Disjoint Cycles and A Question of Dirac

H. Kierstead A. Kostochka T. Molla E. Yeager

yeager2@illinois.edu

Greensboro, North Carolina

Special Session on Recent Developments in Graph Theory and Hypergraph Theory

08 November 2014

Disjoint Cycles

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

• k = 1

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

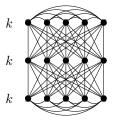
• k = 1: easy

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

- k = 1: easy
- Sharpness:

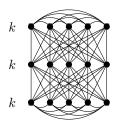


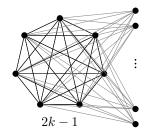
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

- k=1: easy
- Sharpness:





Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}\$$

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}\$$

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \not\in E(G)\}\$$

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal

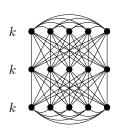
Enomoto 1998, Wang 1999

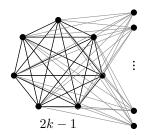
If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Sharpness:





Independence Number:

Independence Number:

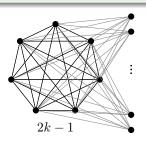
Observation:

$$\alpha(G) \ge n - 2k + 1 \Rightarrow G$$
 has no k cycles

Independence Number:

Observation:

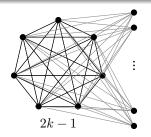
$$\alpha(G) \ge n - 2k + 1 \Rightarrow G$$
 has no k cycles

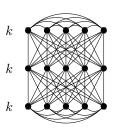


Independence Number:

Observation:

$$\alpha(G) \ge n - 2k + 1 \Rightarrow G$$
 has no k cycles





Independence Number:

Observation:

$$\alpha(G) \ge n - 2k + 1 \Rightarrow G$$
 has no k cycles

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Independence Number:

Observation:

$$\alpha(G) \ge n - 2k + 1 \Rightarrow G$$
 has no k cycles

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

KKY, 2014⁺

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

6 / 21

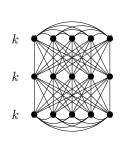
KKY, 2014+

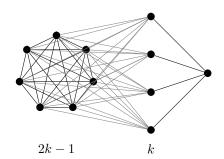
For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

$$n > 3k + 1$$





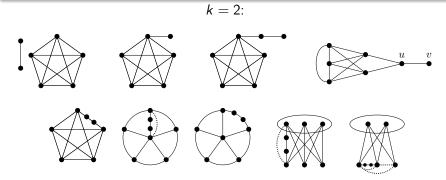
KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

$$k = 1$$
:

KKY, 2014+

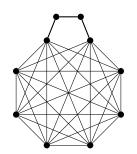
For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

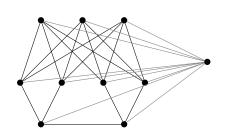


KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

$$k = 3$$
:

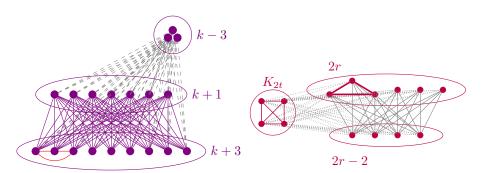




KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

$$\sigma_2 = 4k - 4$$
:



Dirac's Question

Dirac, 1963

What (2k-1)-connected graphs do not have k disjoint cycles?

Dirac, 1963

What (2k-1)-connected graphs do not have k disjoint cycles?

Observation:

G is (2k-1) connected \Rightarrow

Dirac, 1963

What (2k-1)-connected graphs do not have k disjoint cycles?

Observation:

G is (2k-1) connected $\Rightarrow \delta(G) \geq 2k-1 \Rightarrow$

Dirac, 1963

What (2k-1)-connected graphs do not have k disjoint cycles?

Observation:

G is
$$(2k-1)$$
 connected $\Rightarrow \delta(G) \ge 2k-1 \Rightarrow \sigma_2(G) \ge 4k-2$

Dirac, 1963

What (2k-1)-connected graphs do not have k disjoint cycles?

Observation:

G is
$$(2k-1)$$
 connected $\Rightarrow \delta(G) \ge 2k-1 \Rightarrow \sigma_2(G) \ge 4k-2$

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Answer to Dirac's Question for Simple Graphs

Let $k \ge 2$. Every graph G with $(i) |G| \ge 3k$ and $(ii) \delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

- $\alpha(G) \leq |G| 2k$, and
- if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$, and
- if k = 2 then G is not a wheel.

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Answer to Dirac's Question for Simple Graphs

Let $k \ge 2$. Every graph G with $(i) |G| \ge 3k$ and $(ii) \delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

- $\alpha(G) \leq |G| 2k$, and
- if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$, and
- if k = 2 then G is not a wheel.

Further:

KKMY (ASU, UIUC) Disjoint Cycles 08 Nov 2014

9 / 21

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Answer to Dirac's Question for Simple Graphs

Let $k \ge 2$. Every graph G with $(i) |G| \ge 3k$ and $(ii) \delta(G) \ge 2k-1$ contains k disjoint cycles if and only if

- $\alpha(G) \leq |G| 2k$, and
- if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$, and
- if k = 2 then G is not a wheel.

Further:

characterization for multigraphs

9 / 21

Multigraphs

Theorem (Extension of Corrádi-Hajnal to Multigraphs)

For $k \in \mathbb{Z}^+$, let G be a multigraph with simple degree at least 2k. Then G has k disjoint cycles if and only if

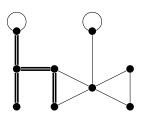
$$|V(G)| \ge 3k - 2\ell - \alpha'$$

Multigraphs

Theorem (Extension of Corrádi-Hajnal to Multigraphs)

For $k \in \mathbb{Z}^+$, let G be a multigraph with simple degree at least 2k. Then G has k disjoint cycles if and only if

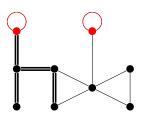
$$|V(G)| \ge 3k - 2\ell - \alpha'$$



Theorem (Extension of Corrádi-Hajnal to Multigraphs)

For $k \in \mathbb{Z}^+$, let G be a multigraph with simple degree at least 2k. Then G has k disjoint cycles if and only if

$$|V(G)| \ge 3k - 2\ell - \alpha'$$

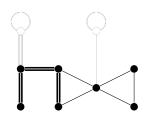


KKMY (ASU, UIUC) Disjoint Cycles 08 Nov 2014 10 / 21

Theorem (Extension of Corrádi-Hajnal to Multigraphs)

For $k \in \mathbb{Z}^+$, let G be a multigraph with simple degree at least 2k. Then G has k disjoint cycles if and only if

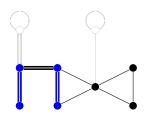
$$|V(G)| \ge 3k - 2\ell - \alpha'$$



Theorem (Extension of Corrádi-Hajnal to Multigraphs)

For $k \in \mathbb{Z}^+$, let G be a multigraph with simple degree at least 2k. Then G has k disjoint cycles if and only if

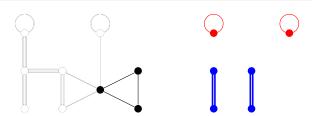
$$|V(G)| \ge 3k - 2\ell - \alpha'$$



Theorem (Extension of Corrádi-Hajnal to Multigraphs)

For $k \in \mathbb{Z}^+$, let G be a multigraph with simple degree at least 2k. Then G has k disjoint cycles if and only if

$$|V(G)| \ge 3k - 2\ell - \alpha'$$

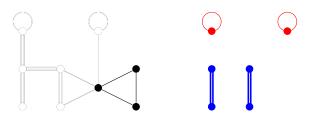


KKMY (ASU, UIUC) Disjoint Cycles 08 Nov 2014 10 / 21

Theorem (Extension of Corrádi-Hajnal to Multigraphs)

For $k \in \mathbb{Z}^+$, let G be a multigraph with simple degree at least 2k. Then G has k disjoint cycles if and only if

$$|V(G)| \ge 3k - 2\ell - \alpha'$$

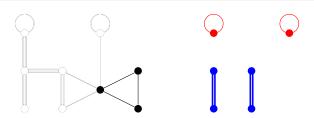


Remaining graph: min degree $\geq 2k$

Theorem (Extension of Corrádi-Hajnal to Multigraphs)

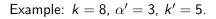
For $k \in \mathbb{Z}^+$, let G be a multigraph with simple degree at least 2k. Then G has k disjoint cycles if and only if

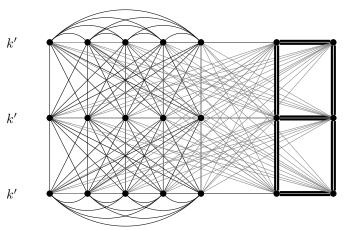
$$|V(G)| \ge 3k - 2\ell - \alpha'$$



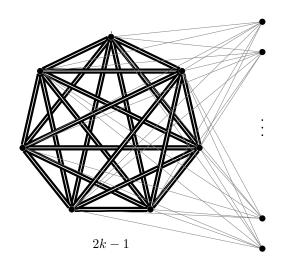
Remaining graph: min degree $\geq 2k = 2(k - \ell - \alpha') + \ell$

k' odd, F has a perfect matching

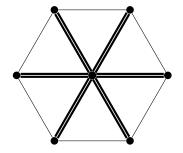




Big independent set, incident to no multiple edges

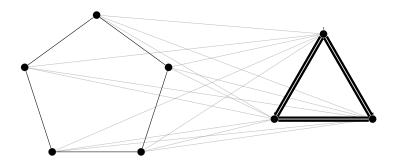


k = 2 and G is a wheel; spokes possibly strong



k' = 2; Remove 2-cyces remainder is a wheel

Example:
$$k = 3$$
, $\alpha' = 1$, $k' = 2$

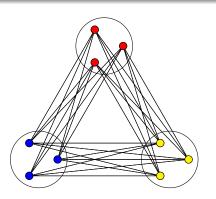


Definition

An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.

Definition

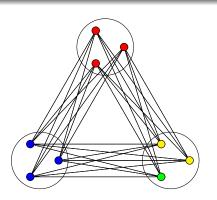
An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.



KKMY (ASU, UIUC) Disjoint Cycles 08 Nov 2014 16 / 21

Definition

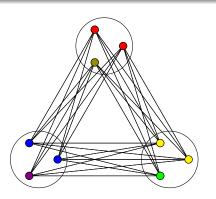
An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.



KKMY (ASU, UIUC) Disjoint Cycles 08 Nov 2014 16 / 21

Definition

An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.



KKMY (ASU, UIUC) Disjoint Cycles 08 Nov 2014 16 / 21

Equitable Coloring and Cycles

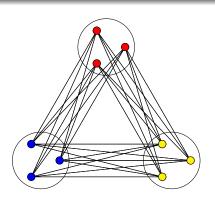
n = 3k

If G has n = 3k vertices, then G has an equitable k-coloring if and only if \overline{G} has k disjoint cycles (all triangles).

Equitable Coloring and Cycles

n = 3k

If G has n = 3k vertices, then G has an equitable k-coloring if and only if \overline{G} has k disjoint cycles (all triangles).



Equitable Coloring and Cycles

$$n = 3k$$

If G has n = 3k vertices, then G has an equitable k-coloring if and only if \overline{G} has k disjoint cycles (all triangles).

Chen-Lih-Wu

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$, and if k is odd $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

KKMY (ASU, UIUC) Disjoint Cycles 08 Nov 2014 18 / 21

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y, 2014+

If G is a k-colorable 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

KKMY (ASU, UIUC) Disjoint Cycles 08 Nov 2014 19 / 21

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y, 2014+

If G is a k-colorable 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on 3k vertices with $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.

KKMY (ASU, UIUC) Disjoint Cycles 08 Nov 2014 19 / 21

Kierstead-Kostochka-Molla-Y, 2014+

If G is a k-colorable 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on 3k vertices with $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.

KKY, 2014+

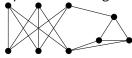
For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

19 / 21

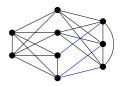
Exceptions

•
$$k = 3$$

Equitable coloring:

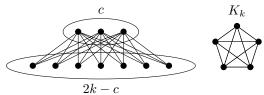


Cycles:



Exceptions

• Equitable coloring:

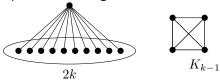


Cycles:

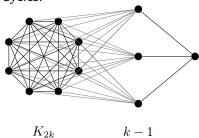


Exceptions

• Equitable coloring:



Cycles:



KKMY (ASU, UIUC) Disjoint Cycles 08 Nov 2014 20 / 21

Thanks for Listening!