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Disjoint Cycles and Equitable Coloring

Theorem (Corrádi-Hajnal 1963)

Let k ≥ 1, n ≥ 3k , and let H be an n-vertex graph with
δ(H) ≥ 2k. Then H contains k vertex-disjoint cycles.

This theorem is sharp.
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Enomoto, Wang: Ore Version

Definition
σ2(G ) = minxy 6∈E(G){d(x) + d(y)}

Theorem (Enomoto 1998; Wang 1999)

Let k ≥ 1, n ≥ 3k , and let H be an n-vertex graph with
σ2(H) ≥ 4k − 1. Then H contains k vertex-disjoint cycles.
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Idea: G should have k vertex-disjoint cycles if:

1. |G | ≥ 3k + 1 2. α(G ) ≤ n − 2k 3. δ(G ) ≥ 2k − 1?

σ2(G ) ≥ 4k−2?
4k−3?

k = 1 k = 2 k = 3
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Theorem (Kierstead, Kostochka, Y.)

Let k ≥ 3, n ≥ 3k + 1, and let H be an n-vertex graph with
δ(H) ≥ 2k − 1 and α(H) ≤ n − 2k. Then H contains k
vertex-disjoint cycles.

Theorem (Kierstead, Kostochka, Y.)

Let k ≥ 4, n ≥ 3k + 1, and let H be an n-vertex graph with
σ2(H) ≥ 4k − 3 and α(H) ≤ n − 2k. Then H contains k
vertex-disjoint cycles.

Sharpness:

K2t
2r

2r − 2

n = 4(r + t)− (2t + 2)
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Applications to Equitable Coloring

Definition
An equitable coloring of a graph G is a proper vertex coloring in
which the sizes of any two color classes differ by at most one.
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Theorem (Corrádi-Hajnal 1963)

Let H be a 3k-vertex graph with δ(H) ≥ 2k. Then H contains k
vertex-disjoint triangles.

Corollary

Let H be a 3k-vertex graph with ∆(H) ≤ k − 1. Then H is
equitably k-colorable.

Theorem 1 (Hajnal-Szemerédi)

If ∆(G ) ≤ k − 1, then G is equitably k-colorable.
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Theorem (Kierstead, Kostochka, Y.)

For k ≥ 4, let H be a 3k + 1-vertex graph with σ2(H) ≥ 4k − 3
and α(H) ≤ n − 2k. Then H contains k vertex-disjoint cycles.

Definition
For a graph H, let σ(H) := max{d(x) + d(y) : xy ∈ E (H)}.

Corollary

For k ≥ 4, let H be a (3k + 1)-vertex graph with σ(H) ≤ 2k + 3
and ω(H) ≤ k + 1. Then H is equitably k + 1-colorable.

Conjecture (Chen-Lih-Wu)
If G is a (k + 1)-colorable graph with ∆(G ) ≤ k + 1, then G has an
equitable (k + 1)-coloring or k + 1 is odd and G contains Kk+1,k+1.
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Future Directions

Conjecture (Chen-Lih-Wu)

If G is a k-colorable graph with ∆(G ) ≤ k, then G has an
equitable k-coloring or k is odd and G contains Kk,k .

Refining Chen-Lih-Wu for n = 3k :

Conjecture

Let G be a 3k-vertex, k-colorable graph with σ(G ) ≤ 2k + 1. If G
does not contain certain subgraphs, then G has an equitable
k-coloring.



Ramsey Saturation

Definition
The saturation number of a family of graphs H, denoted
sat(n;H), is the minimum number of edges over all graphs G on n
vertices with the property that no member of H is a subgraph of
G , but some member of H is a subgraph of G + e for every edge
e 6∈ E (G ).
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Ramsey Saturation Number

Definition
The Ramsey saturation number of (H1, . . . ,Hk), written
sat(n;R(H1, . . . ,Hk)), is the minimum number of edges over all
n-vertex graphs G such that an edge-coloring of G exists with no
forbidden subgraphs, but G is edge-maximal with this property.

Example

sat(n;R(K3,K3)) =

{ (n
2

)
n ≤ 5
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Definition
The Ramsey saturation number of (H1, . . . ,Hk), written
sat(n;R(H1, . . . ,Hk)), is the minimum number of edges over all
n-vertex graphs G such that an edge-coloring of G exists with no
forbidden subgraphs, but G is edge-maximal with this property.

Example

sat(n;R(K3,K3)) =

{ (n
2

)
n ≤ 5

4n − 10 n ≥ 56 (CFGMS)

Conjecture (Hanson, Toft)

sat(n;R(Kk1 , . . . ,Kkt )) =

{ (n
2

)
n < r(r−2

2

)
+ (r − 2)(n − r + 2) n ≥ r

where r := r(k1, . . . , kt).



Ramsey Saturation Number of Matchings

Theorem (FKY)

If n > 3(m1 + · · ·+ mt − t), then

sat(n;R(m1K2, . . . ,mtK2)) = 3(m1 + · · ·+ mt − t).

The optimal construction is generally unique.

m1 − 1 m2 − 1 mt − 1

Trivial case: if n < r(m1K2, . . . ,mtK2), then
sat(n;R(m1K2, . . . ,mtK2)) =

(n
2

)
.

r(m1K2, . . . ,mtK2) = max{m1, . . . ,mt}+ 1 + (m1 + · · ·+ mt − t)
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Future Directions

I Matchings, for other numbers of vertices

I Matchings versus other kinds of graphs
I Hanson-Toft

I K3, . . . ,K3

I K4,K4
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