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Abstract

Block spin renormalization group is the main tool used in our program to see
symmetry breaking in a weakly interacting many Boson system on a three
dimensional lattice at low temperature. It generates operators, like the fluc-
tuation integral covariance, that act on some lattice but are translation in-
variant only with respect to a proper sublattice. This paper constructs a
Bloch/Floquet framework that is appropriate for bounding such operators.
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1 Introduction

One standard implementation of the renormalization group philosophy [12] uses block
spin transformations. See [10, 1, 9, 2, 8, 5]. Concretely, suppose we are to control a
functional integral on a finite! lattice X_ of the form

/ [ 42@do) Al 05670) (1)
seXx. 21

with an action A(aq, -« -, a; @, @) that is a function of external complex valued fields
ay, -+, ag, and the two? complex fields ¢.,® on X_. This scenario occurs in [6, 7],

where we use block spin renormalization group maps to exhibit the formation of a
potential well, signalling the onset of symmetry breaking in a many particle system
of weakly interacting Bosons in three space dimensions. (For an overview, see [3].)
Under the renormalization group approach to controlling integrals like (1) one
successively “integrates out” lower and lower energy degrees of freedom. In the
block spin formalism this is implemented by considering a decreasing sequence of
sublattices of X_. The formalism produces, for each such sublattice, a representation
of the integral (1) that is a functional integral whose integration variables are indexed
by that sublattice. To pass from the representation associated with one sublattice
X C X_, with integration variables ¢(x), z € X, to the representation associated to
the next coarser sublattice X, C X, with integration variables 6(y), y € X, one

e paves X by rectangles centered at the points of X, and then,

e for each y € A, integrates out all values of ) whose “average value” over the
rectangle centered at y is equal to 6(y). The precise “average value” used is
determined by an averaging profile ¢. As in (12), one uses this profile to define an
averaging operator () from the space H of fields on X to the space H of fields
on X,. One then implements the “integrating out” by first, inserting, into the
integrand, 1 expressed as a constant times the Gaussian integral

21

/ [] 2080 b0 ~Qu- .0-Quv))
yeXy
with some constant b > 0, and then interchanging the order of the # and v integrals.

For example, in [3, 6, 7] the model is initially formulated as a functional integral
with integration variables indexed by a lattice® (Z/LyZ) x (Z*/Ls,ZP). After n

1Usually, the finite lattice is a “volume cutoff” infinite lattice and one wants to get bounds that
are uniform in the size of the volume cutoff.

2In the actions, we treat ¢ and its complex conjugate ¢* as independent variables.

3The volume cutoff is determined by Ly, and L.
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renormalization group steps this lattice is scaled down to &, = (L—énZ / %Z) X
(%Z?’ / LLS,‘f Z3). The decreasing family of sublattices is Xj("_j ) = (%Z / %Z) X
(%Z?’/%Z?’), j=mn,n—1, ---. The abstract lattices X_, X, X, in the above
framework correspond to X,,, XO(") and XETI), respectively.

In this framework there are a good number of linear operators that act on func-
tions defined on a finite lattice and that are translation invariant with respect to a
sub-lattice. For example the block spin averaging operator () above (which is an
abstraction of the operator ) of [6, Definition 1.1.a] and [4, (2.1)]) acts on functions
defined on the lattice X', but is translation invariant only with respect to the sublat-
tice X;. Similarly the operator Q_ of [5, (2)] (which is an abstraction of the operator
Qn of [6, Definition 1.5.a] and [4, (2.2)]) acts on functions defined on the lattice X_,
but is translation invariant only with respect to the sublattice X'. As another exam-
ple, the fluctuation integral covariance C' of [5, (14)] (which is an abstraction of the
operator C™ of [6, (1.15)] and [4, §4]) acts on functions defined on the lattice X', but
is translation invariant only with respect to the sublattice X’,. In this paper, we use
the Bloch/Floquet theory (see, for example, [11]) approach to develop some general
machinery for bounding such linear operators. In [6, 7] the operators of interest tend
to be periodizations of operators acting on L? of an infinite lattice. An important
example is the “differential” operator D,,. See [4, Remark 3.1.a]. We also develop
general machinery for bounding such periodizations. In [4] we use the results of this
paper to bound many of the operators appearing in [6, 7.

2 Periodic Operators in “Position Space” and “Momentum
Space” Environments

We start by setting up a general environment consisting of a “fine” lattice and a

“coarse” sub—lattice. We shall consider operators that act on functions defined on the

former and that are translation invariant with respect to the latter. Let er,ex > 0,

Ly,Lx € Nand L1 € LyN, Lx € LxN and define the (finite) (d 4+ 1)-dimensional
lattices

Xﬁn = (ETZ/&?TﬁTZ) X (EXZd/éfxﬁde)
Xcrs = (LTETZ/ET,CTZ) X (foxzd/€xﬁxzd)



and the corresponding Hilbert spaces

My = L*(Xin) (67, 8o}y = volg Y 1 (u) éa(u)
u€Xfn

Hc - L2(Xcrs) <¢>1k7 ¢2>c = VOlc Z wl (x)*wz(l')
ZBEXcrs

where we use
VOlc = (ETLT)(ExLx)d

to denote the volume of a single cell in AXg,, and X, respectively. For the Bloch
construction, it will also be useful to define the “single period” lattice

B = (e7Z/LrerZ) x (exZ/LxexZ) = X/ Xexs

vol; = ere

The lattices dual to Xg,, X and B are

Xﬁn = (ETETZ/27TZ) (Exl:XZd/ 27er)
Xcrs - (ET[,T LiZTZ) (EX[, Zd/Lf(ZX Zd)
B = (252/52) x (Fi 2 5 27) = X/ X

We denote by ) )
7 Xoin — Xers

the canonical projection from .XA‘ﬁn to /'\?m. It has kernel B. Observe that

p-x=7(p)-x mod2m for all # € X, p € Xin

The Fourier and inverse Fourier transforms are, for ¢ € Hy, ¥ € H,, ¢ € L*(B),
pE Xan, k € X, L € B, u € Xy, v € Xyps and w € B,

~

S(p) = voly > d(u)e "

u€ Xfin
¥(k) = vol, Z (z)e ke
TE Xers
0) = voly Z Clw)e
weB
where
voly = (CTETass vol,

= Erlr)(exLx)?

blu) = % S dp)e

pe')?ﬁn
vol zk X
T (2m) 1c+d : : 77D
keXCI’S
Volb § zw-f
 (2m) (2m)1+d C
eB

(27T)1+d —

VOlb = (27T)1+d

(erLr)(exLx)d

b}



denote the volume of a single cell in /'\A?ﬁn, é\?crs and B, respectively. Observe that

volf;(;lf o 1 1 1

@md T LpLS T [ Xanl T | Xl 2)
volcvol ¢ _ Volc;;lc _ LTL(;( _ 1 1
(27T)1+d (27r)1+d ET£§( |Xcrs| ‘Xcrs|

where |X.s| denotes the number of points in X.. By (2) and the fact that d,., =

1 R ip-u ,—ip-u
EAN 2 pein, €71 ;

(61,00, = voly 3 G1(w)(u) = s 3 du(—

UEXﬁn peXfm
(11, v9), = vol. Z V1 (2) (2 (27Vr01f+d Z 101
€ Xers kEXcrb

Internal Remark

(B1.62); = vol; 3 du(udalu) = 20 3" 6y (e e gy (o)

uEXﬁn u,u’EXﬁn
PEXgL
1
- 2\7;01+d Z ¢1
peXﬁn
T
(1, 02), = vole Y di(@)nle) = 3¢5 Y dala)e e gy (o)
TEXcrs Iyzlﬁ-xcrs
k€ Xcrs
= 2;011(ikd Z ¢1
keXch

Let A be any operator on H; that is translation invariant with respect to Xes.
We call such an operator a “periodic operator”. Denote by A(u,u’) its kernel, defined
so that

(A¢)(u) = voly Z Alu,u')

u' €Xgp

By “translation invariant with respect to X.s”, we mean that A(u + z,u' + x) =



A(u,u') for all u,u’ € X, and x € X.. Set?, for p,p’ € i‘ﬁn,

vol —ipu ip' -’
Alp,p') = o] Z e P Au,u')e’” (3)
u,u’ € Xy
and, for u,u € Xy, and k S 2” Z X 6){22 Z4, the “universal cover” of Xcrs,
A(u, ') = vol, Y e ™ A(u, u")e™ (4)
u’eXg,

u! —u! € Xers

For each fixed u, v’ € Xy, k — Ax(u,u’) is not a function on the torus X, since, for
c 2 7, % 27r Zd
p Lrer

Lxex

Arip(u, 1) = e PO Ay (u, )

This is why we defined Ay for k € - 2” Z X QEX Z4, rather than k € fers. On the

€X

other hand, k s e*(=%) A; (u, ') is a well defined function on X.
The following lemma is standard.

Lemma 1. Let A be an operator on Hy that is translation invariant with respect to
XCI‘S'

\7(;1 inu A —in' !
(a) A(u,u’) = (27.‘.)—1f+d Z eP"A(p, p'e "
P, € Xsin
(b) A(u,u) = 58k Ak + €k + ) )
[k]e)eci*s
e0'eB
Here 3 f(k) means that one sumsk over a subset of 2% —7 % ; o Zd that
(K] € Xers

contains exactly one (arbitrary) representative Jrom each equivalence class of
X.... Note that ifk € - 2” Z 2” Zd and ¢ € B then k + € Xgy.

(c) (Ad)(p ZApp p) for all g € Hy.

p e‘)(‘ﬁn
(d) For eachk € - 2” Z X EXQZ 78, Ay (u,u') is periodic with respect to X in both
u and u’ and
A(uu vollidzezkuA uu) —ik-u/
k‘EXcrs
4The “normal prefactor” for A would be vol? 7. We have chosen l‘:,?lf = (2:;ll+d vol? 7 so as to replace

approximate Dirac (27)'*4§(p—p’)’s with simple Kronecker d, s in the translation invariant case.
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(¢) Ax(uu) = e Ak + £ k+ )e

AT

(f) Define the transpose of A by A*(u,u’) = A(v',u). Then

A*(u,u') _ 2;011chd Z it uA _k — 6/ _k — 6) —il ek (u—

[k]GXCES
L' eB

u')

Internal Remark

Proof. (a) follows from

o
E PP for all u,u € Xy,

pe)eﬁn

F I ——
w IXﬁn‘

and

VOlf VOlf 2
Xan] 2m)1Fd |Xﬁn|

(b) Since A is translation invariant with respect to X, we have
Alx +u,x +u') = A(u, u')

for all x € X5, and hence
A(p’p/) _ % Z e—ip-uA(u’u/)eip/,u,
U,U,GXﬁn

vol —ip- Ll
= L E e PUAu + z,u' + z)e
IXﬁnl

u,u’ € Xy,

for all x € X, This forces fl(p,p’ ) to vanish unless p — p’ € B, or equivalently,

7(p) = w(p'), and the claim follows.



(c) By the definitions and (2),

(d) The periodicity of Ay (u,u') in u’ follows immediately from the definition and the
observation that, if © € X, then v” — v’ € X5 if and only if v” — (v + z) € Xs.
Since

!

Ay (u+ z,u") = vol,. Z e~ WFD) Ay + 2, u ) e

UHEXﬁn
u!! —u! € Xers

= vol, Z e~ WD) Ay + 2, 0" + x)e WD)

u"EXﬁn
u!! —u! € Xers

k- R
— VOlc § : e ik “A(u, u//)ezku

u"EXﬁn
u!! —u! € Xers

= Ak(u> u/)

for all © € X, Ax(u,u’) is also periodic in u. For the representation of A(u,u’), we
compute

vole ik-u N, —ik-u’ 1 ik-u —ik-u m ik —ik-u’
o ) A )eT Y = g 3 M A, et e

KE Xers kEXers u €Xg,

u!! —u! € Xers

B

u € Xy kGXcrs
u!! —u! € Xers

= Z (Sugu//A(u, u”)

u'leXg,
u!! —u! € Xers

= A(u,u)

since u” — 4/ is restricted to X.s.



(e) By the definition of Ay(u,w’) and part (c),

Ay (u,u") = vol, Z e~ =) A (g ")

ueXg,
u! —u! € Xers

= 3T ) ST A 4 g o e K )

u”EXﬁn [k/]e/%crs
w!! —u! € Xers 0B
A il (o) (k! —K)- (1 — —
— IXj:rSI E ezé uA(k/—}—f, k/+€/) 2 e W (u +:c)ez(k k)-(u—u'—2x)
[k']€ Xers TEXcrs
L0'eB
/R 2 —apl.a 5 ! _ . ! 4 ! _ .
— § ezéuA(k/ +£, k/—|—€/)€ il uez(k k)-(u—u') |X1 ‘ § e i(k'—k)-z
Crs
(k'] € Xers rEXers
INS

— Z ei@uA(k/ + E, k/ + g/)e—ifl'ulei(k/—k)'(u—u/)d[k}7[k/]

[k/]e-)ec}"s
e0'eB

= Zezéu/i(k + E,k + El)e—i€’~u’
L0eB
If, in the second last line, a representative k' other than k was chosen for [k'] = [k],

making the change of variables ¢ — ¢ — (k' — k), ¢/ — ¢/ — (k' — k) both makes k the
representative and eliminates the factor ' —%)-(u—u),

(f) Making the change of summation variables k — —k, ¢ — —¢ and ¢/ — —{ gives

A, ) = (27V§llc+d > e Ak 4 £k e et )

[k]E/?CrS
00eB
vol ilu A / —ill ik (u—u’
= oot Y A=k =l —k — ) e )
[k]E/?CrS
20'eB
as desired. O

3 Periodized Operators
Define the (infinite) lattices

Zen = 7l X ex 24 Zos = Lpeq? X LyexZ8
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Definition 2 (Periodization). Suppose that a(u,u’) is a function on Zg, X Zg, that
e is translation invariant with respect to Z.s in the sense that a(u + x,u’ + x) =
a(u, ') for all x € Z. and u, v’ € Zg, and

e has finite L'-L*> norm (i.e. sup > |a(u,v’)| and sup > |a(u, )| are
u€Zgy uw'EZg, u'EZgqy UE Zgn
both finite)

and that the operator A (on Hy) acts by
(A)([u]) = voly Y alu,w)é([u)) (6)
wEZgn

Here, for each u € Zg,, the notation [u] means the equivalence class in X, that

contains u. Then we say that A is the periodization of a. It is “a with periodic

d factors
N\

boundary conditions on a box of size epLr X exLx X -+ X exLx 7.

Remark 3.

(a) The right hand side of (6) is independent of the representative u chosen from
[u] (by translation invariance with respect to epLrZ X exLxZ C Zus).

(b) The kernel of A is given by
A([u],[u]) = Z a(u,u”) = Z a(u,u’ +z)

uezg, z€erLrlixex Lx 74
)= (o]

The sum converges because a has finite L'-L> norm. This is the motivation
for the name the “periodization of a”.

(c) If A is the periodization of a and B is the periodization of b, then C' = AB is
the periodization of

c(u,u’) = voly Z a(u,u”)b(u”, u')

W' Zgn

Internal Remark

(ABg)([u]) = voly Y a(u,u")(Bg)([u"])

W' EeZgn

“vol2 ST o )b, w)o([w))

v u’eZq,

11



Let 2., = (]R/ 2 Z) X (Rd / EE—ZXZC‘) be the dual space of Z.. Its universal cover

ETLT
is R x RY. For each k € R x R4, set, for u,u’ € Zgy,,
ax(u,u’) = vol, Z e~ Hug(u, v ek (7)
u”EZﬁn

u/—u’€Zcrs

and, for £, ¢ € B,

a(l, ) = @ Z e~ gy (u,u)et

[u],[u']eB (s)
_ % Z 6—i£-ua(u’ u/)eié’-u’e—ik-(u—u’)
[u]leB
weZg,
Recall that s = Ylf " We shall show in Lemma 5.a, below, that ayg(u,u’) is
|B] vole|B|

periodic with respect to Z.s in both u and u’.) By the L'-L* hypothesis and the
Lebesgue dominated convergence theorem, both ay(u, u’) and ay (¢, ¢') are continuous
in k.

Remark 4. As was the case for Ay (u,u’), for each fized u, v’ € Zg,, the map k —

ax(u,u’) is not a function on the torus Z.. since, for p € ETQZTZ X EXQZX Z4,

e (u, ') = 7P gy (')

However
i ; i -
k € Zeg — X0 (0, 1) = vol, E a(u, 0’ + x)e™
Xezcrs

~

is a legitimate function on the torus Z. and is in fact the Fourier transform of the
function
X € Zys — a(u, 0’ +x)

Correspondingly, for p € =27 x Q’TX Z4 and 0,0 € B

5TLT EXL
&k-i-p(ga El) = dk(g + b, E, + p)
The following two lemmas are again standard.

Lemma 5. Let a(u,v') : Zg, X Zs, — C obey the conditions of Definition 2, and, in
particular, be translation invariant with respect to Z...

12



(a) For each k € R x RY, ay(u, ') is periodic with respect to Zus in both u and v’
and

a(u’ u/) _ /ak(u, u/)eik(u—u’)él;;—fi‘d
Crs

_ Z/ £ 6/ —if'u’ zk (u—u’)(gl:;ldfd

L0eB

(b) 1If, in addition, a(u,u’') = a(u — ') is translation invariant with respect to Zgy,

then
a (0, 0") =y a(k +0)

where &(p) = voly Y a(u)e P,

UE Zgn

(c) Let A be the periodization of a. Then

Ag([u], [u])
Ak + 0,k +0) = a (L, 0)

ax(u,u’)

for allk € 27 x 27, [u],[W] € Xy, and (,0' € B.

exLx

Internal Remark

Proof. (a) The periodicity of ay(u,u’) in u’ follows immediately from the definition
and the observation that, if x € Z, then u” —u’ € Z. if and only if v/ — (W' +x) €

Zes. Since

ax(u +x,u') = vol, Z e~ g 4 x, u//)eik-u”

u’ezZgq,
u’ —u'€Zcrs

=vol. > e ™ g(n4x u + x)e 0

u’ezZq,
u’—u'€Zcrs

e "
— VOlc § : e ik ua(u’ u//)ezk u

u’ezZq,
u’ —u’€Zcrs

= ai(u,u’)

13



for all x € Z, ax(u,u’) is also periodic in u. For the first representation of a(u,u’),
we compute

/ ax(u, u')e
ACrS

ke (u—u’) gl+d —ik- ik-u”’ _ik-(u—u’) ditd
tk-(u—u’) d'1Tdk :VOIC E e zkua(uju//)ezku ezk(u u’) dttdk

(2m)i+d X

(27r)1+d
Zers ez,
u/’—u’€Zcrs

7 ik- "__ d1+dk
= VOlC E CL(U.,U. )/€Z (u u)(27r)—1+d

u’’ €Zan Zers
u/’ —u/€Zcrs

= Z 5u/7una(u, U.”)

u’eZg,
u/’ —u/€Zcrs

= a(u,u’)

since u” —u’ is restricted to Z.s. For the second representation of a(u, u’), we compute

~ 20, s [. / Ol o o S ~_~/ il . /.~[ 20, s [. /

z : &k(€,€/)€wu€ ' u V|B|f E CL(U.,U./)(B tk-(2 u)e zZuezf uezZue i’
/=13 113 [a]eB
eleB L0eB Vezn,

ax (0,0 =

—72k- / —1 l.
_55175 VOlf E oz(u’)e zkue itu

= VOlf‘[;)‘ Z CL(1~1, ﬁ/)e_ik'(ﬁ_ﬁ/)é[u}7[11}(5[11/]7[{1/]
[ajeB
WeZg,

:VOICZ Z a(ﬁ,ﬁ')e_ik'(ﬁ_ﬁ/)5[u],[a]

[aleB w'ezgy
i/ —u/€Zcrs

= Zak(fl, ') O i
[a]eB

= a'k(u> U_/)

1 —ik-(u=u’) —il-u il o’
voly z :a(u_u/)e ik-(u u)e zZuezfu

[u]leB
u’EZﬁn

1 —ile. / _ip. _./' ,_
vol g § oz(u/)e zkue Mue - (0 —u)

[uleB
u’EZﬁn

/

u'€Zg,

- (Sg/j d(k + f)

14



(c) By definition, for any k € 2.7 x 27,
Ak([u]a [U./]) = vol,. Z e_ik'uA([u]’ y//)eik.y//

y”exﬁn
Y/ —[u']€Xcrs

—k- e (117!
= Volc E e ik ua(u’ u" + Z)elk (u""+2)
[U”]E)(ﬁn
[u/]—[u']€ Xcrs
ZEET‘CTZXEXC)(Zd

—ik. . ’ ,
= VO].C Z e ik ua(u’ u/ + Z/>€Zk (u'+7")
ZIEZCrS

= ak(u’ u/)

and, for any k € 27 x —2_74 and (,{' € B,

erLlr

Ak +0,k+ 1) = voly Z 6—i(k+€)-yA(y’y/)ei(k—i—é’).y’

|Xﬁn‘
¥,y € Xan

1 p . o
_ voly E e i(k+20) ua(u’ u’—i—z)e’(kH)“

[u],[w']€Xg,
z€ep Loplxe x Lx 24

—1 —il- T A
_ voly Z e zZua(u’u/)ezé u, tk-(u—u’)

[u]leXgn
U,EZﬁn

1
=mh > beo(w)

[U]E.)(ﬁn

where
b&él(u) = Z 6—zé-ua(u’ u/)ew u 6—zk.(u_u )
u,EZﬁn
Since by (u+x) = byp(u) for all u € Zg, and x € Zx,

~

Ak+0,k+ 1) = |3?$f:\ |»|ng\ Z by ()

15



Lemma 6.
(a) If a(u,v’) = ﬁ%,uf is the kernel of the identity operator, then ayx(€,0) = 0y .

(b) Let a(u,v),b(u,v) : Zg, X Zsn — C both obey the conditions of Definition 2,

and set
c(u,u’) = voly Z a(u, u”)b(u”,u')

W' EeZgn

Then, for allk € 2 —Z X - = Zd and (,0' € B,

all,0) =" a(t, )b (0" 1)

e

Internal Remark

Proof. (a) Just apply Lemma 5.b with a(u) =

(b)

1
Volf 6 u,0-

1 //_
ff, :V‘(;),‘f § ezZu uu zZu ik-(u—u’)

[u]EB
u EZﬁn

vol2 Y it v —ik-(u—u’
= —‘B‘f E e~ g (u, u")b(u”, u')et W ek (1)

u’ u”GZﬁ

VOl2 1, // _ _- "= - Ol e (5
— ‘B‘QE E e zZu ,U. ezé e ik-(u—u") il ub(u’u/)ezé uy ik-(a—u’)

o B ul,[a]eB
€ u’ NGZﬁ

=) a(t, )b (0" 1)
Z”EB
In the transition from the second line to the third line, we used Y g™ '~ =
|B|Ow,fw- If the representative @ chosen from [d] is not u”, make the change of

variables u — v’ +1u — u”. O
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We now generalize the above discussion to include periodized operators from
L*(X.s) to L?(Xgn) and vice versa. If b(u,x) and c(x,u) are translation invariant
with respect to Z.s (with x running over 2. and with u running over Zj, as usual)
and have finite L' L* norm, we define, for k € R x RY and ¢, ¢’ € B,

bi(0) = voly Ze_i(kH)'ub(mx)eik'X & (0) = volg Ze‘ik'xc(x, )l ()

[uleB [uleB
X€EZcrs X€E Zcrs

For p € = 25 —Z X - Zdandﬁﬁ’eB

7?k+p(€) =b(l+p)  aap(l) =&l +p)

The inverse transforms are

§ : ilug zk (u—x) d*tdk
U_ X / b (2m)1+Hd

eB " T

c(x,u) = Z ax (¢, 6/)6_i£l'“eik'(x_u) (g;ffd

For ¢ S L ( crs) and (b S L (Xﬁn)
b (k + £) = b () (k)
k) = e )k + ) (10)

veB

Internal Remark
To prove the inverse transform formula for b(u, x) we first compute the sum

Z Bk(f)ei“ Z vols Zb o~k (G=%) =il yilu

eB eB xlézeci
= voly|B] Y b(it, %)e 61y )
[aleB

XEZcrs

= vol,. Zb U. X — .(ﬁ_i)d[u}’[ﬁ}

[aleB
XEZcrs

= vol, Zb(u, %)e k(%)

S(GZcrs

17



Substituting this into the right hand side of the claimed inverse formula

we-u Z u—x d —’l u X) 1 u—x
3 [ bt s = vol. 3 [ e s
leB ors XE€Zers
> ik-(x—x) ditd
= vol,. Z b(u, X) /ek( )(gﬂ;},‘d
S(GZCI'S crs
= ) Sb(u,%)
XEZcrs
= b(u,x)

For the action of b in momentum space

b(p) = voly Y (b)) (w)e ™™

uEXan

= volvol; Y b(u,x)¢b([x])e "

[u]leXgy,
X€EZcrs

zvolcvolf(2 OHd Z Z e~ PUp(u, x) ““‘@b( )

[ule Xfm keXcrs

X€ Zcrs

vol —ip-(utx =~ ikx,7
— ‘Xcé‘ Z Z e~ P Hp(u 4 %, x)eF ) (k)

_[U] eB kE.;%ch
[X]€Xcrs x€Zcrs

ditdk
(27T)1+d

— voly Z > {'Xm' > ety } e~ P (u, x) e (k)

uleB X,
L Zcrs k€ Xers [X]€Xers

= voly Z e~PUb(u, x)e* ) ‘k ()

[uleB
X€ Zcrs

A~

= b (O)D(K)| rerir

t=p—7(p)

For the action of ¢ in momentum space

(cd) (k) = vol, 3 (ed)(a)e ™

ZBEXcrs

= volvoly Y ez, w)([u])e**

€ Xers
uEZgy,

:VOICVOIf(z‘;;—lfM Z Z c(z,n)p(p)e PR

€ Xers Y
weZg, PEXan

18



—

vol n u-p  —ik-x
= volovol it Z Z (x,w)o(p)e"Pe

XEZ
ear PEXan

—

vol ~\ 7 i(u+%)-p  —ik-
:\zolcxfoljc(27r)—1f+d g E c(x, 1+ X)p(p)e it Pe-ikx
[u]eB pEXg,
[X]€Xcrs x€Zers

= voly Z Z {I«Ycrbl Z ZX(p—k)]C(X’u)(zg(p)eiu-pe—ik-x

XEZEC?S pEXﬁI [X}EXCI"S
= voly E g e~ e(x, 1) P (p)
uleB pexfm

XEZCI‘D #(p)=

—VOlf Z Z zkx X U. zu (k+2") (%(]f—'—gl)

uleB  pr
XEZcrs ¢ EB

—ch k“l‘gl

veB

If b*(x,u) = b(u,x) and ¢*(u,x) = c(x,u) are the transposes of b and ¢, respectively,
then ) )
be(l) = b (=) () = ex(—0) (11)

4 Averaging Operators

In this subsection, we analyze “averaging operators” as examples of periodic opera-
tors. Fix a function ¢ : Xz, — R and define the “averaging operator” @ : H; — H.
by

(Qo)(x) = vol; > gl — u)e(u) (12)

u€EXgn

Lemma 7.

(a) The adjoint Q* is given by

(Q’l/) ) = vol, Z@D q(x —u)

TEXers

19



(b) The composite operators QQ* and Q*Q are given by

(QQ¥)(x) = volpvole > g(w —u)q(z’ — u)p ()

uEXg,
z! € Xers

(Q*Qe)(u) = volpvol. > gz —u)g(z — u)p(u)

Proof. trivial. O

Internal Remark
(a) follows immediately from

voly 7 (@) (o) = (Q0,6), = (1, Qo),

uEXfn

— volpvol, 37 B@ae — u)é(u)

(b) is trivial.

Example 8. Assume that Ly and Lx are odd and choose ¢ to be ?116 times the

. . _ _ _ _17d .
characteristic function of the rectangle ET[ — LT2 L LT2 1} X € X[ — LX2 L LX2 1} in

Xgn. Observe that the number of points in this rectangle is exactly LpL%. For
r € X, denote by O, the rectangle x + »ST[ — LTQ_l, LTQ_I} X €x [ — LXQ_I, LXQ_I}d in

Xin- Also, for u € Xy, let £(u) be the point of X closest to u. Then

Q@) = i D 0w (Q¥)(u) = (&)

UCoyx

The composite operators are

(QQY)(@) = i Y (@ V)W) = 7 D ¥(2) = d(x)

U€og UuCog

(Q"Q0)(w) = (QV)(E(W) = 7 D o)

u'Eué(u)

Lemma 9. Let Q) : Hy — H. be the averaging operator of (12), but with q : Zg, — R
and q(u) vanishing unless |uo| < terLr and |u,| < fexLy forv=1,2,3.

20



(a) For all p € Hy and ¢ € H,,

Qa)(K) = > p)o(p) (Q0)(p) =0 ¥ (7(»))
o
@@ = = )k (@O =0w) Y i) o)
" o

(b) For A=Q*Q,

(6, 0) = gk + ) gk + )

Proof. (a) Using the definitions and (2),
@(k) = voch(qu)(x)e—z’k.x

= volvol, Z ek Tq(z — u)o(u)

TEXcrs e
ue Xy
' o ~ 1 —ik-x i(z—u)- )
= el D ¢ e (e —w)alp) = ghy Y e e T P(u)g(p)
z€ Xers € Xcrs
uEXg, u€Xfin
PEXg, PEXﬁn
=y 2 ) =y Y e T )o0)
z€Xers b
pE X, PEXHR
= > io(p)
PE/{}ﬁn
#(p)=k

The computation for (Q*)(p) is similar.

Internal Remark

m(p) = vol Z (Q*w)(u)e—ip-u

uEXan

> e g~ u)h(k) =

€ Xcrs
uEXgy

keXers

__ voly
- |Xcrs‘

= Y PG

ZE-;Ycrs
k€Xcrs

alp) ¥ (7(p))

21

= volvol, Z e P (x)q(x — u)

uEXgy
€ Xers

S et e e g (k)

x € Xers
wEXfy

ke Xcrs

pe D DT
IGXA'crs
ke Xcrs

vol
‘Xcrs|




For the composite operators

QU)K = Y i@ V)P = X i i(r) = X i) o)
and similarly for (m) (p).
Internal Remark
(@ Q)p) =10 QIGED) = Y. i) o)
7‘r(pzj’e)f?rl(lp)

(b) Since
a(u,u’) = vol, Z g(x —u)g(x —u')

XEZers

we have

(€ 6/ . vol‘gf‘olc Z o i(k+£)-(u—x) (X—U.) (X u/)ei(k+£’)'(u’_x)

u EZﬁn
X€EZcrs

= Volfc Z e—i(kM)'(u—X)q(X _ u)q(u/)e—i(k-l-é’)-u
I
X€Zcrs

= vol} 3 g (u)g(u)e

u,u’ €25,

=qk+0)gk+1)

!

O

Example 10 (Example 8, continued). In the notation of Example 8, the Fourier
transform of ¢ is

d

i) =2 Y e = g (erm) [Lun o)
u€ Xy (=1

22



where

L—-1 i Lw
- sin —— .
2 , 122 ifwé2nZ
_ 1 —wk __ L sin%
up(w) = 1 e = '
e L=1 1 otherwise
2
y =ur(w)

:
<

Remark 11. For the ¢ of Examples 8 and 10, which is, up to a multiplicative
constant, the characteristic function of a rectangle, the Fourier transform ¢(p) decays
relatively slowly for large p. Choosing a smoother ¢ increases the rate of decay of
G(p). A convenient way to “smooth off” @ is to select an even q € N and choose ¢
to be the inverse Fourier transform of

d

G(p) = u, (e2p0)* [ [ ey (expe)®
=1

For example, when q = 2, ¢ is the convolution of (a constant times) the characteristic
function of a rectangle with itself and so is a “tent” function. In [6, 7], we use q > 4.

5 Analyticity of the Fourier Transform and L'-L>* Norms

Define, for any m > 0 and a : X x X’ — C, with X and X’ being any of our lattices,

la]lm = max { sup volx» ™V a(y, )|, sup volx» ™V a(y, y’)\}
yex y'eX/ y'exs yeX

Here volx and voly: is the volume of a single cell in X and X', respectively.

Lemma 12. Let a(u,u’) : Zg, X Zgn — C, b(0,x) @ Zgy X 25 = C and c(x,u) :
Zs X Zan — C be translation invariant with respect to Zes and have finite L' —L>
norms. Let 0 <m” <m/ <m.

(a) If ||a|lm < oo, then, for each (¢ € B, ax (¢, ') is analytic in |Tmk| < m and

sup [ (£, )] < llallm
Imk|<m
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(b) If, for each 0,0 € B, ax(L,0) is analytic in [Imk| < m, then,

sup ‘a(u,u’)‘e el <L gy Z ‘ak (0,0 <LB sup ‘dk(ﬁ,ﬁl)‘

ez =% k= =YY ik
u,u mK|{=m
fin "reh et
Cm’fm / lefm” |B| ~ /
HAHm// S ||CLHmH S 7‘7010 sup E ‘ak € £ S 7v01f sup ‘ak(ﬁ,ﬁ)}
|=m [Im k|=m/'
ZZ’EB 2.0 cB

where A is the periodization of a and Cyy_y, = voly Zuezﬁn —(m/=m")ul

(¢) If, for each { € B, by () is analytic in |Imk| < m, then,

m/Ju—x| ;
sup |b(u,x)|e < sup bi (¢ § F sup |bx (¢
s et < g s D 7S ()
X€ Zcrs eB

If, for each U’ € B, é(¢') is analytic in [Imk| < m, then,

m/|x—u| < g/ ~ E,
sup |c(x,u)le < - sup k( sup ¢k
sup Je(x )| < G sup Z} s Ja(?)
x€E Zcrs B

Proof. (a) If |Imk| < m, then

a(6,0)] <2523 Ja(u,w)]em = < L5 alln < Jlall

[u]eB [u]eB
u'ezZg,

Analyticity in k follows from the uniform convergence of the series on |Imk| < m.

(b) Fix any u,u’ € Zg,. Set q = m’ﬁ:ﬁi'. Then

m/lu—u'| _ / z(k iq)-(u—u’ zéu —i' ' gtk
a(u,u’) ax (¢, 1) Gy

e T

E 1 ik (u—u’) zZu —ZZ’ u ditdg
/a'k-i-zq E f (2m)1Td

Qe T

where we have applied Stokes’ theorem, using analyticity in k and the fact that

6ik~(u—u’) Z (g f’) il-u —ZZ’ " eik-(u—u’)ak(u’ U./)

L0es
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is periodic in the real part of k with respect to - 2” Z X 2” Zd Hence

Jau, ) e uu’|</ L

S e veB

< volc sup Z ‘a'k-i-zq E ﬁ)‘

ke€Zers g pef

|B] '
< vol; Sup ‘ak-‘riq(&f)}
ke Zers
2.0 cB

/ d1+dk
£ g (Qﬂ. 1+d

The second bound is obvious from

e IM=y'l — N em =yl
voly E |A([u = voly ,Z a(u,u’)|e
o <
1)y il
< voly E |a(u,u’)|e™ Ju—v]
wEZqn

(with the distance |[u] — ¥/| measured in Aj, and the distance |u — u’| measure in
Zgn) and the similar bound with the roles of u and u’ interchanged.

(¢) The proof is much the same as that of part (b).

Internal Remark

Ifq:m| X‘,then
u—x il-u iq)-(u—x) ditd
b, ) = 37 [ (et
e ” e
il-u ik (u—x 1+d
- Z/ . bk—l—zq el (gﬂ)vl:d
e ” T
so that

m/|[u—x 7 1+d
pa e < S Ol <

TS veB ke Zers eB

a(0)]

< 1

— voly

keéqrs
LeB
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O

Lemma 13. Let m > 0. Let, for each {,0' € B, b ((, ') be analytic in |Imk| < m.
Assume that ) R
bk-l-p(ga El) = bk(g + b, E, + p)

forallp e 27 x 273 and (,{' € B. Set

erLr xLx

CL(U, u/) _ Z /Aei@u[;k(g’ e/)e—iﬁ’-u’eik-(u—u’) (zzi;;rffd

e T
Then a(u, W) : 25, X Zsn — C obeys the conditions of Definition 2 and
(0, 0) = b (0, 1)
for allk e R x RY and ¢,0 € B.

Proof. The proof is straightforward. O

Internal Remark

Proof. The Bk+p(€, ) = ZA)k(E + p, ¢ + p) hypothesis ensures that a(u,u’) is well-
defined. The L'-L* condition of Definition 2 is satisfied by Lemma 12.b. For the
translation invariance, let z € Z. and u,u’ € Z5,. Then ¢ -z € 27xZ for all ¢ € B
and

a(u s o + Z) _ Z /16i€~(u+z)i)k(€’ El)e—iﬁ“(u’-l-z)eik(u—u') (g:;}d
e’ TR

ilui N —il' v’ _ik-(u—u’) dtdk

= E e (4, )e ek ( )(%)Hd
5 ZCI'S
0B

= a(u, ')
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Finally,

t )= 3 33 [ Bt e g

ul€B g prep Zors
uEZﬁ

__ val zz £4+k—k)-u —i(0 = +k—k)-u’ _dt+dk
= T Z 2. | be(l, E)e™ " e

EB e 0eB Ztin
6

= e Z Z N (0

[ueB i ieB

= Y b i (L L=+ 0) = 52y b6, 0)
l,eB leB

= b (0,0)

Here Zg, = (R/ ?—;FZ) x (RY/ g—gZd) and we have used, in the transition from the
second to the third line, the Fourier series inversion theorem to give

S voly [ fRpeniEo £ g

uwEZg, Zfin

for all smooth functions f(k) that are periodic with respect to ?—;Z X j—;Zd. Note
that I;f{ (¢,0) is indeed periodic in k with respect to ?—’TTZ X f—gZd, because it is periodic
in ¢ and ¢ with respect to ?—;FZ X 52—;Zd.

Internal Internal Remark

A _ u d A
Z VOlf )6 (k) (g;;fd - f(k)
weZg, Zﬁn

is true for f(k) = " u € Zg,. Then just take linear combinations and limits.
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Internal Remark

Lemma 14. Let A be an operator on Hy that is translation invariant with respect
to Xos. Let A(y,y') be its kernel, and A(p,p’) be defined by (3). Then

|B]
voly

max }fl(p,p’)‘ = LTL% max ‘A(I%Pl)}

ETE
P,p'€Xgin X p,p'€Xgn

/
Jmax [A(y,y)] <

Proof. By part (b) of Lemma 1,
vol.

max |A(y,y)| < zoE max |A(p,p)] | Kol [BI?

Y.y’ €Xan p,p'€Xfin
Ap. )| (82) (LrLg)’

max
p,p’ €Xfin

A(p, )]

- ETéSX,CTEd

Ld
= Tped max
T5X pp/€Xan

6 Functions of Periodic Operators

Let C be a simple, closed, positively oriented, piecewise smooth curve in the complex
plane and denote by O¢ its interior. Denote by o(A) the spectrum of the bounded
operator A and assume o(A) C O¢. Let f(z) be analytic on the closure of O¢.
Then, by the Cauchy integral formula,

FlA) = 3 § A (13)
and, for any m > 0,

1F(A )Ilm_gwlclsuplf SUPH ¢I—A)M, (14)

Lemma 15. Let

o a(u,v) : Zqy X Zgn — C obey the conditions of Definition 2,

o C be a simple, closed, positively oriented, piecewise smooth curve in the complex
plane with interior O¢,

e O contain the closure of Oc and f : O — C be analytic, and

e 0<m’ <m <m.
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Suppose that
o for each 0,0 € B, ax((,0') is analytic in [Imk| < m.
e for each ¢ € C\ O¢ and each k with |Imk| < m, the matriz [(8yp — arx((, (')]

e0eB
1s invertible.
Denote by A the periodization of a. Then f(A), defined by (13), exists and
£l < S IClsmp £O] sup 37 (1= (6.8)
‘IHZIE‘cm LeeB
< lefm//‘B‘|C| ]l A \—1 g El
— 2w voly sSup |f(<)| sup (C - ak) ( 5 )}
¢eC |Tm k|=m’
e0'eB
¢ecC
Here (C1— g )™ refers to the inverse of the |B| x |B| matriz (€000 — an(¥, E’)}“,EB.

Proof. Each matrix element of (1 — a is continuous on
D={((kecC? ‘ (€ C\Oc, [Imk| <m }

Furthermore det(¢1 — @) does not vanish on D. Hence every matrix element of

(C 11— dk)_l is also continuous on D and in particular is bounded on compact subsets
of D. Set, for each for each ( € C\ O¢, and u,u’ € Zj,,

Z / zéu C]l o a'k (E El) —il'u’ Zk (u— u)(;l;;ikd

o0eB” T

By Lemma 13, r¢(u,u’) obeys the conditions of Definition 2 and
Fe(l ) = (C1—aK) (4, 0)

By Lemma 6, ro = ((1 — a)™', as operators on L?(Zg,). By Remark 3.c, for each
¢ € C\ Og, the periodization of r¢(u,u') is (¢1 — A)_l. In particular, o(A) C O¢.
By Lemma 12.b,

(D= A) Yy < S2om” gup Z}gn—ak e, 0|

. tmkl=m’ " 5
(¢ —aw) (e, 0)|

Ct | B|

< sup
VOlf [Im k|=m/

0,0/ eB
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Then, by (14),

1 (Al < 57 |C|Sup|f SUpH =AY

"

S 27r,V01”|C|Sup|f sup Z ‘ C]l_ ak g E,)‘

‘Imfgc LeeB
lefm// B " _
S 2T VOI‘ ‘|C|Sup|f(<)| Sup (C]l_ak) l(g’ f/)}
! ¢eC |Tm k|=m’
L0'eB
¢ceC

O

Internal Remark

Let D, O¢, A and f be as in the framework specified just before (14). Let g(z)
be a second analytic function on the closure of Og. Also let C” be a second curve
just inside C, also positively oriented, just as C, whose interior still contains all of
the spectrum of A. Then combining

) =2 § AS e o) =2 § 4

we have

— _1 fOg@r_1 1
— (2mi)? j{/ji g—gg [C]I—A - gn—A} d¢ d§

f(¢ £) €) I
e facdos| f 89 o] b f acs[ f 19 ]

In the first term, the integral over C’ vanishes, since ( is always in the exterior of C".
In the second term, the integral over C' is 2mi f(€), since ¢ is always in the interior

of C. So

FA)9(A) = 3 § 1989 de = (o) (4

Note that this computation does not require that A be normal, or even diagonalizable.
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7 Scaling of Periodized Operators

Scaling plays an important role in the construction of [6, 7]. See, for example, |6,
Definition 1.3 and §2] and [4, (1.3)]. For the current abstract setting, select scaling
factors or and ox and define the scaled lattices

S s d
2y = 5L x XL voly?) = 7%
(s) — T £x 7d (s) _ (Lrer)(Lxex)?
2 = Lo T x LySZ ol = el
>(s) __ 2o d /270 d
z{) = (R/29r7) x (RY/ 229X 79)

() — (ex er ex zd exzdy o y(8) ) p(s)
B* = (J?Z/LTaiz) X (O’f{Z /LXU);Z )_Xﬁn /Xcrs
A(s 2mo 2no 2no d /2nwo d
B( ) = (LTsjq:Z/ eTTZ) X (Lxe};(Z / eXXZ )
The map L(7,x) = (07T, 0xX) gives bijections
L:Z - Zm L:Z® 52, L:BY—>B

Crs

L induces linear bijections L, : L2(Z)) = L?(Zs,) and L, : L2(25)) — L2(Zes)
by L.(a)(Lu) = a(u). Observe that

(Lo, L.B); = oro% (@, 8)))  (Lua,L.B), = orof (o, B)
Lemma 16. Let a : L*(Zgs,) — L*(Zgn) have kernel a(u, ).
(a) The kernel of L7 al, is
a®(v,v') = opod a(Lv, Lv")
(b) The Fourier transform of the kernel of L alL, is
a (0,0 = ap - (L7 L) forke RxRY, 4,0 € BY

(c) If m > max{lT L Ymy, then ||a®)]

or’ ox

me < Jlalfm-
Proof. (a) For a € L? (Zf(ifl)) and v e 2,
(L aL, a)(v) = vol; Y a(Lv,v) (L. o) (u)

weEZg,

= vol; Z a(Lv, ') a(L;'u)

u'€Zg,
= volgf) Z 070 a(lLv, Lv') a(v')

V’EZf(.l‘;)
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(b) By (8) and part (a),

~(s) 7\ __ volg —il-v N il v —ik-(v—v')
ay. (6,6)—W E e "Va(Lv,Lv')e" Ve
veB(s)
et
1 _i(1.=1p). S =1 (=) (1 — 1
— VI%{ E (L Z)ua(u’u/)ez(L Z)ue (L7 1k)-(u—u’)
[uleB
u'eZg,

= a1 (L7, L7

(c) This part follows from the inequality

(s) ms[v—v']| (s) | — (s) ms|v—v’| d /
sup vol e |a'¥ (v,v")] = sup vol e oro|a(Lv, Lv")|
vezg) ! Z vezl?) ! Z

vezld) vez§)
—1.,._q7—1../
= sup vol; E emsILT LT g ()|
u€Zgy W EZqn
1/
< sup voly E e™ =l g (u, v
ue Zgn weZa,
and the corresponding inequality with v summed over and v’ supped over. O

More generally,

Lemma 17. Let b: L?(Zys) = L*(Zgn) and ¢ : L?(Zg,) — L?(Zes) have kernels
b(u,x) and c(x,u) respectively.

(a) The kernels of L7'b1L, and L 'cL, are
b (v,x) = opoy b(Lv,Lx) 9 (x,v) = opoy ¢(Lx, Lv)
(b) The Fourier transform of the kernels of L;'b1L, and L 'cL, are
DI = b (L7Y) () = (L7W)  forkeRxRY 4,0 e BY
(¢) If m > max {%, é}ms, then

16 s, < [Blla 11|

ms < ll€llm
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