Disjoint Cycles and Equitable Colorings in Graphs

H. Kierstead A. Kostochka T. Molla E. Yeager

yeager2@illinois.edu

21 April 2014

KKMY (ASU, UIUC)

Disjoint Cycles

3 21 April 2014 1 / 30

A B F A B F

Corrádi-Hajnal

・ロト ・回ト ・ヨト ・ヨ

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

• k = 1

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

• k = 1: easy

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

- k = 1: easy
- Sharpness:

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

- k = 1: easy
- Sharpness:

<ロ> (日) (日) (日) (日) (日)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Let $V_{>c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963 If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.

(日) (同) (三) (三)

Let $V_{>c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963 If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.

• Unique result?

(日) (周) (三) (三)

Let $V_{\geq c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963 If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.

- Unique result?
- "Probably not best possible"

Dirac-Erdős: (Lack of) Sharpness

Dirac-Erdős, 1963

If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Dirac-Erdős: (Lack of) Sharpness

Dirac-Erdős, 1963

If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.

For $k \ge 3$, $V_{\ge 2k} - V_{\le 2k-2} \ge 2k - 1$ does not guarantee k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

- 4 @ ▶ 4 @ ▶ 4 @ ▶

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Sharpness:

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

Edge-maximal counterexample

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - (k-1) disjoint cycles

→ 3 → 4 3

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - (k-1) disjoint cycles
 - Remaining graph at least 3 vertices

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - (k-1) disjoint cycles
 - Remaining graph at least 3 vertices
- Minimize number of vertices in cycles

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - (k-1) disjoint cycles
 - Remaining graph at least 3 vertices
- Minimize number of vertices in cycles
- Maximize longest path in remainder

Independence Number:

-

• • • • • • • • • • • •

Independence Number:

Observation:

 $\alpha(G) \ge n - 2k + 1 \Rightarrow \text{no } k \text{ cycles}$

- 4 @ > - 4 @ > - 4 @ >

Independence Number:

Observation:

 $\alpha(G) \ge n - 2k + 1 \Rightarrow \text{no } k \text{ cycles}$

< ロ > < 同 > < 三 > < 三

Independence Number:

Observation:

 $\alpha(G) \geq n - 2k + 1 \Rightarrow \text{no } k \text{ cycles}$

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

▶ ★ 聖 ▶ ★ 更 ▶

Independence Number:

Observation:

 $\alpha(G) \ge n - 2k + 1 \Rightarrow no \ k \ cycles$

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

KKY, 2014⁺ For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

イロト イヨト イヨト イヨト

KKY, 2014+ For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

 $n \ge 3k + 1$

イロト イヨト イヨト イヨト

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

k = 1:

(日) (同) (三) (三)

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

k = 2:

KKMY (ASU, UIUC)

Disjoint Cycles

21 April 2014 9 / 30

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

k = 3:

< ロ > < 同 > < 三 > < 三
Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

 $\sigma_2 = 4k - 4$:

KKMY (ASU, UIUC)

Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Proof

(Like Enomoto)

- Let G be an edge-maximal counterexample.
- There exists a set of (k-1) disjoint cycles.
- Choose the set of cycles with the least number of vertices, etc.

イロト 不得下 イヨト イヨト

Dirac, 1963

What (2k - 1)-connected graphs do not have k disjoint cycles?

イロト 不得下 イヨト イヨト 二日

Dirac, 1963 What (2k - 1)-connected graphs do not have k disjoint cycles?

Observation:

G is (2k-1) connected \Rightarrow

イロト 不得下 イヨト イヨト 二日

Dirac, 1963

What (2k - 1)-connected graphs do not have k disjoint cycles?

Observation:

G is (2k-1) connected $\Rightarrow \delta(G) \ge 2k-1 \Rightarrow$

イロト イポト イヨト イヨト 二日

Dirac, 1963 What (2k - 1)-connected graphs do not have k disjoint cycles?

Observation:

G is (2k-1) connected $\Rightarrow \delta(G) \ge 2k-1 \Rightarrow \sigma_2(G) \ge 4k-2$

イロト イポト イヨト イヨト 二日

Dirac, 1963 What (2k - 1)-connected graphs do not have k disjoint cycles?

Observation:

$$G$$
 is $(2k-1)$ connected $\Rightarrow \delta(G) \ge 2k - 1 \Rightarrow \sigma_2(G) \ge 4k - 2$

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Answer to Dirac's Question

Let $k \ge 2$. Every graph G with (i) $|G| \ge 3k$ and (ii) $\delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

•
$$\alpha(G) \leq |G| - 2k$$
, and

- if k is odd and $H = K_{k,k} \subseteq \overline{G}$ then $\overline{G} H$ is not k-equitable, and
- if k = 2 then G is not a wheel.

Coming Soon:

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Answer to Dirac's Question

Let $k \ge 2$. Every graph G with (i) $|G| \ge 3k$ and (ii) $\delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

•
$$\alpha(G) \leq |G| - 2k$$
, and

- if k is odd and $H = K_{k,k} \subseteq \overline{G}$ then $\overline{G} H$ is not k-equitable, and
- if k = 2 then G is not a wheel.

Coming Soon:

characterization for multigraphs

KKMY (ASU, UIUC)

Faudree-Gould, 2005

Faudree-Gould, 2005

If G has $n \ge 3k$ vertices and $|N(x) \cup N(y)| \ge 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Faudree-Gould, 2005

Faudree-Gould, 2005

If G has $n \ge 3k$ vertices and $|N(x) \cup N(y)| \ge 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Sharpness:

Chorded Cycles

<ロ> (日) (日) (日) (日) (日)

Finkel, 2008

Finkel, 2008

If G is a graph on $n \ge 4k$ vertices with $\delta(G) \ge 3k$, then G contains k disjoint chorded cycles.

Posed by Pósa, 1961

→ ∃ >

Finkel, 2008

Finkel, 2008

If G is a graph on $n \ge 4k$ vertices with $\delta(G) \ge 3k$, then G contains k disjoint chorded cycles.

Posed by Pósa, 1961 Sharpness:

KKMY (ASU, UIUC)

Disjoint Cycles

$Chorded \ + \ Unchorded \ Cycles$

Conjecture: Bialostocki-Finkel-Gyárfás, 2008

If G is a graph on $n \ge 3r + 4s$ vertices with $\delta(G) \ge 2r + 3s$, then G contains r + s cycles, s of them chorded.

- A I I I A I I I I

$Chorded \,+\, Unchorded \,\, Cycles$

Conjecture: Bialostocki-Finkel-Gyárfás, 2008

If G is a graph on $n \ge 3r + 4s$ vertices with $\delta(G) \ge 2r + 3s$, then G contains r + s cycles, s of them chorded.

Chiba-Fujita-Gao-Li, 2010

Let r and s be integers with $r + s \ge 1$, and let G be a graph on $n \ge 3r + 4s$ vertices. If $\sigma_2(G) \ge 4r + 6s - 1$, then G contains r + s disjoint cycles, s of them chorded cycles.

$Chorded \ + \ Unchorded \ Cycles$

Conjecture: Bialostocki-Finkel-Gyárfás, 2008

If G is a graph on $n \ge 3r + 4s$ vertices with $\delta(G) \ge 2r + 3s$, then G contains r + s cycles, s of them chorded.

Qiao, 2012

Let r, s be nonnegative integers, and let G be a graph on at least 3r + 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 3r + 4s + 1$. Then G contains r + s disjoint cycles, s of them chorded.

Qiao, 2012

Let r, s be nonnegative integers, and let G be a graph on at least 3r + 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 3r + 4s + 1$. Then G contains r + s disjoint cycles, s of them chorded.

Sharpness (sort of):

Qiao, 2012

Let r, s be nonnegative integers, and let G be a graph on at least 3r + 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 3r + 4s + 1$. Then G contains r + s disjoint cycles, s of them chorded.

Qiao, 2012

Let r, s be nonnegative integers, and let G be a graph on at least 3r + 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 3r + 4s + 1$. Then G contains r + s disjoint cycles, s of them chorded.

Gould-Hirohata-Horn, 2013

Let G be a graph on at least 4k vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 4k + 1$. Then G contains k disjoint chorded cycles.

・ロン ・聞と ・ ほと ・ ほと

Qiao, 2012

Let r, s be nonnegative integers, and let G be a graph on at least 3r + 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 3r + 4s + 1$. Then G contains r + s disjoint cycles, s of them chorded.

Gould-Hirohata-Horn, 2013

Let G be a graph on at least 4k vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 4k + 1$. Then G contains k disjoint chorded cycles.

Let G be a graph on n > 30k vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 2k + 1$. Then G contains k disjoint chorded cycles.

Gould-Hirohata-Horn, 2013

Let G be a graph on n > 30k vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 2k + 1$. Then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013

Let G be a graph on n > 30k vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 2k + 1$. Then G contains k disjoint cycles.

Sharpness (of $|N(x) \cup N(y)| \ge 2k + 1$)

Gould-Hirohata-Horn, 2013

Let G be a graph on n > 30k vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 2k + 1$. Then G contains k disjoint cycles.

Sharpness (of $|N(x) \cup N(y)| \ge 2k + 1$)

k = 1:

Gould-Hirohata-Horn, 2013

Let G be a graph on n > 30k vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 2k + 1$. Then G contains k disjoint cycles.

Sharpness (of $|N(x) \cup N(y)| \ge 2k + 1$)

k = 2:

We define f(k) to be the number of chords in K_{k+1} , viewed as a cycle. That is, $f(k) = \frac{(k+1)(k-2)}{2}$.

Gould-Horn-Magnant, 2014

There exist s_0 and k_0 so that if $s \ge s_0$ and $k \ge k_0$, then there exists an $n_0 = n_0(s, k)$ so that if G has minimum degree at least sk and $|G| > n_0$, then G contains s disjoint cycles with at least f(k) chords.

We define f(k) to be the number of chords in K_{k+1} , viewed as a cycle. That is, $f(k) = \frac{(k+1)(k-2)}{2}$.

Gould-Horn-Magnant, 2014

There exist s_0 and k_0 so that if $s \ge s_0$ and $k \ge k_0$, then there exists an $n_0 = n_0(s, k)$ so that if G has minimum degree at least sk and $|G| > n_0$, then G contains s disjoint cycles with at least f(k) chords.

Conjecture: $s_0 = k_0 = 1$, $n_0 = s(k+1)$

Qiao-Zhang, 2010

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

3

Qiao-Zhang, 2010

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

Sharp for small k:

3

- 4 同 ト - 4 三 ト - 4 三

Qiao-Zhang, 2010

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

Sharp for small k:

$$k = 1$$

$$\lfloor 7k/2 \rfloor = 3;$$
 use C_4

Qiao-Zhang, 2010

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

Sharp for small k:

KKMY (ASU, UIUC)

Qiao-Zhang, 2010

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

Sharp for small *k*:

KKMY (ASU, UIUC)

Cycles with All Chords at One Vertex

Babu-Diwan, 2009

Theorem 1.1. Let n_1, n_2, \ldots, n_k be integers, $n = \sum n_i$, $n_i \ge 3$, and let H_i be a cycle containing all possible chords incident to one vertex, or a tree, on n_i vertices. If G is a graph on at least n vertices with $\sigma_2(G) \ge 2(n-k) - 1$, then G contains disjoint subgraphs isomorphic to H_1, \ldots, H_k .

Cycles with All Chords at One Vertex

Babu-Diwan, 2009

Theorem 1.1. Let n_1, n_2, \ldots, n_k be integers, $n = \sum n_i$, $n_i \ge 3$, and let H_i be a cycle containing all possible chords incident to one vertex, or a tree, on n_i vertices. If G is a graph on at least n vertices with $\sigma_2(G) \ge 2(n-k) - 1$, then G contains disjoint subgraphs isomorphic to H_1, \ldots, H_k .

Sharpness?

Equitable Coloring

3

(日) (周) (三) (三)
Definition

An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.

Image: A image: A

Definition

An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.

KKMY (ASU, UIUC)

Definition

An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.

Definition

An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.

Definition

An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.

Definition

An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.

	◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 > ⑦ Q	. (
Colors are computers		
 Edges are conflicts 		
 Vertices are tasks 		
Scheduling		
Application		

KKMY (ASU, UIUC)

Disjoint Cycles

21 April 2014 22 / 30

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).

3

-∢∃⊳

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).

n = 4k

If G has n = 4k vertices and an equitable k-coloring, then \overline{G} has k disjoint, doubly chorded cycles (each with four vertices).

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).

n = 4k

If G has n = 4k vertices and an equitable k-coloring, then \overline{G} has k disjoint, doubly chorded cycles (each with four vertices).

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).

n = 4k

If G has n = 4k vertices and an equitable k-coloring, then \overline{G} has k disjoint, doubly chorded cycles (each with four vertices).

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).

n = 4k

If G has n = 4k vertices and an equitable k-coloring, then \overline{G} has k disjoint, doubly chorded cycles (each with four vertices).

What's Really Going On

independent sets \leftrightarrow cliques

- 4 同 6 4 日 6 4 日 6

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).

n = 4k

If G has n = 4k vertices and an equitable k-coloring, then \overline{G} has k disjoint, doubly chorded cycles (each with four vertices).

What's Really Going On

independent sets \leftrightarrow cliques

Cycles, chorded cycles, cycles with f(k) chords, etc: generalizations.

Kierstead-Kostochka, 2008

If G is a graph such that $d(x) + d(y) \le 2k - 1$ for every edge xy, then G has an equitable k-coloring.

Kierstead-Kostochka, 2008

If G is a graph such that $d(x) + d(y) \le 2k - 1$ for every edge xy, then G has an equitable k-coloring.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Kierstead-Kostochka, 2008

If G is a graph such that $d(x) + d(y) \le 2k - 1$ for every edge xy, then G has an equitable k-coloring.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

n = 3k

Equivalent when n = 3k: 2(3k-1)-(2k-1)=4k-1

KKMY (ASU,	UIUC)
--------	------	-------

Qiao-Zhang, 2010

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

3

< ロト < 同ト < ヨト < ヨト

Qiao-Zhang, 2010

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

n = 4k $\delta(G) \ge \lfloor 7k/2 \rfloor \Leftrightarrow \Delta(\overline{G}) \le (4k - 1) - (\lfloor 7k/2 \rfloor) = \lfloor k/2 \rfloor - 1$

イロト イポト イヨト イヨト 二日

Qiao-Zhang, 2010

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

$$n = 4k$$

$$\delta(G) \ge \lfloor 7k/2 \rfloor \Leftrightarrow \Delta(\overline{G}) \le (4k-1) - (\lfloor 7k/2 \rfloor) = \lfloor k/2 \rfloor - 1$$

Equivalent Statement for n = 4k

Let G be a graph on 4k vertices with $\Delta(G) \leq \lfloor k/2 \rfloor - 1$. Then G is equitably k-colorable.

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

3

(日) (周) (三) (三)

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture

A connected graph G is equitably $\Delta(G)$ colorable if G is different from K_m , C_{2m+1} and $K_{2m+1,2m+1}$ for every $m \ge 1$.

副下 《唐下 《唐下

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture

A connected graph G is equitably $\Delta(G)$ colorable if G is different from K_m , C_{2m+1} and $K_{2m+1,2m+1}$ for every $m \ge 1$.

Chen-Lih-Wu **Conjecture** Re-stated

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

イロト 不得 トイヨト イヨト 二日

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture

A connected graph G is equitably $\Delta(G)$ colorable if G is different from K_m , C_{2m+1} and $K_{2m+1,2m+1}$ for every $m \ge 1$.

Chen-Lih-Wu Conjecture Re-stated

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

CLW true if:

 $\delta(G) \ge |G|/2; \ \Delta(G) \le 4; \ G$ planar with $\Delta(G) \ge 13; \ G$ outerplanar, etc.

Kierstead-Kostochka, 2008

If G is a graph such that for each edge xy, $d(x) + d(y) \le 2k - 1$, then G is equitably k-colorable.

Kierstead-Kostochka, 2008

If G is a graph such that for each edge xy, $d(x) + d(y) \le 2k - 1$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Yeager, 2014+

If G is a 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Kierstead-Kostochka, 2008

If G is a graph such that for each edge xy, $d(x) + d(y) \le 2k - 1$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Yeager, 2014+

If G is a 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on 3k vertices with $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions.

Kierstead-Kostochka-Molla-Yeager, 2014+

If G is a 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on 3k vertices with $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions.

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

イロト イヨト イヨト

Exceptions

• *k* = 3

Cycles:

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Exceptions

• Equitable coloring:

Cycles:

3

- 4 回 > - 4 回 > - 4 回 >

Exceptions

 K_{2k} k-1

KKMY (ASU, UIUC)

3

→

Thanks for Listening!

3

Image: A math a math