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Corrádi-Hajnal Theorem

Theorem 1
[Corradi, Hajnal 1963] Let k ≥ 1, n ≥ 3k , and let H be an n-vertex
graph with δ(H) ≥ 2k. Then H contains k vertex-disjoint cycles.

Corollary 2

Let n = 3k , and let H be an n-vertex graph with δ(H) ≥ 2k. Then
H contains k vertex-disjoint triangles.
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Refinements

Theorem 3
[Aigner, Brandt 1993]: Let H be an n-vertex graph with
δ(H) ≥ 2n−1

3 . Then H contains each 2-factor.

Definition
σ2(G ) = minxy 6∈E(G){d(x) + d(y)}

Theorem 4
[Kostochka, Yu 2011]: Let n ≥ 3 and H be an n-vertex graph with
σ2(H) ≥ 4n/3− 1. Then H contains each 2-factor.

Theorem 5
[Fan, Kierstead 1996]: Let n ≥ 3 and H be an n-vertex graph with
δ(H) ≥ 2n−1

3 . Then H contains the square of the n-vertex path.
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Refinements

Theorem (1)

Let k ≥ 1, n ≥ 3k , and let H be an n-vertex graph with
δ(H) ≥ 2k. Then H contains k vertex-disjoint cycles.

Theorem 6
[Enomoto 1998; Wang 1999]: Let k ≥ 1, n ≥ 3k , and let H be an
n-vertex graph with σ2(H) ≥ 4k − 1. Then H contains k
vertex-disjoint cycles.

Theorem 7
[Kierstead, Kostochka, Y.]: Let k ≥ 3, n ≥ 3k + 1, and let H be
an n-vertex graph with σ2(H) ≥ 4k − 2 and α(H) ≤ n − 2k. Then
H contains k vertex-disjoint cycles.
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Proof Sketch: Theorem 7

Theorem (7)

[Kierstead, Kostochka, Y.]: Let k ≥ 3, n ≥ 3k + 1, and let H be
an n-vertex graph with σ2(H) ≥ 4k − 2 and α(H) ≤ n − 2k. Then
H contains k vertex-disjoint cycles.

Idea of Proof: Suppose G is an edge-maximal counterexample. Let
C be a set of disjoint cycles in G such that:

I |C| is maximized,

I subject to the above,
∑

C∈C |C | is minimized, and

I subject to both other conditions, the length of a longest path
in G −

⋃
C is maximized.



Proof of Therem 7

Goal (1)

R := G − C is a path

Goal (2)

|R| = 3

Goal (3)

|R| ≥ 4



Goal 1

C

R

Notice R is a forest. If R is not a path, it has at least three buds.
Let a be an endpoint of a longest path P, and let c be a bud not
on P.



Goal 1: R is a Path

Claim 1
Suppose R is not a path. ||{a, c},C || = 4 for every C ∈ C.

Claim 2
Suppose R is not a path. Then for all cycles C ∈ C and for all
leaves c in R, a and c share exactly the same two neighbors in C.
If |C | = 4, then those neighbors are nonadjacent.

Claim 3
R is a subdivided star.

Claim 4
R is a path or a star.

Claim 5
R is a path.
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Claim 1

So, ||{a, c},C || ≤ 4 for every C ∈ C.

We can now show ||{a, c},C || = 4 by a counting argument, using
the minimum degree sum of G–recall, a and c are nonadjacent.
This proves Claim (1).

The same counting argument shows that a and c must have one
neighbor in R, so R has no isolated vertices.
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Claim 2

So we see that c can have at most 2 neighbors in any cycle C ∈ C.
By degree-sum considerations, c must have precisely two neighbors
in each cycle C ∈ C. This tells us that a, as well, has precisely 2
neighbors to every cycle C ∈ C.

It remains only to show that no two leaves in R have different sets
of neighbors, and if |C | = 4, the neighbors of our leaves are
nonadjacent.



Claim 2

R
ca

So if |C | = 3, then N(a) ∩ C = N(c) ∩ C , as desired.
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Claim 2

This proves Claim 2.
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Claim 3

Suppose R is not a subdivided star. Then it has four leaves
a, b, c, d such that the paths aRb and cRd exist and are disjoint.

R
ca

d
b
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Claim 4

Suppose R is not a path or a star. We know it is a subdivided star,
so there must be some unique vertex w with degree at least three.
Since we assume it is not a star, there is also a vertex v of degree
2. Further, there exist leaves a, b, c so that vRb does not contain
w and is disjoint rom aRc .

a

v

w

cR

b
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Claim 5

Suppose R is not a path. R has precisely one vertex w of degree at
least 3.
Let z be an arbitrary vertex in C − N(a).
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X

X

X

The independent set has size:

|V (G )| − 2(k − 1)− 1 = n − 2k + 1

but we assumed α(G ) ≤ n − 2k , a contradiction. This proves
Claim 5, also Goal 1, that R is a path.
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Proof of Therem 7

Goal (1)

R := G − C is a path

Goal (2)

|R| = 3

Goal (3)

|R| ≥ 4



Goal 2: |R | = 3

u
1

u
2

u
3

u
4

C

R

We assume |R| ≥ 4, and label the outermost four vertices of R as
F = {u1, u2, u3, u4}.



Goal 2: |R | = 3

Claim 6
If ‖C ,F‖ ≥ 7 for any C ∈ C, then

I |C | = 3

I ‖C ,F‖ = 7

I u1 is adjacent to precisely x1, x2 in C , u2 is adjacent to all
three vertices of C , and x1, x2 each have precisely one
neighbor in {u3, u4} (or mirror case)

Claim 7
k = 3 and ‖C ,F‖ = 7 for both C ∈ C

Claim 8
|R| = 3



Claim 6

We suppose ‖C ,F‖ ≥ 7 for some C ∈ C.

u u uu
1 2 3 4
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Claim 7

[d(u1) + d(u3)] + [d(u2) + d(u4)] ≥ 2(4k − 2) = 8k − 4

d(u1) + d(u3) + d(u2) + d(u4) = 6+‖F , C‖ ≤ 6+7(k−1) = 7k−1

Then 8k − 4 ≥ 7k + 1, and so k ≤ 3.
We conclude k = 3 and ‖C ,F‖ = 7 for both C ∈ C, as desired.
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Claim 8

The red vertices together have at most 3 + 6 = 9 neighbors, but
σ2(G ) ≥ 4k − 2 = 10.
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Proof of Therem 7

Goal (1)

R := G − C is a path

Goal (2)

|R| = 3

Goal (3)

|R| ≥ 4



Goal 3
We assume |R| = 3, and find a contradiction.

u1 u
2

u
3

Claim 9
If C is a longest cycle in C and D is another cycle in C, then
‖C ,D‖ ≤ 2|C |.

Claim 10
The longest cycle in C has four vertices.



Goal 3

u1 u
2

u
3

Claim 11
For any D ∈ C, ‖D,R‖ ≤ 7. If equality holds, |D| = 3 and
(R ∪ D) ∼= K6 − K3.



Goal 3

Claim 12
For all 4-cycles C ∈ C, and all D ∈ C − C, ||D,C || ≤ 8.

Claim 13
For all 4-cycles w1w2w3w4 = C ∈ C and all d ∈ C − C, we have
2||{w1,w3},D||+ ||{w2,w4},D|| ≤ 12.



Goal 3

Claim 14
For every D ∈ C, ||{u1, u3},D|| ≤ 4.

Claim 15
For every D ∈ C, ||{u1, u3},D|| = 4.



Goal 3

u1 u
2

u
3

Claim 16
Given a 4-cycle C ∈ C, G [R ∪ C ] ∼= K3,4

Claim 17
If C1, ...,Cs are the 4-cycles of C, then
G [R ∪ C1 ∪ ... ∪ Cs ] ∼= K2s+1,2s+2. Call the smaller part A and the
larger B.



Goal 3

Claim 18
For every b ∈ B and every 3-cycle D ∈ C, ||b,D|| = 2.

Claim 19
For every b1, b2 ∈ B and every 3-cycle D ∈ C,
N(b1) ∩ D = N(b2) ∩ D.



Goal 3

Claim 20
In the set of 3-cycles in C, the vertices not adjacent to vertices
from b are also not adjacent to each other.



Goal 3

X
XXXX

Claim 21
G has an independent set of size
|V (G )| − (2s + 1)− 2(k − 1− s) = |V (G )| − 2k + 1.



Proof of Therem 7

Goal (1)

R := G − C is a path

Goal (2)

|R| = 3

Goal (3)

|R| ≥ 4



Theorem (7)

[Kierstead, Kostochka, Y.]: Let k ≥ 3, n ≥ 3k + 1, and let H be
an n-vertex graph with σ2(H) ≥ 4k − 2 and α(H) ≤ n − 2k. Then
H contains k vertex-disjoint cycles.
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