Mike Ferrara ¹ Jaehoon Kim ² Elyse Yeager ²

¹University of Colorado-Denver

²University of Illinois at Urbana-Champaign

yeager2@illinois.edu

MIGHTY University of Detroit Mercy

29 March 2014

Ferrara-Kim-Yeager (UCD, UIUC) Saturation

Saturation of Ramsey-Minimal Families

29 March 2014 1 / 11

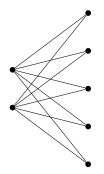
Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

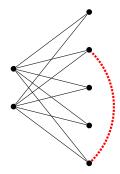
Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.



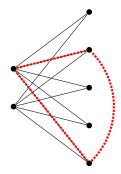
Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.



Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.



Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.

Definitions

The saturation number sat(n;H) of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.

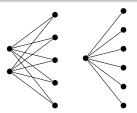
A B A A B A

Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.

Definitions

The saturation number sat(n;H) of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.

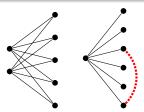


Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.

Definitions

The saturation number sat(n;H) of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.

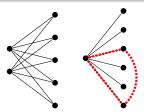


Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.

Definitions

The saturation number sat(n;H) of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.



Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of G + e.

Definitions

The saturation number sat(n;H) of a forbidden graph H is the smallest number of edges over all *n*-vertex graphs that are *H*-saturated.

Definitions

Given a forbidden family of graphs \mathcal{F} , a graph G is \mathcal{F} -saturated if no member of \mathcal{F} is a subgraph of G, but for every $e \in \overline{G}$, some member of \mathcal{F} is a subgraph of G + e.

The saturation number sat($n; \mathcal{F}$) is the smallest number of edges over all *n*-vertex graphs that are \mathcal{F} -saturated.

Definitions

Given "forbidden" graphs H_1, \ldots, H_k , and any graph G, we write $\mathbf{G} \to (\mathbf{H_1}, \ldots, \mathbf{H_k})$ if any k coloring of E(G) contains a monochromatic copy of H_i in color *i*, for some *i*.

Definitions

Given "forbidden" graphs H_1, \ldots, H_k , and any graph G, we write $\mathbf{G} \to (\mathbf{H_1}, \ldots, \mathbf{H_k})$ if any k coloring of E(G) contains a monochromatic copy of H_i in color *i*, for some *i*.

Famous Example: $K_6 \rightarrow (K_3, K_3)$, but $K_5 \not\rightarrow (K_3, K_3)$

Definitions

Given "forbidden" graphs H_1, \ldots, H_k , and any graph G, we write $\mathbf{G} \to (\mathbf{H_1}, \ldots, \mathbf{H_k})$ if any k coloring of E(G) contains a monochromatic copy of H_i in color *i*, for some *i*.

Famous Example: $K_6
ightarrow (K_3, K_3)$, but $K_5
ightarrow (K_3, K_3)$

Definitions

A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

くほと くほと くほと

Definitions

Given "forbidden" graphs H_1, \ldots, H_k , and any graph G, we write $\mathbf{G} \to (\mathbf{H_1}, \ldots, \mathbf{H_k})$ if any k coloring of E(G) contains a monochromatic copy of H_i in color *i*, for some *i*.

Famous Example: $K_6 \rightarrow (K_3, K_3)$, but $K_5 \not\rightarrow (K_3, K_3)$

Definitions

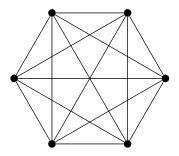
A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

Less Famous Example: K_6 is (K_3, K_3) -Ramsey Minimal.

(4個) (4回) (4回) (5)

A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

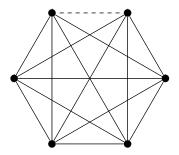
Less Famous Example: K_6 is (K_3, K_3) -Ramsey Minimal.



・ロト ・四ト ・ヨト ・ヨト

A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

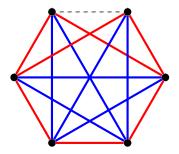
Less Famous Example: K_6 is (K_3, K_3) -Ramsey Minimal.



・ロト ・四ト ・ヨト ・ヨト

A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

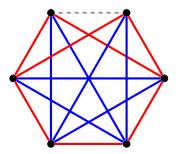
Less Famous Example: K_6 is (K_3, K_3) -Ramsey Minimal.



< 回 > < 三 > < 三 >

A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

Less Famous Example: K_6 is (K_3, K_3) -Ramsey Minimal.



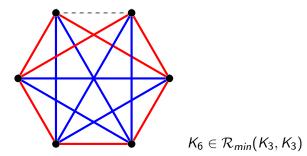
Definitions

 $\mathcal{R}_{\min}(\mathbf{H}_1,\ldots,\mathbf{H}_k) = \mathcal{R}_{\min} = \{G : G \text{ is } (H_1,\ldots,H_k)\text{-Ramsey minimal}\}$

Ferrara-Kim-Yeager (UCD, UIUC)

A graph G is (H_1, \ldots, H_k) -Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

Less Famous Example: K_6 is (K_3, K_3) -Ramsey Minimal.



Definitions

 $\mathcal{R}_{\min}(\mathbf{H}_1,\ldots,\mathbf{H}_k) = \mathcal{R}_{\min} = \{G : G \text{ is } (H_1,\ldots,H_k)\text{-Ramsey minimal}\}$

Ferrara-Kim-Yeager (UCD, UIUC)

Saturation of Ramsey-Minimal Families

29 March 2014 4 / 11

Ferrara-Kim-Yeager (UCD, UIUC)

Saturation of Ramsey-Minimal Families

불 ▶ < 불 ▶ 불 ∽ ९. 29 March 2014 5 / 11

 $\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

Suppose G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated.

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

Suppose G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated.

• G has no subgraph that is (H_1, \ldots, H_k) -Ramsey minimal

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

Suppose G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated.

• G has no subgraph that is (H_1, \ldots, H_k) -Ramsey minimal

 Adding any edge to G creates a subgraph that is (H₁,..., H_k)-Ramsey minimal

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

Suppose G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated.

• G has no subgraph that is (H_1, \ldots, H_k) -Ramsey minimal

Adding any edge to G creates a subgraph that is (H₁,..., H_k)-Ramsey minimal
 For any e ∈ E(G), G + e → (H₁,..., H_k)

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

Suppose G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated.

- G has no subgraph that is (H₁,..., H_k)-Ramsey minimal
 G → (H₁,..., H_k)
- Adding any edge to G creates a subgraph that is (H₁,..., H_k)-Ramsey minimal
 For any e ∈ E(G), G + e → (H₁,..., H_k)

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

Suppose G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated.

• G has no subgraph that is (H_1, \ldots, H_k) -Ramsey minimal

 $G \nleftrightarrow (H_1, \ldots, H_k)$ Pf: If $G \to (H_1, \ldots, H_k)$, we delete edges as long as the deletion does not cause an admissible coloring to exist

• Adding any edge to G creates a subgraph that is (H_1, \ldots, H_k) -Ramsey minimal

For any $e \in E(\overline{G})$, $G + e o (H_1, \dots, H_k)$

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

Suppose G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated.

• G has no subgraph that is (H_1, \ldots, H_k) -Ramsey minimal

G → (H₁,...,H_k)
 Pf: If G → (H₁,...,H_k), we delete edges as long as the deletion does not cause an admissible coloring to exist

• Adding any edge to G creates a subgraph that is (H_1, \ldots, H_k) -Ramsey minimal

For any $e \in E(\overline{G})$, $G + e o (H_1, \dots, H_k)$

$\mathcal{R}_{min}(H_1,\ldots,H_k)$ Saturation

G is $\mathcal{R}_{min}(H_1,\ldots,H_k)$ saturated iff

•
$$G \not\rightarrow (H_1, \ldots, H_k)$$

• For any $e \in E(\overline{G})$, $G + e \rightarrow (H_1, \dots, H_k)$

Saturation of $\mathcal{R}_{min}(K_{k_1},\ldots,K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

 $K_{r-2} \vee \overline{K_s}$

is $\mathcal{R}_{min}(K_{k_1}\ldots,K_{k_t})$ saturated.

通 ト イヨ ト イヨト

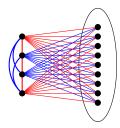
Saturation of $\mathcal{R}_{min}(K_{k_1},\ldots,K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

 $K_{r-2} \vee \overline{K_s}$

is $\mathcal{R}_{min}(K_{k_1}\ldots,K_{k_t})$ saturated.



Ferrara-Kim-Yeager (UCD, UIUC)

Saturation of Ramsey-Minimal Families

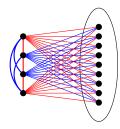
・ロン ・四 ・ ・ ヨン ・ ヨン

Saturation of
$$\mathcal{R}_{min}(K_{k_1},\ldots,K_{k_t})$$

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \vee \overline{K_s}$$

is $\mathcal{R}_{min}(K_{k_1}\ldots,K_{k_t})$ saturated.



•
$$K_{r-2} \vee \overline{K_s} \not\rightarrow (K_{k_1}, \ldots, K_{k_t})$$

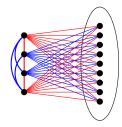
イロト イポト イヨト イヨト

Saturation of
$$\mathcal{R}_{min}(K_{k_1},\ldots,K_{k_t})$$

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \vee \overline{K_s}$$

is $\mathcal{R}_{min}(K_{k_1}\ldots,K_{k_t})$ saturated.



•
$$K_{r-2} \vee \overline{K_s} \not\rightarrow (K_{k_1}, \ldots, K_{k_t})$$

•
$$K_{r-2} \vee \overline{K_s} + e \to (K_{k_1}, \ldots, K_{k_t})$$

Saturation of
$$\mathcal{R}_{min}(K_{k_1},\ldots,K_{k_t})$$

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

 $K_{r-2} \vee \overline{K_s}$

is $\mathcal{R}_{min}(K_{k_1}\ldots,K_{k_t})$ saturated.

Corollary

$$\operatorname{sat}(n; \mathcal{R}_{\min}(\mathcal{K}_{k_1}, \ldots, \mathcal{K}_{k_t})) \leq \binom{r-2}{2} + (r-2)(n-r+2)$$
 when $n \geq r$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Saturation of
$$\mathcal{R}_{min}(K_{k_1},\ldots,K_{k_t})$$

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \vee \overline{K_s}$$

is $\mathcal{R}_{min}(K_{k_1}\ldots,K_{k_t})$ saturated.

Corollary

$$\operatorname{sat}(n; \mathcal{R}_{\min}(\mathcal{K}_{k_1}, \ldots, \mathcal{K}_{k_t})) \leq \binom{r-2}{2} + (r-2)(n-r+2)$$
 when $n \geq r$

Hanson-Toft Conjecture, 1987

$$sat(n; \mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \ge r \end{cases}$$

Ferrara-Kim-Yeager (UCD, UIUC)

Hanson-Toft

Hanson-Toft Conjecture

$$sat(n; \mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \ge r \end{cases}$$

イロト イヨト イヨト イヨト

Hanson-Toft

Hanson-Toft Conjecture

$$sat(n; \mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \ge r \end{cases}$$

Chen, Ferrara, Gould, Magnant, Schmitt; 2011

$$sat(n; \mathcal{R}_{min}(K_3, K_3)) = \begin{cases} \binom{n}{2} & n < 6 = r\\ 4n - 10 & n \ge 56 \end{cases}$$

Ferrara-Kim-Yeager (UCD, UIUC) Saturation of Ramsey-Minimal Families

Hanson-Toft

Hanson-Toft Conjecture

$$sat(n; \mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \ge r \end{cases}$$

Chen, Ferrara, Gould, Magnant, Schmitt; 2011

$$sat(n; \mathcal{R}_{min}(K_3, K_3)) = \begin{cases} \binom{n}{2} & n < 6 = r\\ 4n - 10 & n \ge 56 \end{cases}$$

Ferrara-Kim-Yeager (UCD, UIUC)

< ロ > < 同 > < 三 > < 三

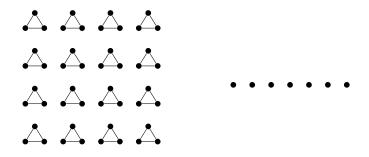
Example

$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$ is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



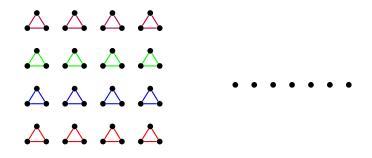
 $(5K_2, 5K_2, 5K_2, 5K_2)$

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



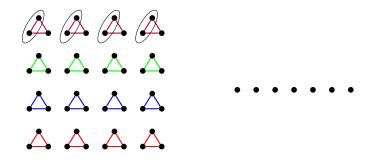
 $(5K_2, 5K_2, 5K_2, 5K_2)$

Saturation of Ramsey-Minimal Families

・ 何 ト ・ ヨ ト ・ ヨ ト

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



 $(5K_2, 5K_2, 5K_2, 5K_2)$

Ferrara-Kim-Yeager (UCD, UIUC)

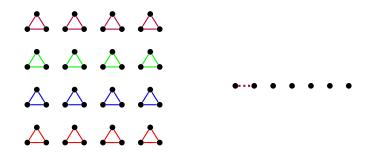
Saturation of Ramsey-Minimal Families

29 March 2014 8 / 11

< 回 > < 三 > < 三 >

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



 $(5K_2, 5K_2, 5K_2, 5K_2)$

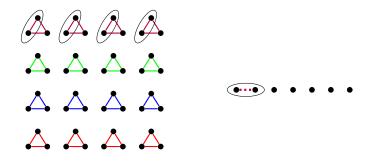
Ferrara-Kim-Yeager (UCD, UIUC)

Saturation of Ramsey-Minimal Families

(人間) トイヨト イヨト

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



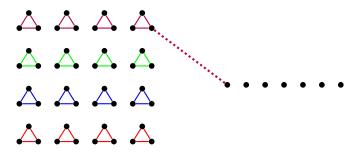
 $(5K_2, 5K_2, 5K_2, 5K_2)$

Saturation of Ramsey-Minimal Families

< 回 > < 三 > < 三 >

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



 $(5K_2, 5K_2, 5K_2, 5K_2)$

Ferrara-Kim-Yeager (UCD, UIUC)

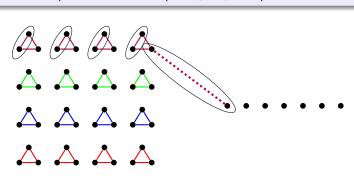
Saturation of Ramsey-Minimal Families

29 March 2014 8 / 11

3

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



 $(5K_2, 5K_2, 5K_2, 5K_2)$

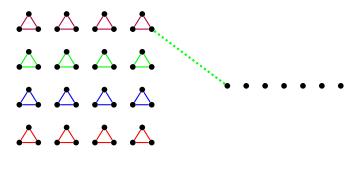
Ferrara-Kim-Yeager (UCD, UIUC)

Saturation of Ramsey-Minimal Families

29 March 2014 8 / 11

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



 $(5K_2, 5K_2, 5K_2, 5K_2)$

Ferrara-Kim-Yeager (UCD, UIUC)

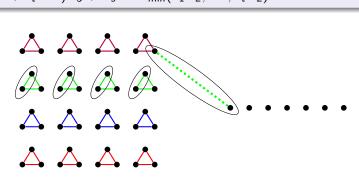
Saturation of Ramsey-Minimal Families

29 March 2014 8 / 11

3

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



 $(5K_2, 5K_2, 5K_2, 5K_2)$

Ferrara-Kim-Yeager (UCD, UIUC)

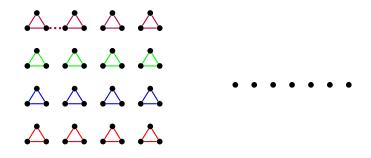
Saturation of Ramsey-Minimal Families

29 March 2014 8 / 11

• • = • • = •

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



 $(5K_2, 5K_2, 5K_2, 5K_2)$

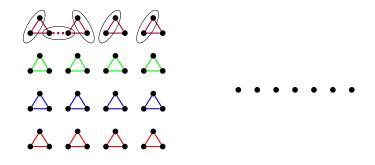
Ferrara-Kim-Yeager (UCD, UIUC)

Saturation of Ramsey-Minimal Families

(人間) トイヨト イヨト

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



 $(5K_2, 5K_2, 5K_2, 5K_2)$

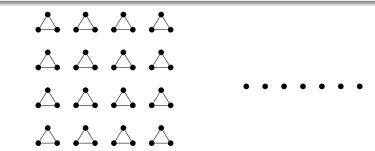
Saturation of Ramsey-Minimal Families

3

< 回 > < 三 > < 三 >

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.



• • = • • = •

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.

Corollary

$$\operatorname{sat}(n; \mathcal{R}_{\min}(k_1K_2 + \cdots + k_tK_2)) \leq 3(k_1 + \cdots + k_t - t)$$

when $n \geq 3(k_1 + \cdots + k_t - t)$

-∢ ∃ ▶

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.

Corollary

$$\operatorname{sat}(n; \mathcal{R}_{min}(k_1K_2 + \cdots + k_tK_2)) \leq 3(k_1 + \cdots + k_t - t)$$

when $n \geq 3(k_1 + \cdots + k_t - t)$

Ferrara, Kim, Y.: 2014 $sat(n; \mathcal{R}_{min}(k_1K_2 + \cdots + k_tK_2)) = 3(k_1 + \cdots + k_t - t)$ when $n > 3(k_1 + \cdots + k_t - t)$

Ferrara-Kim-Yeager (UCD, UIUC)

Saturation of Ramsey-Minimal Families

★聞▶ ★ 国▶ ★ 国▶

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$
 is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.

Corollary

$$\operatorname{sat}(n; \mathcal{R}_{min}(k_1K_2 + \cdots + k_tK_2)) \leq 3(k_1 + \cdots + k_t - t)$$

when $n \geq 3(k_1 + \cdots + k_t - t)$

Ferrara, Kim, Y.; 2014

$$sat(n; \mathcal{R}_{min}(k_1K_2 + \dots + k_tK_2)) = 3(k_1 + \dots + k_t - t)$$

when $n > 3(k_1 + \dots + k_t - t)$

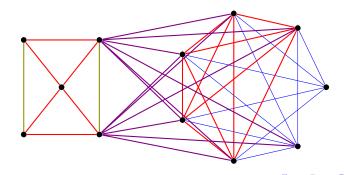
Construction is generally unique: vertex-disjoint triangles with isolates.

3

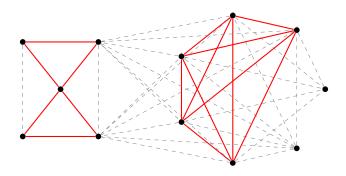
- 4 同 6 4 日 6 4 日 6

Ferrara, Kim, Y.; 2014

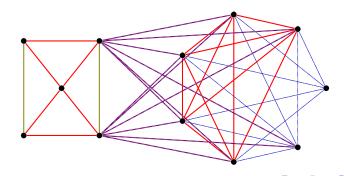
Ferrara, Kim, Y.; 2014



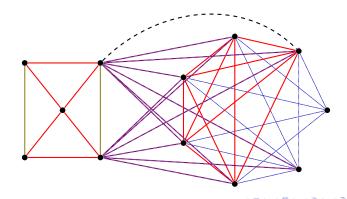
Ferrara, Kim, Y.; 2014



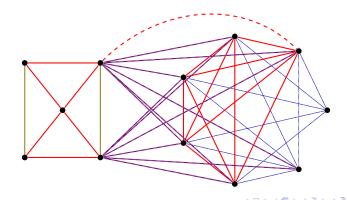
Ferrara, Kim, Y.; 2014



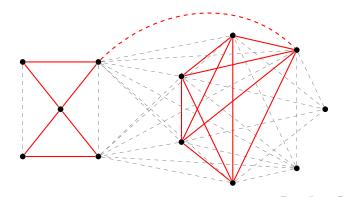
Ferrara, Kim, Y.; 2014



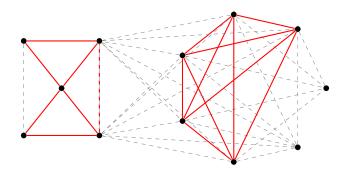
Ferrara, Kim, Y.; 2014



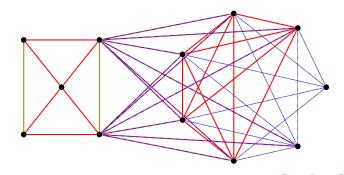
Ferrara, Kim, Y.; 2014



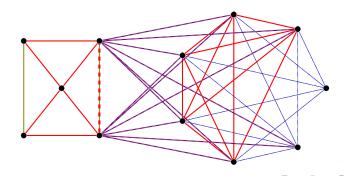
Ferrara, Kim, Y.; 2014



Ferrara, Kim, Y.; 2014



Ferrara, Kim, Y.; 2014



Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i .

Corollary

If G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated, then $G = G_1 \cup \cdots \cup G_k$, where G_i is H_i saturated and all G_i share the same vertex set.

Thanks for Listening!

- G. Chen, M. Ferrara, R. Gould, C. Magnant, J. Schmitt, Saturation numbers for families of Ramsey-minimal graphs, J. Combin. 2 (2011) 435-455.
- M. Ferrara, J. Kim, E. Yeager, **Ramsey-minimal saturation numbers for matchings**, Discrete Math. 322 (2014) 26-30.
- A. Galluccio, M. Simonovits, G. Simonyi, On the structure of co-critical graphs, In: Graph Theory, Combinatorics and Algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992). Wiley-Intersci. Publ., Wiley, New York, 1053-1071.
- T. Szabo, **On nearly regular co-critical graphs**, Discrete Math. 160 (1996) 279-281.