Research Statement

Elyse Yeager University of Illinois at Urbana-Champaign

Preliminary Examination, 08 May 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Disjoint Cycles and Equitable Coloring

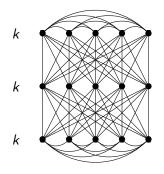
Theorem (Corrádi-Hajnal 1963)

Let $k \ge 1$, $n \ge 3k$, and let H be an n-vertex graph with $\delta(H) \ge 2k$. Then H contains k vertex-disjoint cycles.

Disjoint Cycles and Equitable Coloring

Theorem (Corrádi-Hajnal 1963) Let $k \ge 1, n \ge 3k$, and let H be an n-vertex graph with $\delta(H) \ge 2k$. Then H contains k vertex-disjoint cycles.

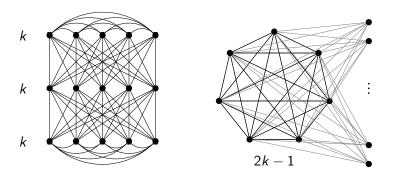
This theorem is sharp.



Disjoint Cycles and Equitable Coloring

Theorem (Corrádi-Hajnal 1963) Let $k \ge 1, n \ge 3k$, and let H be an n-vertex graph with $\delta(H) \ge 2k$. Then H contains k vertex-disjoint cycles.

This theorem is sharp.



Enomoto, Wang: Ore Version

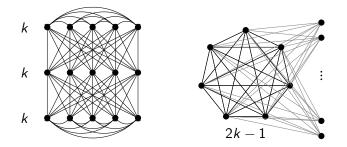
Definition $\sigma_2(G) = \min_{xy \notin E(G)} \{ d(x) + d(y) \}$

Theorem (Enomoto 1998; Wang 1999) Let $k \ge 1, n \ge 3k$, and let H be an n-vertex graph with $\sigma_2(H) \ge 4k - 1$. Then H contains k vertex-disjoint cycles.

Enomoto, Wang: Ore Version

Definition $\sigma_2(G) = \min_{xy \notin E(G)} \{ d(x) + d(y) \}$

Theorem (Enomoto 1998; Wang 1999) Let $k \ge 1, n \ge 3k$, and let H be an n-vertex graph with $\sigma_2(H) \ge 4k - 1$. Then H contains k vertex-disjoint cycles.



1. $|G| \ge 3k + 1$ 2. $\alpha(G) \le n - 2k$ 3. $\delta(G) \ge 2k - 1$?

 $\sigma_2(G) \ge 4k - 2?$ 4k - 3?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. $|G| \ge 3k + 1$ 2. $\alpha(G) \le n - 2k$ 3. $\delta(G) \ge 2k - 1?$ $\sigma_2(G) \ge 4k - 2?$ 4k - 3?

k = 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. $|G| \ge 3k + 1$ 2. $\alpha(G) \le n - 2k$ 3. $\delta(G) \ge 2k - 1?$ $\sigma_2(G) \ge 4k - 2?$ 4k - 3?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

k = 1

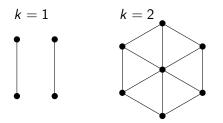
1. $|G| \ge 3k + 1$ 2. $\alpha(G) \le n - 2k$ 3. $\delta(G) \ge 2k - 1?$ $\sigma_2(G) \ge 4k - 2?$ 4k - 3?

k = 1 k = 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

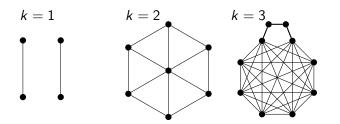
1. $|G| \ge 3k + 1$ 2. $\alpha(G) \le n - 2k$ 3. $\delta(G) \ge 2k - 1?$ $\sigma_2(G) \ge 4k - 2?$ 4k - 3?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

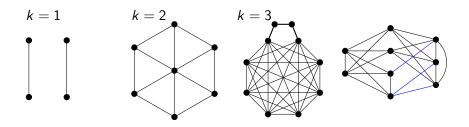


1. $|G| \ge 3k + 1$ 2. $\alpha(G) \le n - 2k$ 3. $\delta(G) \ge 2k - 1?$ $\sigma_2(G) \ge 4k - 2?$ 4k - 3?

・ロト・日本・モート モー うへぐ



1. $|G| \ge 3k + 1$ 2. $\alpha(G) \le n - 2k$ 3. $\delta(G) \ge 2k - 1?$ $\sigma_2(G) \ge 4k - 2?$ 4k - 3?



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Let $k \ge 3$, $n \ge 3k + 1$, and let H be an n-vertex graph with $\delta(H) \ge 2k - 1$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let $k \ge 3$, $n \ge 3k + 1$, and let H be an n-vertex graph with $\delta(H) \ge 2k - 1$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

Theorem (Kierstead, Kostochka, Y.) Let $k \ge 4$, $n \ge 3k + 1$, and let H be an n-vertex graph with $\sigma_2(H) \ge 4k - 3$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Sharpness:

Let $k \ge 3$, $n \ge 3k + 1$, and let H be an n-vertex graph with $\delta(H) \ge 2k - 1$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

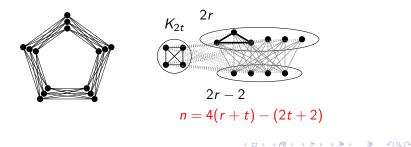
Theorem (Kierstead, Kostochka, Y.) Let $k \ge 4$, $n \ge 3k + 1$, and let H be an n-vertex graph with $\sigma_2(H) \ge 4k - 3$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

Sharpness:

Let $k \ge 3$, $n \ge 3k + 1$, and let H be an n-vertex graph with $\delta(H) \ge 2k - 1$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

Theorem (Kierstead, Kostochka, Y.) Let $k \ge 4$, $n \ge 3k + 1$, and let H be an n-vertex graph with $\sigma_2(H) \ge 4k - 3$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

Sharpness:



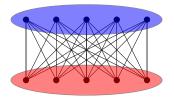
Applications to Equitable Coloring

Definition An equitable coloring of a graph G is a proper vertex coloring in which the sizes of any two color classes differ by at most one.

Applications to Equitable Coloring

Definition

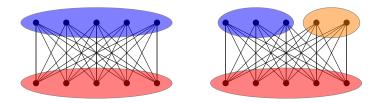
An equitable coloring of a graph G is a proper vertex coloring in which the sizes of any two color classes differ by at most one.



Applications to Equitable Coloring

Definition

An equitable coloring of a graph G is a proper vertex coloring in which the sizes of any two color classes differ by at most one.



イロト イポト イヨト イヨト

Let H be a 3k-vertex graph with $\delta(H) \ge 2k$. Then H contains k vertex-disjoint triangles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let H be a 3k-vertex graph with $\delta(H) \ge 2k$. Then H contains k vertex-disjoint triangles.

Corollary

Let H be a 3k-vertex graph with $\Delta(H) \leq k - 1$. Then H is equitably k-colorable.

Let H be a 3k-vertex graph with $\delta(H) \ge 2k$. Then H contains k vertex-disjoint triangles.

Corollary

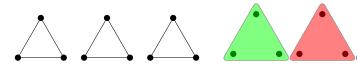
Let H be a 3k-vertex graph with $\Delta(H) \leq k - 1$. Then H is equitably k-colorable.

Let H be a 3k-vertex graph with $\delta(H) \ge 2k$. Then H contains k vertex-disjoint triangles.

イロト イポト イヨト イヨト

Corollary

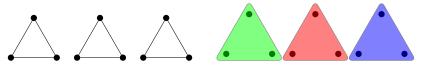
Let H be a 3k-vertex graph with $\Delta(H) \leq k - 1$. Then H is equitably k-colorable.



Let H be a 3k-vertex graph with $\delta(H) \ge 2k$. Then H contains k vertex-disjoint triangles.

Corollary

Let H be a 3k-vertex graph with $\Delta(H) \leq k - 1$. Then H is equitably k-colorable.



イロト 不得 トイヨト イヨト

-

Theorem 1 (Hajnal-Szemerédi) If $\Delta(G) \leq k - 1$, then G is equitably k-colorable.

For $k \ge 4$, let H be a 3k + 1-vertex graph with $\sigma_2(H) \ge 4k - 3$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

For $k \ge 4$, let H be a 3k + 1-vertex graph with $\sigma_2(H) \ge 4k - 3$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

Definition

For a graph H, let $\overline{\sigma}(H) := \max\{d(x) + d(y) : xy \in E(H)\}.$

For $k \ge 4$, let H be a 3k + 1-vertex graph with $\sigma_2(H) \ge 4k - 3$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

Definition

For a graph H, let $\overline{\sigma}(H) := \max\{d(x) + d(y) : xy \in E(H)\}.$

Corollary

For $k \ge 4$, let H be a (3k + 1)-vertex graph with $\overline{\sigma}(H) \le 2k + 3$ and $\omega(H) \le k + 1$. Then H is equitably k + 1-colorable.

For $k \ge 4$, let H be a 3k + 1-vertex graph with $\sigma_2(H) \ge 4k - 3$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

Definition

For a graph H, let $\overline{\sigma}(H) := \max\{d(x) + d(y) : xy \in E(H)\}.$

Corollary

For $k \ge 4$, let H be a (3k + 1)-vertex graph with $\overline{\sigma}(H) \le 2k + 3$ and $\omega(H) \le k + 1$. Then H is equitably k + 1-colorable.



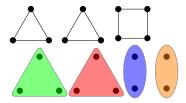
For $k \ge 4$, let H be a 3k + 1-vertex graph with $\sigma_2(H) \ge 4k - 3$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

Definition

For a graph H, let $\overline{\sigma}(H) := \max\{d(x) + d(y) : xy \in E(H)\}.$

Corollary

For $k \ge 4$, let H be a (3k + 1)-vertex graph with $\overline{\sigma}(H) \le 2k + 3$ and $\omega(H) \le k + 1$. Then H is equitably k + 1-colorable.



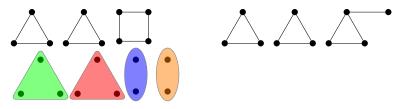
For $k \ge 4$, let H be a 3k + 1-vertex graph with $\sigma_2(H) \ge 4k - 3$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

Definition

For a graph H, let $\overline{\sigma}(H) := \max\{d(x) + d(y) : xy \in E(H)\}.$

Corollary

For $k \ge 4$, let H be a (3k + 1)-vertex graph with $\overline{\sigma}(H) \le 2k + 3$ and $\omega(H) \le k + 1$. Then H is equitably k + 1-colorable.



イロト 不得 トイヨト イヨト

-

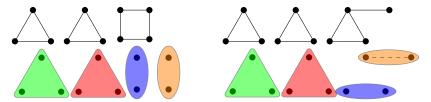
For $k \ge 4$, let H be a 3k + 1-vertex graph with $\sigma_2(H) \ge 4k - 3$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

Definition

For a graph H, let $\overline{\sigma}(H) := \max\{d(x) + d(y) : xy \in E(H)\}.$

Corollary

For $k \ge 4$, let H be a (3k + 1)-vertex graph with $\overline{\sigma}(H) \le 2k + 3$ and $\omega(H) \le k + 1$. Then H is equitably k + 1-colorable.



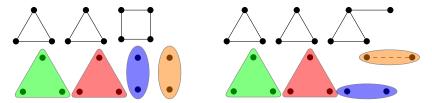
For $k \ge 4$, let H be a 3k + 1-vertex graph with $\sigma_2(H) \ge 4k - 3$ and $\alpha(H) \le n - 2k$. Then H contains k vertex-disjoint cycles.

Definition

For a graph H, let $\overline{\sigma}(H) := \max\{d(x) + d(y) : xy \in E(H)\}.$

Corollary

For $k \ge 4$, let H be a (3k + 1)-vertex graph with $\overline{\sigma}(H) \le 2k + 3$ and $\omega(H) \le k + 1$. Then H is equitably k + 1-colorable.



Conjecture (Chen-Lih-Wu) If G is a (k + 1)-colorable graph with $\Delta(G) \le k + 1$, then G has an equitable (k + 1)-coloring or k + 1 is odd and G contains $K_{k+1,k+1}$.

Future Directions

Conjecture (Chen-Lih-Wu)

If G is a k-colorable graph with $\Delta(G) \leq k$, then G has an equitable k-coloring or k is odd and G contains $K_{k,k}$.

Refining Chen-Lih-Wu for n = 3k:

Conjecture

Let G be a 3k-vertex, k-colorable graph with $\overline{\sigma}(G) \leq 2k + 1$. If G does not contain certain subgraphs, then G has an equitable k-coloring.

Ramsey Saturation

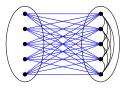
Definition

The saturation number of a family of graphs \mathcal{H} , denoted sat(n; \mathcal{H}), is the minimum number of edges over all graphs G on n vertices with the property that no member of \mathcal{H} is a subgraph of G, but some member of \mathcal{H} is a subgraph of G + e for every edge $e \notin E(G)$.

Ramsey Saturation

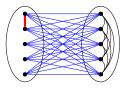
Definition

The saturation number of a family of graphs \mathcal{H} , denoted sat(n; \mathcal{H}), is the minimum number of edges over all graphs G on n vertices with the property that no member of \mathcal{H} is a subgraph of G, but some member of \mathcal{H} is a subgraph of G + e for every edge $e \notin E(G)$.



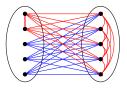
Definition

The saturation number of a family of graphs \mathcal{H} , denoted sat(n; \mathcal{H}), is the minimum number of edges over all graphs G on n vertices with the property that no member of \mathcal{H} is a subgraph of G, but some member of \mathcal{H} is a subgraph of G + e for every edge $e \notin E(G)$.



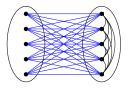
Definition

The saturation number of a family of graphs \mathcal{H} , denoted sat(n; \mathcal{H}), is the minimum number of edges over all graphs G on n vertices with the property that no member of \mathcal{H} is a subgraph of G, but some member of \mathcal{H} is a subgraph of G + e for every edge $e \notin E(G)$.



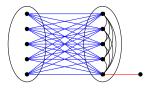
Definition

The saturation number of a family of graphs \mathcal{H} , denoted sat(n; \mathcal{H}), is the minimum number of edges over all graphs G on n vertices with the property that no member of \mathcal{H} is a subgraph of G, but some member of \mathcal{H} is a subgraph of G + e for every edge $e \notin E(G)$.



Definition

The saturation number of a family of graphs \mathcal{H} , denoted sat(n; \mathcal{H}), is the minimum number of edges over all graphs G on n vertices with the property that no member of \mathcal{H} is a subgraph of G, but some member of \mathcal{H} is a subgraph of G + e for every edge $e \notin E(G)$.



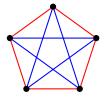
Definition

The Ramsey saturation number of (H_1, \ldots, H_k) , written sat $(n; \mathcal{R}(H_1, \ldots, H_k))$, is the minimum number of edges over all n-vertex graphs G such that an edge-coloring of G exists with no forbidden subgraphs, but G is edge-maximal with this property.

Definition

The Ramsey saturation number of (H_1, \ldots, H_k) , written sat $(n; \mathcal{R}(H_1, \ldots, H_k))$, is the minimum number of edges over all n-vertex graphs G such that an edge-coloring of G exists with no forbidden subgraphs, but G is edge-maximal with this property.

$$\mathsf{sat}(\mathsf{n};\mathcal{R}(\mathsf{K}_3,\mathsf{K}_3))=\left\{egin{array}{cc} \binom{\mathsf{n}}{2} & \mathsf{n}\leq 5 \end{array}
ight.$$



Definition

The Ramsey saturation number of (H_1, \ldots, H_k) , written sat $(n; \mathcal{R}(H_1, \ldots, H_k))$, is the minimum number of edges over all n-vertex graphs G such that an edge-coloring of G exists with no forbidden subgraphs, but G is edge-maximal with this property.

$$\operatorname{sat}(n; \mathcal{R}(K_3, K_3)) = \begin{cases} \binom{n}{2} & n \leq 5\\ 4n - 10 & n \geq 6 \end{cases}$$

Definition

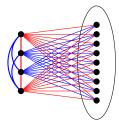
The Ramsey saturation number of (H_1, \ldots, H_k) , written sat $(n; \mathcal{R}(H_1, \ldots, H_k))$, is the minimum number of edges over all n-vertex graphs G such that an edge-coloring of G exists with no forbidden subgraphs, but G is edge-maximal with this property.

$$sat(n; \mathcal{R}(K_3, K_3)) = \begin{cases} \binom{n}{2} & n \leq 5\\ 4n - 10 & n \geq 56 \ (CFGMS) \end{cases}$$

Definition

The Ramsey saturation number of (H_1, \ldots, H_k) , written sat $(n; \mathcal{R}(H_1, \ldots, H_k))$, is the minimum number of edges over all n-vertex graphs G such that an edge-coloring of G exists with no forbidden subgraphs, but G is edge-maximal with this property.

$$\mathsf{sat}(n;\mathcal{R}(\mathsf{K}_3,\mathsf{K}_3)) = \left\{egin{array}{cc} \binom{n}{2} & n \leq 5\ 4n-10 & n \geq 56\ (\mathsf{CFGMS}) \end{array}
ight.$$



Definition

The Ramsey saturation number of (H_1, \ldots, H_k) , written sat $(n; \mathcal{R}(H_1, \ldots, H_k))$, is the minimum number of edges over all n-vertex graphs G such that an edge-coloring of G exists with no forbidden subgraphs, but G is edge-maximal with this property.

Example

$$\operatorname{sat}(n; \mathcal{R}(K_3, K_3)) = \left\{ egin{array}{cc} \binom{n}{2} & n \leq 5 \ 4n - 10 & n \geq 56 \end{array}
ight. (CFGMS)
ight.$$

Conjecture (Hanson, Toft) sat(n; $\mathcal{R}(\mathcal{K}_{k_1}, \dots, \mathcal{K}_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \ge r \end{cases}$ where $r := r(k_1, \dots, k_t)$.

Theorem (FKY) If $n > 3(m_1 + \dots + m_t - t)$, then

 $sat(n; \mathcal{R}(m_1K_2, ..., m_tK_2)) = 3(m_1 + \cdots + m_t - t).$

Theorem (FKY) If $n > 3(m_1 + \cdots + m_t - t)$, then

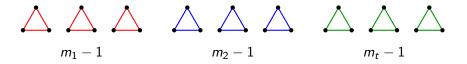
 $sat(n; \mathcal{R}(m_1K_2, ..., m_tK_2)) = 3(m_1 + \cdots + m_t - t).$

The optimal construction is generally unique.

Theorem (FKY) If $n > 3(m_1 + \cdots + m_t - t)$, then

 $sat(n; \mathcal{R}(m_1K_2, ..., m_tK_2)) = 3(m_1 + \cdots + m_t - t).$

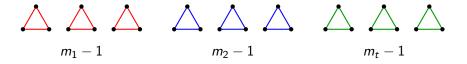
The optimal construction is generally unique.



Theorem (FKY) If $n > 3(m_1 + \cdots + m_t - t)$, then

 $sat(n; \mathcal{R}(m_1K_2, ..., m_tK_2)) = 3(m_1 + \cdots + m_t - t).$

The optimal construction is generally unique.

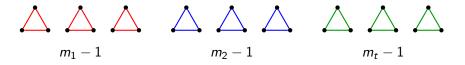


Trivial case: if $n < r(m_1K_2, \ldots, m_tK_2)$, then $sat(n; \mathcal{R}(m_1K_2, \ldots, m_tK_2)) = \binom{n}{2}$.

Theorem (FKY) If $n > 3(m_1 + \cdots + m_t - t)$, then

 $sat(n; \mathcal{R}(m_1K_2, ..., m_tK_2)) = 3(m_1 + \cdots + m_t - t).$

The optimal construction is generally unique.



Trivial case: if $n < r(m_1K_2, \ldots, m_tK_2)$, then $sat(n; \mathcal{R}(m_1K_2, \ldots, m_tK_2)) = \binom{n}{2}$.

 $r(m_1K_2,...,m_tK_2) = \max\{m_1,...,m_t\} + 1 + (m_1 + \cdots + m_t - t)$

Future Directions

Matchings, for other numbers of vertices

(ロ)、(型)、(E)、(E)、 E) の(の)

- Matchings versus other kinds of graphs
- Hanson-Toft
 - K_3,\ldots,K_3
 - ► *K*₄, *K*₄

Future Directions

Matchings, for other numbers of vertices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Matchings versus other kinds of graphs
- Hanson-Toft
 - K_3,\ldots,K_3
 - ► *K*₄, *K*₄

Future Directions

Matchings, for other numbers of vertices

(ロ)、(型)、(E)、(E)、 E) の(の)

- Matchings versus other kinds of graphs
- Hanson-Toft
 - K_3, \ldots, K_3
 - ► *K*₄, *K*₄