Disjoint Cycles and Equitable Colorings in Graphs

H. Kierstead A. Kostochka T. Molla E. Yeager

yeager2@illinois.edu

Cumberland Conference 17 May 2014

- 4 同 ト 4 ヨ ト 4 ヨ

Disjoint Cycles

<ロ> (日) (日) (日) (日) (日)

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

• k = 1

.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

• k = 1: easy

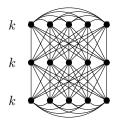
.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

- k = 1: easy
- Sharpness:

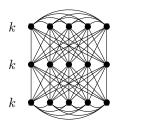


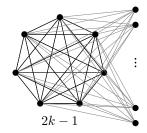
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

- k = 1: easy
- Sharpness:





- ₹ 🗦 🕨

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

▶ < ∃ ▶ < ∃</p>

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

▶ < ∃ ▶ < ∃</p>

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal

KKMY (ASU, UIUC)

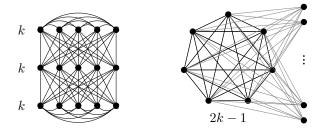
Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Sharpness:



→ < ∃ >

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

(日) (同) (三) (三)

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

• Edge-maximal counterexample

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - (k-1) disjoint cycles

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - (k-1) disjoint cycles
 - Remaining graph at least 3 vertices

▶ < ∃ ▶ < ∃</p>

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - (k-1) disjoint cycles
 - Remaining graph at least 3 vertices
- Minimize number of vertices in cycles

▶ < ∃ ▶ < ∃</p>

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - (k-1) disjoint cycles
 - Remaining graph at least 3 vertices
- Minimize number of vertices in cycles
- Maximize longest path in remainder

Independence Number:

3

• • • • • • • • • • • •

Independence Number:

Observation:

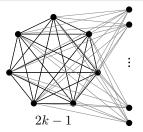
 $\alpha(G) \geq n - 2k + 1 \Rightarrow G$ has no k cycles

▶ < ∃ ▶ < ∃</p>

Independence Number:

Observation:

 $\alpha(G) \ge n - 2k + 1 \Rightarrow G$ has no k cycles



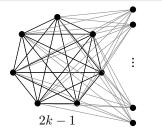
KKMY	(ASU,	UIUC)
------	-------	-------

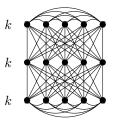
• • • • • • • • • • • •

Independence Number:

Observation:

 $\alpha(G) \ge n - 2k + 1 \Rightarrow G$ has no k cycles





Independence Number:

Observation:

 $\alpha(G) \ge n - 2k + 1 \Rightarrow G$ has no k cycles

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

· · · · · · · · ·

Independence Number:

Observation:

 $\alpha(G) \ge n - 2k + 1 \Rightarrow G$ has no k cycles

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

KKY, 2014⁺

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

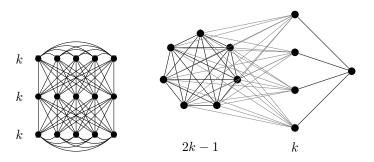
KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

イロト イヨト イヨト イヨト

KKY, 2014+ For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

 $n \ge 3k + 1$



(日) (同) (三) (三)

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

k = 1:

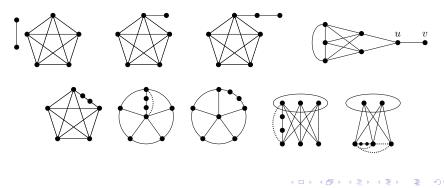
KKMY (A	SU, UIUC)
---------	----------	---

・ロト ・ 同ト ・ ヨト ・ ヨ

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

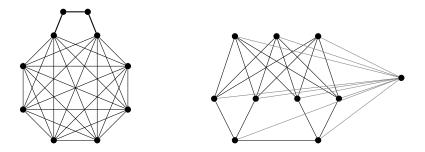
k = 2:



KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

k = 3:

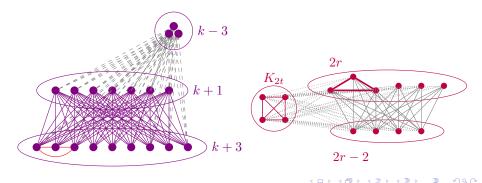


イロト イヨト イヨト イヨ

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

 $\sigma_2 = 4k - 4$:



KKMY (ASU, UIUC)

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Proof

(Like Enomoto)

- Let G be an edge-maximal counterexample.
- There exists a set of (k-1) disjoint cycles.
- Choose the set of cycles with the least number of vertices, etc.

イロト 不得下 イヨト イヨト

Dirac, 1963

What (2k - 1)-connected graphs do not have k disjoint cycles?

(日) (周) (三) (三)

Dirac, 1963 What (2k - 1)-connected graphs do not have k disjoint cycles?

Observation:

G is (2k-1) connected \Rightarrow

(日) (周) (三) (三)

Dirac, 1963

What (2k - 1)-connected graphs do not have k disjoint cycles?

Observation:

G is (2k-1) connected $\Rightarrow \delta(G) \ge 2k-1 \Rightarrow$

イロト イポト イヨト イヨト 二日

Dirac, 1963 What (2k - 1)-connected graphs do not have k disjoint cycles?

Observation:

G is (2k-1) connected $\Rightarrow \delta(G) \ge 2k-1 \Rightarrow \sigma_2(G) \ge 4k-2$

イロト イポト イヨト イヨト 二日

Dirac, 1963 What (2k - 1)-connected graphs do not have k disjoint cycles?

Observation:

$$G$$
 is $(2k-1)$ connected $\Rightarrow \delta(G) \ge 2k - 1 \Rightarrow \sigma_2(G) \ge 4k - 2$

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Answer to Dirac's Question

Let $k \ge 2$. Every graph G with (i) $|G| \ge 3k$ and (ii) $\delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

•
$$\alpha(G) \leq |G| - 2k$$
, and

- if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$, and
- if k = 2 then G is not a wheel.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Answer to Dirac's Question

Let $k \ge 2$. Every graph G with (i) $|G| \ge 3k$ and (ii) $\delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

•
$$\alpha(G) \leq |G| - 2k$$
, and

- if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$, and
- if k = 2 then G is not a wheel.

Further:

KKMY (ASU, UIUC)

KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Answer to Dirac's Question

Let $k \ge 2$. Every graph G with (i) $|G| \ge 3k$ and (ii) $\delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

•
$$\alpha(G) \leq |G| - 2k$$
, and

- if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$, and
- if k = 2 then G is not a wheel.

Further:

characterization for multigraphs

KKMY (ASU, UIUC)

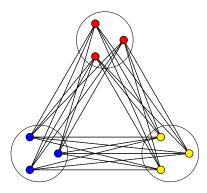
(日) (同) (三) (三)

Definition

An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.

Definition

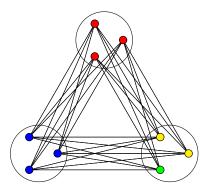
An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.



KKMY (ASU, UIUC)

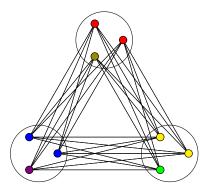
Definition

An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.



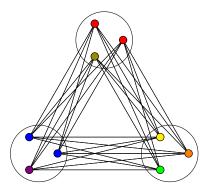
Definition

An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.



Definition

An equitable k-coloring of a graph G is a proper coloring of V(G) such that any two color classes differ in size by at most one.

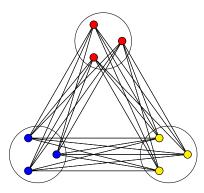


n = 3k

If G has n = 3k vertices, then G has an equitable k-coloring if and only if \overline{G} has k disjoint cycles (all triangles).

n = 3k

If G has n = 3k vertices, then G has an equitable k-coloring if and only if \overline{G} has k disjoint cycles (all triangles).



n = 3k

If G has n = 3k vertices, then G has an equitable k-coloring if and only if \overline{G} has k disjoint cycles (all triangles).

n = 3k

If G has n = 3k vertices, then G has an equitable k-coloring if and only if \overline{G} has k disjoint cycles (all triangles).

What's Really Going On

 $\mathsf{independent}\ \mathsf{sets}\ \leftrightarrow\ \mathsf{cliques}$

Chen-Lih-Wu

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Chen-Lih-Wu

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu **Conjecture** If $\chi(G), \Delta(G) \leq k$, and if $K_{k,k} \not\subseteq G$ when k is odd, then G is equitably k-colorable.

Chen-Lih-Wu

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu **Conjecture** If $\chi(G), \Delta(G) \leq k$, and if $K_{k,k} \not\subseteq G$ when k is odd, then G is equitably k-colorable.

CLW true if:

 $\delta(G) \ge |G|/2; \ \Delta(G) \le 4; \ G$ planar with $\Delta(G) \ge 13; \ G$ outerplanar, etc.

KKMY (ASU, UIUC)

Disjoint Cycles

17 May 2014 12 / 15

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y, 2014+

If G is a k-colorable 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

イロト 不得 トイヨト イヨト 二日

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y, 2014+

If G is a k-colorable 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on 3k vertices with $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Kierstead-Kostochka-Molla-Y, 2014+

If G is a k-colorable 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on 3k vertices with $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.

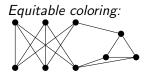
KKY, 2014+

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

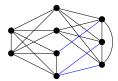
・ロン ・四 ・ ・ ヨン ・ ヨン

Exceptions

• *k* = 3



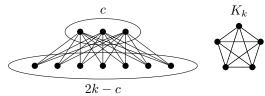
Cycles:



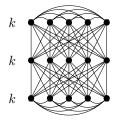
▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Exceptions

• Equitable coloring:

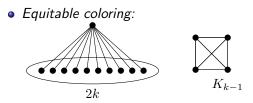


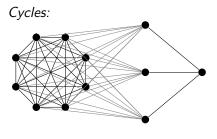
Cycles:



- 4 回 ト - 4 回 ト - 4 回 ト

Exceptions





 K_{2k} k-1

KKMY (ASU, UIUC)

3

-∢≣⇒

Image: A math a math

Thanks for Listening!

-

Image: A math a math