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Corradi-Hajnal Theorem

Theorem 1
[Corradi, Hajnal 1963] Let k > 1,n > 3k, and let H be an n-vertex
graph with §(H) > 2k. Then H contains k vertex-disjoint cycles.
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Theorem 1
[Corradi, Hajnal 1963] Let k > 1,n > 3k, and let H be an n-vertex
graph with §(H) > 2k. Then H contains k vertex-disjoint cycles.

Corollary 2

Let n = 3k, and let H be an n-vertex graph with (H) > 2k. Then
H contains k vertex-disjoint triangles.



Refinements

Theorem 3
[Aigner, Brandt 1993]: Let H be an n-vertex graph with
6(H) > 2271, Then H contains each 2-factor.
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Refinements

Theorem (1)
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Refinements

Theorem (1)

Let k > 1,n > 3k, and let H be an n-vertex graph with
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Theorem 6

[Enomoto 1998; Wang 1999]: Let k > 1,n > 3k, and let H be an
n-vertex graph with oo(H) > 4k — 1. Then H contains k
vertex-disjoint cycles.

Theorem 7

[Kierstead, Kostochka, Y.J: Let k >3, n> 3k +1, and let H be
an n-vertex graph with oo(H) > 4k — 2 and a(H) < n—2k. Then
H contains k vertex-disjoint cycles.



Proof Sketch: Theorem 7

Theorem (7)

[Kierstead, Kostochka, Y.]: Let k >3, n> 3k + 1, and let H be
an n-vertex graph with oo(H) > 4k — 2 and a(H) < n— 2k. Then
H contains k vertex-disjoint cycles.

Idea of Proof: Suppose G is an edge-maximal counterexample. Let
C be a set of disjoint cycles in G such that:

> |C| is maximized,
> subject to the above, > .. |C| is minimized, and

> subject to both other conditions, the length of a longest path
in G —JC is maximized.



Proof of Therem 7

Goal (1)
R:= G —C is a path

Goal (2)
IR| =3

Goal (3)
IR >4



Goal 1
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Notice R is a forest. If R is not a path, it has at least three buds.
Let a be an endpoint of a longest path P, and let ¢ be a bud not
on P.



Goal 1: R is a Path

Claim 1
Suppose R is not a path. ||{a,c}, C|| =4 for every C € C.

Claim 2

Suppose R is not a path. Then for all cycles C € C and for all
leaves c in R, a and c share exactly the same two neighbors in C.
If |C| = 4, then those neighbors are nonadjacent.

Claim 3
R is a subdivided star.

Claim 4
R is a path or a star.

Claim 5
R is a path.
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Claim 1

So, [[{a,c}, C|| < 4 for every C € C.



Claim 1

So, [[{a,c}, C|| < 4 for every C € C.

We can now show [|{a, c}, C|| = 4 by a counting argument, using
the minimum degree sum of G-recall, a and ¢ are nonadjacent.
This proves Claim (1).

The same counting argument shows that a and ¢ must have one
neighbor in R, so R has no isolated vertices.
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Claim 2

So we see that ¢ can have at most 2 neighbors in any cycle C € C.
By degree-sum considerations, ¢ must have precisely two neighbors
in each cycle C € C. This tells us that a, as well, has precisely 2
neighbors to every cycle C € C.

It remains only to show that no two leaves in R have different sets
of neighbors, and if |C| = 4, the neighbors of our leaves are
nonadjacent.



Claim 2

So if |[C| =3, then N(a)N C = N(c) N C, as desired.
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This proves Claim 2.



Goal 1: R is a Path
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Suppose R is not a path. Then for all cycles C € C and for all
leaves c in R, a and c share exactly the same two neighbors in C.
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Claim 3
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Claim 3

Suppose R is not a subdivided star. Then it has four leaves
a, b, ¢, d such that the paths aRb and cRd exist and are disjoint.
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Claim 1
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Claim 4

Suppose R is not a path or a star. We know it is a subdivided star,
so there must be some unique vertex w with degree at least three.
Since we assume it is not a star, there is also a vertex v of degree
2. Further, there exist leaves a, b, ¢ so that vRb does not contain
w and is disjoint rom aRc.

R C



Claim 4
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Goal 1: R is a Path

Claim 1
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Claim 5

Suppose R is not a path. R has precisely one vertex w of degree at
least 3.
Let z be an arbitrary vertex in C — N(a).
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Claim 5

The independent set has size:
IV(G)|—2(k—1)—1=n—-2k+1

but we assumed a(G) < n — 2k, a contradiction. This proves
Claim 5, also Goal 1, that R is a path.
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Goal (1)
R:= G —C is a path
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Goal 2: |R| =3
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We assume |R| > 4, and label the outermost four vertices of R as
F={u,up,u3,us}.



Goal 2: |R| =3

Claim 6

If||C,F|| > 7 for any C € C, then
> [C]=3
> |G F =7

» uq is adjacent to precisely x1,x> in C, up is adjacent to all
three vertices of C, and xy, xo each have precisely one
neighbor in {us, us} (or mirror case)

Claim 7
k=3 and||C,F|| =7 for both C € C

Claim 8
IR| =3
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Claim 6

We suppose ||C, F|| > 7 for some C € C. |[{u1,ur, C}|| > 5.
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We suppose ||C, F|| > 7 for some C € C. ||{u1,u2, C}|| = 5.
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Claim 7
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d(u) + d(us) + d(w) + d(us) = 64| F,C|| < 6+7(k—1) = Tk—1

Then 8k —4 > 7k + 1, and so k < 3.
We conclude k =3 and ||C, F|| = 7 for both C € C, as desired.
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Claim 8

The red vertices together have at most 3 + 6 = 9 neighbors, but
02(G) > 4k — 2 = 10.
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Goal 2: |R| =3

Claim 6

If||C,F|| > 7 for any C € C, then
> [C]=3
> |G F =7

» uq is adjacent to precisely x1,x> in C, up is adjacent to all
three vertices of C, and xy, xo each have precisely one
neighbor in {us, us} (or mirror case)

Claim 7
k=3 and||C,F|| =7 for both C € C

Claim 8
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Proof of Therem 7

Goal (1)
R:= G —C is a path

Goal (2)
IR| =3

Goal (3)
IR >4



Goal 3

We assume |R| = 3, and find a contradiction.

Claim 9
If C is a longest cycle in C and D is another cycle in C, then
IC, DIl < 2[C].

Claim 10

The longest cycle in C has four vertices.



Goal 3

u u, u,

Claim 11
Forany D € C, ||D, R|| < 7. If equality holds, |D| = 3 and
(RUD)§K6—K3.



Goal 3

Claim 12
For all 4-cycles C € C, and all D € C — C, ||D, C|| <8.

Claim 13
For all 4-cycles wywowswy = C € C and all d € C — C, we have
2|[{w1, wa}, DI| + [[{w2, wa}, D[ < 12.



Goal 3

Claim 14
For every D € C,

{U]_, U3}, DH < 4.

Claim 15
For every D € C, ||{u1, us}, D|| = 4.




Goal 3

Claim 16
Given a 4-cycle C € C, GIRUC] = Kz 4

Claim 17

If C1, ..., Cs are the 4-cycles of C, then

GIRUG U ...U G| = Kasy1,2s+2. Call the smaller part A and the
larger B.



Goal 3

Claim 18
For every b € B and every 3-cycle D € C, ||b, D|| = 2.

Claim 19
For every by, b, € B and every 3-cycle D € C,
N(by) "D = N(by) N D.



Goal 3

Claim 20
In the set of 3-cycles in C, the vertices not adjacent to vertices
from b are also not adjacent to each other.



Goal 3

Claim 21
G has an independent set of size
IV(G)|—(2s+1)—2(k—1—5s)=|V(G)| — 2k + 1.



Proof of Therem 7

Goal (1)
R:= G —C is a path

Goal (2)
IR| =3

Goal (3)
IR >4



Theorem (7)

[Kierstead, Kostochka, Y.J: Let k >3, n> 3k +1, and let H be
an n-vertex graph with oo(H) > 4k — 2 and a(H) < n— 2k. Then
H contains k vertex-disjoint cycles.
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