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Corradi-Hajnal Theorem

Corradi-Hajnal, 1963

If G is a graph on n vertices with n > 3k and 0(G) > 2k, then G contains
k disjoint cycles.
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If G is a graph on n vertices with n > 3k and 0(G) > 2k, then G contains
k disjoint cycles.

Examples:
e k=1
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Corradi-Hajnal Theorem
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Examples:

@ k=1: easy
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> 2k, then G containsJ
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@ k=1: easy
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Corradi-Hajnal Theorem

Corradi-Hajnal, 1963
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Enomoto, Wang

Corradi-Hajnal, 1963

If G is a graph on n vertices with n > 3k and 0(G) > 2k, then G contains
k disjoint cycles.
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Enomoto, Wang

Corradi-Hajnal, 1963

If G is a graph on n vertices with n > 3k and 0(G) > 2k, then G contains
k disjoint cycles.

02(G) == min{d(x) + d(y) : xy € E(G)}
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Enomoto, Wang

Corradi-Hajnal, 1963

If G is a graph on n vertices with n > 3k and 0(G) > 2k, then G contains
k disjoint cycles.

02(G) == min{d(x) + d(y) : xy € E(G)}

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n > 3k and 02(G) > 4k — 1, then G
contains k disjoint cycles.
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Enomoto, Wang

Corradi-Hajnal, 1963

If G is a graph on n vertices with n > 3k and 0(G) > 2k, then G contains
k disjoint cycles.

02(G) == min{d(x) + d(y) : xy € E(G)}

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n > 3k and 02(G) > 4k — 1, then G
contains k disjoint cycles.

Implies Corradi-Hajnal
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Enomoto, Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n > 3k and 02(G) > 4k — 1, then G
contains k disjoint cycles.
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Enomoto, Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n > 3k and 02(G) > 4k — 1, then G

contains k disjoint cycles.

Sharpness:
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Kierstead-Kostochka-Y, 2014+

Independence Number:

KKMY (ASU, UIUC) Disjoint Cycles 29 October 2014 6 /39



Kierstead-Kostochka-Y, 2014+

Independence Number:

Observation:
a(G) > n—2k+1 = G has no k cycles
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Independence Number:

Observation:
a(G) > n—2k+1 = G has no k cycles J
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Kierstead-Kostochka-Y, 2014+

Independence Number:

Observation:
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Kierstead-Kostochka-Y, 2014+

Independence Number:

Observation:
a(G) > n—2k+1 = G has no k cycles J

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n > 3k and 02(G) > 4k — 1, then G
contains k disjoint cycles.
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Kierstead-Kostochka-Y, 2014+

Independence Number:

Observation:
a(G) > n—2k+1 = G has no k cycles

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n > 3k and 02(G) > 4k — 1, then G
contains k disjoint cycles.

KKY, 2014"

For k > 4, if G is a graph on n vertices with n > 3k + 1 and
02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.

v
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Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For kK > 4, if G is a graph on n vertices with n > 3k + 1 and
02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.
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Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For kK > 4, if G is a graph on n vertices with n > 3k + 1 and
02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.
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Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For kK > 4, if G is a graph on n vertices with n > 3k + 1 and
02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.

k=1:
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Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For kK > 4, if G is a graph on n vertices with n > 3k + 1 and
02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.

k =2:
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Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For kK > 4, if G is a graph on n vertices with n > 3k + 1 and
02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.
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Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For kK > 4, if G is a graph on n vertices with n > 3k + 1 and
02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.

oy =4k — 4:
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Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For kK > 4, if G is a graph on n vertices with n > 3k + 1 and
02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.

Proof
(Like Enomoto)
@ Let G be an edge-maximal counterexample.
@ There exists a set of (k — 1) disjoint cycles.
@ Choose the set of cycles with the least number of vertices, etc.
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Other Results

Egawa-Enomoto-Jendrol-Ota-Schiermeyer, 2007

Let G be a graph on n vertices. If a(G) < v/2n— 6k +3 — 1 then G
contains k disjoint cycles.

KKMY (ASU, UIUC) Disjoint Cycles 29 October 2014 8 /39



Other Results

Egawa-Enomoto-Jendrol-Ota-Schiermeyer, 2007

Let G be a graph on n vertices. If a(G) < v/2n— 6k +3 — 1 then G
contains k disjoint cycles.

Faudree-Gould, 2005

Let G be a graph on at least 3k vertices. If [N(x) U N(y)| > 3k for every
pair of nonadjacent vertices x, y then G contains k disjoint cycles.
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Other Results

Egawa-Enomoto-Jendrol-Ota-Schiermeyer, 2007

Let G be a graph on n vertices. If a(G) < v/2n— 6k +3 — 1 then G
contains k disjoint cycles.

Faudree-Gould, 2005

Let G be a graph on at least 3k vertices. If [N(x) U N(y)| > 3k for every
pair of nonadjacent vertices x, y then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013

Let G be a graph on at least 30k vertices. If [N(x) U N(y)| > 2k + 1 for
every pair of nonadjacent vertices x, y then G contains k disjoint cycles.

4
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Other Results

Egawa-Enomoto-Jendrol-Ota-Schiermeyer, 2007

Let G be a graph on n vertices. If a(G) < v/2n— 6k +3 — 1 then G
contains k disjoint cycles.

Faudree-Gould, 2005

Let G be a graph on at least 3k vertices. If [N(x) U N(y)| > 3k for every
pair of nonadjacent vertices x, y then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013

Let G be a graph on at least 30k vertices. If [N(x) U N(y)| > 2k + 1 for
every pair of nonadjacent vertices x, y then G contains k disjoint cycles.

4

Finkel, 2008

Let G be a graph on at least 4k vertices. If §(G) > 3k then G contains k
disjoint chorded cycles.

v
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Dirac’'s Question
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Dirac: (2k — 1)-connected without k disjoint cycles

Dirac, 1963
What (2k — 1)-connected graphs do not have k disjoint cycles? J
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Dirac: (2k — 1)-connected without k disjoint cycles

Dirac, 1963
What (2k — 1)-connected graphs do not have k disjoint cycles? }

Observation:
G is (2k — 1) connected = J
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Dirac: (2k — 1)-connected without k disjoint cycles

Dirac, 1963
What (2k — 1)-connected graphs do not have k disjoint cycles? }

Observation:

G is (2k — 1) connected = §(G) > 2k — 1= 02(G) > 4k — 2 J
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Dirac: (2k — 1)-connected without k disjoint cycles

Dirac, 1963
What (2k — 1)-connected graphs do not have k disjoint cycles?

Observation:
G is (2k — 1) connected = 6(G) > 2k — 1= 02(G) > 4k — 2

KKY, 2014+

For kK > 4, if G is a graph on n vertices with n > 3k + 1 and
02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.
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Dirac: (2k — 1)-connected without k disjoint cycles

KKY, 2014+

For kK > 4, if G is a graph on n vertices with n > 3k + 1 and

02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.

Answer to Dirac’s Question for Simple Graphs

Let kK > 2. Every graph G with (i) |G| > 3k and (ii) 6(G) > 2k — 1
contains k disjoint cycles if and only if

e a(G) < |G| — 2k, and
e if k is odd and |G| = 3k, then G # 2K, V Kk, and
o if k =2 then G is not a wheel.
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Dirac: (2k — 1)-connected without k disjoint cycles

KKY, 2014+

For kK > 4, if G is a graph on n vertices with n > 3k + 1 and
02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.

Answer to Dirac’s Question for Simple Graphs
Let kK > 2. Every graph G with (i) |G| > 3k and (ii) 6(G) > 2k — 1
contains k disjoint cycles if and only if

e o(G) < |G| — 2k, and

e if k is odd and |G| = 3k, then G # 2K, V Kk, and

o if k =2 then G is not a wheel.

Further:
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Dirac: (2k — 1)-connected without k disjoint cycles

KKY, 2014+
For kK > 4, if G is a graph on n vertices with n > 3k + 1 and

02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.

Answer to Dirac’s Question for Simple Graphs
Let kK > 2. Every graph G with (i) |G| > 3k and (ii) 6(G) > 2k — 1
contains k disjoint cycles if and only if

e o(G) < |G| — 2k, and

e if k is odd and |G| = 3k, then G # 2K, V Kk, and

o if k =2 then G is not a wheel.

Further:
characterization for multigraphs
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Multigraphs

Theorem (Extension of Corradi-Hajnal to Multigraphs)

For k € Z, let G be a multigraph with simple degree at least 2k.
Then G has k disjoint cycles if and only if

IV(G)| > 3k — 2 — o
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Multigraphs

Theorem (Extension of Corradi-Hajnal to Multigraphs)

For k € Z, let G be a multigraph with simple degree at least 2k.
Then G has k disjoint cycles if and only if

IV(G)| > 3k — 20 — o
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Multigraphs

Theorem (Extension of Corradi-Hajnal to Multigraphs)

For k € Z, let G be a multigraph with simple degree at least 2k.
Then G has k disjoint cycles if and only if

IV(G)| > 3k — 20 — o
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Multigraphs

Theorem (Extension of Corradi-Hajnal to Multigraphs)

For k € Z, let G be a multigraph with simple degree at least 2k.
Then G has k disjoint cycles if and only if

IV(G)| > 3k — 20 — o
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Multigraphs

Theorem (Extension of Corradi-Hajnal to Multigraphs)

For k € Z, let G be a multigraph with simple degree at least 2k.
Then G has k disjoint cycles if and only if

IV(G)| > 3k — 20 — o
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Multigraphs

Theorem (Extension of Corradi-Hajnal to Multigraphs)

For k € Z, let G be a multigraph with simple degree at least 2k.
Then G has k disjoint cycles if and only if

IV(G)| > 3k — 2 — o

O @
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Multigraphs

Theorem (Extension of Corradi-Hajnal to Multigraphs)

For k € Z, let G be a multigraph with simple degree at least 2k.
Then G has k disjoint cycles if and only if

IV(G)| > 3k — 20 — o

O @

1 1]

Remaining graph: min degree > 2k —¢ — 20/
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Multigraphs

Theorem (Extension of Corradi-Hajnal to Multigraphs)

For k € Z, let G be a multigraph with simple degree at least 2k.
Then G has k disjoint cycles if and only if

IV(G)| > 3k — 20 — o

O @

1 1]

Remaining graph: min degree > 2k —¢ — 2o/ =2(k —{ — ')+ ¢
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Multigraphs

Theorem (Extension of Corradi-Hajnal to Multigraphs)

For k € Z, let G be a multigraph with simple degree at least 2k — 1.
Then G has k disjoint cycles if and only if
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Multigraphs

Theorem (Extension of Corradi-Hajnal to Multigraphs)

For k € Z, let G be a multigraph with simple degree at least 2k — 1.
Then G has k disjoint cycles if and only if

IV(G)| > 3k — 20 — o

O @

1 1]

Remaining graph: min degree > 2k—1 —¢ — 2o/ =2(k—{ — /) +£-1
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Multigraphs

Theorem (Extension of Corradi-Hajnal to Multigraphs)

For k € Z, let G be a multigraph with simple degree at least 2k.
Then G has k disjoint cycles if and only if

IV(G)| > 3k — 20 — o

Remaining graph: min degree > 2k—1 —( —2a/ =2(k —{ — o) + (-1
Corollary

Let G be a multigraph with simple degree at least 2k — 1 for some integer
k > 2. Suppose G contains at least one loop. Then G has k disjoint
cycles if and only if

IV(G)| > 3k — 20 — o
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(2k — 1)-connected multigraphs with no k disjoint cycles

Answer to Dirac's Question for multigraphs:

Let k > 2 and n > k. Let G be an n-vertex graph with simple degree at least 2k — 1
and no loops. Let F be the simple graph induced by the strong edgs of G, o/ = o’(F),
and k' = k — a’. Then G does not contain k disjoint cycles if and only if one of the
following holds:

@ n+a <3k;
@ |F| =2d’ (i.e., F has a perfect matching) and either (i) k" is odd and
G — F =Yy, or (i) K =2 < k and G — F is a wheel with 5 spokes;

@ G is extremal and either (i) some big set is not incident to any strong edge, or (ii)
for some two distinct big sets /; and /;/, all strong edges intersecting /; U [; have a
common vertex outside of [; U [;/;

@ n=2d'+3k', k' is odd, and F has a superstar S = {w, ..., vs} with center vo
such that either (i) G — (F — S + w) = Y16, or (i) s =2, vz € E(G),
G — F = Y_1 and G has no edges between {vi, v»} and the set Xy in G — F;

k =2 and G is a wheel, where some spokes could be strong edges;
k=2, |F|=2a'+1=n—-5,and G — F = G.
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(2k — 1)-connected multigraphs with no k disjoint cycles

Answer to Dirac's Question for multigraphs:

Let k > 2 and n > k. Let G be an n-vertex graph with simple degree at least 2k — 1
and no loops. Let F be the simple graph induced by the strong edgs of G, o/ = o/(F),
and k' = k — a’. Then G does not contain k disjoint cycles if and only if one of the
following holds:

e n+da < 3k;

@ |F| =2d’ (i.e., F has a perfect matching) and either (i) k" is odd and
G — F =Yy, or (i) K =2 < k and G — F is a wheel with 5 spokes;

@ G is extremal and either (i) some big set is not incident to any strong edge, or (ii)
for some two distinct big sets /; and /;/, all strong edges intersecting /; U [; have a
common vertex outside of [; U [;/;

@ n=2d'+3k', k' is odd, and F has a superstar S = {w, ..., vs} with center vo
such that either (i) G — (F — S + w) = Y16, or (i) s =2, vz € E(G),

G — F = Y_1 and G has no edges between {vi, v»} and the set Xy in G — F;
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k=2, |F|=2a'+1=n—-5,and G — F = G.
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Idea of Proof

Suppose G is a multigraph with no loops, minimum simple degree at least
2k — 1, and n = |G| > 3k — &/, but G does not contain k disjoint cycles.
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Idea of Proof

Suppose G is a multigraph with no loops, minimum simple degree at least
2k — 1, and n = |G| > 3k — &/, but G does not contain k disjoint cycles.
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Idea of Proof

Suppose G is a multigraph with no loops, minimum simple degree at least
2k — 1, and n = |G| > 3k — &/, but G does not contain k disjoint cycles.

<1 1]

The remaining graph G’ does not have k' = k — o cycles, but
5(G) > (2k —1) — 2o/ = 2(k — /) — 1 = 2K — 1.
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(2k — 1)-connected multigraphs with no k disjoint cycles

Answer to Dirac's Question for multigraphs:

Let k > 2 and n > k. Let G be an n-vertex graph with simple degree at least 2k — 1
and no loops. Let F be the simple graph induced by the strong edgs of G, o/ = o’(F),
and k' = k — a’. Then G does not contain k disjoint cycles if and only if one of the
following holds:

@ n+a <3k;

@ |F| =2 (i.e., F has a perfect matching) and either (i) k' is odd and
G—F = Yy, or (ii)) k' =2 < k and G — F is a wheel with 5 spokes;

@ G is extremal and either (i) some big set is not incident to any strong edge, or (ii)

for some two distinct big sets /; and I/, all strong edges intersecting /; U [; have a
common vertex outside of [; U [;/;

@ n=2d'+3k', k' is odd, and F has a superstar S = {w, ..., vs} with center vo
such that either (i) G — (F — S + w) = Y11, or (i) s =2, vz € E(G),
G — F = Yy _1x and G has no edges between {vi, v} and the set Xp in G — F;

k =2 and G is a wheel, where some spokes could be strong edges;
k=2, |F|=2a/+1=n—-5,and G — F = G.
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=8,a =3,k =5.

k' odd, F (strong edges) has a perfect matching
Example: k
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(2k — 1)-connected multigraphs with no k disjoint cycles

Answer to Dirac's Question for multigraphs:

Let k > 2 and n > k. Let G be an n-vertex graph with simple degree at least 2k — 1
and no loops. Let F be the simple graph induced by the strong edgs of G, o/ = o’(F),
and k' = k — a’. Then G does not contain k disjoint cycles if and only if one of the
following holds:

@ n+a <3k;

@ |F| =2 (i.e., F has a perfect matching) and either (i) k" is odd and
G—F = Y, or(ii) K =2 < kand G — F is a wheel with 5 spokes;

@ G is extremal and either (i) some big set is not incident to any strong edge, or (ii)

for some two distinct big sets /; and I/, all strong edges intersecting /; U [; have a
common vertex outside of [; U [;/;

@ n=2d'+3k', k' is odd, and F has a superstar S = {w, ..., vs} with center vo
such that either (i) G — (F — S + w) = Y11, or (i) s =2, vz € E(G),
G — F = Yy _1x and G has no edges between {vi, v} and the set Xp in G — F;

k =2 and G is a wheel, where some spokes could be strong edges;
k=2, |F|=2a/+1=n—-5,and G — F = G.
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k' =2, F (strong edges) has a perfect matching

Example: k=5,a =3,k =2

[ [/
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(2k — 1)-connected multigraphs with no k disjoint cycles

Answer to Dirac's Question for multigraphs:

Let k > 2 and n > k. Let G be an n-vertex graph with simple degree at least 2k — 1
and no loops. Let F be the simple graph induced by the strong edgs of G, o/ = o’(F),
and k' = k — a’. Then G does not contain k disjoint cycles if and only if one of the
following holds:

@ n+a <3k;

@ |F| =2d’ (i.e., F has a perfect matching) and either (i) k" is odd and
G — F =Yy, or (i) K =2 < k and G — F is a wheel with 5 spokes;

@ G is extremal and either (i) some big set is not incident to any strong
edge, or (ii) for some two distinct big sets /; and /;/, all strong edges
intersecting /; U [ have a common vertex outside of [; U ly;

@ n=2d'+3k', k' is odd, and F has a superstar S = {w, ..., vs} with center vo
such that either (i) G — (F — S + w) = Y16, or (i) s =2, vz € E(G),

G — F = Y_1 and G has no edges between {vi, v»} and the set Xy in G — F;

@ k=2 and G is a wheel, where some spokes could be strong edges;

@ k=2,|F|=2a'+1=n-5,and G- F = G.
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Big independent set, incident to no multiple edges
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(2k — 1)-connected multigraphs with no k disjoint cycles

Answer to Dirac's Question for multigraphs:

Let k > 2 and n > k. Let G be an n-vertex graph with simple degree at least 2k — 1
and no loops. Let F be the simple graph induced by the strong edgs of G, o/ = o’(F),
and k' = k — a’. Then G does not contain k disjoint cycles if and only if one of the
following holds:

@ n+a <3k;

@ |F| =2d (i.e., F has a perfect matching) and either (i) k’ is odd and
G—F =Yy, or (i) K =2 < k and G — F is a wheel with 5 spokes;

@ G is extremal and either (i) some big set is not incident to any strong
edge, or (ii) for some two distinct big sets /; and /;/, all strong edges
intersecting /; U [ have a common vertex outside of /; U [j/;

@ n=2d'+3k', k' is odd, and F has a superstar S = {w, ..., vs} with center vo
such that either (i) G — (F — S + w) = Y16, or (i) s =2, vz € E(G),

G — F = Y_1 and G has no edges between {vi, v»} and the set Xy in G — F;

@ k=2 and G is a wheel, where some spokes could be strong edges;

@ k=2,|F|=2a'+1=n-5,and G- F = G.
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Two big independent sets;
all incident strong edges share an endpoint

Example: k=3,a' =1, k' =2
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(2k — 1)-connected multigraphs with no k disjoint cycles

Answer to Dirac’s Question for multigraphs:

Let k > 2 and n > k. Let G be an n-vertex graph with simple degree at least 2k — 1
and no loops. Let F be the simple graph induced by the strong edgs of G, o’ = /(F),
and k' = k — a’. Then G does not contain k disjoint cycles if and only if one of the
following holds:

@ n+a <3k

|F| = 2a’ (i.e., F has a perfect matching) and either (i) k’ is odd and
G —F =Yy, or(ii) K =2< k and G — F is a wheel with 5 spokes;

@ G is extremal and either (i) some big set is not incident to any strong edge, or (ii)
for some two distinct big sets /; and [/, all strong edges intersecting /; U [; have a
common vertex outside of [; U [;/;

@ n=2d'+ 3k, k' is odd, and F has a superstar S = {v, ..., vs} with
center vp such that either (i) G — (F — S + vw) = Yirq1,4, or (ii)
s=2, v € E(G), G—F = Yj_1, and G has no edges between
{v1, va} and the set Xp in G — F;

@ k=2 and G is a wheel, where some spokes could be strong edges;

@ k=2,|F|=2a'+1=n—5,and G— F = G.
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n=2a' 4 3k', k" odd; G has Yj41 4 subgraph

Example: k=6,a' =3, k' =3
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(2k — 1)-connected multigraphs with no k disjoint cycles

Answer to Dirac's Question for multigraphs:

Let k > 2 and n > k. Let G be an n-vertex graph with simple degree at least 2k — 1
and no loops. Let F be the simple graph induced by the strong edgs of G, o/ = o’(F),
and k' = k — a’. Then G does not contain k disjoint cycles if and only if one of the
following holds:

@ n+a <3k;
@ |F| =2d’ (i.e., F has a perfect matching) and either (i) k" is odd and
G—F =Yy, or (i) K =2 < k and G — F is a wheel with 5 spokes;

@ G is extremal and either (i) some big set is not incident to any strong edge, or (ii)
for some two distinct big sets /; and /;/, all strong edges intersecting /; U [; have a
common vertex outside of [; U [;/;

@ n=2d'+3k', k' is odd, and F has a superstar S = {w, ..., vs} with center vo
such that either (i) G — (F — S + w) = Y16, or (i) s =2, vz € E(G),
G — F = Y_1 and G has no edges between {vi, v»} and the set Xy in G — F;

k =2 and G is a wheel, where some spokes could be strong edges;
k=2, |F|=2a'+1=n—-5,and G — F = G.
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k =2 and G is a wheel; spokes possibly strong
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(2k — 1)-connected multigraphs with no k disjoint cycles

Answer to Dirac's Question for multigraphs:

Let k > 2 and n > k. Let G be an n-vertex graph with simple degree at least 2k — 1
and no loops. Let F be the simple graph induced by the strong edgs of G, o/ = o’(F),
and k' = k — a’. Then G does not contain k disjoint cycles if and only if one of the
following holds:

@ n+a <3k;
@ |F| =2d’ (i.e., F has a perfect matching) and either (i) k" is odd and
G —F =Yy, or (i) K =2 < k and G — F is a wheel with 5 spokes;

@ G is extremal and either (i) some big set is not incident to any strong edge, or (ii)
for some two distinct big sets /; and /;/, all strong edges intersecting /; U [; have a
common vertex outside of [; U [;/;

@ n=2d'+3k', k' is odd, and F has a superstar S = {w, ..., vs} with center vo
such that either (i) G — (F — S + w) = Y16, or (i) s =2, vz € E(G),
G — F = Y_1 and G has no edges between {vi, v»} and the set Xy in G — F;

k =2 and G is a wheel, where some spokes could be strong edges;

k=2, |F|=2a"+1=n-5,and G — F = Gs.
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k=2 |F|=2d+1,and G — F = G

Example: k=3, =1,k =2
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(2k — 1)-connected multigraphs with no k disjoint cycles

Answer to Dirac's Question for multigraphs:

Let k > 2 and n > k. Let G be an n-vertex graph with simple degree at least 2k — 1
and no loops. Let F be the simple graph induced by the strong edgs of G, o/ = o’(F),
and k' = k — a’. Then G does not contain k disjoint cycles if and only if one of the
following holds:

@ n+a <3k;
@ |F| =2d’ (i.e., F has a perfect matching) and either (i) k" is odd and
G — F =Yy, or (i) K =2 < k and G — F is a wheel with 5 spokes;

@ G is extremal and either (i) some big set is not incident to any strong edge, or (ii)
for some two distinct big sets /; and /;/, all strong edges intersecting /; U [; have a
common vertex outside of [; U [;/;

@ n=2d'+3k', k' is odd, and F has a superstar S = {w, ..., vs} with center vo
such that either (i) G — (F — S + w) = Y16, or (i) s =2, vz € E(G),
G — F = Y_1 and G has no edges between {vi, v»} and the set Xy in G — F;

k =2 and G is a wheel, where some spokes could be strong edges;
k=2, |F|=2a'+1=n—-5,and G — F = G.
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Kierstead-Kostochka-Y, 2014+

KKY, 2014+

For kK > 4, if G is a graph on n vertices with n > 3k + 1 and
02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.
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Equitable Coloring
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Equitable Coloring

Definition

An equitable k-coloring of a graph G is a proper coloring of V/(G) such
that any two color classes differ in size by at most one.
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Equitable Coloring

Definition

An equitable k-coloring of a graph G is a proper coloring of V/(G) such
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Equitable Coloring

Definition

An equitable k-coloring of a graph G is a proper coloring of V/(G) such
that any two color classes differ in size by at most one.
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Equitable Coloring and Cycles

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then G has k disjoint
cycles (all triangles).
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Equitable Coloring and Cycles

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then G has k disjoint
cycles (all triangles).
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Equitable Coloring and Cycles

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then G has k disjoint
cycles (all triangles).
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Equitable Coloring and Cycles

n =3k

If G has n = 3k vertices and an equitable k-coloring, then G has k disjoint
cycles (all triangles).

What's Really Going On

independent sets <+ cliques J
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Equitable Coloring and Cycles

Kierstead-Kostochka, 2008

If G is a graph such that d(x) + d(y) < 2k — 1 for every edge xy, then G
has an equitable k-coloring.
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Equitable Coloring and Cycles

Kierstead-Kostochka, 2008

If G is a graph such that d(x) + d(y) < 2k — 1 for every edge xy, then G
has an equitable k-coloring.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n > 3k and 02(G) > 4k — 1, then G
contains k disjoint cycles.
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Equitable Coloring and Cycles

Kierstead-Kostochka, 2008

If G is a graph such that d(x) + d(y) < 2k — 1 for every edge xy, then G
has an equitable k-coloring.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with n > 3k and 02(G) > 4k — 1, then G
contains k disjoint cycles.

n =3k
Equivalent when n = 3k: 2(3k-1)-(2k-1)=4k-1 J
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Chen-Lih-Wu

Hajnal-Szemerédi, 1970
If Kk > A(G)+ 1, then G is equitably k-colorable. J
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Chen-Lih-Wu

Hajnal-Szemerédi, 1970
If Kk > A(G)+ 1, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture, 1994

A connected graph G is equitably A(G) colorable if G is different from
Km, Com+1 and Komy1,2m+1 for every m > 1.
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Chen-Lih-Wu

Hajnal-Szemerédi, 1970
If Kk > A(G)+ 1, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture, 1994

A connected graph G is equitably A(G) colorable if G is different from
Km, Com+1 and Komy1,2m+1 for every m > 1.

Chen-Lih-Wu Conjecture Re-stated
If X(G),A(G) < k and Ky x Z G, then G is equitably k-colorable.
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Chen-Lih-Wu

Hajnal-Szemerédi, 1970
If Kk > A(G)+ 1, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture, 1994

A connected graph G is equitably A(G) colorable if G is different from
Km, Com+1 and Komy1,2m+1 for every m > 1.

Chen-Lih-Wu Conjecture Re-stated
If X(G),A(G) < k and Ky x Z G, then G is equitably k-colorable.

CLW true if:
0(G) > |G|/2; A(G) < 4; G planar with A(G) > 13; G outerplanar, etc.
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Ore Conditions

Kierstead-Kostochka, 2008

If G is a graph such that for each edge xy, d(x) + d(y) < 2k — 1, then G
is equitably k-colorable.
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Ore Conditions

Kierstead-Kostochka, 2008

If G is a graph such that for each edge xy, d(x) + d(y) < 2k — 1, then G
is equitably k-colorable.

Kierstead-Kostochka-Molla-Yeager, 2014+

If G is a 3k-vertex, k-colorable graph such that for each edge xy,
d(x) + d(y) < 2k + 1, then G is equitably k-colorable, or is one of several
exceptions.

v
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Ore Conditions

Kierstead-Kostochka, 2008

If G is a graph such that for each edge xy, d(x) + d(y) < 2k — 1, then G
is equitably k-colorable.

Kierstead-Kostochka-Molla-Yeager, 2014+

If G is a 3k-vertex, k-colorable graph such that for each edge xy,
d(x) + d(y) < 2k + 1, then G is equitably k-colorable, or is one of several
exceptions.

v

Equivalent

If G is a graph on 3k vertices with 02(G) > 4k — 3, then G contains k
disjoint cycles, or is one of several exceptions.
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Ore Conditions

Kierstead-Kostochka-Molla-Yeager, 2014+

If G is a 3k-vertex, k-colorable graph such that for each edge xy,
d(x) + d(y) < 2k + 1, then G is equitably k-colorable, or is one of several
exceptions.

v

Equivalent

If G is a graph on 3k vertices with 02(G) > 4k — 3, then G contains k
disjoint cycles, or is one of several exceptions.

Kierstead-Kostochka-Yeager, 2014+

For k > 4, if G is a graph on n vertices with n > 3k + 1 and
02(G) > 4k — 3, then G contains k disjoint cycles if and only if
a(G) < n—2k.
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Exceptions

e k=3

Equitable coloring:

Cycles:
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Exceptions

o Equitable coloring:

Ki—
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Proof of KKMY 2014+
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Proof of KKMY 2014+
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Thanks for Listening!
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