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Abstract

This paper is a contribution to a program to see symmetry breaking in a
weakly interacting many Boson system on a three dimensional lattice at low
temperature. It is part of an analysis of the “small field” approximation to the
“parabolic flow” which exhibits the formation of a “Mexican hat” potential
well. Here we prove the existence of and bounds on the background and
critical fields that arise from the steepest descent attack that is at the core of
the renormalization group step anaylsis of [5, 6].
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1 Introduction

In [5, 6], we use the block spin renormalization group formalism to exhibit the forma-
tion® of a potential well, signalling the onset of symmetry breaking in a many particle
system of weakly interacting Bosons in three space dimensions. For an overview, see
[1]. For a brief discussion of the algebraic aspects of the block spin method see [4].

In [1, 5, 6] the model is initially formulated as a functional integral with integra-
tion variables indexed by the lattice?3

Xo = (Z/LwZ) x (Z* /Ly, Z°)

Xy is a unit lattice in the sense that the distance between nearest neighbours in
the lattice is 1. During each renormalization group step this lattice is scaled down.
In each of the first n, steps, which are the steps considered in [1, 5, 6], we use
(anisotropic) “parabolic scaling” which decreases the lattice spacing in the temporal
direction by a factor of L? and in the spatial directions by a factor of L. Here L > 3
is a fixed odd natural number. So after n renormalization group steps the lattice
spacing in the spatial directions is €,, = L” and in the temporal direction is €2 = #
and the lattice Xy has been scaled down to
K= (2 2T) x (52 22)

We call &, the “c,,—lattice”.

The dominant “pure small field” part of the original functional integral repre-
sentation of this model is, after n renormalization group steps, reexpressed as a
functional integral []] W @)di() pActionn yith integration variables indexed by

TEX, (n) 27i
the unit sublattice

X" = (Z) 52 7) x (2 )52 7?)

L2n

of X,,. More generally, we have to deal with the decreasing sequence of sublattices

X0 = () k) x (A7)

J

lin the small field regime

20f course X} is a finite set and so is perhaps more accurately described as a discrete torus,
rather than a lattice.

3In this introduction, we are only going to give “impressionistic” definitions. The detailed,
technically complete, definitions are given in [5, Appendix A]. Specifically, for the lattices, see [5,
§A.1].



of X,,. The lower index gives the “scale” of the lattice. That is, the distance between
nearest neighbour points of the lattice. The upper index determines the number of
points in the sublattice (namely (%) (%)3 ) The sum of the upper and lower
indices gives the number of the renormalization group step. For fields ¢, on Xj("_j ),
we use the “real” inner product (¢,¢); = 55 Zuexj(”*j) ¢(u)1(u). The vector space

.(nfj)

C% , equipped with the inner product (¢*, 1)), is a Hilbert space, which we denote

M,

Roughly speaking, in each block spin RG step one

o paves XO(") by rectangles centered at the points of the sublattice XETFD C XO(")
and then,

o for each y € XET’I), integrates out all values of ¢ whose “average value” over

the rectangle centered at y is equal to the value of a given field 6(y) on XET’I).
The precise “average value” used is determined by an averaging profile?. One uses
this profile to define® an averaging operator ) from the space of fields on XO(") to
the space of fields on XETI). One then implements the “integrating out” by first

inserting into the integrand 1, expressed as a constant times the Gaussian integral

/ [[ @), —a"-Qu-,0-Qy)_, (1.1)

21
(n+1)
yeX

with some constant a > 0, and then interchanging the order of the 6 and
integrals.
We use stationary phase/steepest descent to control these integrals. This naturally
leads one to express the action not solely in terms of the integration variables ¢, but
also in terms of “background fields”, which are concatinations of “steepest descent”
critical field maps for all previous steps. See [4, Remark 1 and Proposition 4.c]. The
dominant part of the action is then of the form

ATL(¢*7¢7 ¢*7 ¢7IIJ/7 V)

Px=dxn (Y* 1)
d=on (¥*,9)

where

and

4In [5, 6], the averaging profile is an iterated convolution of the characteristic function of the
rectangle with itself. See [5, §A.3]
SFor the detailed definition of the averaging operator Q, see [5, §A.3].

4



(0]

Q,: C*¥ — %" is an averaging operator that is the composition of the averaging
operations for all previous steps. For the precise definition of @, see [5, §A.3].
For bounds on @, see [2, Remark 2.1.a and Lemma 2.2].

the term (¢V* — Q, ¢4, Qn(¢Y — Qn @)), is a residue of the exponents in the Gaus-
sian integrals (1.1) inserted in the previous steps. The operator £, is bounded
and boundedly invertible. For the precise definition of Q,,, see [5, §A.3]. See [4,
Remark 1] for the recursion relation that builds 9,. For bounds on 9Q,, see |2,
Remark 2.1.c and Proposition 2.4].

D,, is a discrete differential operator. It is simply a scaled version of the discrete
differential operator that appeared in the initial action, which, in turn, was built
from the single particle “kinetic energy” operator. Think of D,, as behaving like
—0p — A. For the detailed definition of D,,, see [5, §A.4]. Various properties of
and bounds on D,, are provided in [2, §3].

) is an interaction. It is a quartic monomial

V(¢s, ¢) = %/ duy -+ - duyg V(ur, ug, uz, ua) du(u1) d(uz) du(us)d(ua)

4
Xn

where [, du = T Y ouex, and the kernel V(uy, ug, ug, ug) is translation invariant
and exponentially decaying.

i is a chemical potential. In this paper, we are interested in p > 0 that are
sufficiently small. For more details, see [5, Theorem 1.17].

The background fields® ¢y, (1, 1, 1, V), in addition to being concatinations of
“steepest descent” critical field maps for all previous steps, are critical points for
the map

(D4 0) = An (Vs ¥, bs, &, 1, V)

In this paper we fix an integer 1 < n < n,, where n, is the number of “parabolic
scaling” renormalization group steps considered in [5, 6], and prove existence and
properties of the background fields as above, in the concrete setting of [5, 6]. By
definition, they are solutions of the “background field equations”

or

%An(w*vqb? ¢*7¢7,U’7V) = %An(w*,w,ﬁb*, ¢7M,V) - O

Si(1) ™ b +Vi(bsr 6, 6:) = Qr Qi

1.3
Su()"'6 + V' (6, 60, 8) = Q"0 (13)

5We routinely use the “optional *” notation Q(x) to denote “ay or .



where”
Sn(p) = (Dn + Q5 QnQp — )"

and
Vi(u; G, ¢, Ga) = /dulduzdus V (w1, ug, ug, w) Ger (ur)C(u2)Ca(us)
V' (u;Gr, G o) = /dquu3du4 V(u, ug, us, uy) Ci(uz) i (u3)Ca(us)

We also write S,, = S,,(0) = (D,, + Q:Q,Q,)".

In §2 we write these equations as a fixed point equation and use the variant of the
Banach fixed point theorem developed in [3], and summarized in Proposition A.1, to
control them. We also show, in Proposition 2.1, that

where qbg)i) are analytic maps in (1,,®) from a neighbourhood of the origin in
C%" x €% to C¥n , and, in Corollary 2.5, that

¢(*)n(¢*> w, 22 V)(u) = a:iuw(*) (X(u)) + é(*)n ((w*, {au¢*}) ) (% {au¢}) y 1y V) (u)
(1.4)
where, for each point u of the fine lattice &,,, X (u) denotes the point of the unit

lattice X\™ nearest to u, a, = a(l+ Z;L:_ll 5

)_1 and (5(*)” are analytic maps.

Remark 1.1. When the fields ¢,y and ¢ happen to be constant, then, by [6,
Remark B.7], the equations (1.3) reduce to

(an — 1) + VQSEQS = Aty

(an — 1)$ + Vut? = a) (15)

where v = fxs dxy---dxs V(0,21, 29, x3) is the average value of the kernel of V. As
long as v(|¢.| + |¢])? is small enough, this system has a unique solution with

¢ = 2 F OVl + [¥])°) o= 200+ O(v(|vu| + [¢])%)

an— K

If ¢, = 1*, then the solution ¢, = ¢*.

"The number of RG steps, np, is chosen so that, for the chemical potentials ;¢ under consideration,
the operator D,, + Q5 9Q,,Q, — p is invertible.



In §3, we prove, in Proposition 3.1, bounds on maps which describe the variations
of the background field with respect to .

In §4, we consider variations of the background field with respect to the chemical
potential 1 and interaction V. We prove, in Proposition 4.1, bounds on

A¢(>f<)n (¢*7 1% s 5/~L7 Vv 5V) = ¢(*)n (¢*7 1% [y 5;“7 V+ 5V) - ¢(*)n(¢*, ¢7 122 V)

as well as on 0, and DY applied to these field maps.
Finally, in §5 we apply these results and [4, Proposition 4.a] to construct and
bound the critical points, denoted v, ¥,, of the map

(1) > A0 606V

d=pn (¥*,9)

The proofs and estimates in this paper depend heavily on bounds on operators
like Q, @, and S, '(u), which in turn are developed in [2]. The size of an operator
is formulated in terms of a norm on its kernel.

Definition 1.2. Let X and ) be sublattices of a common lattice having metric d,
with X having a “cell volume” voly and with ) having a “cell volume” voly. For
any operator A : CY¥ — CY, with kernel A(y,z), and for any mass m > 0, we define
the norm

Am:max{sup voly ™= A(y, )| , sup voly e™ =Tl A(y, © }
4] > vl A2 sup 3 voly e Al 2)

yeY reX

In the special case that m = 0, this is just the usual £'-¢> norm of the kernel.

Similarly, to measure the size of a function f : (Xj("_j )T — C, we introduce the
weighted ¢!-¢> norm with mass m > 0

Hf(x17 e xT) Hm — ZI:riaJ m?X % Z |f(:1;17 Ce ,ZL’T>| emT(IEl,“-,IEr) (16)

T xe)(j"*j) 11,---,Ccr€X;n7j)
where the tree length 7(xy,---,z,) is the minimal length of a tree in Xj("_j ) that

has z,---,x, among its vertices.

We use the terminology “field map” to designate an analytic map that assigns to
one or more fields on a finite set X another field on a finite set ). The most prominent
examples of field maps in this paper are the background fields ¢, (¥s,%). In Ap-
pendix A, we define norms on field maps that are constructed by summing norms, like

7



(1.6), of the kernels in their power series expansions. The kernel of a monomial, for ex-
ample of degree n in a field v, is weighted by k", where k is a “weight factor” assigned

to ¢. For example, if ¢(¢)(y) = Z Z voly & (Y21, -+, @) Y(21) -+ - U (an)

n=0 x1,,xneX

ol =" llénllm &

For full definitions of our norms, see [5, §A.5].

In this paper, we fix masses m > m > 0 and generic weight factors € ¢, & > 1
and use the norm ||| F||| with mass m and these weight factors to measure field maps
F. The weight factor £ is used for the v(,’s, the weight factor ¢ is used for the
derivative fields 9(,), and the weight factor € is used for the fluctuation fields z,).
See Appendix A.

Convention 1.3. The (finite number of) constants that appear in the bounds of
this paper are consecutively labelled K;, Ks,--- or pi, ps,---. All of the constants
K, pj are independent of L and the scale index n. They depend only on the masses
m and m and the constant I',, of [2, Convention 1.2] (with mass m = m) and, for
the p;’s, the pu,, of [2, Proposition 5.1]. We define Ky, to be the maximum of the
K;’s and ppg to be the minimum of % and the p;’s. We shall refer only to Ky, and

Prg, as opposed to the K’s and p;’s, in [5, 6].



2 The Background Field

The main existence result for the background field, which was summarized in [5,
Proposition 1.14], is

Proposition 2.1 (Existence of the background field). There are constants K1, p; >
0 such that, if |V ||m€® + || < p1, the following hold.

(a) There exist solutions to the equations (1.3) for the background field. Precisely,
there are field maps gbg)i) such that

S (Ve U, 1, V) = Sn(10) D Qi ) + D (Wi, 1, V)

solves (1.3) and
lle@ Il < Ve

Furthermore qb%?’) is of degree at least one in 1, and qbslz?’) is of degree at least
one in 1. Both are of degree at least three in (Y, 1).

(b) Set

BS), = [D: +Q)0,Q%) — u]~'Qha
BS), = [Dn+Q)0,Q%) — n] ' Qha

where Qny,QnV were defined in [2, (2.11)]. There are, for each 0 < v < 3,
field maps 65, = 65, (b, ¥, Vur, by, 11, V) such that

Oy Pan (b, 1, V) = B,Szy b + 83 (a0, 01, 00, 1, V)
Oy (e, ¥, 1, V) = BS) 0,0 + 05D (s, 00, 000, D1, 1, V)

and

oG I < Ky llV [lwt?e

()n,v

Furthermore 0,67 (s, ¥, 11, V) = 65, (10, 00, 0,0, 1. V), and 655 and
gb,(f,,g) are each of degree precisely one in (., and of degree at least two in

(¥, ).



(c) Set
B = [1— (Q50.Qn — 1)Sn(1)7] Q120
B = (1= (Q192,Qn — 1)Sa(1)] Q522

n,u,D T

There are field maps QSE*Z)?ZD such that

D:¢*n(¢*>¢> :U“a V) = By(:;iD w* + gbii,?’[)) (w*a ¢7 :U“a V)
D (s, 11, V) = B o + 675 (¢, 1. V)

and .
ll6E2 Ll < B [V |?

Furthermore ¢E*Z)?;L)D are of degree at least three in (w*, w).

Proof. (a) We shall write the equations (1.3) for ¢(.(¥«, %, 1, V) in the form
(2.1)

7= f(@) + L(d@,7) + B(@; 7)

as in Appendix A or in [3, (4.1.b)] with X = A,,. In particular, we shall use Propo-
sition A.1 to supply solutions to those equations. Substituting

o = Q1 Q1 o =QrQ,0 a = (a,a) = (a,a)
G = S (1) (o + 74) ¢ = Sn(p) (o +7) Y= (1,%) = (v.7)

into (1.3) gives
Yo+ VL(Sn (1) (e + ), Su(p)(a+ 7)), Su(p)* (e +74))

— 0
YV (Sl @ +7) s Sul) (@ + %), Salp)a+7)) =0

10



We have the desired form with

Fr ) — | Vet Sn(p) o, Sn(p)ar, Su(p)* o)
HOW =1 5 (s 8, (1)ev, S (p1) 0 S, ()ar)

Here V' (uy, us, us, ug) is the kernel of ¥V that has the symmetries
V(Ul, Ug, U3, U4) = V(U3, U2, U7, U4) = V(ul, Uyg, U3, Ug) (22)

Now apply [3, Proposition 4.1.a and Remark 3.5.a], or Proposition A.1, with r = s =
2 and

dmax:3 C:% K1 = Ko = ||Q;:Qn||mé >\1:>\2:E

(and the metric on X being m times the metric on X,,). Since

£l < NSn () lllV s 525
< 8[1Su il @nQunlln 1V [’
I Zillwn < NSl IV llm (261245 + K5A5—5)
< 24| Sl 1@ Qnlln [V ]|mt?
1 Billlw < 1Sn ()l IV Il [13-5A7 + 26525 Xa—j + AjAs—]
< 8[1Sulm(B1QnQnllm + 1) V[t

assuming that p; has been chosen small enough that ||.S,(¢)|lm < 2[/Sa|lm- By hy-
pothesis, ||| filllw, 1 Zilllw,rs 1Billlw., < §; and [3, Proposition 4.1.a] gives a solu-
tion I'(&@) to (2.1) that obeys the bound

T3l < 16[1Su IRl QnQnlln 1V

11



Hence

Sn(ﬂ)*Q Qnths +S ( ) T1(Qr Qs Q7 Q00)
¢ =0, 1, V) = Su(p)a(®) + Su(i)T2 (0 (1), a ()

= Su(1) @7 Qut + Su(1)T2(Qr Q1. @1 Q07)
and [3, Corollary 3.3] yields all of the claims.

(b) We denote ¢(*) = gb(*)n(w*a ¢7 s V) Set
SO = [D; +QNR.Q) —u] ™ 57 = [Du+ QHN.QL) ]

By [2, Proposition 5.1], with S@® = §{%) (1), we have [|S®|,, < Ty, assuming that
p1 has been chosen small enough. By [2, (5.1) and Remark 2.5], applying 9, to (1.3),
and then replacing 9,¢) by ¢, and 9,4, by ), gives

(S) b + Vb, T, 00 +T,716) + Vi, 61, 6) = QL) Quthw
(S +V (b0 T, 0w, 0+ T,70) + V' (6, b, 8) = Q)01
with T, being the translation operator by the lattice basis vector in direction v. Here

we have used the translation invariance of V', the symmetries (2.2) and the “discrete
product rule”

(2.3)

0,(f9) = (O.F)T;"9) + fug (2.4)

in the forms

0,(fgh) = Q)T g)(T; ') + f(Bug) (T 'h) + fg(Oh)

0,(198) = QT T ) + 1T 900) + fdg)f )
The equations (2.3) are of the form
7= f(a) + L(&,7) + B(@; 7) (2.6)

as in [3, (4.1.b)], with

Q=0 A=0¢ Q= QS:V)an*V Qy = QS:V)anV a= (a*a &, sy au)
b =8P +7.) ¢ =8 +7) 7= (3.7)

12



and

Jg’( 7) = — V,’F(S(Jr)a*,,, T o, a, +T;1a*) + V,’F(a*, Sy, a*)
4= V(SDa,, T ay, a+ T, a) +V (o, SPay,, @)

. V(ST T e, o + T tew) + V(aw, SOy, )
V(SO T e, a+ T ') + V (a, ST, «)

B(d;9) =0
Now apply [3, Proposition 4.1.a] with ¢ = 3 and

K1 = kg = Lopl| Q7 Qunllwt + K1[|V5 ||mE3
>\1 —)\2—/'{3_:%4— ||Q Q ||mE/

Since
Al < e 1S o Vel [26%0 ™1 + 25 < b
Il < e (1S Vol [2650 ™2+ 205 < by
1Bl =0
where ¢,, = Ln and

b= 3 mac (159l " [T Qi Qo + K[V al?] 1V [t < const|[V]ot? < }

by the hypotheses, [3, Propositions 4.1.a] gives a solution f(o?) to (2.6) with
T 1l s T2y < K[V (€2

As (2.6) is a linear system of equations and b < i, the solution is unique. Corre-
spondingly

Guy = B s + ST (au(94), (), 0 (V) (1))

o0 = By + STTa(au(64), 2(9), an (), 0 (40))

solves (2.3). The conclusion now follows by part (a) and [3, Corollary 3.3].
That 0,67 (e, ¥, 11, V) = 60, (), D1, 0,10, 1, V) follows from the obser-

(¥)n,v

vation that 9,5, (1)*Q*Q, = B,(@i,,,, by [2, (5.1) and Remark 2.5].

13



(c) From (1.3) we see

with @) = G- Now just substitute for ¢(.), using part (a). O

Remark 2.2 (The complex conjugate of the background field). Assume that the
constants Ki, p; > 0 of Proposition 2.1 are chosen big enough and small enough,
respectively, and fulfil its hypotheses. Let ¢ (x) be a field on XO(") such that [ (z)] < ¢

and 9,0 (z)| < ¥ for all z € X™ and 0 < v < 3. Then

Gen (V" 0, 1, V) (1) — dn(V™, 00, e, V)(U)‘ < K ¥ for all u € X,

Proof. Write ¢ = ¢y (¥*, 9, 1, V). By Proposition 2.1 and [3, Lemma 2.5.b]

lo(u)| < K18 and [0,¢(u)| < Ki¥'  forallue X,, 0<v <3 (2.7)

By (1.3) and the fact that S, '(u) — S, ()" = D,, — DI (see the definition of S, (1)
after (1.3))

Sy (1)@ = 0) + Vi(es 6, 0.) = V' (9,64, 0) = (D — D})9
where 1 refers to the adjoint. Localizing as in [6, Corollary B.2],
S, (1) (02 =) +vo* (0i40) (9i—d) —ve? (i —¢)* = (Du—DJ) ¢i+Vioe(4, 9) (2.8)
where v = [ V(0, uy, us, uz) duy duy dug and Viee(¢., @) is a field such that
Vioe(¢, @) (u)| < const’ for all u € X,
By [2, (3.1)],
D, — D} = L* L;"e " (9] — 9y)L

— L« "hol¥ (83 _ ao)

Beware that in the first line dy acts on the ”H((]n), while in the second line Jy acts on
H,. Hence, by (2.7)

|(Dy, — D})¢%(u)| < const¥’ for all u € X, (2.9)

14



Also considering the complex conjugate, we see that o = ¢ — ¢ fulfils the equations

[]l + Sn(p) vo* (95 + ¢)]U — Sn(p) ve? 0" = Sn(n) [(Dn - DT) ®% + Vioc(dx, QS)}

[0+ 5, (1) vo(ds + ¢")] 0" = Su(p) v6™* 0 = S,(1) [(Dn = Dyy) b + Vioe(94,6)" ]
(2.10)

where, in the square brackets on the left hand side, ¢*(¢* + ¢) and ¢(¢. + ¢*),
respectively, are viewed as multiplication operators. By [2, Proposition 5.1] and
(2.7), the L'-L* norm of the operators S, (i) vé*(¢r + ¢) and S,, (1) vg? is bounded
by 2Ko, p1 < 1. Hence, one can solve (2.10) for o and o*, and the estimates (2.8)
and (2.9) for the terms on the right hand side give the desired estimate. O

Remark 2.3 (Third order terms of the background field). Proposition 2.1.a states
that the linear part of the background field ¢, (s, ¥, 1, V) is

and that the higher order terms qbg)i) are of degree at least three in 1,,v. In fact,

the term of degree exactl;z three can be described easily. There is a constant K and
there are field maps qu such that

¢(>3 (¢*7 wa 1, V) = _Sn(:u) Vi ((I)*a (I)a (I)*) > )=¢Elgn(¢*v¢%") + ¢(>5 (¢*7 wa 1 )

W V) = =Sa) V(2P @) g g0 iy T o (VYY)
and (|07 < K, |IVII2E .

Proof. We prove the statement about ¢£§3). Write ¢y = ¢(*)n(¢*,¢,,u,V) and

=® — S, (VD + ¢V, &, + ¢ D 4 ¢(=2¥))

= — S, () V'(@,2,,®) + ¢ (10, 1, V)
with

O (W 1) = =Su(W{V'(@ + ¢V, 0, + 99, @, + ¢Z) — V' (@, 0., )}

The estimate on ¢ follows from Proposition 2.1.a and (3, Lemma 3.1]. O

15



To derive a representation of the background fields of the form (1.4) from Propo-
sition 2.1, we use

Lemma 2.4. There are field maps Fy, ({w,,}) and F, ({w*y}) and a constant K,
such that

(Su(1) Qi Q1)) (1) = 7200 (X (1)) + Fioe ({000 }) (w)
and
1 Figo Il < Ko ¥ 1155 (1) ™ Q5 Q0|
Furthermore, the maps Fiy) are of degree precisely one.

Proof. We prove the lemma for B = S, (1)Q%9,,. Denote by 1 and 15, the constant

fields on XO(") and X,,, respectively, that always take the value 1. By [6, Remark
B.7], Qnlan =1, Qi1 = 14, and Q,,1 = a,1. Since D,, annihilates constant fields,

B1=S,(1)Q5Qn1 = (Dy + Q5 2,Qp — 1) ' Q5 Q01 = 2214,

an—M

Fix any v € &), and any field ¢ on XO("). Then

(Be)(w)= Y Blu,x) ()

:(:EXO(")
= Y Bua)v(Xw)+ Y. Blu,z) [¢(@) — (X ()]
xeXé”) meXO(n)
= 2 g(X(w) + Y Blu,o) [(z) — (X (u))]
xeXén)
It now suffices to apply [6, Lemma B.1]. O

Corollary 2.5. There are field maps QVS(*),L and a constant K3 such that, under the
hypotheses of Proposition 2.1,

¢(*)n(¢*> % 1, V)(u) = a:iuw(*) (X(u)) + &(*)n ((w*a {au¢*}) ) (% {au¢}) y My V) (u)

and

llGemlll < Ks (€ + |V ]t

16



Proof. Proposition 2.1.a and Lemma 2.4 imply that

B (s 0, 1, V) (1) = (Sn(1) Qi Q0t0)) (u) + G0, (1, 0, 1, V) ()
= 29ty (X (W) + By ({0 ) () + 652 (10, 9, 1, V) (1)
= a:n w(*) (X(u)) + CZE(*)" ((%m {8V77D*}) ) (% {8,,¢}) y My V) (u)

—p

with

9l < Kal| Sn(1) ' Qrnllm ¥ + K[|V [t < K5 (¥ + |V )
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3 Variations of the Background Field with Re-
spect to ¥

Recall from [5, (4.7)] that

5&(*)%1(%7 ¢7 ks Z) =S [5(&(*)714-1 (S_1¢* 3 S_1¢* 3 D(n)*L*Z* ; D(n)]L*z y My V)}
(3.1)

where

o the fields
5(23(*)TL+1(‘9*7 07 5¢*7 5% 12 V)
— [0n (W + 8000, ¥ 4+ 00, 1. V) = G (Y0, Y11, V) |

were defined in [5, Definition 3.5.a,
o the scaling operators S and L, were defined in [5, Appendix A.2], and

d}(*) :w(*)n(e* 797“'7V)

o the operator square root D™ of the fluctuation field covariance C'™ was defined
just before [5, (1.15)].

The fields 5@(*)%1 also depend implicitly on p and V. Proposition 3.1, below, implies

that 5Q§(*)n+1 are analytic maps in (1,1, 2., z) from a neighborhood of the origin in

HETY S 1T 1 1 to 1Y), Asin [6, §5], we define, on the space of field

maps F'(¢., 1, z,, z), the projections

o Pﬁl’ which extracts the part of degree exactly one in each of ¢, and v, and of
arbitrary degree in z,) and

o le which extracts the part of degree exactly one in 1), and of arbitrary degree
in Z(*) and

o Péb which extracts the part of degree zero in ¢, and of arbitrary degree in z().

Proposition 3.1. There are constants® K4 and py > 0 such that the following hold,

if
max { L*[u| , |V[w(e+ L8)(E+ € + L) } < po

o The field maps 0 (yns1 (s, ¥, 2., 2) obey  [[6(yniill] < LUK, &,
o Write, as in [5, (4.9)]
OO (s, 22 2) = 8(ayg (Y0, 22, 2) — L2688 Q0, DWOS 2
It obeys  [[|06(5), 1[Il < L2 Ka {IIV [lm(E + )2 + |ul}er

n

8Recall Convention 1.3.
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o The part, 5¢(* nits Of 5¢ S~ that is of degree at least two in z(), fulfils the
bound

66 Ml < L2 Ka IV [lm(e + E)E]
o Using the notation of [5, Definition 3.1], we have
SO (s, 20, 2) = L¥2S[S ()" — S2]Qi0Q, D™ Sz,
= LEL 'S0 (1) Vil 0. 02)
OO (s, 22, 2) = L[S () = 5,]Q5 2, DS

— L2L7S, (1)V (0, e )

Px :¢7¢* +65¢¢7*
p=¢+ 7 (h.o.)
)
Px=dx _'_ QS*
=0

Px= ¢*+65¢*

p=¢+5¢
” + 5¢(h .0.
Pr=0x

<p—¢

with the substitutions

¢(*): 1Sn+1(L2,u) Qn+15~3n+1¢
6py = Su()WQrQ, L2 DMWHS

and with the contributions in 5&%2;") being of degree at least five in (1Y), 2(x))
and obeying

}Hp%gb H\ < LAIBRLGCD RV 268 for j=0,1,2

o There are field maps 5@3(*)”“,,, (@D*, UV, Vs, Yoy 2y z), 0 <wv <3, such that
(8V5(%(*)n+1) (1/}*7 wv 2% Z) = 5(%(*)n+1,1/ (w*a wv 81”#*7 alﬂ/}a Zxy Z)

and )
|||5¢(*)n+1,um < LyL11K4 E[

where Ly = L? and L, = L forv =1,2,3.

This Proposition will be proven following the proof of Lemma 3.3. Recall, from (3.1),

that 5Q§(*)n+1 is defined in terms of 5Q3(*)n+1. Also recall, from [5, Remark 3.6.c and
Definition 3.1], that 5@(*)%1 is obtained from the solution d¢ () = 0@ (Px, @, 09y, 61))

Px=¢Px+0Px
p=¢+5¢

Px=¢
p=9
Px=¢*x+0Px
p=0+5¢

Px =%
p=0

(3.2)
0 = SnQpQn 6 + 115,00 — Sp Vi (@, ¢s, ¢)
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by substituting ¢, = QVS(*),LH(H*,H, i1, V). So we first prove the existence of and
develop bounds on §p(.) (¢, @, 6¢.,6¢p). We fix any €48, €, > 1 and denote by
Il - |l]4 the (auxiliary) norm with mass m that assigns the weight factors £, to the
fields ¢ (., E; to the fields ¢(.), and &5, to the fields 7).

Lemma 3.2. There are constants K} and ply > 0 such that the following hold, if
max { |ul , ||V]m(Es + 850) (8 + €, + £5) } <

o There are field maps 6o (Px, @, 01, 0v) that obey ‘H&p(*)
(3.2). Write

}¢ < K t5, and solve

Sp(e) = SQ 00U + 0]

and denote by 5g0(*2)2) the part of &pg)) that is of degree at least two in 01 ).
They obey

5t N, < K5IV IIm(Es + E0)? + 12l Hesy
ll6oi5M, < KA1V [Im(Es + )€,
o There are field maps 0@ (), (gb*, Oy Gy Ouy O, (W), 0 <wv <3, such that
(000 ) (Ber 6, 0, 00) = 00 (a1 (S &, Do, B, 0, 60
and (0@ llls < K Esp-
Proof. (a) The equations (3.2), for dp(,y, are of the form
7= fla) + L(@,7) + B(d@; 7)
as in [3, (4.1.b)], with X = X, and

a=¢. a=¢ da,=Q;Q,0M. da=QrQ,00 ad= (o, a,da,da)
0 = Sp7s 0 = Suy 5= (7*7 7)
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and

ey = |

_M(S;’;v*)(u) -V (u; sy SpYs a*) -2V (u; Qy, Y, S:Lv*)
I w(Spy)(u) =V (u; a, Sk, a) -2V (u; Q, oy, Snv)

—V! (u; SE Y, @ S;w*) -2V (u; S5 Yy SnYs a*)
_Vi (u§ S:ﬂ/*a Sanv S:ﬂ/*)
=V’ (u§ SV Sy Y SnV)

Now apply [3, Proposition 4.1.a and Remark 3.5.a] with d.x = 3, ¢ = % and
K1 = Kg = By k3 = Kg = ||Qr Q|| mbsy A= Ay = 4Ky
Since

I fillle < Foes = 34
LMl < NSuallmClial + 200V wrirs2) g+ [Sullo 1V llmk5 As-s

< I1Sallnf Il + 31V 1€}
1Bl < 1Sl 1Vl [is-522 4+ 2655020 + 1S laA2As-]
< SN Q520 llnl1V ] 1286850 + 16110l |25 28, ],

[3, Proposition 4.1.a] gives

5¢(*)(¢*7 ¢7 57#*, 5¢) = 5¢(*) = ST(L*)F(*) (¢*7 ¢7 QZQMW*, Q;Qnéw)

with [T [[|w, , < 2//Q5Qn|mtsy. The first conclusion now follows.

Denote by 5g0§i; the part of dp(, that is of degree precisely one in 0, and
decompose

bpll) = SOQQudU ) + 0l

In the notation of [3, Pl"OpOSlthIl 4.1.b], T'D is the part of T that is of degree precisely
1in f In our application, f is homogeneous of degree one in d1)(,), and 61, does
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not appear in either L or é, SO
dpl) = ST (¢, 6, QiQuths, Q5 02,00)
dpl) = ST (6e 6, Qaudt, Q1 00Y) — froy (QQudths, Q50,00 }
00" = ST (6, 6 Q1 Qnt, Q000) — T (60, 6, Q08 Q3 2,00) }

Hence the bounds on 5g0(*2)2) and 5gog*+)) = &pgigw + 5@%32) follows from [3, Proposition
4.1.b and Remark 3.5.a] with dy., = 3 and

max 5Bl < KGNV (8o + E5) oy

>_
>_

1<j<r N
1 1 % 2
= 1005 LIl +3 2% Byl < KLVl + 850 + 1]}

(b) We follow the same strategy as in Proposition 2.1.b. That is, we apply 9, to
(3.2) and use the “discrete product rule” (2.5) and
0,5, =510, 9,9 =570, 0,019, =Q)Q0, (3.3)
where ng,,) was defined in [2, (2.11)] and S,(ﬁ) was defined in [2, (5.2) and (5.3)].
(See [2, Remark 2.5 and (5.1)].) Denoting 0@y = 0@ ) (dx, ¢, 01y, d1)), this gives
0,00+ L11(0,09.) + S{H) L1s(0,6¢) = SU) f. (5.0
0,66 +S0) L (0,00.) + S5 Lo (9,00) = S f '

where
L11(0,60.) = —p0,06. + 2V.(6s, ¢, 0,00.) + Vi(0,66., T, 6,66, + T, '69.)
+2V0(8,60:, T, 66, T, ¢.) + Vi (0,604, T, 166,66, + T, '5¢.)
L15(0,0¢) = Vi (¢w; 0,69, ¢.) + 2V (00, 0,60, T, ¢.) + Vi(06%, 0,00, 06.)
Lor(0,00.) = V' (¢,8,00., ¢) + 2V (66, 0,06., T, 0) + V' (8¢, 8,0¢..,60)
Lys(0,60) = =066 + 2V (¢, 6., 0,60) + V' (0,66, T, 6., 56 + T, '69)
+2V'(0,60,T, 6., T, ¢) + V' (0,00, T, '0¢.,6¢ + T, 6¢)
fo = QAT 0%, — 50, = Vi (0,6., T, 60, 6 + T, ')
— 2V (0ys, T, 0, T 000) = 2Vi (60, 00, T, 1 565,)
—V.(0¢s,0u0,06.) — 2V, (364,06, 0,04 )
f= Q)60 — 5¢] = V' (0,6, T, 06,6 + T, ')
—2V(0,0,T, "¢, T, 6¢) — 2V' (¢, 0,0, T, '09)
—V'(66,0,¢x,00) — 2V' (8¢, 6¢4, 0,0)
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The system of equations (3.4) is of the form

— -

7= f(@) + L(a,7) + B(a; 7)

as in [3, (4.1.b)], with @ = (v, - -+, ag), 7 = (7.,7) and

o = ¢* Oy = ¢ a3 = 81/¢* Oy = 8l/¢
as = 09, ag = 00 ay = 0, ag = 01
3,00, = S5 8,0¢ = S\ )y
and B(&;7) = 0 and

Pl — — |[In (SS7) + Lo (S5)7)
(@) = - ) &)

Loy (Snyys) + Loz (Snw)
Now apply [3, Proposition 4.1.a] with ¢ = % and

Iilzl‘igzéd) I€3:H4:E;§ /€5:I€6:KQE5¢ /€7:/€8:E5¢
AL = Ay = 4k

with

b= (e" + 1)“@1(’:—1/)9"“‘“,{7 + 626nm||VHm{6“1’@3/<05 + 3%3’%}
(€ + 1) Q) Dl + K™ [V [ { B, + 38, Kt} b5,
< Kty

for a new Kj and &, = 7. Since ||| fjlllw < € = 1A, [IBjllw,., = 0 and
1l < max S [\Ml&' IV llme® ™ {267 + di1ks + 265 P
+ HVHmeenm{H% + 2/'{1/'{5 + /ig}>\3_]}

< max ([l el + 363V (B + K 50)?] Ay

[3, Propositions 4.1.a] gives

ay5¢* = Sy(:;/)rl (O(l, o ,Oég)
0,00 = S} )Ta(n, -+, )
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with

T sl s P2l s < 2max [l filllo < 287 < Kooy

The conclusion now follows by [3, Corollary 3.3].
U

We define, on the space of field maps F(¢., ¢, d1),, 61), the projections

o P;’ which extracts the part of degree exactly one in each of ¢, and ¢, and of
arbitrary degree in dv(,) and

) be which extracts the part of degree exactly one in ¢,), and of arbitrary degree
in 01,y and

o Pg) which extracts the part of degree zero in ¢(,) and of arbitrary degree in 01 ).

Lemma 3.3. Under the hypothesis of Lemma 3.2, there is a constant KJ such that
the field maps 5@ (d«, @, 610y, 610) of Lemma 3.2 have the form

<P*=¢*+Sn(u)*Q;§Qn St
Pp=0¢+Sn(1)QHAn 5

Px=¢
p=0

00 = Sn(11) Q5 Qn 00y — Sp(1) Vi(ps, 0, 04) + 60

<P*=¢*+Sn(u)*Q:LQn St
$=¢+Sn()QRQn 59 >
n nn + 5@(75)

Ok =¢x
p=9

with 5g0( being of order at least five in (¢, 09 )) and obeying

P%@ < KY|V |2, + t50)7€7  forj=0,1,2
é ) ey

Nl

Proof. Rewrite the equations (3.2) for 6y (¢x, @, 61, 6¢) in the form

Px=0¢x+0px
800 = Su(1) Qo 00 — Su(p) Vilpw )| 7
p=¢
¢*=¢g++65¢*
* e=¢+5¢p
op = Sn(N)QnQn 0 — Sn(,u>v/(907 P ‘P) .
=0
Wi . B () e (>3) . s (33)
e see from these equations that 6o = S, (1) P QLQ, by + dpy with oo

being of order at least three in (¢(.), 61)(+)) and obeying ‘H&p >3 m < K|V |

}\}P¢5w(>3 K|V |lm(ty + ¥55)7€5,7  for j =0,1,2

([
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Hence

>3
Gx=dst S (1) * QL S +50.23)

50 = S()" Qo 0th. — Sy(1) VL (pun o, py)| 7o oo
=0

The claim follows immediately from this and the corresponding equation for dp. O

Proof of Proposition 3.1. Parts (a) and (e¢): By (3.2)

5¢(*)n+1 (9*7 97 61/}*7 51/}7 1y V)
= 5@(*) (QB*TH-I(Q*a 97 1y V) ) ¢n+1(9*7 97 1y V) ) 61/}* ) 57~p)

so that, by (3.1) and [5, Definition 3.2],

5(;5(*)71—1—1(1#*7 1/}7 Zses z) =S [590(*) (¢* ) ¢ ) 51/}* ) &p)} ¢(1) =P ()1 w57 u,V)

61/;(*):D(")(*)]L*z(*)

= L%L;l [690(*) (S_l(f[)* 5 S_l(I), S_I(S\Il* s 8_15\11):| ‘I’(*)=¢(*)n+1(11)*»11)»[/2%5\/) (35)

6\1/(*):L3/2SD(")(*)S*1z(*)

_ L%(s@(g (B, @, 60, , 60)

i’(*)=¢(*)n+1(d)*»w»L2M»SV)
5\1/(*):L3/28D(n)(*)S*lz“)

in the notation of [5, (C.1)]. Similarly, using [5, Remark 2.2.b],

(al/éqg(*)n-‘rl) (¢*7 wa Ry Z) = SVaVS_l(SQAS(*)n—I—l(@Z)*a ’QZ), Ry Z)
— LA [0,,5g0(*) (S7',, S0, S50, 8‘15\11)] e =y a (e P S)

6\1/(*):L3/2SD(")(*)S*1Z(*)

— L, L3 [w(*),,(g—lcp* ,SID, S719,0, , S;10,8, SL6W, 8‘15\11)} .

5\1,(*):...

= 5&(*)n+1,u (’QZ)M wa al/d)*) al/wa Ry Z)

where Ly = L? and L, = L for 1 < v < 3, and we have set

5&(*)n+1,u (w*, 'QZ)> ¢*u, ¢Va Zx Z)
= L,L35pY), (2., @, .., B, 50., 60) ’ oyt ey ga (e P

_ >3)
q)(*)u_Bn+1’L2“7uw(*)y+¢(*)n+1’u(11)* W sw by, L2 p,SV)
5\1/(*):L3/25D(n)(*)sflz(*)
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We shall bound 5g0§3 and 5g0§3y using the norm ||| - |||¢ with mass m and weight
factors
to =[S (Lp )|| 1@ 41 Q1 [l + K|SV
= max |B\ |t + K|SV || €%¢

n+1,L2u,v

sy = L3/2||SD<" Ll &

By [3, Corollary 3.3] and Proposition 2.1, with n replaced by n + 1, u replaced by
L and V =SV,

o M0Gmrulll < Lo L2502

166 miill < L32[ 60) M

*)

The hypothesis ||[SV||w€* + L?|u| < p; of Proposition 2.1 is satisfied if py is small
enough, since [|SV|[w < Z[|[V|lm, by [5, Lemma C.2.a]. By [5, Lemma C.2.c] with
E=tp, ¥ =1t b ="tuy,and i =m, €=ty € =E,, & =t with the choice
b= L7 = L7/ [||Suya (L2u )|| 197 1 Qu 41l + KISV ]| t7] €
=L, = L—5/2[ max | B I + K1 [|SV || €°]¥

n+1,L2u,v

b5y = L5y = L9($||SD Hlw) &

we have [[[5¢(3)lle < I8¢ [ll and [[|6(2), [, < 500w ||, so that

*

66 cmill < L2M0pells MG em+rulll < L L2600 (3.6)

Il
So, by Lemma 3.2,
160 wmeall < ¥ K5y < LUK R
|||5¢(*)n+1,u||| < LVL11K4E[

The hypothesis max { |u| , [|[V|[m(ts + €5y) (€ + €, + £5) } < ph of Lemma 3.2 is
satisfied if py is small enough.

Parts (b) and (c¢): Asin (3.6),

166641 lll < Z2MI50(5 s < LKy {JIV [lm(E + #)* + |ul e
l66( \H<L3/2\H5@(>2 llo < LK [V (e + E)E7

(¥)n+1
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by Lemma 3.2.a.
Part (d): By (3.5) and Lemma 3.3,

Oyh (as ¥, 20, 2) = L[S, () — S, Q5 02,D™S™

— L2LLS, (1)V (0, s )
P =P(x)

+ L3/2L*_15§0(25) (¢*7 ¢a 5¢*> 5¢)

@) =¢(+)+5n (1)) Q1 Qn 5

with the substitutions

¢(*) = S_l¢(*)n+l (w*a ¢7 L2,u> SV) (37&)
Spy = L¥PDMHS 5, (3.7.b)

In the substitution, we expand, by Proposition 2.1.a,

) =S S (L) Q1 Qusr Yoy + ST, (s, 90, L2, SV) (3.8)

to get the statement of the proposition with 5ng5(h'°') being the sum of

@(*):¢(*)+Sn(ﬂ)(*)Q;§Dn 5#’(*)

3
—L2L7' S, () V' (9, 04, 0)
! ’ SD(*)2871S”+1(L2M)(*)Q;+1Qn+1 w(*)-i-Sn(u)(*)Q;;Qn (Sw(*)

and

LPL7160 = (0, 6, 8¢, 69)
with the substitutions (3.7.b) and (3.8). Asin (3. 6) the specified properties of ¢
follow from [5, Lemma C.2.c|, the properties of QS(* ni1 i Proposition 2.1.a and the

properties of §¢Z% in Lemma 3.3.
U
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4  Variations of the Background Field with Re-
spect to the Chemical Potential ;1 and the In-
teraction V'

Proposition 4.1. There are constants® p;3 > 0 and Ky, such that, if
max { |p|, [6p], [[V]In€?, |6V [|ln€* } < ps
then there are field maps Ag(yn, APyn,, and Ay, p such that

D(yn (Vs Uy pr 401,V + 6V) = Gy (s, ¥, 11, V) + Ad(ayn (Y, ¥, 1, 041, V, 6V)
OuP(eyn (Vs Yy o+ 011,V + 0V) = Oy (ayn (Y, ¥, 1, V)
+ Ay (Vs ¥, Ouths; D, 1, 041, V, 6V)
DGy (e, ¥y 1+ 01,V + 6V) = Dby (s, v, 11, V)
+ AP(ayn, (Vs, ¥, 11, 01, V, 8V)
The field maps fulfill the bounds

Al < K5 (J6p] + |6V ] €)e
1AGnulll < K5 (0u] + [0V [|wt?) ¥
[[AGnplll < Ks(|6p] + |6V ] w€?) €

Furthermore A¢(yy, and Agy, p are of degree at least one in 1) and each of A,y ,
and A¢y,, are of degree precisely one in ,. Indeed,

APy = 0p Blaynu ¥y + A¢(>3
Aoy = 5t Bl uw Vo + DS,

A = 01 Blaynpp Vo) + A

where

1- <u+6u>s,s,+>] B< )

n,V, 0

[
Buyw =S5 [1— (u+ 01)S3)] ' B
)

V[

Biynup = Su(1) Q10 — (Q12,Q — 1t — 611) By

9Recall Convention 1.3.
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A¢(>3 ¢(>3 are of degree at least three in 1 .). QS(* Y and A¢S§5’) are of degree

(x)n’ (*)n,D
precisely one in Yy, and of degree at least two in ). They obey the bounds

N2 NAsES) ol < Ks(1ullV llw + 10V ) €

(*)n,D

NA6ED [ < Ks(18ulIVla+ 15V [ln) €2

As in the proof of Lemma 3.2, we fix any €5 and ¥, 0 < v < 3, and denote by
Il - |ll¢ the (auxiliary) norm with mass m that assigns the weight factors £, to the

fields ¢, and € to the fields ¢, ).

Lemma 4.2. There are constants ply >0, K, such that, if

max { ||, [0p], [V][nt5, 116V ][nt5 } < ps

then the following are true.

o There are field maps Apyn = AP ((b*, O, 1,0, V, 5V) such that

Dun (Vs ¥, 01, VHOV) = (Vs ¥, 1, V)

+ A (006,11, 51, 8V)|
(Z)(*):d)(*)n(w* ,d},,U«,V)

GOn(u, ¥, 4011, V+V) = O (s, 0, 1, V)
+ Apn (G, &, 11,011, V, 6V)

D) =P(x)n (Y00, 11,V)

and
1AG Il < 41Snllm (|04] + 16V [|m3) €5

Furthermore Ap,,, and Ay, are of degree at least one in ¢). Indeed
* * _1
Appyn = 0 SO [1— (1 + o) SO 6y + Al (4.1)

where Aapg)i) is the part of Ay, that is of degree at least three in ¢y, and

22221, < 4USallm {16V llo + 16[1Sullo 1V [l [S12] }E5

ally <
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o There are field maps Apyn, = AQn,y (gb*, Dy Py Guy 1, Oft, V, (W) such that

= V¢(*)n (w*a ¢> 2 V)

+A * )N,V ¢*a¢aal/¢*7al/¢a 75 >Va5V ‘
(p( ) ' ( M M ) ¢(*)=¢(*)n(¢*ﬂ/}7%v)

and

ACnsllle < Ky (|oul + 6V 1nt7) €,
Furthermore Ap,y,, and Ay, , are both of degree precisely one in ¢y, . Indeed

AP(eyn, = Op Sff,i’ (1= (1 +6m)SE] ™ b + Al (4.2)

()n,v

where Ago*n v and Ago are both of degree precisely one in ¢y, and of degree
at least two in ¢, and

1A

Plomwlly < K5 (0pllVIn + 110V w) €5E

Proof. (a) Write

= b + Dby

Then, by (1.3), using the notation of [5, Definition 3.1],

Si7H e+ A0) + (V4 0V (9 + Ag, ¢+ Ag, ¢+ Al)
— (40 [pe + AbL] = Q11
S, o+ A¢) + (V' +8V)(0+ Ad, b, + Ady, 9AQ)
—(p+ou)o+Ad] = QY

Subtracting these equations but with du = oV = 5V(’*) = A¢y = 0, we see that
Ay = Ady (i, ¥, 1,011, V, 6V) is the solution to

ST AG + (Vi V) (00 + A0, ¢+ A, 0.+86,) = Vi(on, 6, 6:) = 0o

STIAG + (V' 40V 9+Ad, b+ Ady, 0+A¢) =V (0, by, O) =5u¢( |
4.3
when

57:1 :S;1 — = Op Pu :¢*n(ﬂav) gb:gbn(,u,V)
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(Recall that S* is the transpose, rather than the adjoint, of S,.) If P45 is small enough
|+ 0p || Snllm < %, and 150l < 2[5 |lm. Rewrite (4.3) as

ST AG. + (Vi 4 V) (9t D¢, ¢+ Ad, 6+ A0,) — (V. + V) (¢, ¢, 64)

Syt A +(V' 4+ V) (0+A0, ¢+ Ady, 0+A0) — (V' + V) (9, ¢, ¢)
=0 — V(0. ¢, @)

This is of the form
5 = f(a@) + L(&,7) + B(a; 7)

as in [3, (4.1.b)], with X = X, and

Oy = Oy a=¢ Ot = Ofh Oy oo =0 ¢ a= (a*,a,éa*,éoz)
A, = g:f)/* Ap = §n7 v = (7*7 7)

and
flaw) = | ) ~ b aed)
o —(V. + 0V (u; au, nfy,oak —2(V. + V! u;a*,a,g;i%
L(a; 7)(u) = , ,( ) -2 , /)( 5i-)
—(V —I—(W)(u a, Snv*, )—Q(V +5V)(u;a,a*,5n7)

—(Vl 0V (w3 S 0, Sy = 20V0 4 6V0) (w3 Siov, Sy, o)
— (VL 4 0V (w; Sirve, Sy, Sive)

—(V' +0V) (u; Sy, o, Snv) —2(V' 4 0V') (u; S S*'y*, )
—(V' + 6V (u S, Sn’y*, Sn’y)

Now apply [3, Proposition 4.1.a and Remark 3.5.a] with dp.x =3, ¢ = % and
/€1:I{2:E¢ I{3:/€4:|5ILL|E¢ )\1:)\2:4I{f

with
kp = [0u] s+ |6V ||}
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Since
£l < 5y = 32
Ll < ISullwllV + 0V [l K3 + 26152}
< 6[1SullmllV + 6V k3N
1Bl < WSalla IV A+ 0Vl {5523 + 26000} + [Sall ANV + 0V [mAf As—
< AYSulla IV + 6V llw {355 + 201 SnllmA; } A7
AL [V + 8Vl {3+ 8]1Sullm (100 + 6V 1mt2) }
482 (160 + 13V lnE2)
< SOISLZ IV + 6V I (1501 + 6V [1nE2) £,
[3, Proposition 4.1.a] gives

Aun = g;kzrl (¢*7 G, 0t P, O ¢)
with
T, Tl < 267 =2 (|0u] + 1[0V [lmEG) €

Now we prove (4.1), using the same system of equations and the same &, 7, k’s
and \'s. But we apply [3, Proposition 4.1.b] with

¢ = max {1 Ll + 3max 5 1Bj s < 8l1SnllnllV+ 0V ]| €

which gives, for j =1, 2,
IS = £illl < = 1 8 1fi [l < 1610wV + 0V (lopl + [16V]|m€3) €

IT; = Tl < X [||Byll, , < 200]Ss IV + 6V [l (1652] + 16V [|m3) €3

—

where T'W is the solution of § = f(&) + L(&, 7). Since

f<1>:f()+L(o7f) and T = f(@)+ L(&T)+B(a;T)

and T is degree at least one in ¢(,) and L and B are of degree three in (&,7), both
Lo — fand r— fare of degree at least 3 in ¢(,). So is f— F where

F= ] = [5%]
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Consequently

with

1f5 = Eylllw + TS = Filllo + 75 — T
<6V | &+ 32(|Sll |V + 0V | (|5p1] + |3V [ mE2) €
< 2|8V [l + 16| Sl [V [[ ] O] 1€

the desired bound on H}Agp%‘? Hb follows by [3, Proposition 3.2.a].

(b) By (3.3), applying 0, to (4.3) gives

(85)) ' D AGALN (0,A0.) + Lin(D,00) = .
(S 0,A¢ +La1(0,A0,) + Los(0,08) = f

where (S}fﬁ)‘l = (S,S‘,’Z)‘l — p — dp and

Li(0,A¢.) = 20V, + 6V.) (s, 6, 0,08,) + (V. + V1) (0,A¢., Ty ¢, Ap+ T, A )
+2(V + 0V)) (0,864, T, ' Ag, T, ' 6,
+ (VL4 0V)) (0,86., T, Ap, Ap, + T, ' A,
Li2(0,A¢) = (V. + V) (¢4, 0,00, 6.) + 2(V. + 6V.) (A¢., 0,00, T, " ¢.)
+ (VL + 6V.) (Ads, 0,40, Ap,)
Lo1(8,A0.) = (V' + V') (¢, 0,A¢., ¢) + 2V + 0V') (A, 0,A¢., T, ' ¢)
+ (V' + V) (Agb, 0,A¢,, Agb)
Lon(0,8¢) = 2(V' + 6V') (6, ¢4, 0,A0) + (V' + V') (0,40, T, ¢, A + T, ' Ag)
+2(V' +6V') (0,40, T, ' A¢,, T, " ¢)
+ (V' +0V) (0,00, T, ' Ap, Ap + T, ' Ag)
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fo=010,0. — VL + V) (0,0, T, Ag, ¢ + T, 04)
=2V + V) (0,0, T, 16, T, A
—2(V, + V) (¢4, 0,0, T, A9,
— (VL + V) (A9, 0,0, Ad.) — 2V + V) (Ad., A0, D,9.)
— 0V (0,000, 0.) — V(0,04 T, 6, 6. + T,70.)

f=0p0,0 =V +0V) (0,06, T, A, 0+ T, ¢)
=2V +0V)(0,0. T, 6., T, Ag) — 20V + V') (6, 0,61, T, A)
— (V' + V) (A, 0,¢., M) = 2(V' + 6V')(A¢, Ag,, 0,0)
~V'(0.0,T, 6, 0 + T,10)

Here we have used the “discrete product rule” (2.5). Observe that, if p} is small

enough, then |1 + 5| S ]lm < 3, and [|Si2 )l < 2[1S82 .
The system of equations (4.4) is of the form

— -

y = f(@) + L(@7) + B(@; 7)
as in [3, (4.1.b)], with @ = (a1, --- , ), ¥ = (74, ) and

a1 = ¢y g = ¢ az = 0, ¢, ay = 0,¢ as = Ao, ag= Ao
0,0¢, = 517 0,06 =S )y

and B(&;7) = 0 and

Ly (Sn,/%) + Lio( (_V)”Y)
Loy (SY(W%) + Lo ( r(z_)”Y)

Now apply [3, Proposition 4.1.a] with ¢ = 3 and

R1 = Rg = E(z, R3 = R4 = E;ﬁ Ry = Rg = 4||Sn||m(|5u| + ||5V||m{%§,) E(b
)\1 = >\2 = 4I£f

with

Ky = ka{|0p| + |V 4 0V ||me®*"™ (651 + 3k5) k5 + |6V ][ me*™3k] }
< 8eF ™ {|ou| + [|6V [|mE3 } )
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and €, = 7. Since || fjllw < 5y = A, |Bjllw,, = 0 and

1Ll < e [1SlmlV + 8V [lme?e™ [ {267+ dmins +2621 A,
+ {H%+2H1’%5+H§}>\3—j]
<3 max [|ST)[wllV + 0V [lme* ™ {1 + K5} A

< 3 max< || Sl V 4 8V e ™ {1+ 411l (1012] + 11V [1n83) } €2,

[3, Propositions 4.1.a] gives

aVA¢* = gy(:,_/)rl (Oél, e aa6)
aI/A¢ = Sy(LTV)F2 (ala T aa6)
with
Tt luwnns Mol < 162 {[op] + |0V ||t } €

The conclusions, except for (4.2) now follow by [3, Corollary 3.3].
To prove (4.2), write

Ao ] - 15 0] (s s e )
with

ay = ¢ Qg = ¢ a3 = al/¢* Qg = al/¢
Qs = ASD*n (¢*a ¢a My 5#7 V, 6V) Qg = Awn (¢*> ¢> 2 5:“) V7 5V)

Observe that the right hand side is of the form

a(+)
Sn,z/ 81/¢
with Ago(* n V((ﬁ*, @, Oy by, Oy, 1, O, ) a finite sum of terms each of which is either

of the form Z*:Sn,z/ (V(*) + 6V(*))(<la <2a <3) with

o exactly one of (i, (2, (3 being one of 9,¢.), 0,A¢(.) (Which are of degree precisely
one in J,¢)) and

fkisl/ (¢*7¢7 IJ¢*7 l/(b ,u,5,u,V 6]})

T AGE (60,6, 0,6, 0,6, 1, 511, V, 6V)
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o each of the remaining two (;’s being one of ¢(,), Ad(), possibly translated by T},
(which are of degree at least one in ¢,)) and

o at least one of (1, (o, (3 being one of Ad(.), 8,A¢(,), possibly translated by T, *.

or of the form 5556V, (C1, G2, Cs) with
o exactly one of (;, (2, (3 being a 9,¢(,) and

o the remaining two (;’s being a ¢, possibly translated by T, *.
3)

o follow, with, in the bound,

The degree properties and bounds on Aapg)
a factor of ||V + 0V coming from the kernel of V) + 0V,

a factor of |6V coming from the kernel of 6,

e}

e}

(0]

0,0+ contributing a factor £,
9, A¢(,y contributing a factor of const (|dpu| + |6V ||mt3 )€, < conste),
each ¢, possibly translated by T, *, contributing a factor of constt,, and

(0]

e}

(0]

cach Ay, possibly translated by T, !, giving a factor of

const (|6u] + |6V ||mt}) €, < constt,
since ||V [|m[|0V ]|t < const|[0V||m. O
Proof of Proposition 4.1. We apply Lemma 4.2 with

& = 20/ S, |l Q)2 + K[Vt
€, = max [BO), I + K[| V]t ¥

n,u,v

First observe that £, and ), are each bounded by a constant times € and ¢, respec-
tively. So for a suitable choice of ps, the hypothesis of Lemma 4.2 is satisfied. The
claims concerning A¢,),, and A¢(,),,, now follow by substituting

00 = 0y Pun (b, 1, V) = B 000 + 055 (), B0s, D0, 1, V)
O = 0, 0n (Vi ¥, 11, V) = BE) 000 + 05D (1, ¥, 0,00, 0,0, 1, V)

into the conclusions of Lemma 4.2, using Proposition 2.1 and [3, Corollary 3.3].
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From (4.3) we see

N . , , Q(x)=¢ () T AP (x)

DG = 56— (@42, — 11— u)A6 — (V' +3V) (@, ., @)
- 5vl(¢7 ¢*7 (b)

substitute for ¢.), using Proposition 2.1 and for A¢,), using the first part of this
proposition.

Q(x)=d(x)

Q(x)=¢(+) +AB(x)

Q(*)=d(x)

O
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5 The Critical Field

In this subsection we formulate and prove a precise version of [5, Proposition 1.15].
Recall from [5, (4.3)] that

i(*)n (w*v ¢7 1y V) =S [¢(*)n (S_1¢*7 S_1¢7 1y V)] (51)
is a rescaled version of the critical field t,),.

Proposition 5.1. Let n > 1. There are constants’® Kg, py > 0 such that the
Jollowing hold if Z||V ||m€? + L?|u| < pa
There are field maps Qﬂ((f)i) (w*, @D,,u) such that

Y (U 0, 11, V) = HSC (1)DQ S iy + 57 (1, v, 1, V)

where

CO () = (2QQ+ A (u) ™

AW () = {g@ - ;2 QuSa(1) Q2 ;Z : (1]
and

dealll < Kst [ E]] < KotV It

Furthermore @E(%i) is of degree at least one in ey and is of degree at least three in
(s, 9). ) .
There are also field maps Py (Vs 1, Yo o, 11, V) and G52, (4,10, 00, 0, 11, V)

and a linear operator By, . (1) such that
Oyt (a1, 1, V) = Diayn (0,0, O, D, 1, V)
= By (1) ) + Vo, (Ve 0, Bths, 00, 1, V)

and R .
ol < Ket oG Il < Kef IV mte

Furthermore 1&{%3) and 1%,2,,3) are each of degree precisely one in ), and of degree
at least two in (w*, ¢).

10Recall Convention 1.3.
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Proof. Set
Sii(p) = L2S7' 8,1 (L2)S = { Dy — i+ Qi1 Qi1 Qrin ) Ho = H (5.2)

where, as in [5, Lemma 2.4], @, = S7'Q,S and 9, = 1 S™19,S. Observe that,
by [4, Remark 10.e] and the fact that under the substltutlons 5, (3.3)], Q = Qui1,
Q— = Qn+1 and S = Sn+1( ),

%C(n) (:U’)(*)Q* = (%Q*Q + Dn)_l{%Q* + QnQnSn+1(/~L)(*)Q;+1Qn+1} (53)
By [5, Definition 3.2] and Proposition 2.1 with n replaced by n + 1,
Gens1 (00,11, V) = ST 81 (L211) D Q41 Qs S0y + ST [0, 1 (S0, 80,L7 1, SV)]

Hence, by the definition of ¢(,), in [5, Proposition 3.4, Lemma 2.4.b], (5.2) and (5.3),

w(*)n(e*’ 9’ K V) - (%Q*Q + Qn)_l{%Q*e(*) + QnQnQE(*)n—I—l(e*a 97 2 V)}
= (£QQ+2.) {£EQ +2.QuSun (V051 Qi } 00
+ (HQQ+ Q) QuQST [0, (S0,,80, L2, SV)]
= £CT(W)NQ ) + Ay ST [0, 1(S0., 50, L2, SV)]

(5.4)
where
Ay = (5Q°Q + Qn) ', Q0
So, by (5.1),
QZJ(*)n (w*, P, s V) =S [¢(*)n(S_l¢*> S_lw, My V)]
= &SCM () PQS ) + SAy ST O (e, ¥, L0, SV)
Defining

we have the specified bounds on w(* (s, 0, ) [ Propostion 6.1], Proposition
2.1.a and the fact that the kernel, V) of SV obeys

VOl < 21V lm

by [5, Lemma C.2.a].
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For 0,1, we use that, by [2, Proposition 6.1.b],

O eyn (Ve ¥, 1, V) = 0, 5SC™ (1) QS () + 0, S Ay oS G52, (v, 10, L21, SV)
= SA1/’(*)9(*)V(M)S 5u¢(*) + SAw,qb v ¢Eii+1 v (w*a ¢> uw*, V¢7 L2,U> SV)

Now apply [2, Proposition 6.1.b] and, for the second term, Proposition 2.1.b. O

Remark 5.2. By (5.1), the definition of 1)(,) in [5, Proposition 3.4 and Definition
3.2], we have

7\&(*)0(1#*7 wv 22 V) = ¢(*)1(¢*7 ¢7 L2:U’7 SV)

Hence Proposition 2.1 provides the existence of, properties of, and bounds on 1@(*)0.

Remark 5.3. [5, Proposition 1.15] follows from [5, Proposition 3.4]. To get bounds
ON Y(xyn, write, by (5.1), Yy (bs, 0, 1, V) = [w(* (S6.,S6, 11, V)] and apply Propo-
sition 5.1.

Remark 5.4 (The complex conjugate of the critical field). There exists a constant
K7 such that the following holds for all n > 1. Let O(y) be a field on X ") such

that' 0(y)| < =t and |0,0(y)| < gzt for all y € X" and 0 < v < 3 Then

G (07,0, 11, V)* () — (07,0, 11, V) ()| < K¥ for all z € x™

Proof. By [5, Proposition 3.4],

¢*n(9*7 97 s V)* - wn(9*> 97 s V)
= A¢7¢S_l [¢In+1(89*, SO, Ly, SV) — ¢ni1(S0,, SO, L*u, SV)}

with Ay, as after (5.4). Now apply Remark 2.2. O

HRecall that Lo = L? and L, = L for v = 1,2, 3.

40



A Norms and a Fixed Point Theorem

We use the terminology “field map” to designate an analytic map that assigns to
one or more fields on a finite set X another field on a finite set Y. We assume that
X and Y are equipped with volume factors (like the volume of a fundamental cell

in a finite lattice) volx and voly. Then such a field map ¢(¢1, - - ,1,) has a unique
representation as a power series
S, ) (y Z VOIRT N o (W3 B T) U (E) - ()
1, >0 Z,eXTi
1§i§n
where the coefficients ¢, ... ,, (y; APREE ,fn) are invariant under permutations of the
components of each vector Z; and where, for & = (zy,---,2,) € X" we set (%) =

I o).

To measure the size of field maps, we assume that X and Y are both subsets
of a common metric space with metric d. As in [3, §2], we introduce norms whose
finiteness implies that all the kernels in its power series representation are small and
decay exponentially as their arguments separate. The norm of ¢ with mass m and

weight factors kq, -, Kk, > 0 is defined to be
T
ol =" > |lénmll, TLA7
71,0, T >0 =1
where

@1l gy = X { Lt (D1 )+ B (Br o) }

and

Lm(gbm,“',rn) = gleai;( V01§+"'+7‘n Z }¢T17"'7rn (y; fla U }ede gt )

FeXi
1<i<n

1 N
Ru(éry ... r,) = max max VOlyz volig e Z |Grs e (Y3 T, )|

r’eX 1<J<n
ri7 yey FpeXxl de(y'fl,---,xn)

1<z<r 1<t<n €
(z ) =a/
where the tree length 74(xq,---,x,) is the minimal length of a tree in the common
metric space that has z,---,x, among its vertices.

The main tool that we use in the proof of the existence of and bounds on the back-
ground field is [3, Proposition 4.1], which provides solutions 4 = I'(&) to equations
of the form

= fla) + L(@,) + B(d.7)
Here
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(@) = (f1(@),- -, f5(@)) is an s—tuple of field maps with each f;(&@) mapping the
r—tuple of ﬁelds @ = (a1, -+ ,a) on X to the field f;(@) on Y.

o L and B are both s—tuples of field maps with each j*® component mapping the
(r+s)-tuple of fields (&, ¥) on X and Y to the field L;(d, 7), respectively B;(d, ),
onY.

o Each L; is linear in 7. Each B; is of degree at least two and at most dy,ay in 7.
For the readers convenience, here is the basic statement of [3, Proposition 4.1].

Proposition A.1. Let ki, -+, ks and Ay, ---, . be weight factors for the fields
i, a,, on X, and yi,--+ Y, on Y, respectively. For s—tuples of field maps
I'(@) = (I1(@),- - ,Ts(@)), we introduce the norm

IF]| = max 51T
where ||| - ||| is the norm with mass m and weight factors Ky, -+, Kks. Denote by

By = { r } 1T < 1 } the closed unit ball.

Let 0 < ¢ < 1. Assume that, in the notation above,

LA ML+ B3 < A
L5+ dimas | Bs | < €

for 1 < 5 <r. Then there is a unique [e By for which

— — - —

[(@) = fla) + L(a,T'(@)) + B(a@,I'(@))
Furthermore

max Tl < 7 max LGN max I = S < g5 max LA

There are more refined statements in [3, Proposition 4.1].
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