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Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with n ≥ 3k and δ(G ) ≥ 2k , then G contains
k disjoint cycles.

Examples:

k = 1: easy

Sharpness:
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2k − 1
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Dirac-Erdős, 1963

Let V≥c be the number of vertices with degree at least c , etc.

Dirac-Erdős, 1963

If V≥2k − V≤2k−2 ≥ k2 + 2k − 4, k ≥ 3, then G contains k disjoint cycles.

Unique result?

”Probably not best possible”
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Let V≥c be the number of vertices with degree at least c , etc.

Dirac-Erdős, 1963
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If V≥2k − V≤2k−2 ≥ k2 + 2k − 4, k ≥ 3, then G contains k disjoint cycles.

Unique result?

”Probably not best possible”

KKMY (ASU, UIUC) Disjoint Cycles 21 April 2014 4 / 30



Dirac-Erdős, 1963
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Dirac-Erdős: (Lack of) Sharpness

Dirac-Erdős, 1963

If V≥2k −V≤2k−2 ≥ k2 + 2k − 4, k ≥ 3, then G contains k disjoint cycles.

For k ≥ 3, V≥2k − V≤2k−2 ≥ 2k − 1 does not guarantee k disjoint cycles.

u
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2k − 1
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Enomoto, Wang

Corrádi-Hajnal, 1963

If G is a graph on n vertices with n ≥ 3k and δ(G ) ≥ 2k , then G contains
k disjoint cycles.

σ2(G ) := min{d(x) + d(y) : xy 6∈ E (G )}

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n ≥ 3k and σ2(G ) ≥ 4k − 1, then G
contains k disjoint cycles.

Implies Corrádi-Hajnal
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Enomoto, Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n ≥ 3k and σ2(G ) ≥ 4k − 1, then G
contains k disjoint cycles.

Proof (Enomoto)

Edge-maximal counterexample
I (k − 1) disjoint cycles
I Remaining graph at least 3 vertices

Minimize number of vertices in cycles

Maximize longest path in remainder
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Kierstead-Kostochka-Y, 2014+

Independence Number:

Observation:

α(G ) ≥ n − 2k + 1 ⇒ no k cycles

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n ≥ 3k and σ2(G ) ≥ 4k − 1, then G
contains k disjoint cycles.

KKY, 2014+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .
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KKY, 2014+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .

n ≥ 3k + 1
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2k − 1 k
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Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .

k = 1:
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Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .

k = 2:

u v
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Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .

k = 3:

KKMY (ASU, UIUC) Disjoint Cycles 21 April 2014 9 / 30



Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .

σ2 = 4k − 4:

k + 3

k + 1

k − 3

K2t

2r

2r − 2
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Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .

Proof

(Like Enomoto)

Let G be an edge-maximal counterexample.

There exists a set of (k − 1) disjoint cycles.

Choose the set of cycles with the least number of vertices, etc.
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Dirac: (2k − 1)-connected without k disjoint cycles

Dirac, 1963

What (2k − 1)-connected graphs do not have k disjoint cycles?

KKY, 2014+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .

Answer to Dirac’s Question

Let k ≥ 2. Every graph G with (i) |G | ≥ 3k and (ii) δ(G ) ≥ 2k − 1
contains k disjoint cycles if and only if

α(G ) ≤ |G | − 2k , and

if k is odd and H = Kk,k ⊆ G then G − H is not k-equitable, and

if k = 2 then G is not a wheel.

Coming Soon:

characterization for multigraphs
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Faudree-Gould, 2005

Faudree-Gould, 2005

If G has n ≥ 3k vertices and |N(x) ∪ N(y)| ≥ 3k for all nonadjacent pairs
of vertices x , y , then G contains k disjoint cycles.

Sharpness:

K3k−4 K5
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Chorded Cycles
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Finkel, 2008

Finkel, 2008

If G is a graph on n ≥ 4k vertices with δ(G ) ≥ 3k , then G contains k
disjoint chorded cycles.

Posed by Pósa, 1961

Sharpness:

3k − 1

n− 3k + 1
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Chorded + Unchorded Cycles

Conjecture: Bialostocki-Finkel-Gyárfás, 2008

If G is a graph on n ≥ 3r + 4s vertices with δ(G ) ≥ 2r + 3s, then G
contains r + s cycles, s of them chorded.

Chiba-Fujita-Gao-Li, 2010

Let r and s be integers with r + s ≥ 1, and let G be a graph on

n ≥ 3r + 4s vertices. If σ2(G ) ≥ 4r + 6s − 1 , then G contains r + s

disjoint cycles, s of them chorded cycles.

Sharpness:

2r + 3r − 1

n− 2r − 3r + 1
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Neighborhood-Union Conditions

Qiao, 2012

Let r , s be nonnegative integers, and let G be a graph on at least 3r + 4s
vertices such that for any nonadjacent x , y ∈ V (G ),
|N(x) ∪ N(y)| ≥ 3r + 4s + 1. Then G contains r + s disjoint cycles, s of
them chorded.

Sharpness (sort of):

K2s+3 K2s−1
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Let r , s be nonnegative integers, and let G be a graph on at least 3r + 4s
vertices such that for any nonadjacent x , y ∈ V (G ),
|N(x) ∪ N(y)| ≥ 3r + 4s + 1. Then G contains r + s disjoint cycles, s of
them chorded.

Gould-Hirohata-Horn, 2013

Let G be a graph on at least 4k vertices such that for any nonadjacent
x , y ∈ V (G ), |N(x)∪N(y)| ≥ 4k + 1. Then G contains k disjoint chorded
cycles.
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Gould-Hirohata-Horn, 2013

Let G be a graph on n > 30k vertices such that for any nonadjacent
x , y ∈ V (G ), |N(x) ∪ N(y)| ≥ 2k + 1. Then G contains k disjoint cycles.

Sharpness (of |N(x) ∪ N(y)| ≥ 2k + 1)
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Let G be a graph on n > 30k vertices such that for any nonadjacent
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Gould-Hirohata-Horn, 2013

Let G be a graph on n > 30k vertices such that for any nonadjacent
x , y ∈ V (G ), |N(x) ∪ N(y)| ≥ 2k + 1. Then G contains k disjoint cycles.

Sharpness (of |N(x) ∪ N(y)| ≥ 2k + 1)

k = 2:
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Multiply Chorded Cycles

We define f (k) to be the number of chords in Kk+1, viewed as a cycle.

That is, f (k) = (k+1)(k−2)
2 .

Gould-Horn-Magnant, 2014

There exist s0 and k0 so that if s ≥ s0 and k ≥ k0, then there exists an
n0 = n0(s, k) so that if G has minimum degree at least sk and |G | > n0,
then G contains s disjoint cycles with at least f (k) chords.

Conjecture: s0 = k0 = 1, n0 = s(k + 1)
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Multiply Chorded Cycles

Qiao-Zhang, 2010

Let G be a graph on n ≥ 4k vertices with δ(G ) ≥ b7k/2c. Then G
contains k disjoint, doubly chorded cycles.

Sharp for small k :
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Qiao-Zhang, 2010

Let G be a graph on n ≥ 4k vertices with δ(G ) ≥ b7k/2c. Then G
contains k disjoint, doubly chorded cycles.

Sharp for small k :
k = 1

b7k/2c = 3; use C4
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Multiply Chorded Cycles

Qiao-Zhang, 2010

Let G be a graph on n ≥ 4k vertices with δ(G ) ≥ b7k/2c. Then G
contains k disjoint, doubly chorded cycles.

Sharp for small k : k = 2
b7k/2c = 7; use K3,3,3
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Multiply Chorded Cycles

Qiao-Zhang, 2010

Let G be a graph on n ≥ 4k vertices with δ(G ) ≥ b7k/2c. Then G
contains k disjoint, doubly chorded cycles.

Sharp for small k : k = 5
b7k/2c = 17; use K8,8,8
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Cycles with All Chords at One Vertex

Babu-Diwan, 2009

Theorem 1.1. Let n1, n2, . . . , nk be integers, n =
∑

ni , ni ≥ 3, and let Hi

be a cycle containing all possible chords incident to one vertex, or a tree,
on ni vertices. If G is a graph on at least n vertices with
σ2(G ) ≥ 2(n − k)− 1, then G contains disjoint subgraphs isomorphic to
H1, . . . ,Hk .

Sharpness?
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Equitable Coloring
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Equitable Coloring

Definition

An equitable k-coloring of a graph G is a proper coloring of V (G ) such
that any two color classes differ in size by at most one.
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Equitable Coloring

Definition

An equitable k-coloring of a graph G is a proper coloring of V (G ) such
that any two color classes differ in size by at most one.

Application

Scheduling

Vertices are tasks

Edges are conflicts

Colors are computers
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Equitable Coloring and Cycles

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then G has k disjoint
cycles (all triangles).
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n = 4k

If G has n = 4k vertices and an equitable k-coloring, then G has k
disjoint, doubly chorded cycles (each with four vertices).
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Equitable Coloring and Cycles

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then G has k disjoint
cycles (all triangles).

n = 4k

If G has n = 4k vertices and an equitable k-coloring, then G has k
disjoint, doubly chorded cycles (each with four vertices).

What’s Really Going On

independent sets ↔ cliques
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Equitable Coloring and Cycles

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then G has k disjoint
cycles (all triangles).

n = 4k

If G has n = 4k vertices and an equitable k-coloring, then G has k
disjoint, doubly chorded cycles (each with four vertices).

What’s Really Going On

independent sets ↔ cliques

Cycles, chorded cycles, cycles with f (k) chords, etc: generalizations.
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Equitable Coloring and Cycles

Kierstead-Kostochka, 2008

If G is a graph such that d(x) + d(y) ≤ 2k − 1 for every edge xy , then G
has an equitable k-coloring.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n ≥ 3k and σ2(G ) ≥ 4k − 1, then G
contains k disjoint cycles.

n = 3k

Equivalent when n = 3k : 2(3k-1)-(2k-1)=4k-1
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Equitable Coloring and Cycles

Qiao-Zhang, 2010

Let G be a graph on n ≥ 4k vertices with δ(G ) ≥ b7k/2c. Then G
contains k disjoint, doubly chorded cycles.

n = 4k

δ(G ) ≥ b7k/2c ⇔ ∆(G ) ≤ (4k − 1)− (b7k/2c) = bk/2c − 1

Equivalent Statement for n = 4k

Let G be a graph on 4k vertices with ∆(G ) ≤ bk/2c − 1. Then G is
equitably k-colorable.
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Chen-Lih-Wu

Hajnal-Szemerédi, 1970

If k ≥ ∆(G ) + 1, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture

A connected graph G is equitably ∆(G ) colorable if G is different from
Km, C2m+1 and K2m+1,2m+1 for every m ≥ 1.

Chen-Lih-Wu Conjecture Re-stated

If χ(G ),∆(G ) ≤ k and Kk,k 6⊆ G , then G is equitably k-colorable.

CLW true if:

δ(G ) ≥ |G |/2; ∆(G ) ≤ 4; G planar with ∆(G ) ≥ 13; G outerplanar, etc.
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Ore Conditions

Kierstead-Kostochka, 2008

If G is a graph such that for each edge xy , d(x) + d(y) ≤ 2k − 1, then G
is equitably k-colorable.

Kierstead-Kostochka-Molla-Yeager, 2014+

If G is a 3k-vertex graph such that for each edge xy ,
d(x) + d(y) ≤ 2k + 1, then G is equitably k-colorable, or is one of several
exceptions.

Equivalent

If G is a graph on 3k vertices with σ2(G ) ≥ 4k − 3, then G contains k
disjoint cycles, or is one of several exceptions.

KKY, 2014+

For k ≥ 4, if G is a graph on n vertices with n ≥ 3k + 1 and
σ2(G ) ≥ 4k − 3, then G contains k disjoint cycles if and only if
α(G ) ≤ n − 2k .
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Exceptions

k = 3

Equitable coloring:

Cycles:
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c Kk

Cycles:
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Exceptions

Equitable coloring:

2k
Kk−1

Cycles:

K2k k − 1
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Proof of KKMY 2014+
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Thanks for Listening!
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