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Corradi-Hajnal Theorem

Theorem 1
[Corradi, Hajnal 1963] Let k > 1,n > 3k, and let H be an n-vertex
graph with §(H) > 2k. Then H contains k vertex-disjoint cycles.
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Corollary 2

Let n = 3k, and let H be an n-vertex graph with (H) > 2k. Then
H contains k vertex-disjoint triangles.



Refinements

Theorem 3
[Aigner, Brandt 1993]: Let H be an n-vertex graph with
§(H) > 2221, Then H contains each 2-factor.
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Theorem 4
[Kostochka, Yu 2011]: Let n > 3 and H be an n-vertex graph with
o2(H) > 4n/3 — 1. Then H contains each 2-factor.
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[Enomoto 1998, Wang 1999]: Let k > 1,n > 3k, and let H be an
n-vertex graph with oo(H) > 4k — 1. Then H contains k
vertex-disjoint cycles.

Theorem 7

[Kierstead, Kostochka, Y.J: Let k >3, n> 3k + 1, and let H be
an n-vertex graph with 6(H) > 2k — 1 and o(H) < n— 2k. Then
H contains k vertex-disjoint cycles.



Proof Sketch: Theorem 7

Theorem (7)

[Kierstead, Kostochka, Y.]: Let k >3, n> 3k + 1, and let H be
an n-vertex graph with 6(H) > 2k — 1 and o(H) < n—2k. Then
H contains k vertex-disjoint cycles.

Idea of Proof: Suppose G is an edge-maximal counterexample. Let
C be a set of disjoint cycles in G such that:

> |C| is maximized,
> subject to the above, > .. |C| is minimized, and

> subject to both other conditions, the length of a longest path
in G —JC is maximized.
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Goal 1
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Notice R is a forest. If R is not a path, it has at least three buds.
Let a be an endpoint of a longest path P, and let ¢ be a bud not
on P.



Goal 1: R is a Path

Claim 1
Suppose R is not a path. ||{a,c}, C|| =4 for every C € C.

Claim 2

Suppose R is not a path. Then for all cycles C € C and for all
leaves c in R, a and c share exactly the same two neighbors in C.
If |C| = 4, then those neighbors are nonadjacent.

Claim 3
R is a subdivided star.

Claim 4
R is a path or a star.

Claim 5
R is a path.
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Claim 1

So, ||{a, c}, C|| < 4 for every C € C.



Claim 1

So, ||{a, c}, C|| < 4 for every C € C.

We can now show ||{a, c}, C|| = 4 by a counting argument, using
the minimum degree of G. This proves Claim (1).

The same counting argument shows that a and ¢ must have one
neighbor in R, so R has no isolated vertices.
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Claim 2

So we see that ¢ can have at most 2 neighbors in any cycle C € C.
By degree considerations, ¢ must have precisely two neighbors in
each cycle C € C. This tells us that a, as well, has precisely 2
neighbors to every cycle C € C.

It remains only to show that no two leaves in R have different sets
of neighbors, and if |C| = 4, the neighbors of our leaves are
nonadjacent.



Claim 2

So if |[C| =3, then N(a)N C = N(c) N C, as desired.
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This proves Claim 2.
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Claim 3

Suppose R is not a subdivided star. Then it has four leaves
a, b, ¢, d such that the paths aRb and cRd exist and are disjoint.
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Claim 4

Suppose R is not a path or a star. We know it is a subdivided star,
so there must be some unique vertex w with degree at least three.
Since we assume it is not a star, there is also a vertex v of degree
2. Further, there exist leaves a, b, ¢ so that vRb does not contain
w and is disjoint rom aRc.

R C
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Claim 5

Suppose R is not a path. R has precisely one vertex w of degree at
least 3.
Let z be an arbitrary vertex in C — N(a).
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Claim 5

The independent set has size:
IV(G)|—2(k—1)—1=n—-2k+1

but we assumed a(G) < n — 2k, a contradiction. This proves
Claim 5, also Goal 1, that R is a path.
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Thank you for listening!



