Competing Species

Consider an ecosystem consisting of two species which compete for a common food supply. Denote by $y_1(t)$ and $y_2(t)$ the sizes of the two populations at time t. If food is plentiful, then each member of population number i causes, on average, a net increase of b_i per unit time in the size of its population. That is $\frac{dy_i}{dt}(t) = b_i y_i(t)$. As the sizes of the populations grow the amount of food available per member decreases and consequently the net birthrates also decrease, say to $b_1 - f_1 y_1(t) - g_1 y_2(t)$ and $b_2 - g_2 y_1(t) - f_2 y_2(t)$ respectively. Hence

$$\frac{dy_1}{dt} = b_1 y_1 - f_1 y_1^2 - g_1 y_1 y_2$$
$$\frac{dy_2}{dt} = b_2 y_2 - g_2 y_1 y_2 - f_2 y_2^2$$