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Abstract

Block spin renormalization group is the main tool used in our program to see
symmetry breaking in a weakly interacting many Boson system on a three
dimensional lattice at low temperature. In this paper, we discuss some of its
purely algebraic aspects in an abstract setting. For example, we derive some
“well known” identities like the composition rule and the relation between
critical fields and background fields.
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One standard implementation of the renormalization group philosophy [9] uses
block spin transformations. See [8, 1, 7, 2, 6]. Concretely, suppose we are to control
a functional integral on a finite1 lattice X− of the form

∫

∏

x∈X−

dφ∗(x)dφ(x)
2πi

eA(α1,··· ,αs;φ∗,φ) (1)

with an action A(α1, · · · , αs;φ∗, φ) that is a function of external complex valued fields
α1, · · · , αs, and the two2 complex fields φ∗, φ on X−. This scenario occurs in [4, 5],
where we use block spin renormalization group maps to exhibit the formation of a
potential well, signalling the onset of symmetry breaking in a many particle system
of weakly interacting Bosons in three space dimensions. (For an overview, see [3].)
For simplicity, we suppress the external fields in this paper.

Under the renormalization group approach to controlling integrals like (1) one
successively “integrates out” lower and lower energy degrees of freedom. In the
block spin formalism this is implemented by considering a decreasing sequence of
sublattices of X−. The formalism produces, for each such sublattice, a representation
of the integral (1) that is a functional integral whose integration variables are indexed
by that sublattice. To pass from the representation associated with one sublattice
X ⊂ X−, with integration variables ψ(x), x ∈ X , to the representation associated to
the next coarser sublattice X+ ⊂ X , with integration variables θ(y), y ∈ X+, one

• paves X by rectangles centered at the points of X+ (this is illustrated in the figure
below — the dots, both small and large, are the points of X and the large dots
are the points of X+) and then,

• for each y ∈ X+ integrates out all values of ψ whose “average value” over the
rectangle centered at y is equal to θ(y). The precise “average value” used is
determined by an averaging profile. One uses this profile to define an averaging
operator Q from the space H of fields on X to the space H+ of fields on X+. One
then implements the “integrating out” by first, inserting, into the integrand, 1
expressed as a constant times the Gaussian integral

∫

∏

y∈X+

dθ∗(y)dθ(y)
2πi

e−b〈θ
∗−Qψ∗ , θ−Qψ)〉 (2)

with some constant b > 0, and then interchanging the order of the θ and ψ integrals.

For example, in [3, 4, 5] the model is initially formulated as a functional integral
with integration variables indexed by a lattice3

(

Z/LtpZ
)

×
(

Z3/LspZ
3
)

. After n

1Usually, the finite lattice is a “volume cutoff” infinite lattice and one wants to get bounds that
are uniform in the size of the volume cutoff.

2In the actions, we treat φ and its complex conjugate φ∗ as independent variables.
3The volume cutoff is determined by Ltp and Lsp.
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Figure 1: The lattices X and X+

renormalization group steps this lattice is scaled down to Xn =
(

1
L2nZ

/

Ltp

L2nZ
)

×
(

1
Ln

Z3
/

Lsp

Ln
Z3

)

. The decreasing family of sublattices is X (n−j)
j =

(

1
L2jZ

/

Ltp

L2nZ
)

×
(

1
Lj
Z3

/

Lsp

Ln
Z3

)

, j = n, n − 1, · · · . The abstract lattices X−, X , X+ in the above

framework correspond to Xn, X
(n)
0 and X (n+1)

−1 , respectively.
Return to the abstract setting. The integral is often controlled using stationary

phase/steepest descent. The contributions to the integral that come from integration
variables close to their critical values are called “small field” contributions. At the
end of every step, the small field contribution to the original integral (1) is, up to a
multiplicative normalization constant4, of the form

∫

∏

x∈X

dψ∗(x)dψ(x)
2πi

e−〈ψ∗−Q− φ∗ ,Q(ψ−Q− φ)〉−A(φ∗,φ)+E(ψ∗,ψ)

∣

∣

∣

∣

φ∗=φ∗bg(ψ
∗,ψ)

φ=φbg(ψ
∗,ψ)

(3)

where

• Q− is an averaging operator that maps the space H− of fields on X− to the space
H of fields on X . It is the composition of the averaging operations for all previous
steps.

• the exponent 〈ψ∗ −Q− φ∗ , Q(ψ −Q− φ)〉 is a residue of the exponents in the
Gaussian integrals (2) inserted in the previous steps. The operator5 Q is bounded
and boundedly invertible on L2(X ).

4See Remark 1 for the core of the recursion responsible for this form.
5See Remark 1 for the recursion relation that builds Q.
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• the “background fields”

(ψ∗, ψ) 7→ φ∗bg(ψ∗, ψ) (ψ∗, ψ) 7→ φbg(ψ∗, ψ)

map sufficiently small fields ψ∗, ψ on X to fields on X−. They are the concatina-
tion6 of “steepest descent” critical field maps for all previous steps.

• A(φ∗, φ) , the “dominant part” of the action, is an explicit function of φ∗, φ ∈ H−

• E(ψ∗, ψ) is the contribution to the action that consists of “perturbative correc-
tions”. It is an analytic function of ψ∗, ψ ∈ H.

The next block spin renormalization group step then consists of

• rewriting (3), by inserting 1 expressed as a constant times (2), as

∫

∏

y∈X+

dθ∗(y)dθ(y)
2πi

∫

∏

x∈X

dψ∗(x)dψ(x)
2πi

e−b〈θ
∗−Qψ∗ , θ−Qψ〉

e−〈ψ∗−Q− φ∗ ,Q(ψ−Q− φ)〉−A(φ∗,φ)+E(ψ∗,ψ)

∣

∣

∣

∣

φ∗=φ∗bg(ψ
∗,ψ)

φ=φbg(ψ
∗,ψ)

(4)

up to a multiplicative normalization constant,
• and performing a stationary phase argument, for the ψ integral, around appropri-
ate critical fields7 ψ∗cr(θ∗, θ), ψcr(θ∗, θ) that map sufficiently small fields θ∗, θ on
X+ to fields on X .

In this paper, we discuss some purely algebraic aspects of the block spin renormal-
ization group in an abstract setting. We derive some “well known” identities like, in
Proposition 4.c, the composition rule, and, in Proposition 4.a, the relation between
critical fields and background fields, and, in Lemma 12, a formula for the dominant
part of the action in the fluctuation integral. They are used in Proposition 3.4.b,
Proposition 3.4.a, and Lemma 4.1.a of [4], respectively.

We use the following abstract environment:

• Let H−, H , H+ be finite dimensional, real vector spaces with positive definite
symmetric bilinear forms 〈 · , · 〉−, 〈 · , · 〉, 〈 · , · 〉+. These bilinear forms extend to
nondegenerate bilinear forms on their complexifications H−, H, H+. Think of H−,
H and H+ as being the vector spaces of real valued functions on the finite lattices
X−, X and X+, respectively, and think of the complexifications H−, H, H+ as
being L2(X−), L

2(X ) and L2(X+) respectively.
• Let dµH(φ

∗, φ) be the volume form on H determined by its bilinear form. If

H = L2(X ), then dµH(φ
∗, φ) =

∏

x∈X
dφ(x)∗∧dφ(x)

2πı
.

6See Proposition 4.c for the recursion relation that builds φ(∗)bg.
7ψ∗cr(θ∗, θ) and ψcr(θ∗, θ) need not be complex conjugates of each other
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• Let
Q− : H− → H Q : H → H+

be linear maps. They induce C linear maps between H−, H, H+ which are denoted
by the same letter. We set

Q̌− = Q ◦Q−

• Fix b > 0 and a strictly positive definite (real) symmetric linear operator, Q, on
H .

• Let A be a polynomial on H− ×H−.

Set, for φ∗, φ ∈ H−, ψ∗, ψ ∈ H and θ∗, θ ∈ H+

A(ψ∗, ψ;φ∗, φ) = 〈ψ∗ −Q− φ∗ , Q(ψ −Q− φ)〉+ A(φ∗, φ)

Aeff(θ∗, θ;ψ∗, ψ;φ∗, φ) = b 〈θ∗ −Qψ∗ , θ −Qψ〉+ +A(ψ∗, ψ;φ∗, φ)

Ǎ(θ∗, θ;φ∗, φ) =
〈

θ∗ − Q̌− φ∗ , Q̌
(

θ − Q̌− φ
)〉

+
+ A(φ∗, φ)

where
Q̌ =

(

1
b
1lH+ +QQ

−1Q∗
)−1

(5)

Remark 1. In this setting, the action of the functional integral (3) that appears at
the beginning of the renormalization group step is

−〈ψ∗ −Q− φ∗ , Q(ψ −Q− φ)〉 − A(φ∗, φ) + E(ψ∗, ψ) = −A(ψ∗, ψ;φ∗, φ) + E(ψ∗, ψ)

and the action of the functional integral (4) that appears in the middle of the renor-
malization group step is

− b 〈θ∗ −Qψ∗ , θ −Qψ〉+ − 〈ψ∗ −Q− φ∗ , Q(ψ −Q− φ)〉 − A(φ∗, φ) + E(ψ∗, ψ)

= −Aeff(θ
∗, θ;ψ∗, ψ;φ∗, φ) + E(ψ∗, ψ)

We show in Proposition 4.b, below, that when one substitutes the critical ψ into Aeff

one gets Ǎ. Upon scaling (and renormalizing) Ǎ becomes the A for the beginning
of the next renormalization group step. Equation (5) is the recursion relation that
builds the operator Q in A(ψ∗, ψ;φ∗, φ).

Remark 2. Q̌ = b
[

1lH+ − bQ
(

bQ∗Q +Q
)−1

Q∗
]

Proof. Apply Lemma 13 with V = H, W = H+, q = Q, q∗ = Q∗, f = Q and
g = b1lW .
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Definition 3.

(a) Let N be a domain in H which is invariant under complex conjugation. “Back-
ground fields on N ” are maps φ∗bg, φbg : N × N → H− such that, for each
(ψ∗, ψ) ∈ N × N , the point

(

φ∗bg(ψ∗, ψ), φbg(ψ∗, ψ)
)

is a critical point of the
map

(φ∗, φ) 7→ A(ψ∗, ψ; φ∗, φ)

That is, it solves

Q∗
−QQ−φ∗ +∇φA(φ∗, φ) = Q∗

−Qψ∗

Q∗
−QQ−φ+∇φ∗A(φ, φ) = Q∗

−Qψ
(6)

“Formal background fields” are formal power series φ∗bg(ψ∗, ψ), φbg(ψ∗, ψ), in
(ψ∗, ψ) with vanishing constant terms, that solve (6).

(b) Let N+ and N be domains in H+ and H, respectively, which are invariant
under complex conjugation. Let φ∗bg, φbg be background fields on N . “Critical
fields on N+ with respect to φ∗bg, φbg” are maps ψ∗cr, ψcr : N+ ×N+ → N such
that, for each (θ∗, θ) ∈ N+ ×N+, the point

(

ψ∗cr(θ∗, θ), ψcr(θ∗, θ)
)

is a critical
point for the map

(ψ∗, ψ) 7→ Aeff(θ∗, θ;ψ∗, ψ;φ∗bg(ψ∗, ψ), φbg(ψ∗, ψ))

That is, it solves

(bQ∗Q+Q)ψ∗ = bQ∗θ∗ +QQ− φ∗bg(ψ∗, ψ)

(bQ∗Q +Q)ψ = bQ∗θ +QQ− φbg(ψ∗, ψ)
(7)

If φ∗bg, φbg are formal background fields, then “formal critical fields with re-
spect to φ∗bg, φbg” are formal power series ψ∗cr(θ∗, θ), ψcr(θ∗, θ), in (θ∗, θ) with
vanishing constant terms, that solve (7).

(c) Let N+ be a domain inH+ which is invariant under complex conjugation. “Next
scale background fields on N+” are maps φ̌∗bg, φ̌bg : N+ ×N+ → H− such that,
for each (θ∗, θ) ∈ N+ ×N+ , the point

(

φ̌∗bg(θ∗, θ), φ̌bg(θ∗, θ)
)

is a critical point
of the map

(φ∗, φ) 7→ Ǎ(θ∗, θ; φ∗, φ)

That is, it solves

Q̌∗
−Q̌ Q̌−φ̌∗ +∇φ̌A(φ̌∗, φ̌) = Q̌∗

−Q̌ θ∗

Q̌∗
−Q̌ Q̌−φ̌+∇φ̌∗

A(φ̌∗, φ̌) = Q̌∗
−Q̌ θ

(8)
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Formal power series φ̌∗bg(θ∗, θ), φ̌bg(θ∗, θ), in (θ∗, θ) with vanishing constant
terms, that solve (8) are called “formal next scale background fields”.

Proposition 4. Let N+ and N be domains in H+ and H, respectively, which are
invariant under complex conjugation. Let φ∗bg, φbg be background fields on N and
ψ∗cr, ψcr be critical fields on N+ with respect to φ∗bg, φbg. Define the composition

φ̌∗cp(θ∗, θ) = φ∗bg

(

ψ∗cr(θ∗, θ), ψcr(θ∗, θ)
)

φ̌cp(θ∗, θ) = φbg

(

ψ∗cr(θ∗, θ), ψcr(θ∗, θ)
) (9)

Then, for all (θ∗, θ) ∈ N+ ×N+,

(a)
(

ψ∗cr(θ∗, θ), ψcr(θ∗, θ)
)

fulfils the equations

ψ∗cr(θ∗, θ) = (bQ∗Q +Q)−1(bQ∗θ∗ +QQ− φ̌∗cp(θ∗, θ)
)

ψcr(θ∗, θ) = (bQ∗Q +Q)−1(bQ∗θ +QQ− φ̌cp(θ∗, θ)
)

(b) The effective action

Aeff

(

θ∗, θ;ψ∗cr(θ∗, θ), ψcr(θ∗, θ); φ̌∗cp(θ∗, θ), φ̌cp(θ∗, θ)
)

= Ǎ(θ∗, θ; φ̌∗cp(θ∗, θ), φ̌cp(θ∗, θ))

(c) φ̌∗cp(θ∗, θ) , φ̌cp(θ∗, θ) are next scale background fields on N+.

(d) For any continuous function E(ψ∗, ψ) on N ×N

∫

N×N

dµH(ψ
∗, ψ) e−A(ψ∗,ψ;φ

∗bg(ψ∗,ψ),φbg(ψ∗,ψ))+E(ψ∗ ,ψ)

= bdimH+

{
∫

N+×N+

dµH+(θ
∗, θ) e−Ǎ(θ∗,θ;φ̌∗cp(θ∗,θ),φ̌cp(θ∗,θ)) eE(ψ∗cr(θ∗,θ),ψcr(θ∗,θ))F(θ∗, θ)

+

∫

(H+×H+)\(N+×N+)

dµH+(θ
∗, θ)

∫

N×N

dµH(ψ
∗, ψ) e−Aeff (θ

∗,θ;ψ∗,ψ;φ
∗bg(ψ

∗,ψ),φbg(ψ
∗,ψ))+E(ψ∗ ,ψ)

}

where the fluctuation integral

F(θ∗, θ) =

∫

D(θ∗,θ)

dµH(δψ∗, δψ) e
−δA(θ∗,θ;δψ∗,δψ)eδE(θ∗,θ;δψ∗,δψ)
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Here the functions δA and δE are given by

δA(θ∗, θ; δψ∗, δψ) = Aeff

(

θ∗, θ;ψ∗, ψ;φ∗bg(ψ∗, ψ), φbg(ψ∗, ψ)
)

∣

∣

∣

ψ∗=ψ∗cr+δψ∗, ψ=ψcr+δψ

ψ∗=ψ∗cr, ψ=ψcr

δE(θ∗, θ; δψ∗, δψ) = E
(

ψ∗, ψ
)

∣

∣

∣

ψ∗=ψ∗cr+δψ∗, ψ=ψcr+δψ

ψ∗=ψ∗cr, ψ=ψcr

with ψ∗cr = ψ∗cr(θ∗, θ), ψcr = ψcr(θ∗, θ), and the domain

D(θ∗, θ) =
{

(δψ∗, δψ) ∈ H ×H
∣

∣ ψ∗cr(θ∗, θ) + δψ∗ =
(

ψcr(θ∗, θ) + δψ
)∗

∈ N
}

The formal power series versions of parts (a), (b) and (c) of Proposition 4 are

Proposition 4’. Let φ∗bg, φbg be formal background fields and ψ∗cr, ψcr be formal
critical fields with respect to φ∗bg, φbg. Set

8

φ̌(∗)cp(θ∗, θ) = φ(∗)bg

(

ψ∗cr(θ∗, θ), ψcr(θ∗, θ)
)

(9’)

(a)
(

ψ∗cr(θ∗, θ), ψcr(θ∗, θ)
)

fulfils the equations

ψ(∗)cr(θ∗, θ) = (bQ∗Q+Q)−1(bQ∗θ(∗) +QQ− φ̌(∗)cp(θ∗, θ)
)

(b) The effective action

Aeff

(

θ∗, θ;ψ∗cr(θ∗, θ), ψcr(θ∗, θ); φ̌∗cp(θ∗, θ), φ̌cp(θ∗, θ)
)

= Ǎ(θ∗, θ; φ̌∗cp(θ∗, θ), φ̌cp(θ∗, θ))

(c) φ̌∗cp(θ∗, θ) , φ̌cp(θ∗, θ) are formal next scale background fields.

The proof of these Propositions will be given after Lemma 7.

Remark 5.

(a) Part (c) of the Proposition is often called the “composition rule”.

(b) In applications, the domain N+ is chosen so that the second integral on the
right hand side of the formula in part (d) is small. In that integral either θ or
θ∗ is bounded away from the origin (“large fields”).

8We routinely use the “optional ∗” notation α(∗) to denote “α∗ or α”. The equation “α(∗) = β(∗)”
means “α∗ = β∗ and α = β”.
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(c) As in Proposition 4’, let φ∗bg, φbg be formal background fields and ψ∗cr, ψcr be
formal critical fields with respect to φ∗bg, φbg. Assume, in addition, that the
equations (8), for the next scale background fields, have a unique formal power
series solution, that we denote φ̌∗bg, φ̌bg. Then by part (c) of Proposition 4’,
φ̌(∗)bg(θ∗, θ) = φ̌(∗)cp(θ∗, θ) and, by part (a) of Proposition 4’,

ψ(∗)cr(θ∗, θ) = (bQ∗Q +Q)−1(bQ∗θ(∗) +QQ− φ̌(∗)bg(θ∗, θ)
)

If, in addition, φ̌(∗)bg(θ∗, θ) are analytic functions on some domain, then so are
ψ(∗)cr(θ∗, θ). So to construct analytical critical fields, it suffices to have

• uniqueness of formal power series solutions to the next scale background field
equations

• existence of analytic solutions to the next scale background field equations
• formal background fields
• formal critical fields with respect to the formal background fields

Lemma 6, below, provides existence and uniqueness for formal power series
solutions of the critical field equations.

Lemma 6. Let φ∗bg, φbg be formal background fields of the form

φ(∗)bg(ψ∗, ψ) = L(∗)ψ(∗) + φ
(≥2)
(∗)bg(ψ∗, ψ)

with φ
(≥2)
(∗)bg(ψ∗, ψ) being of degree at least two9 in (ψ∗, ψ) and with the L(∗)’s being

linear operators. If the linear operators bQ∗Q + Q − QQ−L(∗) are invertible, then
there exist unique formal critical fields with respect to φ∗bg, φbg.

Proof. Rewrite the equations (7) in the form

(bQ∗Q +Q−QQ−L∗)ψ∗ = bQ∗θ∗ +QQ− φ
(≥2)
∗bg (ψ∗, ψ)

(bQ∗Q+Q−QQ−L)ψ = bQ∗θ +QQ− φ
(≥2)
bg (ψ∗, ψ)

As ψ∗ and ψ are to have vanishing constant terms, this provides a “lower triangular”
recursion relation for the coefficients of (ψ∗, ψ). As H and H+ are finite dimensional,
this recursion relation trivially generates a unique solution.

The proof of Proposition 4 is based on

9By this we mean that each nonzero monomial in φ
(≥2)
(∗)bg has degree at least two.
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Lemma 7. For φ∗, φ ∈ H− and θ∗, θ ∈ H+ set

ψ̃(∗)(θ(∗), φ(∗)) = (bQ∗Q+Q)−1(bQ∗θ(∗) +QQ− φ(∗)

)

Then Ǎ
(

θ∗, θ; φ∗, φ
)

= Aeff

(

θ∗, θ; ψ̃∗(θ∗, φ∗), ψ̃(θ, φ); φ∗, φ
)

and

(∇φ(∗)Ǎ)(θ∗, θ;φ∗, φ)

= (∇φ(∗)A)
(

ψ̃∗(θ∗, φ∗), ψ̃(θ, φ);φ∗, φ
)

+Q∗
−Q (bQ∗Q +Q)−1

[

(∇ψ(∗)
Aeff)

(

θ∗, θ; ψ̃∗(θ∗, φ∗), ψ̃(θ, φ); φ∗, φ
)]

(10)

Proof. With the abbreviation ψ̃(∗) = ψ̃(∗)(θ(∗), φ(∗))

θ −Qψ̃ = θ −Q(bQ∗Q+Q)−1(bQ∗θ +QQ− φ
)

=
[

1l− bQ(bQ∗Q +Q)−1Q∗
]

θ − Q̌− φ+QQ− φ−Q(bQ∗Q +Q)−1
QQ− φ

=
[

1l− bQ(bQ∗Q +Q)−1Q∗
]

θ − Q̌− φ

+Q(bQ∗Q+Q)−1[(bQ∗Q+Q)−Q
]

Q− φ

=
[

1l− bQ(bQ∗Q +Q)−1Q∗
](

θ − Q̌− φ
)

ψ̃ −Q− φ = (bQ∗Q+Q)−1(bQ∗θ +QQ− φ
)

−Q− φ

= (bQ∗Q+Q)−1(bQ∗θ +QQ− φ− bQ∗QQ− φ−QQ− φ
)

= b(bQ∗Q +Q)−1Q∗
(

θ − Q̌− φ
)

Therefore

Ǎ
(

θ∗, θ; φ∗, φ
)

−Aeff

(

θ∗, θ; ψ̃∗, ψ̃; φ∗, φ
)

=
〈

θ∗ − Q̌− φ∗ , Q̌
(

θ − Q̌− φ
)〉

+
− b

〈

θ∗ −Qψ̃∗ , θ −Qψ̃
〉

+

−
〈

ψ̃∗ −Q− φ∗ , Q(ψ̃ −Q− φ)
〉

= b
〈

θ∗ − Q̌− φ∗ , O
(

θ − Q̌− φ
)〉

+

where, by Remark 2,

O =
[

1l− bQ
(

bQ∗Q +Q
)−1

Q∗
]

−
[

1l− bQ(bQ∗Q+Q)−1Q∗
]2

− bQ(bQ∗Q +Q)−1
Q(bQ∗Q+Q)−1Q∗

= b
[

1l− bQ
(

bQ∗Q+Q
)−1

Q∗
]

Q(bQ∗Q +Q)−1Q∗

− bQ(bQ∗Q +Q)−1
Q(bQ∗Q+Q)−1Q∗

= bQ
[

1l−
(

bQ∗Q +Q
)−1

bQ∗Q− (bQ∗Q+Q)−1
Q
]

(bQ∗Q+Q)−1Q∗

= 0

10



This proves the first statement. The second follows by the chain rule and the obser-
vation that ∇φ(∗)Aeff = ∇φ(∗)A .

Proof of Propositions 4 and 4’. The proof of Proposition 4’ is virtually identical to
that of Proposition 4.a,b,c, so we just give the proof of Proposition 4. Part (a)
follows immediately from (7) and (9). Now evaluate the conclusions of Lemma 7
at φ(∗) = φ̌(∗)cp(θ∗, θ)

)

. The formula for Ǎ in Lemma 7 directly gives part (b).
The right hand side of (10) vanishes upon this evaluation by parts (a) and (b)
of Definition 3. This shows that

(

φ̌∗cp(θ∗, θ) , φ̌cp(θ∗, θ)
)

is critical for the map

(φ∗, φ) 7→ Ǎ
(

θ∗, θ; φ∗, φ
)

, which proves part (c). Now

b− dimH+

∫

N×N

dµH(ψ
∗, ψ) e−A(ψ∗,ψ;φ

∗bg(ψ
∗,ψ),φbg(ψ

∗,ψ))+E(ψ∗ ,ψ)

=

∫

dµH+(θ
∗, θ)

∫

N×N

dµH(ψ
∗, ψ) e−b〈θ

∗−Qψ∗ , θ−Qψ〉+−A(ψ∗,ψ;φ
∗bg(ψ

∗,ψ),φbg(ψ
∗,ψ)) +E(ψ∗,ψ)

=

∫

dµH+(θ
∗, θ)

∫

N×N

dµH(ψ
∗, ψ) e−Aeff (θ

∗,θ;ψ∗,ψ;φ
∗bg(ψ

∗,ψ),φbg(ψ
∗,ψ))+E(ψ∗ ,ψ)

=

∫

N+×N+

dµH+(θ
∗, θ)

∫

N×N

dµH(ψ
∗, ψ) e−Aeff (θ

∗,θ;ψ∗,ψ;φ
∗bg(ψ

∗,ψ),φbg(ψ
∗,ψ))+E(ψ∗ ,ψ)

+

∫

H+×H+\N+×N+

dµH+(θ
∗, θ)

∫

N×N

dµH(ψ
∗, ψ) e−Aeff (θ

∗,θ;ψ∗,ψ;φ
∗bg(ψ

∗,ψ),φbg(ψ
∗,ψ))+ E(ψ∗,ψ)

Making the change of variables ψ∗ = ψ∗cr(θ
∗, θ) + δψ∗, ψ = ψcr(θ

∗, θ) + δψ in the
inner integral of the upper line and applying part (b) gives part (d).

From now on we assume that the function A(φ∗, φ) in the definitions of A and Ǎ
is of the form

A(φ∗, φ) = 〈φ∗, Dφ〉− + P (φ∗, φ) (11)

where

• P is a polynomial whose nonzero monomials are each of degree at least two and
• D a linear operator on H− such that both the operators (D + Q∗

−QQ−) and
(D + Q̌∗

−Q̌ Q̌−) are invertible. We define the “Green’s functions”

S = (D +Q∗
−QQ−)

−1 Š = (D + Q̌∗
−Q̌ Q̌−)

−1 (12)

We think of D as a differential operator, possibly shifted by a chemical potential.

Remark 8. In this setting, the background field equations (6) become

φ(∗) = S(∗)Q∗
−Qψ(∗) − S(∗)P ′

(∗)(φ∗, φ) (6’)

11



where P ′
∗(φ∗, φ) = ∇φP (φ∗, φ) and P

′(φ∗, φ) = ∇φ∗P (φ∗, φ). Similarly, the next scale
background field equations (8) become

φ̌(∗) = Š(∗)Q̌∗
−Q̌ θ(∗) − Š(∗)P ′

(∗)(φ̌∗, φ̌) (8’)

We now continue with our study of the critical field, following the plan of Remark
5.c. To describe the leading part of the critical field, we set

∆ = Q−QQ−SQ
∗
−Q : H −→ H (13)

From now on we assume that ∆ + bQ∗Q is invertible and define10 the “covariance”

C = (∆ + bQ∗Q)−1 : H −→ H (14)

Proposition 9. Assume that in the setting (11), each nonzero monomial of P is
of degree at least three. Then there exist unique formal background fields φ(∗)bg and

unique formal next scale background fields φ̌(∗)bg. They are of the form

φ(∗)bg(ψ∗, ψ) = S(∗)Q∗
−Qψ(∗) + φ

(≥2)
(∗)bg(ψ∗, ψ)

φ̌(∗)bg(θ∗, θ) = Š(∗)Q̌∗
−Q̌θ(∗) + φ̌

(≥2)
(∗)bg(θ∗, θ)

with φ
(≥2)
(∗)bg(ψ∗, ψ) and φ̌

(≥2)
(∗)bg(θ∗, θ) being of degree at least two. Furthermore, there

are unique formal critical fields with respect to φ(∗)bg. They are of the form

ψ(∗)cr(θ∗, θ) = (bQ∗Q+Q)−1(bQ∗θ(∗) +QQ− φ̌(∗)bg(θ∗, θ)
)

= bC(∗)Q∗ θ(∗) + ψ
(≥2)
(∗)cr(θ∗, θ)

)

with ψ
(≥2)
(∗)cr being of degree at least two.

Proof. The existence, uniqueness and forms of the formal background and next scale
background fields are proven as Lemma 6 was proven. The existence and uniqueness
of the formal critical field now follows from Lemma 6. The first representation of
the critical fields follows from parts (a) and (c) of Proposition 4’. For the second
representation, rewrite the equations (7) as

(bQ∗Q+Q)ψ(∗) = bQ∗θ(∗) +QQ− S
(∗)Q∗

−Qψ(∗) +QQ− φ
(≥2)
(∗)bg(ψ∗, ψ)

or

ψ(∗) = bC(∗)Q∗θ(∗) + C(∗)
QQ− φ

(≥2)
(∗)bg(ψ∗, ψ)

10We shall show, in Lemma 12, below, that C is the covariance for the fluctuation integral.
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The two representations of the critical field, ψcr, given in Proposition 9, combined
with the representation of φ̌bg, suggest a formula for bCQ∗. In Remark 10, below,
we give an algebraic proof of this formula, together with a number of representations
for the Green’s functions, S and Š, and covariance C. Then, in Lemma 12 below,
we analyze the fluctuation integral of Proposition 4.d in more detail.

Remark 10. Assume that D is invertible.

(a) ∆ =
(

1lH +QQ−D
−1Q∗

−

)−1
Q = Q

(

1lH +Q−D
−1Q∗

− Q
)−1

(b) Let R : H− → H and R∗ : H → H− be linear maps such that RD−1R∗ =
Q−D

−1Q∗
− and such that D +R∗QR is invertible. Then

[D +R∗QR]−1 = D−1 −D−1R∗∆RD−1

In particular
S = D−1 −D−1Q∗

−∆Q−D
−1

(c) Š =
[

S−1 −Q∗
−Q(Q+ bQ∗Q)−1QQ−

]−1
= S + SQ∗

− QCQQ−S

(d) C =
(

bQ∗Q+Q
)−1

+ (bQ∗Q+Q)−1 QQ−ŠQ
∗
−Q (bQ∗Q+Q)−1

(e) bC(∗)Q∗ =
(

bQ∗Q +Q
)−1

[

bQ∗ +QQ−Š
(∗)Q̌∗

−Q̌

]

Proof. (a) By Lemma 13, with V = H−, W = H, q = Q−, q∗ = Q∗
−, f = D and

g = Q

{

1l +QQ−D
−1Q∗

−

}−1
Q =

{

1l−QQ−(D +Q∗
−QQ−)

−1Q∗
−

}

Q= ∆

Q
{

1l +Q−D
−1Q∗

− Q
}−1

= Q
{

1l−Q−(D +Q∗
−QQ−)

−1Q∗
− Q

}

= ∆

(b) By part (a)
[

D +R∗QR
] [

D−1 −D−1R∗∆RD−1
]

= 1l +R∗

[

Q− (1l +QRD−1R∗)∆
]

RD−1

= 1l +R∗

[

Q− (1l +QQ−D
−1Q∗

−)∆
]

RD−1

= 1l

(c) By Remark 2

Q∗
Q̌Q = bQ∗Q

[

1l− (bQ∗Q+Q)−1bQ∗Q
]

= bQ∗Q
[

(bQ∗Q +Q)−1(bQ∗Q +Q)− (bQ∗Q+Q)−1bQ∗Q
]

= (Q+ bQ∗Q−Q)(bQ∗Q +Q)−1
Q

= Q−Q(Q+ bQ∗Q)−1
Q

13



Therefore

S−1 − Š−1 = Q∗
−QQ− −Q∗

−Q
∗
Q̌QQ− = Q∗

−Q(Q+ bQ∗Q)−1
QQ−

which gives the first representation of Š. For the proof of the second representation,
first observe that, by (13) and (14),

C−1(Q+ bQ∗Q)−1 = (Q+ bQ∗Q−QQ−SQ
∗
−Q)(Q+ bQ∗Q)−1

= 1l−QQ−SQ
∗
−Q(Q+ bQ∗Q)−1

so that
C = (Q+ bQ∗Q)−1

{

1l−QQ−SQ
∗
−Q(Q+ bQ∗Q)−1

}−1
(15)

Hence, by the first representation of Š,

[

S + SQ∗
− QCQQ−S

]

Š−1 − 1l

=
[

1l + SQ∗
− QCQQ−

][

1l− SQ∗
−Q(Q+ bQ∗Q)−1

QQ−

]

− 1l

= SQ∗
− Q

[

C
{

1l−QQ−SQ
∗
−Q(Q+ bQ∗Q)−1

}

− (Q+ bQ∗Q)−1
]

QQ−

= 0

which implies the second representation of Š.

(d) By Lemma 13 with q = QQ−, q∗ = Q∗
−Q, f = S−1 and g = −(Q+ bQ∗Q)−1

{

1l−QQ−SQ
∗
−Q(Q+ bQ∗Q)−1

}−1

= 1l +QQ−

[

S−1 −Q∗
−Q(Q+ bQ∗Q)−1

QQ−

]−1
Q∗

−Q(Q+ bQ∗Q)−1

= 1l +QQ−ŠQ
∗
−Q(Q+ bQ∗Q)−1

(16)

The second equality follows by the first representation of Š in part (c). Substituting
(16) into (15) gives the desired representation of C.

(e) By Remark 2

Q̌∗
−Q̌ = bQ∗

−Q
∗
[

1l− bQ(bQ∗Q+Q)−1Q∗
]

= bQ∗
−

[

1l− bQ∗Q(bQ∗Q+Q)−1
]

Q∗

= bQ∗
−Q(bQ∗Q+Q)−1Q∗

14



Therefore by part (d)

bC(∗)Q∗ =
(

bQ∗Q +Q
)−1[

bQ∗ + bQQ−Š
(∗)Q∗

−Q (bQ∗Q+Q)−1Q∗
]

=
(

bQ∗Q +Q
)−1

[

bQ∗ +QQ−Š
(∗)Q̌∗

−Q̌

]

Define, in the setting of Proposition 4, δφ(∗)bg

(

ψ∗, ψ, δψ∗, δψ
)

by

φ(∗)bg

(

ψ∗ + δψ∗, ψ + δψ
)

= φ(∗)bg

(

ψ∗, ψ
)

+ δφ(∗)bg

(

ψ∗, ψ, δψ∗, δψ
)

(17.a)

and set

δφ̌(∗)bg

(

θ∗, θ, δψ∗, δψ
)

= δφ(∗)bg

(

ψ∗cr(θ∗, θ) , ψcr(θ∗, θ) , δψ∗ , δψ
)

(17.b)

With the φ̌(∗)bg(θ∗, θ) of Proposition 4 and (9),

φ(∗)bg

(

ψ∗cr(θ∗, θ)+ δψ∗, ψcr(θ∗, θ)+ δψ
)

= φ̌(∗)bg(θ∗, θ) + δφ̌(∗)bg

(

θ∗, θ; δψ∗, δψ
)

(18)

Also define δφ̌
(+)
(∗)

(

θ∗, θ; δψ∗, δψ
)

by

δφ̌(∗)bg

(

θ∗, θ; δψ∗, δψ
)

= S(∗)Q∗
−Q δψ(∗) +δφ̌

(+)
(∗)

(

θ∗, θ; δψ∗, δψ
)

(19)

Remark 11. By Remark 8, the fields δφ̌(∗)bg

(

θ∗, θ, δψ∗, δψ
)

introduced in (17) obey

δφ̌(∗)bg = S(∗)Q∗
−Q δψ(∗) − S(∗)P ′

(∗)(φ∗, φ)
∣

∣

∣

φ(∗)=φ̌(∗)bg(θ∗,θ)+δφ̌(∗)bg

φ(∗)=φ̌(∗)bg(θ∗,θ)

In particular, if P = 0, then δφ̌(∗)bg = S(∗)Q∗
−Q δψ(∗). This is the motivation for the

definition of δφ̌
(+)
(∗) in (19).

Lemma 12. The function δA appearing in the exponent of the fluctuation integral
F(θ∗, θ) of Proposition 4.d is

δA(θ∗, θ; δψ∗, δψ) =
〈

δψ∗, C
−1 δψ

〉

−

∫ 1

0

dt
〈

δψ∗ , QQ− δφ̌
(+)

(

θ∗, θ; t δψ∗, t δψ
)〉

−

∫ 1

0

dt
〈

QQ− δφ̌
(+)
∗

(

θ∗, θ; t δψ∗, t δψ
)

, δψ
〉
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Proof. Set B(ψ∗, ψ) = A
(

ψ∗, ψ;φ∗bg(ψ∗, ψ), φbg(ψ∗, ψ)
)

. As

(

∇φ∗A
)(

ψ∗, ψ;φ∗bg(ψ∗, ψ), φbg(ψ∗, ψ)
)

=
(

∇φA
)(

ψ∗, ψ;φ∗bg(ψ∗, ψ), φbg(ψ∗, ψ)
)

= 0

we have

(

∇ψ∗
B
)(

ψ∗, ψ
)

=
(

∇ψ∗
A
)(

ψ∗, ψ;φ∗bg(ψ∗, ψ), φbg(ψ∗, ψ)
)

= Q
(

ψ −Q− φbg(ψ∗, ψ)
)

(

∇ψB
)(

ψ∗, ψ
)

=
(

∇ψA
)(

ψ∗, ψ;φ∗bg(ψ∗, ψ), φbg(ψ∗, ψ)
)

= Q
(

ψ∗ −Q− φ∗bg(ψ∗, ψ)
)

Therefore

B(ψ∗ + δψ∗, ψ + δψ)− B(ψ∗, ψ)

=

∫ 1

0

dt
[

〈

δψ∗ , (∇ψ∗
B)(ψ∗ + tδψ∗, ψ + tδψ)

〉

+
〈

(∇ψB)(ψ∗ + tδψ∗, ψ + tδψ) , δψ
〉

]

=

∫ 1

0

dt
〈

δψ∗ , Q(ψ + tδψ)−QQ− φbg(ψ∗ + tδψ∗, ψ + tδψ)
〉

+

∫ 1

0

dt
〈

Q(ψ∗ + tδψ∗)−QQ− φ∗bg(ψ∗ + tδψ∗, ψ + tδψ) , δψ
〉

=
〈

δψ∗,Q δψ
〉

+
〈

δψ∗,Qψ
〉

+
〈

ψ∗,Q δψ
〉

− I

where

I =

∫ 1

0

dt
〈

δψ∗ , QQ− φbg(ψ∗cr + tδψ∗, ψcr + tδψ)
〉

+

∫ 1

0

dt
〈

QQ− φ∗bg(ψ∗cr + tδψ∗, ψcr + tδψ) , δψ
〉

Since

Aeff

(

θ∗, θ;ψ∗, ψ;φ∗bg(ψ∗, ψ), φbg(ψ∗, ψ)
)

= b 〈θ∗ −Qψ∗, θ −Qψ〉+ + B(ψ∗, ψ)

we get, using Proposition 4,

δA = b 〈Qδψ∗ , Q δψ〉+ − b 〈Qδψ∗ , θ −Qψcr〉+ − b 〈θ∗ −Qψ∗cr , Q δψ〉+
+
〈

δψ∗ , Q δψ
〉

+
〈

δψ∗ , Qψcr

〉

+
〈

ψ∗cr , Q δψ
〉

− I

= 〈δψ∗ , (bQ
∗Q+Q) δψ〉+ 〈δψ∗ , (bQ

∗Q +Q)ψcr − bQ∗θ〉

+ 〈(bQ∗Q +Q)ψ∗cr − bQ∗θ∗ , δψ〉 − I

= 〈δψ∗ , (bQ
∗Q+Q) δψ〉+

〈

δψ∗ , QQ−φ̌bg

〉

+
〈

QQ−φ̌∗bg , δψ
〉

− I
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= 〈δψ∗ , (bQ
∗Q+Q) δψ〉 −

∫ 1

0

dt
〈

δψ∗ , QQ−

[

φbg(ψ∗cr + tδψ∗, ψcr + tδψ)− φ̌bg

]〉

−

∫ 1

0

dt
〈

QQ−

[

φ∗bg(ψ∗cr + tδψ∗, ψcr + tδψ)− φ̌∗bg

]

, δψ
〉

=
〈

δψ∗, (bQ
∗Q+Q−QQ−SQ

∗
−Q) δψ

〉

−

∫ 1

0

dt
〈

δψ∗,QQ− δφ̌
(+)

(

θ∗, θ; tδψ∗, tδψ
)〉

−

∫ 1

0

dt
〈

QQ− δφ̌
(+)
∗

(

θ∗, θ; tδψ∗, tδψ
)

, δψ
〉

By the definition of C in (14), this is the desired representation.

In the course of the arguments above the following simple algebraic observation
was used several times.

Lemma 13. Let V and W be vector spaces and let q : V → W , q∗ : W → V ,
f : V → V and g : W → W be linear maps. Assume that f and f + q∗g q are
invertible. Then 1lW + gq f−1q∗ and 1lW + q f−1q∗g are also invertible and

(

1lW + gq f−1q∗
)−1

= 1lW − gq(f + q∗gq)
−1q∗

(

1lW + q f−1q∗g
)−1

= 1lW − q(f + q∗gq)
−1q∗g

Proof. Replacing q by gq for the first line and q∗ by q∗g for the second, we may
assume that g = 1lW . Write 1lW = 1l. Then

(

1l− q(f + q∗q)
−1q∗

)(

1l + qf−1q∗
)

= 1l + q
[

1l− (f + q∗q)
−1f − (f + q∗q)

−1q∗q
]

f−1q∗

= 1l

and similarly
(

1l + qf−1q∗
)(

1l− q(f + q∗q)
−1q∗

)

= 1l .

17



References

[1] T. Balaban. The Ultraviolet Stability Bounds for Some Lattice σ–Models and
Lattice Higgs–Kibble Models. In Proc. of the International Conference on Math-
ematical Physics, Lausanne, 1979, pages 237–240. Springer, 1980.

[2] T. Balaban. A low temperature expansion and “spin wave picture” for classical
N -vector models. In Constructive Physics (Palaiseau, 1994), Lecture Notes in
Physics, 446, pages 201–218. Springer, 1995.

[3] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz. Complex Bosonic Many–
body Models: Overview of the Small Field Parabolic Flow. Preprint, 2016.

[4] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz. The Small Field Parabolic
Flow for Bosonic Many–body Models: Part 1 — Main Results and Algebra.
Preprint, 2016.

[5] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz. The Small Field Parabolic
Flow for Bosonic Many–body Models: Part 2 — Fluctuation Integral and Renor-
malization. Preprint, 2016.

[6] J. Dimock. The renormalization group according to Balaban – I. small fields.
Reviews in Mathematical Physics, 25:1–64, 2013.

[7] K. Gawedzki and A. Kupiainen. A rigorous block spin approach to massless
lattice theories. Comm. Math. Phys., 77:31–64, 1980.

[8] L.P. Kadanoff. Scaling laws for Ising models near Tc. Physics, 2:263, 1966.

[9] K.G. Wilson. The renormalization group: critical phenomena and the Kondo
problem. Rev. Mod. Phys., 47:773, 1975.

18


