Disjoint Cycles and Equitable Colourings in Graphs

H. Kierstead A. Kostochka T. Molla M. Santana E. Yeager

24 October 2017 University of British Columbia

Section 1

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Connectivity
- Neighborhood Union

Chorded Cycles

- Minimum-degree condition
- Neighborhood Union
- Multiply Chorded Cycles

3 Equitable Coloring

- Definition
- Connection to Cycles

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

• *k* = 1

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Examples:

• k = 1: familiar

Corrádi-Hajnal, 1963

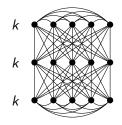
If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

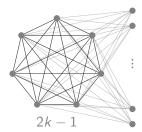
- k = 1: familiar
- Sharpness:

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

- k = 1: familiar
- Sharpness:

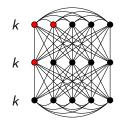


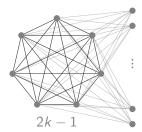


Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

- k = 1: familiar
- Sharpness:

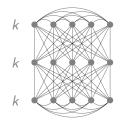


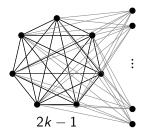


Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

- k = 1: familiar
- Sharpness:

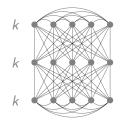


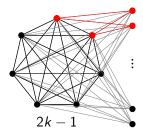


Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

- k = 1: familiar
- Sharpness:





Section 1

• Corrádi-Hajnal

• Tolerance for some low-degree vertices

- Ore condition (minimum degree-sum of nonadjacent vertices)
- Connectivity
- Neighborhood Union

Chorded Cycles

- Minimum-degree condition
- Neighborhood Union
- Multiply Chorded Cycles

3 Equitable Coloring

- Definition
- Connection to Cycles

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

What if many, but not every, vertex has degree at least 2k?

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

What if **many**, but not every, vertex has degree at least 2k?

Observation: k = 1

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

What if **many**, but not every, vertex has degree at least 2k?

Observation: k = 1

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

What if **many**, but not every, vertex has degree at least 2k?

Observation: k = 1

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

What if **many**, but not every, vertex has degree at least 2k?

Observation: k = 1

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

What if **many**, but not every, vertex has degree at least 2k?

Observation: k = 1

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

What if **many**, but not every, vertex has degree at least 2k?

Observation: k = 1

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

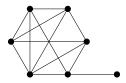
What if **many**, but not every, vertex has degree at least 2k?

Observation: k = 1

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

What if **many**, but not every, vertex has degree at least 2k?

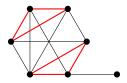
Observation: k = 1



Let $V_{>c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963

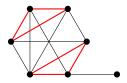
If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.



Let $V_{>c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963

If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.

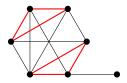


Let $V_{>c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963

If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.

"Probably not best possible"



Let $V_{>c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963

If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.

"Probably not best possible"

Kierstead-Kostochka-McConvey, 2016 (link)

For, $k \ge 2$, let G be a graph with $|G| \ge 3k$, and no more than t disjoint triangles.

If $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k + t$, then G contains k disjoint cycles.

Kierstead-Kostochka-McConvey, 2016

Kierstead-Kostochka-McConvey, 2016 (link)

For, $k \ge 2$, let G be a graph with $|G| \ge 3k$, and no more than t disjoint triangles.

If $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k + t$, then G contains k disjoint cycles.

Sharp: K_{3k-1} with a subdivided edge (3k vertices total)

Kierstead-Kostochka-McConvey, 2016

Kierstead-Kostochka-McConvey, 2016 (link)

For, $k \ge 2$, let G be a graph with $|G| \ge 3k$, and no more than t disjoint triangles.

If $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k + t$, then G contains k disjoint cycles.

Sharp: K_{3k-1} with a subdivided edge (3k vertices total)

Open:

Is it necessary to consider triangles when |G| is large?

Section 1

- Corrádi-Hajnal
- Tolerance for some low-degree vertices

• Ore condition (minimum degree-sum of nonadjacent vertices)

- Connectivity
- Neighborhood Union

Chorded Cycles

- Minimum-degree condition
- Neighborhood Union
- Multiply Chorded Cycles

3 Equitable Coloring

- Definition
- Connection to Cycles

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

Roughly: Low degree vertices OK as long as they're in a clique

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

Roughly: Low degree vertices OK as long as they're in a clique

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \ge 3k$ and $\delta(G) \ge 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

Roughly: Low degree vertices OK as long as they're in a clique

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

• Edge-maximal counterexample

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - (k-1) disjoint cycles

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - (k-1) disjoint cycles
 - Remaining graph at least 3 vertices

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - (k-1) disjoint cycles
 - Remaining graph at least 3 vertices
- Minimize number of vertices in cycles

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

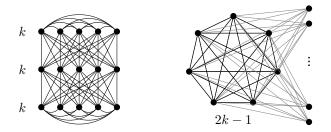
Proof (Enomoto)

- Edge-maximal counterexample
 - (k-1) disjoint cycles
 - Remaining graph at least 3 vertices
- Minimize number of vertices in cycles
- Maximize longest path in remainder

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

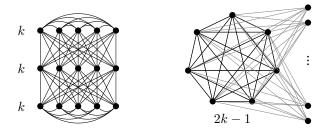
Sharpness:



Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Sharpness:

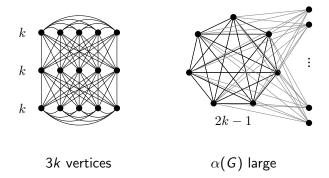


3k vertices

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Sharpness:

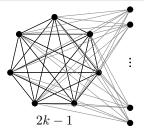


Kierstead-Kostochka-Y., 2017 (link)

Independence Number:

Observation:

 $\alpha(G) \ge n - 2k + 1 \Rightarrow \text{no } k \text{ cycles}$



Kierstead-Kostochka-Y., 2017 (link)

Independence Number:

Observation:

 $\alpha(G) \ge n - 2k + 1 \Rightarrow no \ k \ cycles$

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Kierstead-Kostochka-Y., 2017 (link)

Independence Number:

Observation:

 $\alpha(G) \ge n - 2k + 1 \Rightarrow no \ k \ cycles$

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Kierstead-Kostochka-Y., 2017 (link)

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

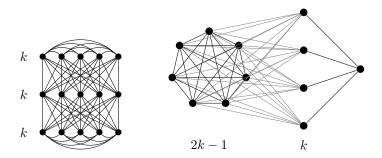
Kierstead-Kostochka-Y., 2017 (link)

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Kierstead-Kostochka-Y., 2017 (link)

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

 $n \geq 3k + 1$



Kierstead-Kostochka-Y., 2017 (link)

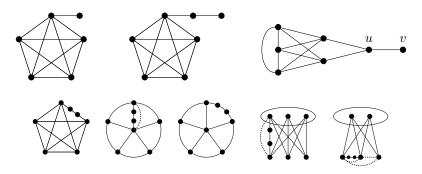
For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

k = 1:

Kierstead-Kostochka-Y., 2017 (link)

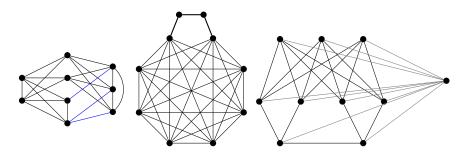
For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

k = 2:



Kierstead-Kostochka-Y., 2017 (link)

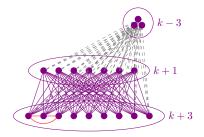
For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

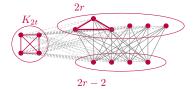


Kierstead-Kostochka-Y., 2017 (link)

For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

$$\sigma_2 = 4k - 4$$
:





Section 1

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)

Connectivity

Neighborhood Union

Chorded Cycles

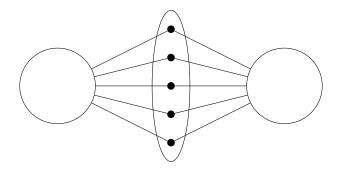
- Minimum-degree condition
- Neighborhood Union
- Multiply Chorded Cycles

3 Equitable Coloring

- Definition
- Connection to Cycles

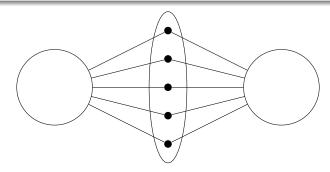
Dirac, 1963 (link)

What (2k - 1)-connected graphs do not have k disjoint cycles?



Dirac, 1963 (link)

What (2k - 1)-connected graphs do not have k disjoint cycles?

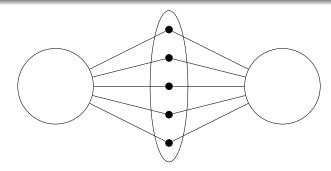


Observation:

G is (2k-1) connected

Dirac, 1963 (link)

What (2k - 1)-connected graphs do not have k disjoint cycles?

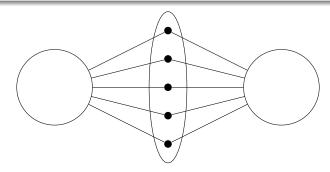


Observation:

G is (2k-1) connected $\Rightarrow \delta(G) \ge 2k-1$

Dirac, 1963 (link)

What (2k - 1)-connected graphs do not have k disjoint cycles?

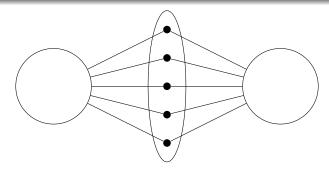


Observation:

 $G ext{ is } (2k-1) ext{ connected } \Rightarrow \delta(G) \geq 2k-1 \Rightarrow \sigma_2(G) \geq 4k-2$

Dirac, 1963 (link)

What (2k - 1)-connected graphs do not have k disjoint cycles?



Observation:

G is (2k-1) connected $\Rightarrow \delta(G) \ge 2k-1 \Rightarrow \sigma_2(G) \ge 4k-2$ KKY: Holds for $\sigma_2(G) \ge 4k-3$

Dirac, 1963 (link)

What (2k - 1)-connected graphs do not have k disjoint cycles?

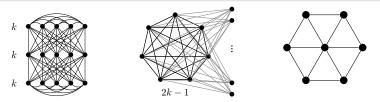
Answer to Dirac's Question for Simple Graphs (KKY 2017)

Let $k \ge 2$. Every graph G with (i) $|G| \ge 3k$ and (ii) $\delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

• if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$, and

•
$$lpha({\sf G}) \leq |{\sf G}| - 2k$$
, and

• if k = 2 then G is not a wheel.



Dirac, 1963 (link)

What (2k - 1)-connected graphs do not have k disjoint cycles?

Answer to Dirac's Question for Simple Graphs (KKY 2017)

Let $k \ge 2$. Every graph G with (i) $|G| \ge 3k$ and (ii) $\delta(G) \ge 2k - 1$ contains k disjoint cycles if and only if

- if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$, and
- $\alpha(G) \leq |G| 2k$, and
- if k = 2 then G is not a wheel.

Further:

characterization for multigraphs

Simple Graphs \rightarrow Multigraphs

Idea:

Idea:

• Take all 1-vertex cycles

Idea:

- Take all 1-vertex cycles
- Take as many 2-vertex cycles as possible (maximum matching)

Idea:

- Take all 1-vertex cycles
- Take as many 2-vertex cycles as possible (maximum matching)
- What's left is a simple graph

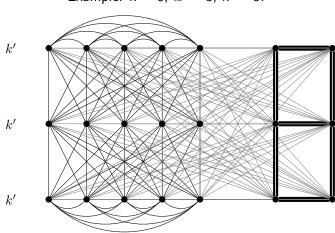
(2k - 1)-connected multigraphs with no k disjoint cycles

Answer to Dirac's Question for multigraphs: Kierstead-Kostochka-Y. 2015 (link)

Let $k \ge 2$ and $n \ge k$. Let G be an n-vertex graph with simple degree at least 2k - 1and no loops. Let F be the simple graph induced by the strong edgs of G, $\alpha' = \alpha'(F)$, and $k' = k - \alpha'$. Then G does not contain k disjoint cycles if and only if one of the following holds:

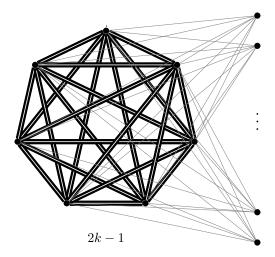
- $n + \alpha' < 3k;$
- $|F| = 2\alpha'$ (i.e., F has a perfect matching) and either (i) k' is odd and $G F = Y_{k',k'}$, or (ii) k' = 2 < k and G F is a wheel with 5 spokes;
- G is extremal and either (i) some big set is not incident to any strong edge, or (ii) for some two distinct big sets I_j and I_{j'}, all strong edges intersecting I_j ∪ I_{j'} have a common vertex outside of I_j ∪ I_{j'};
- $n = 2\alpha' + 3k'$, k' is odd, and F has a superstar $S = \{v_0, \ldots, v_s\}$ with center v_0 such that either (i) $G (F S + v_0) = Y_{k'+1,k'}$, or (ii) s = 2, $v_1v_2 \in E(G)$, $G F = Y_{k'-1,k'}$ and G has no edges between $\{v_1, v_2\}$ and the set X_0 in G F;
- k = 2 and G is a wheel, where some spokes could be strong edges;
- k' = 2, $|F| = 2\alpha' + 1 = n 5$, and $G F = C_5$.

k' odd, F has a perfect matching



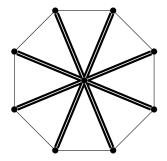
Example: k = 8, $\alpha' = 3$, k' = 5.

Big independent set, incident to no multiple edges



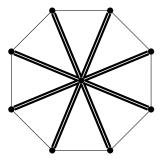
Wheel, with possibly some spokes multiple

Example: k = 2



Wheel, with possibly some spokes multiple

Example: k = 2



Open

Do the other results in this talk generalize nicely to multigraphs?

Section 1

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Connectivity
- Neighborhood Union

Chorded Cycles

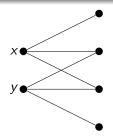
- Minimum-degree condition
- Neighborhood Union
- Multiply Chorded Cycles

3 Equitable Coloring

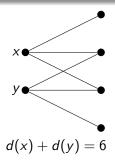
- Definition
- Connection to Cycles

Faudree-Gould, 2005

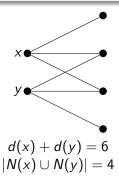
Faudree-Gould, 2005



Faudree-Gould, 2005



Faudree-Gould, 2005

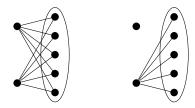


Neighborhood Union

Faudree-Gould, 2005

If G has $n \ge 3k$ vertices and $|N(x) \cup N(y)| \ge 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Neither stronger nor weaker than Corrádi-Hajnal.

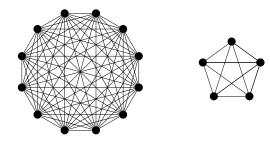


Neighborhood Union

Faudree-Gould, 2005

If G has $n \ge 3k$ vertices and $|N(x) \cup N(y)| \ge 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Sharpness:



If G has $n \ge 3k$ vertices and $|N(x) \cup N(y)| \ge 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013 (link) (conjecture from FG'05)

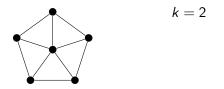
Let G be a graph on n > 30k vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 2k + 1$. Then G contains k disjoint cycles.

If G has $n \ge 3k$ vertices and $|N(x) \cup N(y)| \ge 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013 (link) (conjecture from FG'05)

Let G be a graph on n > 30k vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 2k + 1$. Then G contains k disjoint cycles.

Sharpness of $|N(x) \cup N(y)| \ge 2k + 1$:



If G has $n \ge 3k$ vertices and $|N(x) \cup N(y)| \ge 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013 (link) (conjecture from FG'05)

Let G be a graph on n > 30k vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 2k + 1$. Then G contains k disjoint cycles.

Sharpness of $|N(x) \cup N(y)| \ge 2k + 1$:

If G has $n \ge 3k$ vertices and $|N(x) \cup N(y)| \ge 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013 (link) (conjecture from FG'05)

Let G be a graph on n > 30k vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 2k + 1$. Then G contains k disjoint cycles.

Sharpness of $|N(x) \cup N(y)| \ge 2k + 1$:

$$k = 2$$
$$|N(x) \cup N(y)| \ge 4$$

No two disjoint cycles

If G has $n \ge 3k$ vertices and $|N(x) \cup N(y)| \ge 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013 (link) (conjecture from FG'05)

Let G be a graph on n > 30k vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 2k + 1$. Then G contains k disjoint cycles.

Open:

Perhaps n > 30k is not best possible–can be reduced to 4k?

Section 2

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Connectivity
- Neighborhood Union

Chorded Cycles

- Minimum-degree condition
- Neighborhood Union
- Multiply Chorded Cycles

3 Equitable Coloring

- Definition
- Connection to Cycles

Posed by Pósa, 1961

Finkel, 2008 (link)

If G is a graph on $n \ge 4k$ vertices with $\delta(G) \ge 3k$, then G contains k disjoint chorded cycles.

Posed by Pósa, 1961

Finkel, 2008 (link)

If G is a graph on $n \ge 4k$ vertices with $\delta(G) \ge 3k$, then G contains k disjoint chorded cycles.

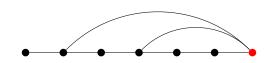
k = 1:

Posed by Pósa, 1961

Finkel, 2008 (link)

If G is a graph on $n \ge 4k$ vertices with $\delta(G) \ge 3k$, then G contains k disjoint chorded cycles.

k = 1:



Posed by Pósa, 1961

Finkel, 2008 (link)

If G is a graph on $n \ge 4k$ vertices with $\delta(G) \ge 3k$, then G contains k disjoint chorded cycles.

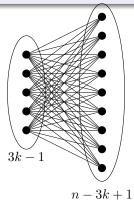
k = 1:

Posed by Pósa, 1961

Finkel, 2008 (link)

If G is a graph on $n \ge 4k$ vertices with $\delta(G) \ge 3k$, then G contains k disjoint chorded cycles.

Sharpness:



${\sf Chorded} \, + \, {\sf Unchorded} \, \, {\sf Cycles}$

Conjecture: Bialostocki-Finkel-Gyárfás, 2008 (link)

If G is a graph on $n \ge 3r + 4s$ vertices with $\delta(G) \ge 2r + 3s$, then G contains r + s cycles, s of them chorded.

${\sf Chorded} \, + \, {\sf Unchorded} \, \, {\sf Cycles}$

Conjecture: Bialostocki-Finkel-Gyárfás, 2008 (link)

If G is a graph on $n \ge 3r + 4s$ vertices with $\delta(G) \ge 2r + 3s$, then G contains r + s cycles, s of them chorded.

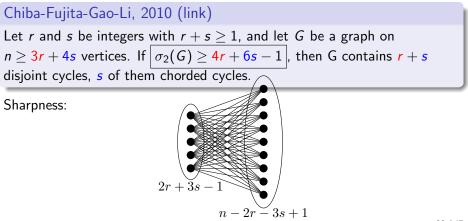
Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r + s \ge 1$, and let G be a graph on $n \ge 3r + 4s$ vertices. If $\sigma_2(G) \ge 4r + 6s - 1$, then G contains r + s disjoint cycles, s of them chorded cycles.

$Chorded \,+\, Unchorded \,\, Cycles$

Conjecture: Bialostocki-Finkel-Gyárfás, 2008 (link)

If G is a graph on $n \ge 3r + 4s$ vertices with $\delta(G) \ge 2r + 3s$, then G contains r + s cycles, s of them chorded.



Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r + s \ge 1$, and let G be a graph on $n \ge 3r + 4s$ vertices. If $\sigma_2(G) \ge 4r + 6s - 1$, then G contains r + s disjoint cycles, s of them chorded cycles.

Corollary

Let G be a graph on $n \ge 4s$ vertices. If $\sigma_2(G) \ge 6s - 1$, then G contains s disjoint chorded cycles.

Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r + s \ge 1$, and let G be a graph on $n \ge 3r + 4s$ vertices. If $\sigma_2(G) \ge 4r + 6s - 1$, then G contains r + s disjoint cycles, s of them chorded cycles.

Corollary

Let G be a graph on $n \ge 4s$ vertices. If $\sigma_2(G) \ge 6s - 1$, then G contains s disjoint chorded cycles.

Molla-Santana-Y., 2017 (link)

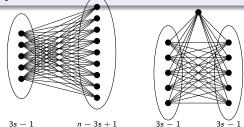
For $s \ge 2$, let G be a graph $n \ge 4s$ vertices. If $\sigma_2(G) \ge 6s - 2$, then G does not contain s disjoint chorded cycles if and only if $G \in \{K_{3k-1,n-3k+1}, K_{3k-2,3k-2,1}\}.$

Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r + s \ge 1$, and let G be a graph on $n \ge 3r + 4s$ vertices. If $\sigma_2(G) \ge 4r + 6s - 1$, then G contains r + s disjoint cycles, s of them chorded cycles.

Corollary

Let G be a graph on $n \ge 4s$ vertices. If $\sigma_2(G) \ge 6s - 1$, then G contains s disjoint chorded cycles.



Chiba-Fujita-Gao-Li, 2010 (link)

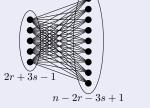
Corollary: If G is a graph on $n \ge 3r + 4s$ vertices with $\delta(G) \ge 2r + 3s$, then G contains r + s cycles, s of them chorded.

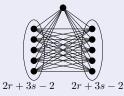
Chiba-Fujita-Gao-Li, 2010 (link)

Corollary: If G is a graph on $n \ge 3r + 4s$ vertices with $\delta(G) \ge 2r + 3s$, then G contains r + s cycles, s of them chorded.

Molla-Santana-Y., 2017+

Let r and s be integers with $r + s \ge 1$, and let G be a graph on $n \ge 3r + 4s$ vertices. If $\delta(G) \ge 2r + 3s - 1$, then G fails to contain a collection of r + s disjoint cycles, s of them chorded, if and only if G is one of the following:





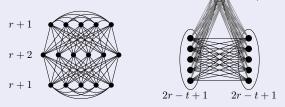
Chiba-Fujita-Gao-Li, 2010 (link)

Corollary: If G is a graph on $n \ge 3r + 4s$ vertices with $\delta(G) \ge 2r + 3s$, then G contains r + s cycles, s of them chorded.

Molla-Santana-Y., 2017+

Let r and s be integers with $r + s \ge 1$, and let G be a graph on $n \ge 3r + 4s$ vertices. If $\delta(G) \ge 2r + 3s - 1$, then G fails to contain a collection of r + s disjoint cycles, s of them chorded, if and only if G is one of the following:

s = 1:



$Chorded + Unchorded \ Cycles: \ Open$

Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r + s \ge 1$, and let G be a graph on $n \ge 3r + 4s$ vertices. If $\sigma_2(G) \ge 4r + 6s - 1$, then G contains r + s disjoint cycles, s of them chorded cycles.

Chorded + Unchorded Cycles: Open

Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r + s \ge 1$, and let G be a graph on $n \ge 3r + 4s$ vertices. If $\sigma_2(G) \ge 4r + 6s - 1$, then G contains r + s disjoint cycles, s of them chorded cycles.

Open:

• In the chorded-cycles-only case: We know what happens if $\sigma_2(G) \ge 6s - 2$; what if $\sigma_2(G) \ge 6s - 3$?

Chorded + Unchorded Cycles: Open

Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r + s \ge 1$, and let G be a graph on $n \ge 3r + 4s$ vertices. If $\sigma_2(G) \ge 4r + 6s - 1$, then G contains r + s disjoint cycles, s of them chorded cycles.

Open:

- In the chorded-cycles-only case: We know what happens if $\sigma_2(G) \ge 6s 2$; what if $\sigma_2(G) \ge 6s 3$?
- In the mixed-cycles case: We know what happens if $\delta(G) \ge 2r + 3s 1$; what about an Ore version?

Section 2

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Connectivity
- Neighborhood Union

Chorded Cycles

- Minimum-degree condition
- Neighborhood Union
- Multiply Chorded Cycles

3 Equitable Coloring

- Definition
- Connection to Cycles

Neighborhood-Union Conditions

Qiao, 2012 (link)

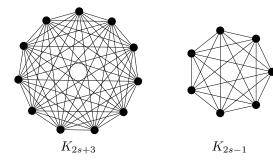
Let r, s be nonnegative integers, and let G be a graph on at least 3r + 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 3r + 4s + 1$. Then G contains r + s disjoint cycles, s of them chorded.

Neighborhood-Union Conditions

Qiao, 2012 (link)

Let r, s be nonnegative integers, and let G be a graph on at least 3r + 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 3r + 4s + 1$. Then G contains r + s disjoint cycles, s of them chorded.

Sharpness (r = 0):



Qiao, 2012 (link)

Let r, s be nonnegative integers, and let G be a graph on at least 3r + 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 3r + 4s + 1$. Then G contains r + s disjoint cycles, s of them chorded.

Gould-Hirohata-Horn, 2013 (link)

Let G be a graph on at least 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 4s + 1$. Then G contains s disjoint chorded cycles.

Qiao, 2012 (link)

Let r, s be nonnegative integers, and let G be a graph on at least 3r + 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 3r + 4s + 1$. Then G contains r + s disjoint cycles, s of them chorded.

Gould-Hirohata-Horn, 2013 (link)

Let G be a graph on at least 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 4s + 1$. Then G contains s disjoint chorded cycles.

Open:

• What happens if $|N(x) + N(y)| \ge 3r + 4s$?

Qiao, 2012 (link)

Let r, s be nonnegative integers, and let G be a graph on at least 3r + 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 3r + 4s + 1$. Then G contains r + s disjoint cycles, s of them chorded.

Gould-Hirohata-Horn, 2013 (link)

Let G be a graph on at least 4s vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \ge 4s + 1$. Then G contains s disjoint chorded cycles.

Open:

- What happens if $|N(x) + N(y)| \ge 3r + 4s$?
- Can this be improved for large n, or large k?

Section 2

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Connectivity
- Neighborhood Union

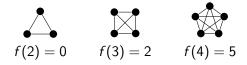
Chorded Cycles

- Minimum-degree condition
- Neighborhood Union
- Multiply Chorded Cycles

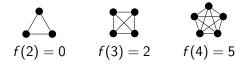
3 Equitable Coloring

- Definition
- Connection to Cycles

We define f(k) to be the number of chords in K_{k+1} , viewed as a cycle. That is, $f(k) = \frac{(k+1)(k-2)}{2}$.



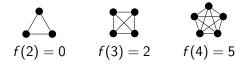
We define f(k) to be the number of chords in K_{k+1} , viewed as a cycle. That is, $f(k) = \frac{(k+1)(k-2)}{2}$.



Gould-Horn-Magnant, 2014 (link)

There exist s_0 and k_0 so that if $s \ge s_0$ and $k \ge k_0$, then there exists an $n_0 = n_0(s, k)$ so that if G has minimum degree at least sk and $|G| > n_0$, then G contains s disjoint cycles with at least f(k) chords.

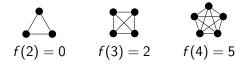
We define f(k) to be the number of chords in K_{k+1} , viewed as a cycle. That is, $f(k) = \frac{(k+1)(k-2)}{2}$.



Gould-Horn-Magnant, 2014 (link)

There exist s_0 and k_0 so that if $s \ge s_0$ and $k \ge k_0$, then there exists an $n_0 = n_0(s, k)$ so that if G has minimum degree at least sk and $|G| > n_0$, then G contains s disjoint cycles with at least f(k) chords. **Conjecture:** $s_0 = k_0 = 1$, $n_0 = s(k + 1)$

We define f(k) to be the number of chords in K_{k+1} , viewed as a cycle. That is, $f(k) = \frac{(k+1)(k-2)}{2}$.



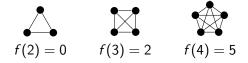
Gould-Horn-Magnant, 2014 (link)

There exist s_0 and k_0 so that if $s \ge s_0$ and $k \ge k_0$, then there exists an $n_0 = n_0(s, k)$ so that if G has minimum degree at least sk and $|G| > n_0$, then G contains s disjoint cycles with at least f(k) chords. **Conjecture:** $s_0 = k_0 = 1$, $n_0 = s(k + 1)$

Conjecture:

If $|G| \ge s(k+1)$ and $\delta(G) \ge sk$, then G contains s disjoint cycles, each with at least f(k) chords.

We define f(k) to be the number of chords in K_{k+1} , viewed as a cycle. That is, $f(k) = \frac{(k+1)(k-2)}{2}$.



Conjecture:

If $|G| \ge s(k+1)$ and $\delta(G) \ge sk$, then G contains s disjoint cycles, each with at least f(k) chords.

Hajnal-Szemerédi, 1970

If |G| = s(k+1) and $\delta(G) \ge sk$, then G contains s disjoint copies of K_{k+1} .

Qiao-Zhang, 2010 (link)

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

Qiao-Zhang, 2010 (link)

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

Qiao-Zhang, 2010 (link)

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

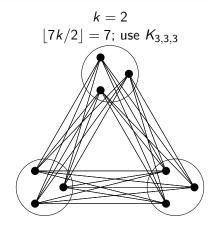
Sharp for small k:

$$k = 1$$

 $\lfloor 7k/2 \rfloor = 3$; use C_4

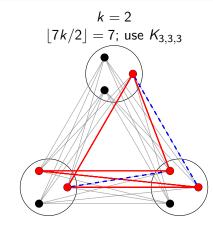
Qiao-Zhang, 2010 (link)

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.



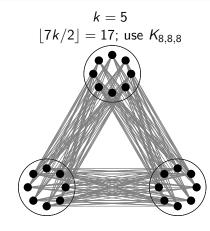
Qiao-Zhang, 2010 (link)

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.



Qiao-Zhang, 2010 (link)

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.



Gould-Hirohata-Horn, 2015 (link)

If G is a graph on $n \ge 6k$ vertices with $\sigma_2(G) \ge 6k - 1$, then G contains k vertex-disjoint doubly chorded cycles.

Gould-Hirohata-Horn, 2015 (link)

If G is a graph on $n \ge 6k$ vertices with $\sigma_2(G) \ge 6k - 1$, then G contains k vertex-disjoint doubly chorded cycles.

Corollary:

If G is a graph on $n \ge 6k$ vertices with $\delta(G) \ge 3k$, then G contains k vertex-disjoint doubly chorded cycles.

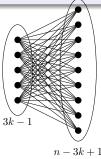
Gould-Hirohata-Horn, 2015 (link)

If G is a graph on $n \ge 6k$ vertices with $\sigma_2(G) \ge 6k - 1$, then G contains k vertex-disjoint doubly chorded cycles.

Corollary:

If G is a graph on $n \ge 6k$ vertices with $\delta(G) \ge 3k$, then G contains k vertex-disjoint doubly chorded cycles.

Sharpness:



Gould-Hirohata-Horn, 2015 (link)

If G is a graph on $n \ge 6k$ vertices with $\sigma_2(G) \ge 6k - 1$, then G contains k vertex-disjoint doubly chorded cycles.

Corollary:

If G is a graph on $n \ge 6k$ vertices with $\delta(G) \ge 3k$, then G contains k vertex-disjoint doubly chorded cycles.

Conjecture (GHM'14):

If $|G| \ge s(k+1)$ and $\delta(G) \ge sk$, then G contains s disjoint cycles, each with at least f(k) chords.

k = 3: If $|G| \ge 4s$ and $\delta(G) \ge 3s$, then G contains s disjoint doubly chorded cycles.

Conjecture (GHM'14):

If $|G| \ge s(k+1)$ and $\delta(G) \ge sk$, then G contains s disjoint cycles, each with at least f(k) chords.

Chiba-Lichiardopol, 2015 (link)

Let s and k be integers, $k \ge 2$, $s \ge 1$. If G is a graph with $\delta(G) \ge s(k+1) - 1$, then G contains s disjoint cycles, each with at least f(k) chords.

Section 3

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Connectivity
- Neighborhood Union

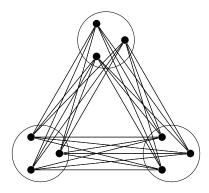
Chorded Cycles

- Minimum-degree condition
- Neighborhood Union
- Multiply Chorded Cycles

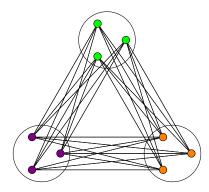
Equitable Coloring

- Definition
- Connection to Cycles

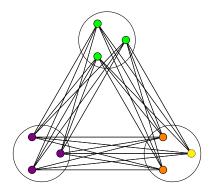
Definition



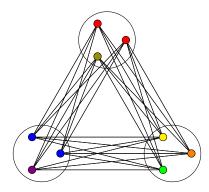
Definition



Definition



Definition



Section 3

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Connectivity
- Neighborhood Union

Chorded Cycles

- Minimum-degree condition
- Neighborhood Union
- Multiply Chorded Cycles

3 Equitable Coloring

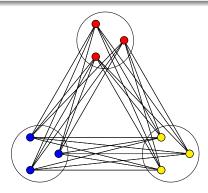
- Definition
- Connection to Cycles

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).



n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).

What's Going On

independent sets \leftrightarrow cliques

n = 3k

If G has n = 3k vertices and an equitable k-coloring, then \overline{G} has k disjoint cycles (all triangles).

What's Going On

independent sets \leftrightarrow cliques

n = 4k

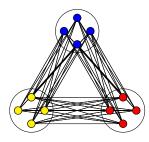
If G has n = 4k vertices and an equitable k-coloring, then \overline{G} has k disjoint, doubly chorded cycles (each with four vertices).

What's Going On

 $\mathsf{independent}\ \mathsf{sets}\ \leftrightarrow\ \mathsf{cliques}$

n = 4k

If G has n = 4k vertices and an equitable k-coloring, then \overline{G} has k disjoint, doubly chorded cycles (each with four vertices).

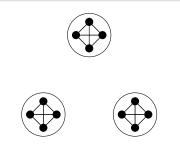


What's Going On

 $\mathsf{independent}\ \mathsf{sets}\ \leftrightarrow\ \mathsf{cliques}$

n = 4k

If G has n = 4k vertices and an equitable k-coloring, then \overline{G} has k disjoint, doubly chorded cycles (each with four vertices).



What's Going On

independent sets \leftrightarrow cliques

n = 4k

If G has n = 4k vertices and an equitable k-coloring, then \overline{G} has k disjoint, doubly chorded cycles (each with four vertices).

Cycles, chorded cycles, cycles with f(k) chords, etc: generalizations of cliques.

Kierstead-Kostochka, 2008 (link)

If G is a graph such that $d(x) + d(y) \le 2k - 1$ for every edge xy, then G has an equitable k-coloring.

Kierstead-Kostochka, 2008 (link)

If G is a graph such that $d(x) + d(y) \le 2k - 1$ for every edge xy, then G has an equitable k-coloring.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

Kierstead-Kostochka, 2008 (link)

If G is a graph such that $d(x) + d(y) \le 2k - 1$ for every edge xy, then G has an equitable k-coloring.

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$, then G contains k disjoint cycles.

n = 3k

Equivalent when n = 3k: 2(3k-1)-(2k-1)=4k-1

Qiao-Zhang, 2010

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

Qiao-Zhang, 2010

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

$$n = 4k$$

$$\delta(G) \ge \lfloor 7k/2 \rfloor \Leftrightarrow \Delta(\overline{G}) \le (4k - 1) - (\lfloor 7k/2 \rfloor) = \lfloor k/2 \rfloor - 1$$

Qiao-Zhang, 2010

Let G be a graph on $n \ge 4k$ vertices with $\delta(G) \ge \lfloor 7k/2 \rfloor$. Then G contains k disjoint, doubly chorded cycles.

$$n = 4k$$

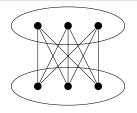
$$\delta(G) \ge \lfloor 7k/2 \rfloor \Leftrightarrow \Delta(\overline{G}) \le (4k - 1) - (\lfloor 7k/2 \rfloor) = \lfloor k/2 \rfloor - 1$$

Equivalent Statement for n = 4k

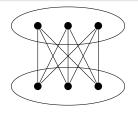
Let G be a graph on 4k vertices with $\Delta(G) \leq \lfloor k/2 \rfloor - 1$. Then G is equitably k-colorable.

Hajnal-Szemerédi, 1970

Hajnal-Szemerédi, 1970

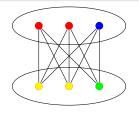


Hajnal-Szemerédi, 1970



 $\Delta(G) = 3$

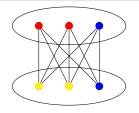
Hajnal-Szemerédi, 1970



 $\Delta(G) = 3$

Hajnal-Szemerédi, 1970

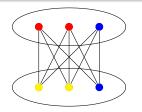
If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.



 $\Delta(G) = 3$

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.



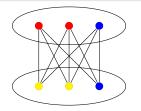
$$\Delta(G) = 3$$

Chen-Lih-Wu Conjecture, 1994 (link)

A connected graph G is equitably $\Delta(G)$ colorable if G is different from K_m , C_{2m+1} and $K_{2m+1,2m+1}$ for every $m \ge 1$.

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.



$$\Delta(G) = 3$$

Chen-Lih-Wu Conjecture, 1994 (link)

A connected graph G is equitably $\Delta(G)$ colorable if G is different from K_m , C_{2m+1} and $K_{2m+1,2m+1}$ for every $m \ge 1$.

Chen-Lih-Wu **Conjecture** Re-stated If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Hajnal-Szemerédi, 1970

If $k \ge \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture, 1994 (link)

A connected graph G is equitably $\Delta(G)$ colorable if G is different from K_m , C_{2m+1} and $K_{2m+1,2m+1}$ for every $m \ge 1$.

Chen-Lih-Wu Conjecture Re-stated

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

CLW true if:

 $\delta(G) \ge |G|/2; \ \Delta(G) \le 4; \ G$ planar with $\Delta(G) \ge 13; \ G$ outerplanar, etc. Still open in general

Kierstead-Kostochka, 2008 (link)

If G is a graph such that for each edge xy, $d(x) + d(y) \le 2k - 1$, then G is equitably k-colorable.

Kierstead-Kostochka, 2008 (link)

If G is a graph such that for each edge xy, $d(x) + d(y) \le 2k - 1$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y., 2016 (link)

If G is a 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Kierstead-Kostochka, 2008 (link)

If G is a graph such that for each edge xy, $d(x) + d(y) \le 2k - 1$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y., 2016 (link)

If G is a 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on 3k vertices with $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions.

Kierstead-Kostochka-Molla-Y., 2016 (link)

If G is a 3k-vertex graph such that for each edge xy, $d(x) + d(y) \le 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

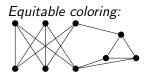
If G is a graph on 3k vertices with $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions.

KKY, 2017

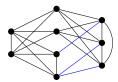
For $k \ge 4$, if G is a graph on n vertices with $n \ge 3k + 1$ and $\sigma_2(G) \ge 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \le n - 2k$.

Exceptions

• *k* = 3

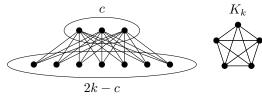


Cycles:

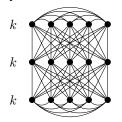


Exceptions

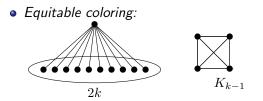
• Equitable coloring:

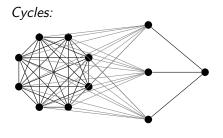


Cycles:



Exceptions





 K_{2k} k-1

Thanks!

Slides (with links to references) at: http://www.math.ubc.ca/~elyse/Talks.html