#### A Refinement of the Corrádi-Hajnal Theorem

Elyse Yeager University of Illinois at Urbana-Champaign Joint work with H. Kierstead and A. Kostochka

UIUC Combinatorics Seminar, 02 October 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Corrádi-Hajnal Theorem

Theorem 1 [Corradi, Hajnal 1963] Let  $k \ge 1, n \ge 3k$ , and let H be an n-vertex graph with  $\delta(H) \ge 2k$ . Then H contains k vertex-disjoint cycles.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## Corrádi-Hajnal Theorem

# Theorem 1 [Corradi, Hajnal 1963] Let $k \ge 1, n \ge 3k$ , and let H be an n-vertex graph with $\delta(H) \ge 2k$ . Then H contains k vertex-disjoint cycles.

#### Corollary 2

Let n = 3k, and let H be an n-vertex graph with  $\delta(H) \ge 2k$ . Then H contains k vertex-disjoint triangles.

Theorem 3 [Aigner, Brandt 1993]: Let H be an n-vertex graph with  $\delta(H) \geq \frac{2n-1}{3}$ . Then H contains each 2-factor.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem 3 [Aigner, Brandt 1993]: Let H be an n-vertex graph with  $\delta(H) \geq \frac{2n-1}{3}$ . Then H contains each 2-factor.

Definition  $\sigma_2(G) = \min_{xy \notin E(G)} \{ d(x) + d(y) \}$ 

Theorem 3 [Aigner, Brandt 1993]: Let H be an n-vertex graph with  $\delta(H) \geq \frac{2n-1}{3}$ . Then H contains each 2-factor.

Definition  $\sigma_2(G) = \min_{xy \notin E(G)} \{ d(x) + d(y) \}$ 

#### Theorem 4

[Kostochka, Yu 2011]: Let  $n \ge 3$  and H be an n-vertex graph with  $\sigma_2(H) \ge 4n/3 - 1$ . Then H contains each 2-factor.

Theorem 3 [Aigner, Brandt 1993]: Let H be an n-vertex graph with  $\delta(H) \geq \frac{2n-1}{3}$ . Then H contains each 2-factor.

Definition  $\sigma_2(G) = \min_{xy \notin E(G)} \{ d(x) + d(y) \}$ 

#### Theorem 4

[Kostochka, Yu 2011]: Let  $n \ge 3$  and H be an n-vertex graph with  $\sigma_2(H) \ge 4n/3 - 1$ . Then H contains each 2-factor.

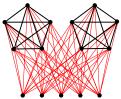
#### Theorem 5

[Fan, Kierstead 1996]: Let  $n \ge 3$  and H be an n-vertex graph with  $\delta(H) \ge \frac{2n-1}{3}$ . Then H contains the square of the n-vertex path.

Theorem (1)

Let  $k \ge 1$ ,  $n \ge 3k$ , and let H be an n-vertex graph with  $\delta(H) \ge 2k$ . Then H contains k vertex-disjoint cycles.





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (1)

Let  $k \ge 1$ ,  $n \ge 3k$ , and let H be an n-vertex graph with  $\delta(H) \ge 2k$ . Then H contains k vertex-disjoint cycles.





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Theorem 6

[Enomoto 1998; Wang 1999]: Let  $k \ge 1$ ,  $n \ge 3k$ , and let H be an *n*-vertex graph with  $\sigma_2(H) \ge 4k - 1$ . Then H contains k vertex-disjoint cycles.

Theorem (1)

Let  $k \ge 1$ ,  $n \ge 3k$ , and let H be an n-vertex graph with  $\delta(H) \ge 2k$ . Then H contains k vertex-disjoint cycles.





#### Theorem 6

[Enomoto 1998; Wang 1999]: Let  $k \ge 1$ ,  $n \ge 3k$ , and let H be an *n*-vertex graph with  $\sigma_2(H) \ge 4k - 1$ . Then H contains k vertex-disjoint cycles.

#### Theorem 7

[Kierstead, Kostochka, Y.]: Let  $k \ge 3$ ,  $n \ge 3k + 1$ , and let H be an n-vertex graph with  $\sigma_2(H) \ge 4k - 2$  and  $\alpha(H) \le n - 2k$ . Then H contains k vertex-disjoint cycles.

## Proof Sketch: Theorem 7

#### Theorem (7)

[Kierstead, Kostochka, Y.]: Let  $k \ge 3$ ,  $n \ge 3k + 1$ , and let H be an n-vertex graph with  $\sigma_2(H) \ge 4k - 2$  and  $\alpha(H) \le n - 2k$ . Then H contains k vertex-disjoint cycles.

Idea of Proof: Suppose G is an edge-maximal counterexample. Let C be a set of disjoint cycles in G such that:

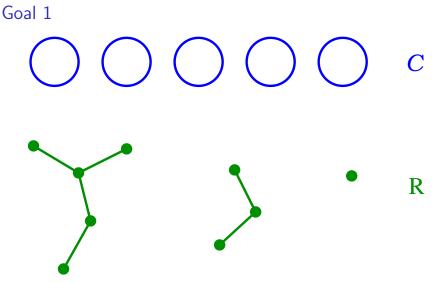
- ▶ |C| is maximized,
- subject to the above,  $\sum_{C \in C} |C|$  is minimized, and
- subject to both other conditions, the length of a longest path in G − ∪C is maximized.

## Proof of Therem 7

Goal (1) R := G - C is a path

Goal (2) |R| = 3

Goal (3)  $|R| \ge 4$ 



Notice R is a forest. If R is not a path, it has at least three buds. Let a be an endpoint of a longest path P, and let c be a bud not on P.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

## Goal 1: R is a Path

#### Claim 1

Suppose R is not a path.  $||\{a, c\}, C|| = 4$  for every  $C \in C$ .

#### Claim 2

Suppose R is not a path. Then for all cycles  $C \in C$  and for all leaves c in R, a and c share exactly the same two neighbors in C. If |C| = 4, then those neighbors are nonadjacent.

#### Claim 3 *R is a subdivided star.*

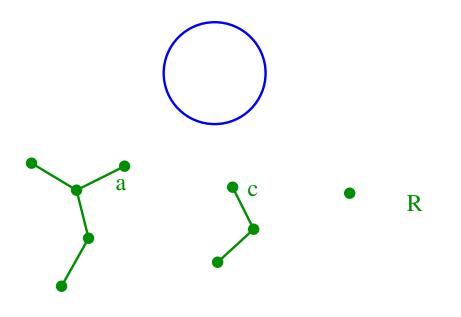
Claim 4 *R* is a path or a star.

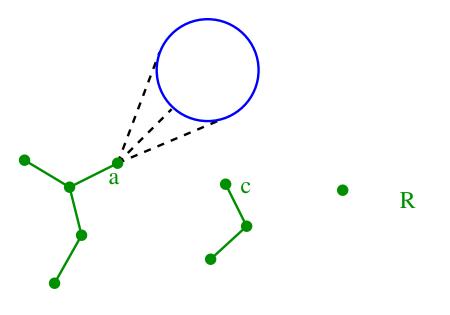
#### Claim 5 *R is a path.*

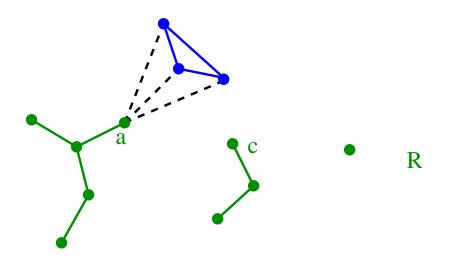
## 

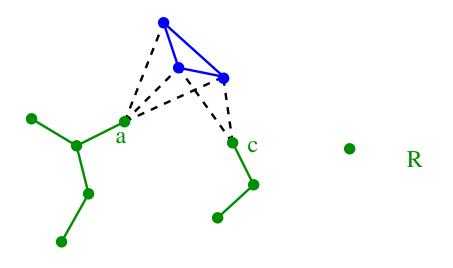


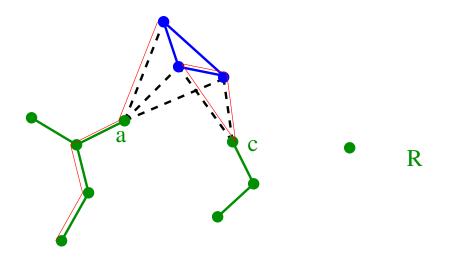
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��











So,  $||\{a, c\}, C|| \leq 4$  for every  $C \in C$ .



So, 
$$||\{a, c\}, C|| \leq 4$$
 for every  $C \in C$ .

We can now show  $||\{a, c\}, C|| = 4$  by a counting argument, using the minimum degree sum of *G*-recall, *a* and *c* are nonadjacent. This proves Claim (1).

The same counting argument shows that a and c must have one neighbor in R, so R has no isolated vertices.

## Goal 1: R is a Path

#### Claim 1

Suppose R is not a path.  $||\{a, c\}, C|| = 4$  for every  $C \in C$ .

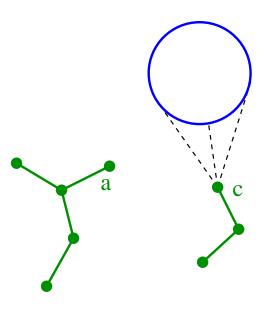
#### Claim 2

Suppose R is not a path. Then for all cycles  $C \in C$  and for all leaves c in R, a and c share exactly the same two neighbors in C. If |C| = 4, then those neighbors are nonadjacent.

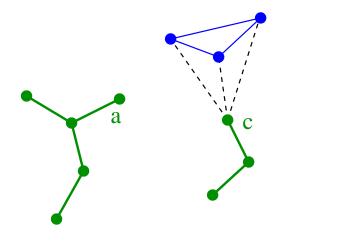
#### Claim 3 *R is a subdivided star.*

Claim 4 *R* is a path or a star.

#### Claim 5 *R is a path.*

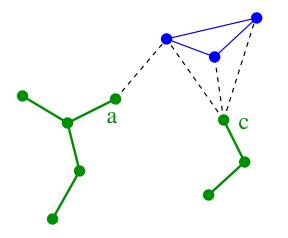






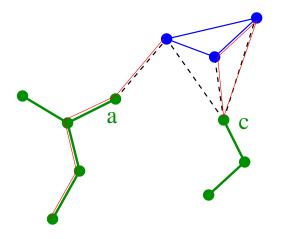
R

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



R

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

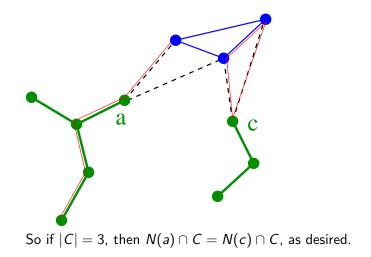


R

So we see that c can have at most 2 neighbors in any cycle  $C \in C$ . By degree-sum considerations, c must have precisely two neighbors in each cycle  $C \in C$ . This tells us that a, as well, has precisely 2 neighbors to every cycle  $C \in C$ .

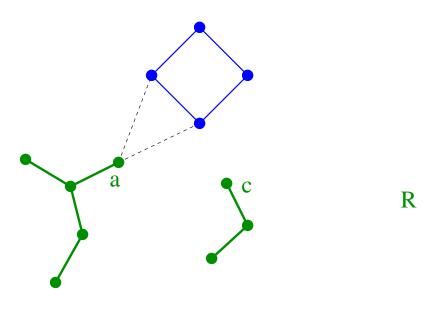
It remains only to show that no two leaves in R have different sets of neighbors, and if |C| = 4, the neighbors of our leaves are nonadjacent.

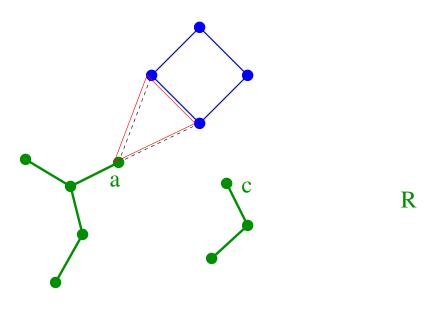
(日) (同) (三) (三) (三) (○) (○)

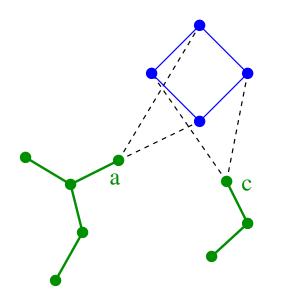


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

R

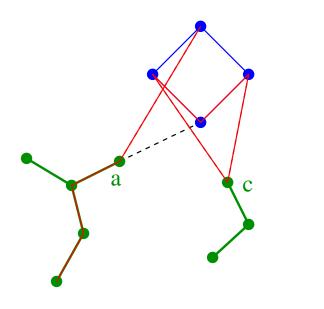






R

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆



R

This proves Claim 2.



## Goal 1: R is a Path

#### Claim 1

Suppose R is not a path.  $||\{a, c\}, C|| = 4$  for every  $C \in C$ .

#### Claim 2

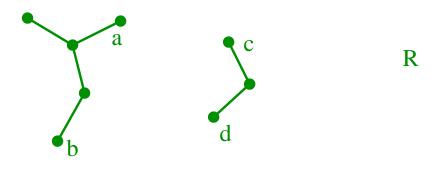
Suppose R is not a path. Then for all cycles  $C \in C$  and for all leaves c in R, a and c share exactly the same two neighbors in C. If |C| = 4, then those neighbors are nonadjacent.

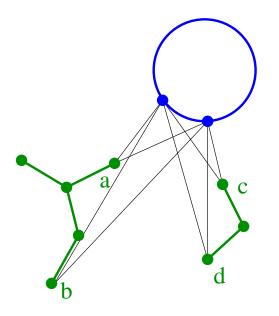
#### Claim 3 *R is a subdivided star.*

Claim 4 *R* is a path or a star.

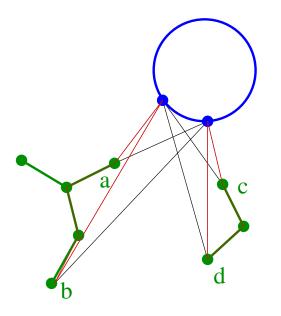
#### Claim 5 *R is a path.*

Suppose R is not a subdivided star. Then it has four leaves a, b, c, d such that the paths aRb and cRd exist and are disjoint.





R



R

## Goal 1: R is a Path

#### Claim 1

Suppose R is not a path.  $||\{a, c\}, C|| = 4$  for every  $C \in C$ .

#### Claim 2

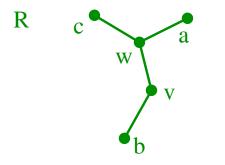
Suppose R is not a path. Then for all cycles  $C \in C$  and for all leaves c in R, a and c share exactly the same two neighbors in C. If |C| = 4, then those neighbors are nonadjacent.

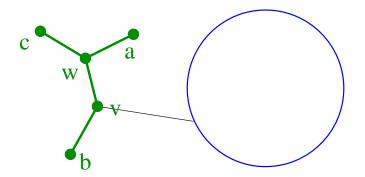
#### Claim 3 *R* is a subdivided star.

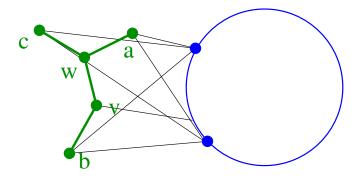
Claim 4 *R* is a path or a star.

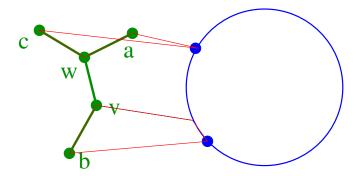
#### Claim 5 *R is a path.*

Suppose *R* is not a path or a star. We know it is a subdivided star, so there must be some unique vertex *w* with degree at least three. Since we assume it is not a star, there is also a vertex *v* of degree 2. Further, there exist leaves *a*, *b*, *c* so that *vRb* does not contain *w* and is disjoint rom aRc.









<□> <圖> < E> < E> E のQ@

## Goal 1: R is a Path

#### Claim 1

Suppose R is not a path.  $||\{a, c\}, C|| = 4$  for every  $C \in C$ .

#### Claim 2

Suppose R is not a path. Then for all cycles  $C \in C$  and for all leaves c in R, a and c share exactly the same two neighbors in C. If |C| = 4, then those neighbors are nonadjacent.

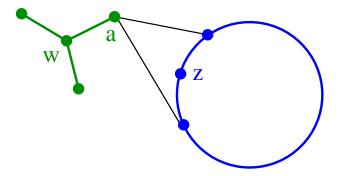
#### Claim 3 *R* is a subdivided star.

Claim 4 *R* is a path or a star.

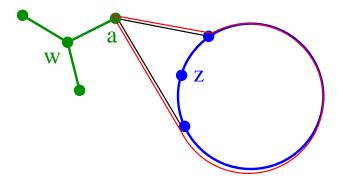
#### Claim 5 *R is a path.*

Suppose R is not a path. R has precisely one vertex w of degree at least 3.

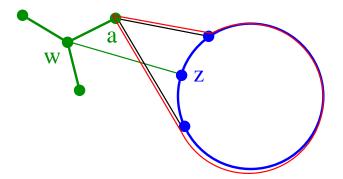
Let z be an arbitrary vertex in C - N(a).



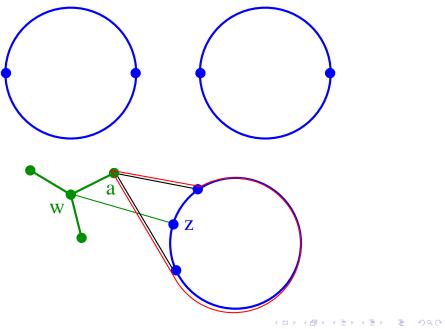


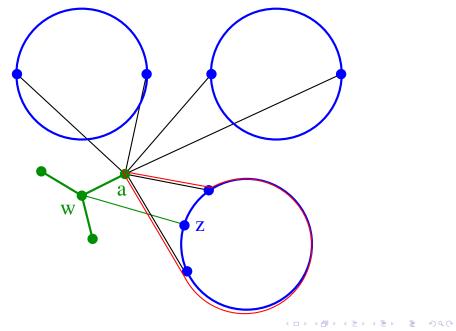


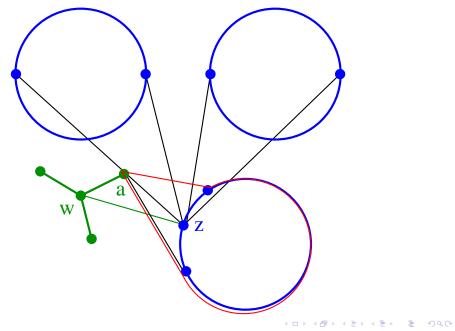




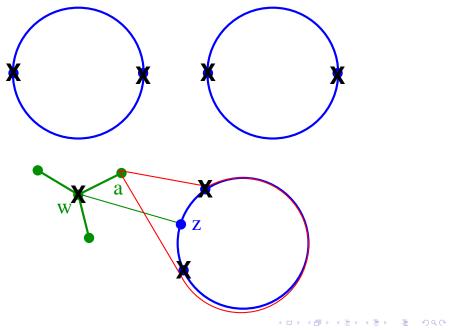


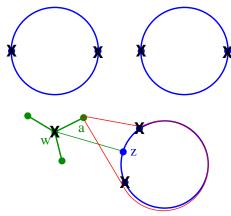












The independent set has size:

$$|V(G)| - 2(k-1) - 1 = n - 2k + 1$$

but we assumed  $\alpha(G) \leq n - 2k$ , a contradiction. This proves Claim 5, also Goal 1, that R is a path.

## Goal 1: R is a Path

#### Claim 1

Suppose R is not a path.  $||\{a, c\}, C|| = 4$  for every  $C \in C$ .

#### Claim 2

Suppose R is not a path. Then for all cycles  $C \in C$  and for all leaves c in R, a and c share exactly the same two neighbors in C. If |C| = 4, then those neighbors are nonadjacent.

#### Claim 3 *R* is a subdivided star.

Claim 4 *R* is a path or a star.

#### Claim 5 *R is a path.*

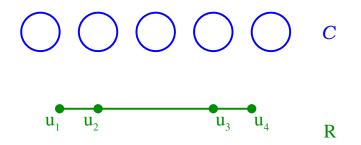
## Proof of Therem 7

Goal (1) R := G - C is a path

 $\begin{array}{l} \text{Goal} (2) \\ |R| = 3 \end{array}$ 

Goal (3)  $|R| \ge 4$ 

Goal 2: |R| = 3



We assume  $|R| \ge 4$ , and label the outermost four vertices of R as  $F = \{u_1, u_2, u_3, u_4\}$ .

## Goal 2: |R| = 3

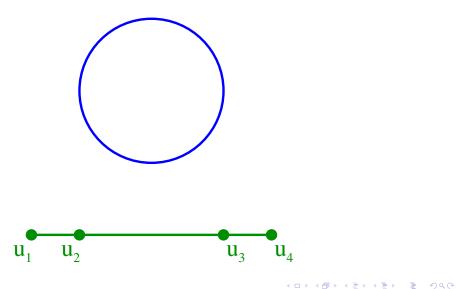
# $\begin{array}{l} \mbox{Claim 6} \\ \mbox{If } \| \, C, F \| \geq 7 \mbox{ for any } C \in \mathcal{C}, \mbox{ then} \end{array}$

- ► |*C*| = 3
- $\blacktriangleright \|C,F\| = 7$
- u<sub>1</sub> is adjacent to precisely x<sub>1</sub>, x<sub>2</sub> in C, u<sub>2</sub> is adjacent to all three vertices of C, and x<sub>1</sub>, x<sub>2</sub> each have precisely one neighbor in {u<sub>3</sub>, u<sub>4</sub>} (or mirror case)

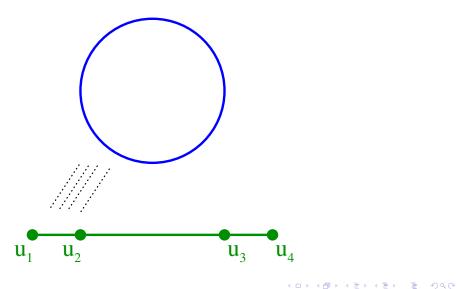
Claim 7 k = 3 and ||C, F|| = 7 for both  $C \in C$ 

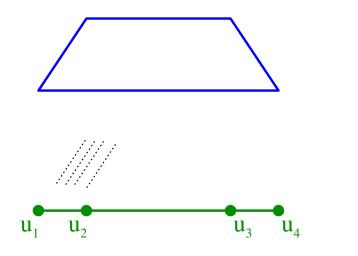
 $\frac{\text{Claim 8}}{|R| = 3}$ 

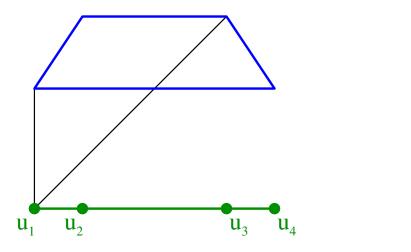
We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .

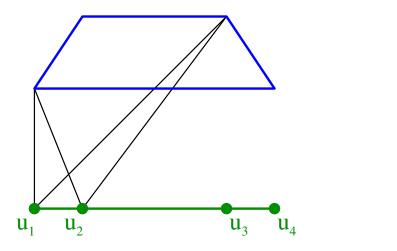


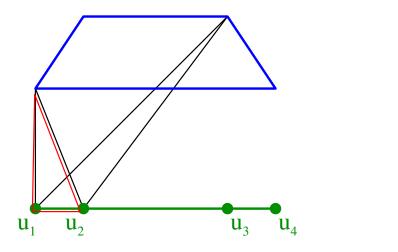
We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .

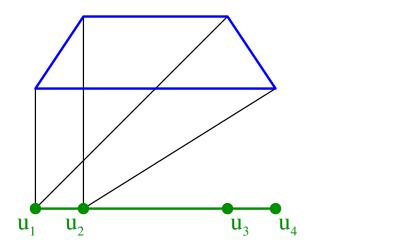




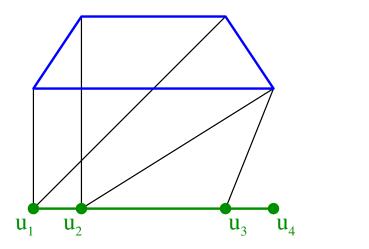




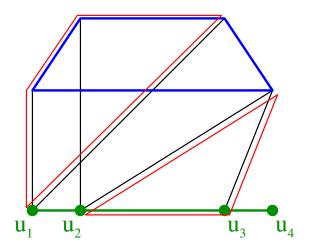




We suppose  $||C, F|| \ge 7$  for some  $C \in C$ . If |C| = 4:



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



## Goal 2: |R| = 3

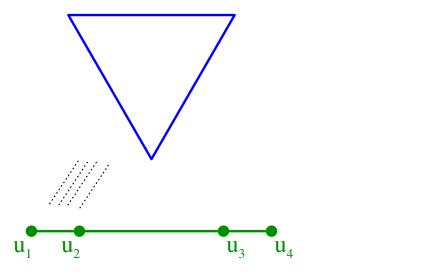
# $\begin{array}{l} \mbox{Claim 6} \\ \mbox{If } \| \, C, F \| \geq 7 \mbox{ for any } C \in \mathcal{C}, \mbox{ then} \end{array}$

- ► |*C*| = 3
- $\blacktriangleright \|C,F\| = 7$
- u<sub>1</sub> is adjacent to precisely x<sub>1</sub>, x<sub>2</sub> in C, u<sub>2</sub> is adjacent to all three vertices of C, and x<sub>1</sub>, x<sub>2</sub> each have precisely one neighbor in {u<sub>3</sub>, u<sub>4</sub>} (or mirror case)

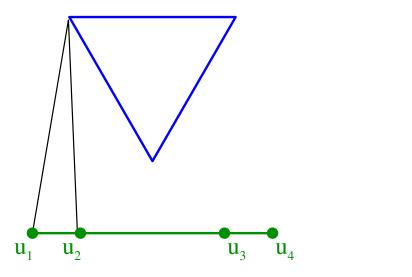
Claim 7 k = 3 and ||C, F|| = 7 for both  $C \in C$ 

 $\frac{\text{Claim 8}}{|R| = 3}$ 

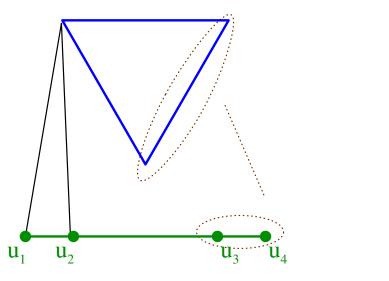
We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .



We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .

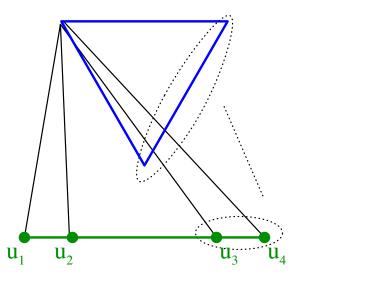


We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .

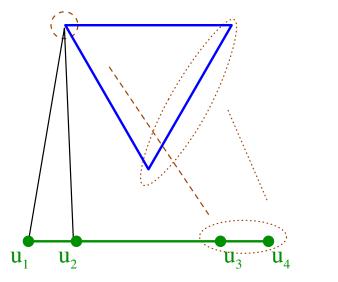


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

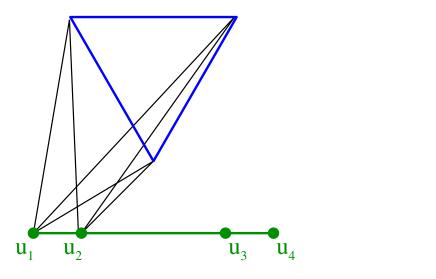
We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .



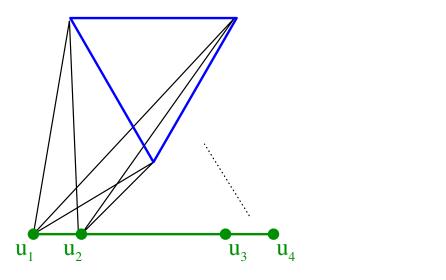
We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .  $||\{u_1, u_2, C\}|| \ge 5$ .



We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .  $||\{u_1, u_2, C\}|| \ge 5$ .

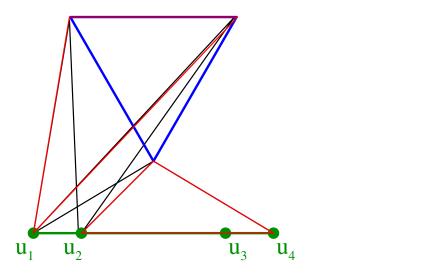


We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .  $||\{u_1, u_2, C\}|| \ge 5$ .

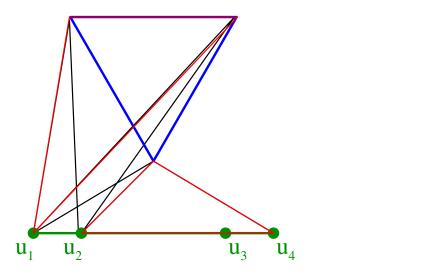


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .  $||\{u_1, u_2, C\}|| \ge 5$ .



We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .  $||\{u_1, u_2, C\}|| = 5$ .



# Goal 2: |R| = 3

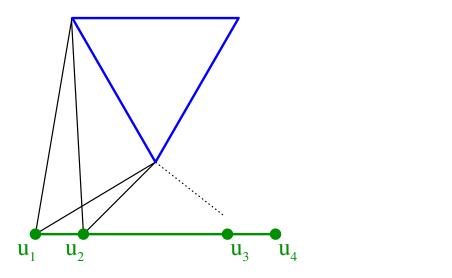
# $\begin{array}{l} \mbox{Claim 6} \\ \mbox{If } \| \, C, F \| \geq 7 \mbox{ for any } C \in \mathcal{C}, \mbox{ then} \end{array}$

- ► |*C*| = 3
- $\blacktriangleright \|C,F\| = 7$
- u<sub>1</sub> is adjacent to precisely x<sub>1</sub>, x<sub>2</sub> in C, u<sub>2</sub> is adjacent to all three vertices of C, and x<sub>1</sub>, x<sub>2</sub> each have precisely one neighbor in {u<sub>3</sub>, u<sub>4</sub>} (or mirror case)

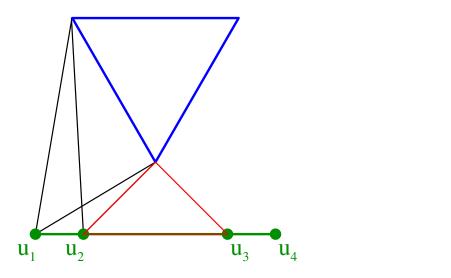
Claim 7 k = 3 and ||C, F|| = 7 for both  $C \in C$ 

 $\frac{\text{Claim 8}}{|R| = 3}$ 

We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .  $||\{u_1, u_2, C\}|| = 5$ .

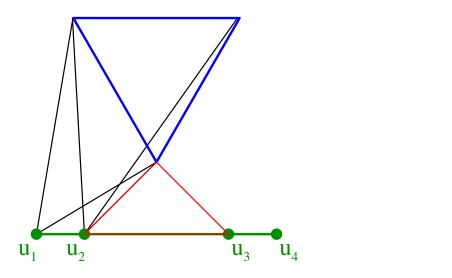


We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .  $||\{u_1, u_2, C\}|| = 5$ .



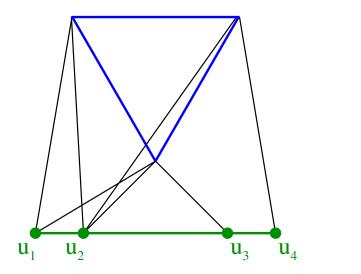
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .  $||\{u_1, u_2, C\}|| = 5$ .



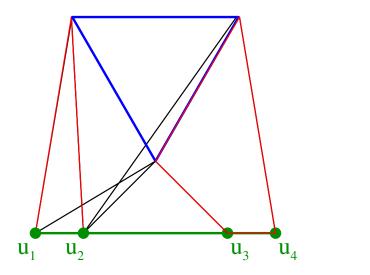
▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 - のへぐ

We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .  $||\{u_1, u_2, C\}|| = 5$ .



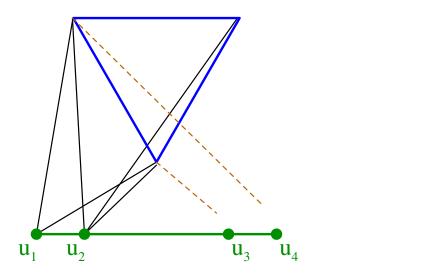
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .  $||\{u_1, u_2, C\}|| = 5$ .



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We suppose  $||C, F|| \ge 7$  for some  $C \in C$ .  $||\{u_1, u_2, C\}|| = 5$ .



# Goal 2: |R| = 3

# $\begin{array}{l} \mbox{Claim 6} \\ \mbox{If } \| \, C, F \| \geq 7 \mbox{ for any } C \in \mathcal{C}, \mbox{ then} \end{array}$

- ► |*C*| = 3
- $\blacktriangleright \|C,F\| = 7$
- u<sub>1</sub> is adjacent to precisely x<sub>1</sub>, x<sub>2</sub> in C, u<sub>2</sub> is adjacent to all three vertices of C, and x<sub>1</sub>, x<sub>2</sub> each have precisely one neighbor in {u<sub>3</sub>, u<sub>4</sub>} (or mirror case)

Claim 7 k = 3 and ||C, F|| = 7 for both  $C \in C$ 

 $\frac{\text{Claim 8}}{|R| = 3}$ 

## $[d(u_1) + d(u_3)] + [d(u_2) + d(u_4)] \ge 2(4k - 2) = 8k - 4$

## $[d(u_1) + d(u_3)] + [d(u_2) + d(u_4)] \ge 2(4k - 2) = 8k - 4$

 $d(u_1) + d(u_3) + d(u_2) + d(u_4) = 6 + ||F, C|| \le 6 + 7(k-1) = 7k-1$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $[d(u_1) + d(u_3)] + [d(u_2) + d(u_4)] \ge 2(4k - 2) = 8k - 4$ 

 $d(u_1) + d(u_3) + d(u_2) + d(u_4) = 6 + ||F, C|| \le 6 + 7(k-1) = 7k-1$ 

Then  $8k - 4 \ge 7k + 1$ , and so  $k \le 3$ . We conclude k = 3 and ||C, F|| = 7 for both  $C \in C$ , as desired.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

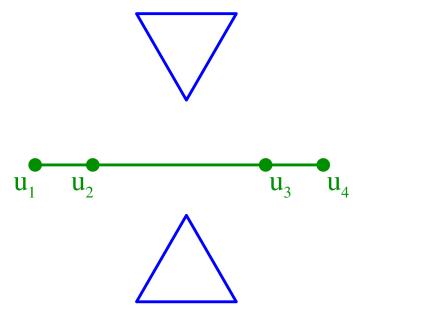
# Goal 2: |R| = 3

# $\begin{array}{l} \mbox{Claim 6} \\ \mbox{If } \| \, C, F \| \geq 7 \mbox{ for any } C \in \mathcal{C}, \mbox{ then} \end{array}$

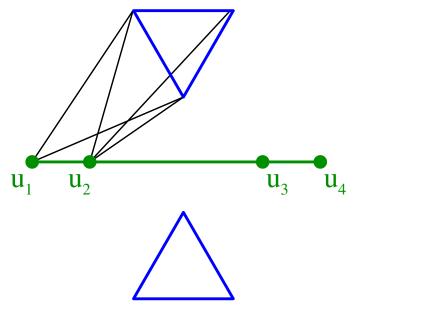
- ► |*C*| = 3
- $\blacktriangleright \|C,F\| = 7$
- u<sub>1</sub> is adjacent to precisely x<sub>1</sub>, x<sub>2</sub> in C, u<sub>2</sub> is adjacent to all three vertices of C, and x<sub>1</sub>, x<sub>2</sub> each have precisely one neighbor in {u<sub>3</sub>, u<sub>4</sub>} (or mirror case)

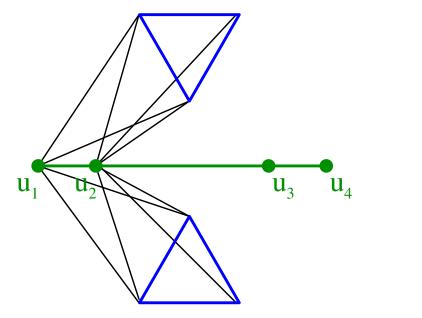
Claim 7 k = 3 and ||C, F|| = 7 for both  $C \in C$ 

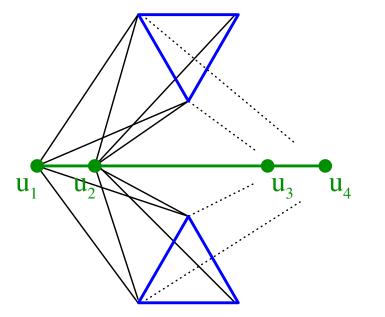
 $\frac{\text{Claim 8}}{|R| = 3}$ 

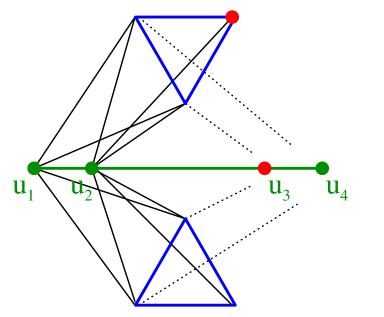


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

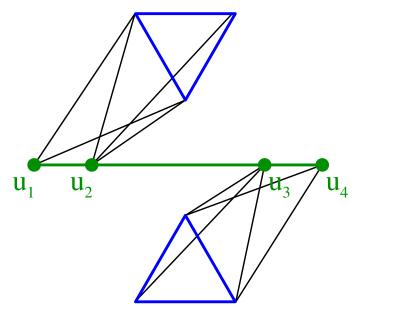


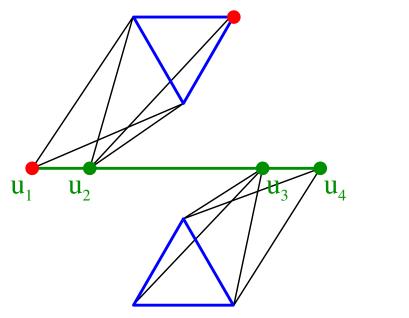


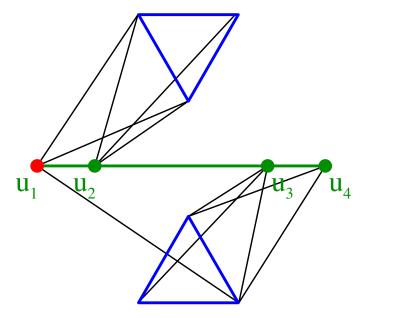


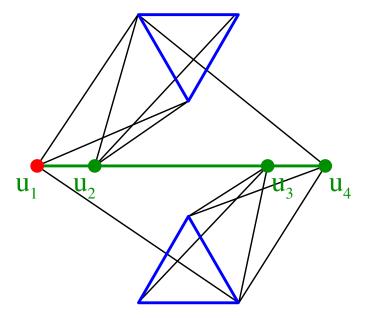


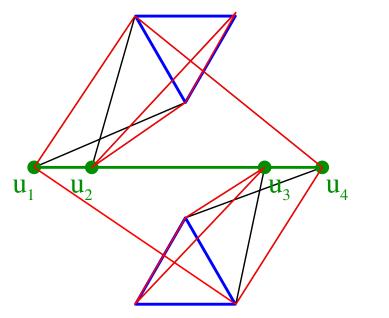
The red vertices together have at most 3 + 6 = 9 neighbors, but  $\sigma_2(G) \ge 4k - 2 = 10$ .











# Goal 2: |R| = 3

# $\begin{array}{l} \mbox{Claim 6} \\ \mbox{If } \| \, C, F \| \geq 7 \mbox{ for any } C \in \mathcal{C}, \mbox{ then} \end{array}$

- ► |*C*| = 3
- $\blacktriangleright \|C,F\| = 7$
- u<sub>1</sub> is adjacent to precisely x<sub>1</sub>, x<sub>2</sub> in C, u<sub>2</sub> is adjacent to all three vertices of C, and x<sub>1</sub>, x<sub>2</sub> each have precisely one neighbor in {u<sub>3</sub>, u<sub>4</sub>} (or mirror case)

Claim 7 k = 3 and ||C, F|| = 7 for both  $C \in C$ 

 $\frac{\text{Claim 8}}{|R| = 3}$ 

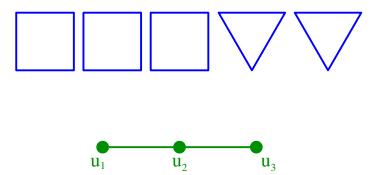
# Proof of Therem 7

Goal (1) R := G - C is a path

 $\begin{array}{l} \text{Goal} (2) \\ |R| = 3 \end{array}$ 

Goal (3)  $|R| \ge 4$ 

We assume |R| = 3, and find a contradiction.



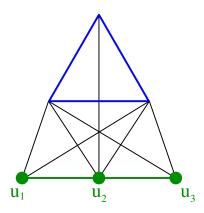
### Claim 9

If C is a longest cycle in C and D is another cycle in C, then  $\|C, D\| \le 2|C|$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

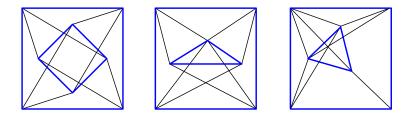
### Claim 10

The longest cycle in C has four vertices.



Claim 11 For any  $D \in C$ ,  $||D, R|| \le 7$ . If equality holds, |D| = 3 and  $(R \cup D) \cong K_6 - K_3$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



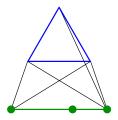
### Claim 12

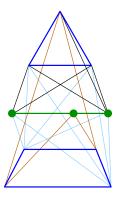
For all 4-cycles  $C \in C$ , and all  $D \in C - C$ ,  $||D, C|| \le 8$ .

#### Claim 13

For all 4-cycles  $w_1w_2w_3w_4 = C \in C$  and all  $d \in C - C$ , we have  $2||\{w_1, w_3\}, D|| + ||\{w_2, w_4\}, D|| \le 12$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

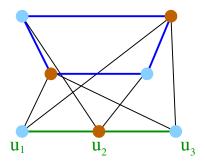




◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

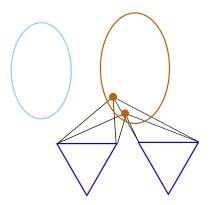
Claim 14 For every  $D \in C$ ,  $||\{u_1, u_3\}, D|| \le 4$ .

## Claim 15 For every $D \in C$ , $||\{u_1, u_3\}, D|| = 4$ .



Claim 16 Given a 4-cycle  $C \in C$ ,  $G[R \cup C] \cong K_{3,4}$ 

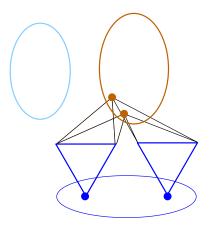
Claim 17 If  $C_1, ..., C_s$  are the 4-cycles of C, then  $G[R \cup C_1 \cup ... \cup C_s] \cong K_{2s+1,2s+2}$ . Call the smaller part A and the larger B.



For every  $b \in B$  and every 3-cycle  $D \in C$ , ||b, D|| = 2.

### Claim 19

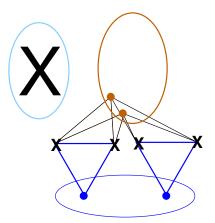
For every  $b_1, b_2 \in B$  and every 3-cycle  $D \in C$ ,  $N(b_1) \cap D = N(b_2) \cap D$ .



Claim 20

In the set of 3-cycles in C, the vertices not adjacent to vertices from b are also not adjacent to each other.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



Claim 21 *G* has an independent set of size |V(G)| - (2s+1) - 2(k-1-s) = |V(G)| - 2k + 1.

# Proof of Therem 7

Goal (1) R := G - C is a path

 $\begin{array}{l} \text{Goal} (2) \\ |R| = 3 \end{array}$ 

Goal (3)  $|R| \ge 4$ 

Theorem (7) [Kierstead, Kostochka, Y.]: Let  $k \ge 3$ ,  $n \ge 3k + 1$ , and let H be an n-vertex graph with  $\sigma_2(H) \ge 4k - 2$  and  $\alpha(H) \le n - 2k$ . Then H contains k vertex-disjoint cycles.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Thank you for listening!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>