Disjoint Cycles and Equitable Coloring

H. Kierstead A. Kostochka T. Molla E. Yeager*

yeager2@illinois.edu

AMS-MAA Joint Mathematics Meetings San Antonio, Texas

MAA General Contributed Paper Session: Research in Graph Theory

12 January 2015

Disjoint Cycles

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

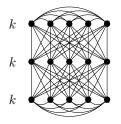
If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Sharpness:

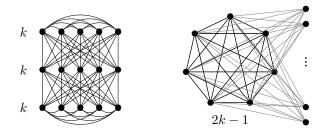


Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Sharpness:



Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Minimum degree sum of nonadjacent vertices:

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

That is, low vertices form a clique.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Minimum degree sum of nonadjacent vertices:

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

That is, low vertices form a clique.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Minimum degree sum of nonadjacent vertices:

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

That is, low vertices form a clique.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal

KKMY (ASU, UIUC)

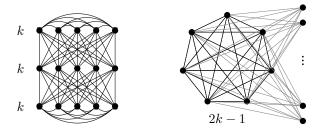
Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

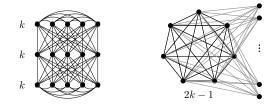
Sharpness:



Kierstead-Kostochka-Y, 2015+

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.



Kierstead-Kostochka-Yeager, 2015⁺

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Dirac's Question

Dirac: (2k - 1)-connected without k disjoint cycles

Dirac, 1963

What (2k - 1)-connected graphs do not have k disjoint cycles?

Dirac: (2k - 1)-connected without k disjoint cycles

Dirac, 1963 What (2k - 1)-connected graphs do not have k disjoint cycles?

Answer to Dirac's Question for Simple Graphs (Kierstead-Kostochka-Yeager, 2015+)

Let $k \ge 2$. Every graph G with (i) $|G| \ge 3k$ and (ii) $\delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

•
$$lpha({\sf G}) \leq |{\sf G}| - 2k$$
, and

- if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$, and
- if k = 2 then G is not a wheel.

Dirac: (2k - 1)-connected without k disjoint cycles

Dirac, 1963 What (2k - 1)-connected graphs do not have k disjoint cycles?

Answer to Dirac's Question for Simple Graphs (Kierstead-Kostochka-Yeager, 2015+)

Let $k \ge 2$. Every graph G with (i) $|G| \ge 3k$ and (ii) $\delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

•
$$lpha({\sf G}) \leq |{\sf G}| - 2k$$
, and

- if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$, and
- if k = 2 then G is not a wheel.

Further:

Characterization for *multigraphs* Kierstead-Kostochka-Yeager **Combinatorica**, to appear.

KKMY (ASU, UIUC)

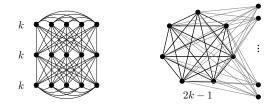
Disjoint Cycles

The Case n = 3k

A Missing Detail

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.



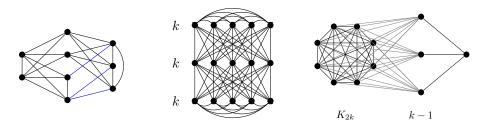
Kierstead-Kostochka-Yeager, 2015⁺

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Kierstead-Kostochka-Molla-Yeager, 2015+

Kierstead-Kostochka-Molla-Yeager, 2015+

If G is a graph on 3k vertices with $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.



Chen-Lih-Wu Conjecture

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture If $\chi(G), \Delta(G) \leq k$, and if k is odd $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture If $\chi(G), \Delta(G) \leq k$, and if k is odd $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Yeager, 2015+

If G is a k-colorable 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Thanks for Listening!