) = min, g 6){d(x) +d(y)}

Theorem (Enomoto 1998; Wang 1999)

Let k > 1,n > 3k, and let H be an n-vertex graph with
o2(H) > 4k — 1. Then H contains k vertex-disjoint cycles.
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Idea: G should have k vertex-disjoint cycles if:
1. |G| >3k+1 2. a(G) < n-—2k 3. 0(G) > 2k —17

02(G) > 4k—27
4k—3?
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Theorem (Kierstead, Kostochka, Y.)

Let k >3, n>3k+1, and let H be an n-vertex graph with

O(H) > 2k — 1 and o(H) < n—2k. Then H contains k
vertex-disjoint cycles.
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Sharpness:

n=4(r+t)— (2t +2)



Applications to Equitable Coloring

Definition
An equitable coloring of a graph G is a proper vertex coloring in
which the sizes of any two color classes differ by at most one.
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equitably k-colorable.
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Theorem 1 (Hajnal-Szemerédi)
If A(G) < k — 1, then G is equitably k-colorable.




Theorem (Kierstead, Kostochka, Y.)

For k > 4, let H be a 3k + 1-vertex graph with oo(H) > 4k — 3
and a(H) < n—2k. Then H contains k vertex-disjoint cycles.
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Conjecture (Chen-Lih-Wu)
If G is a (k + 1)-colorable graph with A(G) < k + 1, then G has an
equitable (k + 1)-coloring or k + 1 is odd and G contains Kit1 k+1-




Future Directions

Conjecture (Chen-Lih-Wu)

If G is a k-colorable graph with A(G) < k, then G has an
equitable k-coloring or k is odd and G contains Kj .

Refining Chen-Lih-Wu for n = 3k:

Conjecture

Let G be a 3k-vertex, k-colorable graph with 5(G) <2k +1. If G
does not contain certain subgraphs, then G has an equitable
k-coloring.



Ramsey Saturation

Definition

The saturation number of a family of graphs H, denoted

sat(n; H), is the minimum number of edges over all graphs G on n
vertices with the property that no member of H is a subgraph of
G, but some member of H is a subgraph of G + e for every edge

e & E(G).
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Ramsey Saturation Number

Definition
The Ramsey saturation number of (Hy, ..., Hy), written
sat(n; R(H, ..., Hx)), is the minimum number of edges over all

n-vertex graphs G such that an edge-coloring of G exists with no
forbidden subgraphs, but G is edge-maximal with this property.
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sat(n; R(H, ..., Hx)), is the minimum number of edges over all
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Ramsey Saturation Number

Definition
The Ramsey saturation number of (Hy, ..., Hy), written
sat(n; R(H, ..., Hx)), is the minimum number of edges over all

n-vertex graphs G such that an edge-coloring of G exists with no
forbidden subgraphs, but G is edge-maximal with this property.

Example
_ _ (3) n<5
sat(n; R(Ks, K3)) = { 4n—10 n>56 (CFGMS)

Conjecture (Hanson, Toft)

R(Kigs -+ Ki)) = ) n=r
sat(m R(Ks - Kic)) { (") +(r=2)(n—r+2) n>r
where r := r(ky, ..., ke).



Ramsey Saturation Number of Matchings

Theorem (FKY)
Ifn>3(my+---+ my —t), then

sat(m, R(mKa,...,mK2)) =3(my + -+ my — t).
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Ramsey Saturation Number of Matchings

Theorem (FKY)
Ifn>3(my+---4+ my —t), then
sat(m, R(mKa,...,mK2)) =3(my + -+ my — t).

The optimal construction is generally unique.
m —1 my —1 my — 1

Trivial case: if n < r(miKa,..., m:K3), then
sat(n; R(mKa, ..., m:Kz)) = (5).

r(mKo,...,mKo) =max{my,...,m} +1+(m +---+m—t)
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