A Ramsey Version of Graph Saturation

Mike Ferrara Jaehoon Kim Elyse Yeager

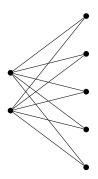
yeager2@illinois.edu

MIGHTY, IPFW

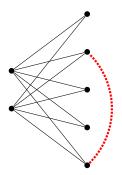
04 October 2014

Definitions

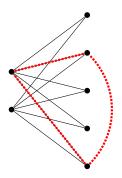
Definitions



Definitions



Definitions



Definitions

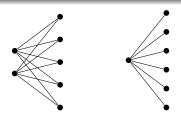
Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.

Definitions

Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.

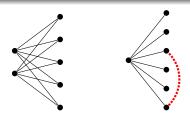
Definitions



Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.

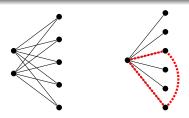
Definitions



Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.

Definitions



Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.

Definitions

The **saturation number sat**(n;H) of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.

Definitions

Given a forbidden family of graphs \mathcal{F} , a graph G is \mathcal{F} -saturated if no member of \mathcal{F} is a subgraph of G, but for every $e \in \overline{G}$, some member of \mathcal{F} is a subgraph of G + e.

The **saturation number sat(**n; \mathcal{F} **)** is the smallest number of edges over all n-vertex graphs that are \mathcal{F} -saturated.

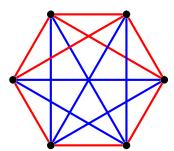
Definitions

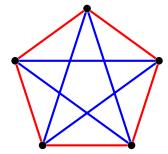
Given "forbidden" graphs H_1, \ldots, H_k , and any graph G, we write $\mathbf{G} \to (\mathbf{H_1}, \ldots, \mathbf{H_k})$ if any k coloring of E(G) contains a monochromatic copy of H_i in color i, for some i.

Definitions

Given "forbidden" graphs H_1, \ldots, H_k , and any graph G, we write $\mathbf{G} \to (\mathbf{H_1}, \ldots, \mathbf{H_k})$ if any k coloring of E(G) contains a monochromatic copy of H_i in color i, for some i.

Famous Example: $K_6 \rightarrow (K_3, K_3)$, but $K_5 \not\rightarrow (K_3, K_3)$





Definitions

Given "forbidden" graphs H_1, \ldots, H_k , and any graph G, we write $\mathbf{G} \to (\mathbf{H_1}, \ldots, \mathbf{H_k})$ if any k coloring of E(G) contains a monochromatic copy of H_i in color i, for some i.

Famous Example: $K_6 \rightarrow (K_3, K_3)$, but $K_5 \not\rightarrow (K_3, K_3)$

Definitions

A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

Definitions

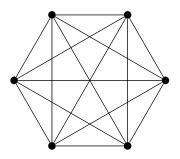
Given "forbidden" graphs H_1, \ldots, H_k , and any graph G, we write $\mathbf{G} \to (\mathbf{H_1}, \ldots, \mathbf{H_k})$ if any k coloring of E(G) contains a monochromatic copy of H_i in color i, for some i.

Famous Example: $K_6 \rightarrow (K_3, K_3)$, but $K_5 \not\rightarrow (K_3, K_3)$

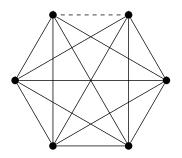
Definitions

A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

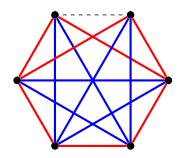
A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.



A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

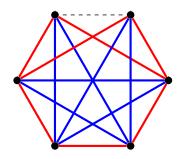


A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.



A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

Less Famous Example: K_6 is (K_3, K_3) -Ramsey Minimal.

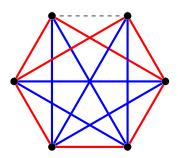


Definitions

 $\mathcal{R}_{min}(\mathbf{H_1}, \dots, \mathbf{H_k}) = \mathcal{R}_{min} = \{G : G \text{ is } (H_1, \dots, H_k) \text{-Ramsey minimal}\}$

A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

Less Famous Example: K_6 is (K_3, K_3) -Ramsey Minimal.



$$K_6 \in \mathcal{R}_{min}(K_3, K_3)$$

Definitions

 $\mathcal{R}_{min}(\mathbf{H_1}, \dots, \mathbf{H_k}) = \mathcal{R}_{min} = \{G : G \text{ is } (H_1, \dots, H_k)\text{-Ramsey minimal}\}$

 $\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{\textit{min}}(H_1,\ldots,H_k)$ saturated if and only if:

 $\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \dots, H_k)$ saturated if and only if:

• $G \nrightarrow (H_1, \ldots, H_k)$

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated if and only if:

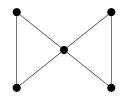
- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \dots, H_k)$ saturated if and only if:

- $G \rightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.

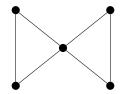


$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



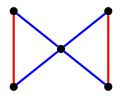
First: show a good coloring exists.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



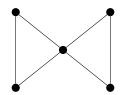
First: show a good coloring exists.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



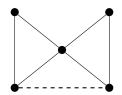
First: show a good coloring exists.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \dots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



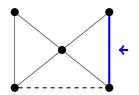
First: show a good coloring exists.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \dots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



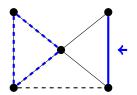
First: show a good coloring exists.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



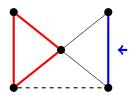
First: show a good coloring exists.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \dots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



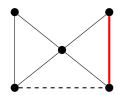
First: show a good coloring exists.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \dots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



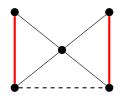
First: show a good coloring exists.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \dots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



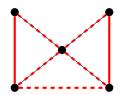
First: show a good coloring exists.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \dots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



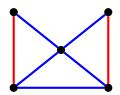
First: show a good coloring exists.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \dots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



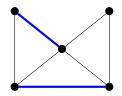
First: show a good coloring exists.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



First: show a good coloring exists.

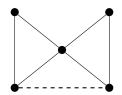
Saturation of Ramsey-Minimal Families

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated if and only if:

- $G \nrightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



First: show a good coloring exists.

Second: show *no* good coloring exists if we add *any* edge.

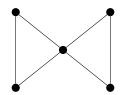
Saturation of Ramsey-Minimal Families

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

A graph G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated if and only if:

- $G \rightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \dots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(P_3, 2K_2)$ -saturated.



First: show a good coloring exists.

Second: show *no* good coloring exists if we add *any* edge.

Example

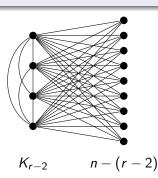
Let $r:=r(k_1,\ldots,k_t)$ be the Ramsey number of (K_{k_1},\ldots,K_{k_t}) . Then $K_{r-2} \vee \overline{K_s}$

is $\mathcal{R}_{min}(K_{k_1}\ldots,K_{k_t})$ saturated.

Example

Let $r:=r(k_1,\ldots,k_t)$ be the Ramsey number of (K_{k_1},\ldots,K_{k_t}) . Then $K_{r-2} \vee \overline{K_s}$

is $\mathcal{R}_{min}(K_{k_1},\ldots,K_{k_t})$ saturated.



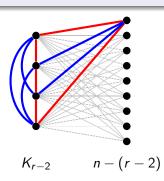
•
$$K_{r-2} \vee \overline{K_s} \not\rightarrow (K_{k_1}, \ldots, K_{k_s})$$

• $K_{r-2} \vee \overline{K_s} + e \rightarrow (K_{k_1}, \ldots, K_{k_t})$

Example

Let $r:=r(k_1,\ldots,k_t)$ be the Ramsey number of (K_{k_1},\ldots,K_{k_t}) . Then $K_{r-2} \vee \overline{K_s}$

is $\mathcal{R}_{min}(K_{k_1},\ldots,K_{k_t})$ saturated.



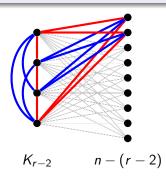
•
$$K_{r-2} \vee \overline{K_s} \not\rightarrow (K_{k_1}, \ldots, K_{k_r})$$

• $K_{r-2} \vee \overline{K_s} + e \rightarrow (K_{k_1}, \ldots, K_{k_r})$

Example

Let $r:=r(k_1,\ldots,k_t)$ be the Ramsey number of (K_{k_1},\ldots,K_{k_t}) . Then $K_{r-2} \vee \overline{K_s}$

is $\mathcal{R}_{min}(K_{k_1}\ldots,K_{k_t})$ saturated.



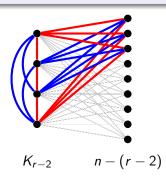
•
$$K_{r-2} \vee \overline{K_s} \not\rightarrow (K_{k_1}, \ldots, K_{k_t})$$

• $K_{r-2} \vee \overline{K_s} + e \rightarrow (K_{k_1}, \ldots, K_{k_t})$

Example

Let $r:=r(k_1,\ldots,k_t)$ be the Ramsey number of (K_{k_1},\ldots,K_{k_t}) . Then $K_{r-2} \vee \overline{K_s}$

is $\mathcal{R}_{min}(K_{k_1}\ldots,K_{k_t})$ saturated.



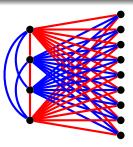
•
$$K_{r-2} \vee \overline{K_s} \not\rightarrow (K_{k_1}, \ldots, K_{k_r})$$

• $K_{r-2} \vee \overline{K_s} + e \rightarrow (K_{k_1}, \ldots, K_{k_r})$

Example

Let $r:=r(k_1,\ldots,k_t)$ be the Ramsey number of (K_{k_1},\ldots,K_{k_t}) . Then $K_{r-2} \vee \overline{K_s}$

is $\mathcal{R}_{min}(K_{k_1},\ldots,K_{k_t})$ saturated.



$$K_{r-2}$$
 $n-(r-2)$

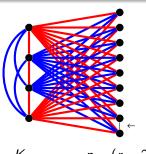
•
$$K_{r-2} \vee \overline{K_s} \not\rightarrow (K_{k_1}, \ldots, K_{k_t})$$

• $K_{r-2} \vee \overline{K_s} + e \rightarrow (K_{k_1}, \dots, K_{k_t})$

Example

Let $r := r(k_1, \dots, k_t)$ be the Ramsey number of $(K_{k_1}, \dots, K_{k_t})$. Then $K_{r-2} \vee \overline{K_s}$

is $\mathcal{R}_{min}(K_{k_1},\ldots,K_{k_t})$ saturated.



$$K_{r-2}$$
 $n-(r-2)$

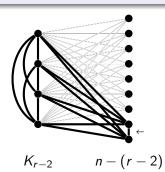
•
$$K_{r-2} \vee \overline{K_s} \not\rightarrow (K_{k_1}, \ldots, K_{k_t})$$

• $K_{r-2} \vee \overline{K_s} + e \rightarrow (K_{k_1}, \ldots, K_{k_r})$

Example

Let $r:=r(k_1,\ldots,k_t)$ be the Ramsey number of (K_{k_1},\ldots,K_{k_t}) . Then $K_{r-2} \vee \overline{K_s}$

is $\mathcal{R}_{min}(K_{k_1}\ldots,K_{k_t})$ saturated.



•
$$K_{r-2} \vee \overline{K_s} \not\rightarrow (K_{k_1}, \ldots, K_{k_s})$$

• $K_{r-2} \vee \overline{K_s} + e \rightarrow (K_{k_1}, \dots, K_{k_t})$

Example

Let $r:=r(k_1,\ldots,k_t)$ be the Ramsey number of (K_{k_1},\ldots,K_{k_t}) . Then $K_{r-2}\vee\overline{K_s}$

is $\mathcal{R}_{min}(K_{k_1}\ldots,K_{k_t})$ saturated.

Corollary

 $sat(n; \mathcal{R}_{min}(K_{k_1}, \dots, K_{k_t})) \le {r-2 \choose 2} + (r-2)(n-r+2)$ when $n \ge r$

Example

Let $r:=r(k_1,\ldots,k_t)$ be the Ramsey number of (K_{k_1},\ldots,K_{k_t}) . Then $K_{r-2}\vee\overline{K_s}$

Corollary

 $sat(n; \mathcal{R}_{min}(K_{k_1}, \dots, K_{k_r})) \le {r-2 \choose 2} + (r-2)(n-r+2)$ when $n \ge r$

Hanson-Toft Conjecture, 1987

is $\mathcal{R}_{min}(K_{k_1},\ldots,K_{k_t})$ saturated.

$$sat(n; \mathcal{R}_{min}(K_{k_1}, \dots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \geq r \end{cases}$$

Hanson-Toft

Hanson-Toft Conjecture

$$\mathit{sat}(\textit{n}; \mathcal{R}_{\textit{min}}(\textit{K}_{k_1}, \ldots, \textit{K}_{k_t})) = \left\{ \begin{array}{cc} \binom{n}{2} & \textit{n} < \textit{r} \\ \binom{r-2}{2} + (r-2)(\textit{n} - r + 2) & \textit{n} \geq \textit{r} \end{array} \right.$$

Hanson-Toft

Hanson-Toft Conjecture

$$sat(n; \mathcal{R}_{min}(K_{k_1}, \dots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \ge r \end{cases}$$

Chen, Ferrara, Gould, Magnant, Schmitt; 2011

$$sat(n; \mathcal{R}_{min}(K_3, K_3)) = \begin{cases} \binom{n}{2} & n < 6 = r \\ 4n - 10 & n \ge 56 \end{cases}$$

Hanson-Toft

Hanson-Toft Conjecture

$$sat(n; \mathcal{R}_{min}(K_{k_1}, \dots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \ge r \end{cases}$$

Chen, Ferrara, Gould, Magnant, Schmitt; 2011

$$sat(n; \mathcal{R}_{min}(K_3, K_3)) = \begin{cases} \binom{n}{2} & n < 6 = r \\ 4n - 10 & n \ge 56 \end{cases}$$

Example

 $(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$ is $\mathcal{R}_{min}(k_1K_2, \dots, k_tK_2)$ saturated.

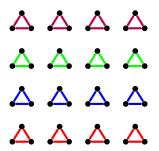
Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.

 $(5K_2, 5K_2, 5K_2, 5K_2)$

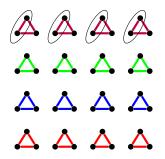
Example

 $(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$ is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



Example

 $(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$ is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



 $(5K_2, 5K_2, 5K_2, 5K_2)$

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.

 $(5K_2, 5K_2, 5K_2, 5K_2)$

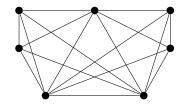
Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

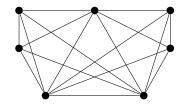
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

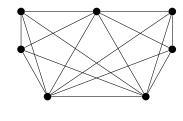
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

Example: Forbidden graphs $(3K_2, 3K_2)$.

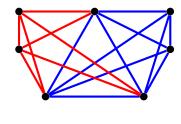


good coloring

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

Example: Forbidden graphs $(3K_2, 3K_2)$.

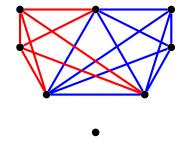


good coloring

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

Example: Forbidden graphs $(3K_2, 3K_2)$.

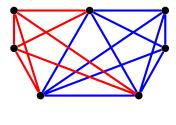


good coloring

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

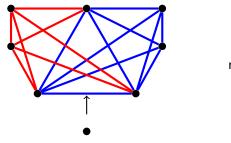
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

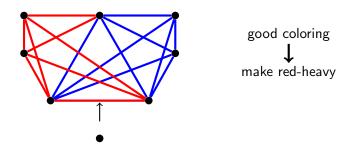
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

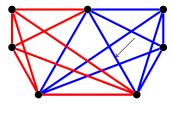
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

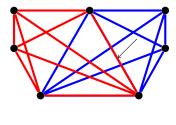
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

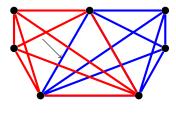
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

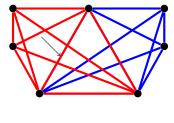
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

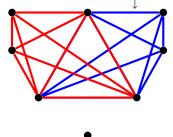
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.: 2014

Looking (cleverly) at color *i* allows us to use results from graph saturation of the forbidden subgraph H_i .

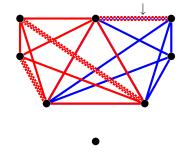
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

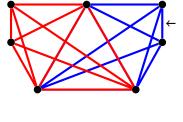
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

Example: Forbidden graphs $(3K_2, 3K_2)$.



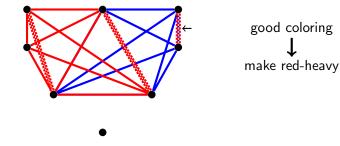
good coloring

the good property that the good coloring that the good property is a second coloring to the good coloring that the good co

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

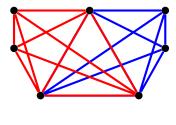
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

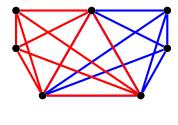
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

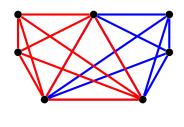
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

Example: Forbidden graphs $(3K_2, 3K_2)$.



good coloring

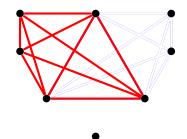
make red-heavy

take red subgraph

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

Example: Forbidden graphs $(3K_2, 3K_2)$.



good coloring

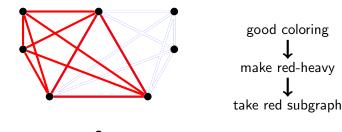
the make red-heavy

take red subgraph

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

Example: Forbidden graphs $(3K_2, 3K_2)$.

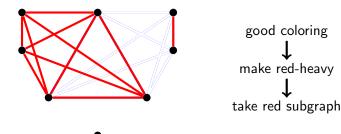


This (uncolored) subgraph is $3K_2$ -saturated.

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

Example: Forbidden graphs $(3K_2, 3K_2)$.

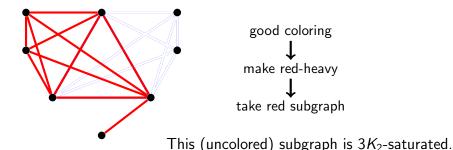


This (uncolored) subgraph is $3K_2$ -saturated.

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

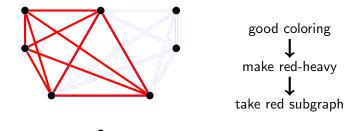
Example: Forbidden graphs $(3K_2, 3K_2)$.



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

Example: Forbidden graphs $(3K_2, 3K_2)$.



This (uncolored) subgraph is $3K_2$ -saturated.

Thanks for Listening!

- G. Chen, M. Ferrara, R. Gould, C. Magnant, J. Schmitt,
 Saturation numbers for families of Ramsey-minimal graphs, J. Combin. 2 (2011) 435-455.
- M. Ferrara, J. Kim, E. Yeager, Ramsey-minimal saturation numbers for matchings, Discrete Math. 322 (2014) 26-30.
- A. Galluccio, M. Simonovits, G. Simonyi, On the structure of co-critical graphs, In: Graph Theory, Combinatorics and Algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992). Wiley-Intersci. Publ., Wiley, New York, 1053-1071.
- D. Hanson, B. Toft, **Edge-colored saturated graphs**, J. Graph Theory 11 (1987), no. 2, 191-196.
- T. Szabo, **On nearly regular co-critical graphs**, Discrete Math. 160 (1996) 279-281.