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Abstract

This paper is a contribution to a program to see symmetry breaking in a
weakly interacting many Boson system on a three dimensional lattice at low
temperature. It is part of an analysis of the “small field” approximation to the
“parabolic flow” which exhibits the formation of a “Mexican hat” potential
well. Here we state the main result of this analysis, outline the strategy of
the proof, which uses a renormalization group flow, and perform the first,
algebraic, part of a renormalization group step.

*Research supported in part by the Natural Sciences and Engineering Research Council of
Canada and the Forschungsinstitut fiir Mathematik, ETH Ziirich.



Contents

1

Introduction

1.1 The model and dominant contributions to the effective action

1.2 The stationary phase approximation . . . . . ... .. ... .. ...
1.3 The perturbative corrections . . . . . . . . . ... ... ... ... ..
1.4 Norms for measuring the size of the perturbative corrections . . . . .
1.5 The Starting Point Setup . . . . . . . . . .. ... ... ...
1.6 The main results . . . . . . . . . . ...
1.7 Outline. . . . . . ..

Scaling
The Background Field and its Variations
One Block Spin Transformation — The Algebra

Compendium of Definitions

A1 Lattices . . . . . . . .
A2 Scaling . . . . . ..
A.3 Block Spin Operators . . . . . . . . . . . ... ...
A.4 Differential and Related Operators . . . . .. .. ... ... .....
A5 Norms . . . . . . . .

Symmetries

C Inequalities for Parameters

Rewriting the Output of the Ultraviolet Flow

D.1 TheModel . . . . . . . . o
D.2 The Output of [7] . . . . . . . .. .. .
D.3 The Rewriting . . . . . . . . . . ..

30

34

44
44
45
46
46
47

50

53



1 Introduction

1.1 The model and dominant contributions to the effective
action

An interacting many Boson system on a three-dimensional lattice in thermodynamic
equilibrium is characterized by a single particle “kinetic energy” operator h on this
lattice!, a translation invariant two-body potential, v that describes the particle—
particle interaction, the temperature 7' > 0 and the chemical potential p. This
paper is a contribution to a program that is to provide a mathematically rigorous
investigation of the partition and correlation functions of such a gas of bosons. For
simplicity, we assume that the underlying lattice has been scaled to be the unit lattice
Z3. We also assume that both the two-body potential, v and the kernel of h decay
exponentially in the distance between their arguments, and that v is the kernel of a
strictly positive operator.

It is a standard strategy for the investigation of such a system to consider it as a
limit of the correponding systems with a periodic cutoft Ly, as this infrared cutoff
tends to infinity. The system with periodic cutoff Ly, is defined on the finite lattice

X =73/ L, 7?

and is characterized by the periodizations? h of h and v of v.
In previous papers we started an investigation of the partition function of the

periodized system
Tre & (H-#N)

where H is the second quantized Hamiltonian and N is the number operator. In
[3, 4], we represented this partition function in terms of coherent state functional
integrals (see also [25]) and then, in [7], using “decimation”, controlled the “temporal
ultraviolet limit” to obtain the following representation for the partition function.
(The precise hypotheses are specified in [7, §2].)

There exists a constant § > 0 and a function Iy(a, ) of two complex valued

!The most commonly used h = —ﬁA, where A is the lattice Laplacian.
2The periodization of a translation invariant function f(&;,---,&,) on (z3)" is the function on
X™ that maps (x1, -+ ,%,) € X" to >, f(&1,-++,&), where & is an arbitrary point in z* whose
€3, én
[€:]=x;
class [§1] in X equals x;. The periodization of an operator is the operator whose kernel is the
periodization of the given operator.



fields «, and § on X such that

trean 0o = [ T] [ [ fosfiocts) oo 1oz o) (LD
xXE
T€OZN(0,1/kT]

One can write [y as the sum of a dominant part IG(SF), called the pure small field
contribution, and terms, indexed by proper subsets of X, which are nonperturbativel
small®, exponentially in the size of the subsets. The properties of the function IQ(SF
are reviewed in §D.1 and §D.2.

We want to control the integrals in the representation (1.1) of the partition func-
tion uniformly in small temperature 7" and lattice size L, to rigorously establish the
phase transition in the many particle system of bosons, when the chemical potential
1 lies sufficiently above a certain critical value. This phase transition is intimately
related to the formation of a “mexican hat” shaped potential well in the effective
action. See, for example, [19] and [28, §19] for an introduction to symmetry breaking
in general, and [1, 17, 20, 26] as general references to Bose-Einstein condensation.
See [16, 18, 24, 27| for other mathematically rigorous work on the subject.

[G(SF

In this paper, we replace the function I, in (1.1) by ) that is, we study

dar (x)*Ndar (X))  —ar(x)*ar(x SF *
ST [ I etppioss) cmetoren| 150y ) (12)

xeX
T€0Z0(0,1/kT]
Using this model, we exhibit the mechanism that leads to the onset of the potential
well. A full fledged large field /small field analysis of (1.1) will be performed later.
To simplify the discussion, we assume that Ly, and L, = ﬁ are powers of
some odd natural number L > 2. After rescaling the “temporal lattice” 0Z /=7 to
Z/ 5=, (1.2) can be viewed as a functional integral over fields on the lattice

X = (Z/LpZ) x (7L, Z?)

For a point = = (x9,x) € Ay, we call zy its time and x its spatial component. The
“real inner product” for functions f,g on Xy is (f,9)y = D_,cx, f(x)g(x).

In Proposition D.1, we show that, up to a normalization constant, the integral
(1.2) can be written in the form

/[ I W] AW )y o (1)) (1.3)

r€Xy

3We call a function nonperturbatively small, if it is of order O(e~'/II") for some norm on v
and some € > 0. A precise bound is given in [7, Theorem 2.18]
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where

Ao(u, V) = = (Yu; Dotp)g — Vo(thu, V) + o (Ps; ¥)g + Ro(thn, ¥) + Eo (s, ) (1.4)

and

e Dy = 1 — e — e g, with hy = Oh and 9, the forward time derivative
(Qo.f) (2o, x) = f(xo + 1,%) — f(0, %),

o Vo(tu, ) = % > Volxy, o, 3, 24) Vi (1) (22) s (23)10(24) is a quartic mono-

T1, ", T4E€EX)
mial whose translation invariant kernel Vj is determined by v and h. It is invariant

under z; <> x3 and under x5 <> x4. Its average vo = > Vo(0, 29, x5, 24) 1S
T2,r3,T4EX|
positive. The kernel Vy(z1, xq, x3,24) is the spatial periz(;dgizzetign of a translation
invariant, exponentially decaying kernel V{ on ((Z/ L, Z) x Z3)4.
e /i is close to Gpu.
o Ro(s, 1) and Ey(v, 1) are perturbatively small, particle-number preserving func-
tions. For the different characteristics and roles of Ry and &y, see Proposition D.1

and Theorem 1.17.

e xo(?) is a “small field cut off function”.
ho acts only on the spatial variables of a function of = = (z4,x) € Ay. Observe
that ©* denotes the complex conjugate of the field v, while v, and 1) are treated as
two independent complex valued fields on Xj.
More details, including precise estimates, are given in Proposition D.1.

For a constant field ¢(x) = ¢, the dominant part, —Ay(¢*, ), of (minus) the
action in (1.3), reduces to

Vo(?ﬂ*,@b) — Mo (W, ¢>o = |Xo| [%Vo|¢|4 - M0|¢|2} = |X0| [%VO(WP - 5_3)2 - %}

and has a potential well. If pg is of the order of vy, this well is quite shallow.
Using block spin transformations, as in [23, 2, 21], (see Definition 1.1 below) we will
successively perform parts of the integral and show that the effective action after
these block spin transformations has a much better developed potential well. We
expect that the result of this paper will be the starting point for an analysis that
is adapted to the symmetry breaking caused by the degenerate ground state in this
potential well.

We believe (see the discussion before [13, Lemma A.1]) that the scenario described
above holds whenever the chemical potential p is bigger than some critical value that,
to leading order in v, should be

B3k V(0)+v(k)
2/]R3/27rz3 (2m)3 ¢h(k)/kT _1 (1-5)




where h(k) and v(k) are the Fourier transforms of h(x,0) and v(x,0). See (1.19),
Lemma D.2 and Corollary D.3. Also observe that (1.5) converges to zero as  — oo.
In this paper we assume v is small and that u is bigger than (1.5) by a number that
is at least a norm of v raised to a power that is a bit bigger than one. For details
see (1.19).

After n block spin (and scaling) transformations, the partition function will be
represented by a functional integral on the lattice®

X" = (2 x 7)) (B x L2 7?)

where L > 2 is the odd natural number chosen above. The asymmetry in the time
and spatial variables arises from the “parabolic scaling” of Definition 1.3, below.

Definition 1.1 (Blockspin Transformation). Fix a nonnegative even function ¢ in
LY 7Z x 7).

(a) For a field ¢ on XO(") define the “averaged ” field Qv on

X0 = (127 x L7%) ) (527 x 2273)

L2n

by
(Q@Y)(y) = > alx)v(y+[z])

TEL XT3

where [z] denotes the class of x € Z x Z* in the quotient space XO(") .

(b) If F(is,1) is a function of complex valued fields ,,1 on Xo(n), we define
the block spin transform of F (with respect to ¢ and a constant a > 0) as the
function

(TF)(0,0) = gy [ T] “pgeta]e0-0v0-20 pyr gy
T

xeXén)
of the fields 6,,0 on X" . Here, for any two fields f,g on X"V

(fLo =L X flwely)

+1
yex "ty

and the normalization constant is Nj(rn) = [ [H

We choose a = 1.

()" Ndb(y) | —aL=>(0%,0)
yex T o € .

4We shall define a family of lattices Xj(") in Definition 1.5.
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Remark 1.2. (a) As

1 do(y)* ndo —aL=2(6"—Qu*,0—Q) _
IZW/[H 40010 ] el =000

+1)
yex

for all functions F(t,,1) fields on X"

/[H dy(z /\dw(x F(*, ) = / H /\d6(yj| (TF)(6",0)

SCEX( n) EX(n+1)
(b) We make a specific choices of ¢ in Definition 1.11.d. The main result, Theorem
1.17, will apply for all sufficiently large L.

The lattice XY;H) is coarser than the unit lattice XO("). We choose to scale it
back to a unit lattice.

Definition 1.3 (Scaling). Let L be the linear isomorphism
L: x5 xoth (z0,x) — (L%, LX)
For a field 6 on XﬁTrl), we define the scaled field
(S)(z) = L*? 6(Lx)
on X" For a function F(6,,0) of fields on X" we define the function
(SF)(W,, U) of fields on X" by
(SF)(¥,, V) = F(S™'0,,S7'D)
Remark 1.4. (a) For any function F(0,,0) of fields on XE”H)

/ H de(y Ado(y ] F(6",0) = ”(nﬂ)/ H d\p(;p )*Ad¥ (z }(SF)(\II* )

EX("+1) GX("Jrl)

(b) The exponents 3 of L3/?6(Lz) and 2 of L2z, in the definition of S have been
chosen so that

(", 000)y = (ST, 0(STM)) (W AY)y = (ST ATY))

That is, (¢, 0pt), and (¢*, A)), are “marginal”. Because the time derivative d,
is first order while the spatial Laplacian A is second order, we refer to Definition
1.3 as “parabolic scaling”.



Applying Remarks 1.2.a and 1.4.a to (1.3) we see that, for any natural number
n with L™ < min{\/Lp,, L},

/[ I1 W] Ao (4 ) /[H dip(x)* Adip(x) Adw(x ] [(ST)" (Ao)}(w*’¢) (1.6)

r€Xy
xEX(n)

with Z,, = [T, 3% In this paper we argue that, for n < n, (with n, specified
in Definition 1. 11 b), the function [(ST)"(e)](¢*, 1)) has — up to errors which
can reasonably be expected to be nonperturbatively small (see [14] or [8, §2.2.2]) —
a logarithm whose dominant term, A,,, described in Definition 1.5.b below, exhibits
a much deeper potential well. See (1.8).

The representation (1.6) of the partition function is built by iterating block spin
transformations. We use stationary phase to analyze each block spin integral, as in
Definition 1.1.b, in the integrand of (1.6). It is then natural to express the (dominant
part) of the integrand in terms of the composition of the stationary phase critical
fields for the various block spin transformations. We shall call this composition the
“background field”. The definition that we are about to give for the background field
does not appear to have anything to do with compositions. The “composition law”

Proposition 3.4.b shows that the background field is indeed a composition of critical
fields.

Definition 1.5 (Background field and dominant part of the action).

(a) For j > —1 and n > 0 define the lattices

X = (L) g T) < (52 e )

The subscript in X determlnes the “coarseness” of the lattice — nearest

nelghbour points are a distance LZJ apart in the time direction and a distance

ﬁ apart in spatial directions. The superscript in X () Jetermines the number

of points in the lattice — |X j | = |X|/L%™ for all j. On Xj( , we use the
integral notation fX(n) du = % Zuex(") . The maps
i i

L:x™ - x™ (ug, 1) — (L2ug, Lu)

) as a sublattice of X" , for

are linear isomorphisms. We routinely view X (n ] +k

cach 1 < k < n. We also abbreviate X" by



;WL o L }XTE”& AWl 0 L
X L XM L XM L L PGP L Xrgﬂ‘ L
" % w7 L L 7Lyt L

Xiﬁ ‘_Xo( B qu R quﬁ )

We denote by ’Hg»") the space of fields on Xj("), endowed with the real inner
product

(a1, 9); = /X(.") ag(u) as(u) du

Set H, = O For a field a € Hg»n), define the field L.(a) € 7—[;’?1 by
L.(a)(Lu) = a(u), and the field QWa € HI"Y by

QVa=L7QLia

Set
Qn=0QWo. .0Q":H, =H? ’H((]")

(); is an iterated averaging operation that maps the space Hﬁ"_j ) of fields on
the fine lattice Xj("_j ) to the space H" of fields on the unit lattice X™ .

L, L
0 Ho 5 H, H,
1
%m‘{ Hm/
-1 0 Qn



The “horizontal” operators L, and L"~! are isomorphisms.
The operator D,, on fields ¢ € H,, on A&, is defined by

D, = L* L™ D,L"

For p € C, fields ¢,,¢ € 7-[(()") and ¢,, ¢ € H,, and a quartic monomial V in
the fields ¢, ¢, define, for n > 1,

A (e, Gur 1 V) = (e — Quber (6 — Qud)), + /X 62(u) (Do) (1) du

+V(0:,0) = | du(u) o(u) du
_'_

Xn

+V(0s,0) — 11 (s, 0),,

(1.7)
where .
= -1 .
a(l+ Y 7Q;Q7) if n > 2
Y= j=1
al ifn=1
and ()} denotes the transpose of ; with respect to the “real” inner product
<.f1a f2>] .

For n =0, set

AO(Q/}*’ ’QD,,U, V) = <¢*7 D0w>0 + V(¢*>w) - <w*a ¢>0

In the case n = 0, we shall use V =V and pu = pg so that Ap is the dominant
part of the action Ag of (1.4). For n > 0 we shall use, in A4,, a quartic monomial
V that is a perturbation of

Véu)(%,cb) = %/){4 duy - - - duy Véu)(ubuz,umw) D (ur) P(uz) Pu (uz)P(us)

n

where
V) (g, ug, ug, ug) = LM Vo (L uy, Lug, L ug, L uy)

is the kernel Vj rescaled® to scale n. For pu we will use a “renormalized chemical
potential” u,, which will be described Theorem 1.17.

SFor the origin of the L™ see [13, Lemma C.2].
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(c) In Proposition 1.14 and [15, Proposition 2.1], we solve, for n > 1, the background
field equations

_An(¢*7w7¢*7 ¢7M7V) = g_¢An(¢*7¢7 ¢*7¢7,U’7V) =0

We show that, for 1., 1 sufficiently near 0 € 7-[(()"), € C sufficiently small, and
V sufficiently small, there are fields

Gan (Vs ¥, 11, V), On(Vs, ¥, 1, V)

such that ¢, = Qun(Vs, ¥, 1, V) , & = &n(1s, 1, 1, V) solves these equations.
The maps® (¢, ¥, 1, V) = dpon(Us, 1, 1, V) are analytic and are uniquely de-

termined by this property. They are called the background fields.

We shall show that for all 0 < n < n,, with the number n, specified in Definition
1.11.b, below, the dominant contribution to [(ST)"(eAO)} (¢*, 1) is of the form

exp{—An(@b*,@b, ¢*n(w*a¢>ﬂmvn)a¢n(¢*>waﬂnavn)> ,Unavn) +pn(¢*,¢)}xn(¢*>¢)

with a number pu, , which we call the Tenormalzzed chemical potential at scale n, a
quartic monomial V), close to the monomial V' of Definition 1.5.b, which we call
the renormalized interaction at scale n, a “perturbative correction” p,(1* 1), and
a “small field cut off function” x, which is discussed in [14]. The renormalized
chemical potential p, will grow with n like L**(ug — p.); see Theorem 1.17.

For constant, not too big, fields ¥(x) = ¢ and v¥.(z) = ¥*, the background
field ¢,, is again constant, again obeys ¢., = ¢} and is approximately equal to .
See [15, Remark 1.1]. So (¢, — Qnés, Q, (v — Qn¢)>0 ~ 0, and, in this case, the
dominant part of the effective action A, (Vs ¥, Gun, Gn, fn, Vi)

o An = BRI — o = S (- L) - L (19

has a much better developed potential well.

1.2 The stationary phase approximation

We want to argue that for all 1 <n < n,, and small fields v, a good approximation

o [(ST)"(e®x0)](¥*, ) is of the form

exp { = An (1,0, Gun, G 1 Vi) + 26", ) bn (07, 0) (1.9)

5We routinely use the “optional *” notation Q(x) to denote “ay or .

11



with the background fields

¢*n = QS*N(w*? wa ,una Vn) ¢n = gbn(,lvb*? wa ,una Vn)

as in Definition 1.5, with the renormalized chemical potential u,, and the renormal-
ized interaction V), as above, and with a “perturbative correction” p, (s, 1) which
is an analytic function of the small fields ), ¥ . To substantiate this claim, we will
prove, that up to errors which can be expected to be nonperturbatively small,

(ST) (exp { = An (67,8, G D, pin, Vi) + P87, 9) a6, 0))

is again of the form (1.9), with n replaced by n + 1.
When n > 1, application of the block spin transformation to the function (1.9)
leads to the integral

1 [ H dw(x)*/\dw(x)} e_aL72(6*_Qw*76_Qw>71_An(¢*7¢7¢*n7¢n7Nnyvn)'f‘Pn(d}*yw)Xn

(n) 27
e xeXén)
(1.10.a)
Similarly, when n = 0, application of the block spin transformation to the function
ey leads to the integral

d *Ad —aL=2(0.—Qvy™*,0— _ . —Ao(W* 2, o, Vo)+Ro(*, Eo(v™,
@[H/ o)A w(m} 0L 20 QUT 0= Qu) 3~ Ao(" a0, Vo) + R0 ) +E0 (U7 ).

reXp

(1.10.b)

We compute the dominant contributions to the integrals (1.10.a,b) by a “station-

ary phase” type calculation. The first step is to calculate the approximate critical

point of the integrand. In Proposition 1.15, below, and Proposition 3.4.a, we prove
that the critical field equations’

Vw*{% <9*_ Qw*’ 9 - Qw)—l + An(w*a ¢7 ¢*na gbnn“%a Vn)} - 0
vw{% <9*_ Qw*’ 9 - Qw)—l + An(w*’ ¢7 ¢*na gbnn“%a Vn)} = 0

have a solution

(1.11)

¢*n(9*’9aun>vn) ) ¢n(9*a9aun>vn)
for (6.,0) in a neighbourhood of the origin in 7—[(_"1+1) X 7—[(_"1+1) )

"When, n = 0, drop the arguments ¢.,,, ¢, from A,,.

12



Typically, ¥, (04, 0, pin, Vy) is not the complex conjugate of 1, (0., 0, ti,, Vy), even
when 6, = 60*. Therefore we consider the integral (1.10) as the integral of the
holomorphic differential form

% )e—aL72<9*—Q¢*79—Q¢>71—An(¢*7¢7¢*n7¢manvn)'i‘iﬂn(iﬁ*ﬂ/’) d’l,[)*(.ig)/\ddi(m) (1 12)
N ) :
: :(:EXO(n)

over part of the real 2|X0(")|fdimensional set { (s, ) ‘ Yo = " } in the complex
space H x H . The change of variables

Ui = (0, 0, i, Vi) + 0000 b = (05,0, 110, Vi) + 60 (1.13)

maps the domain of integration to an appropriate subset, I,,(0.,8) of

{00, 00) € HY x H | 8. = 00" + 100 (62,0, 1, V)" = Von (04, 0, 1, Vi) }

'VVe Wl“i(e the integral (]_]_0) asS
/
ln(e*ﬂ)

where @,, is the holomorphic differential form obtained from (1.12) through the sub-
— (09, (2 Q*Q+AM)5y) 11 dops (z) Adoy ()

21

stitution (1.13). The leading part of @, is e
:(:EXO(n)
where

A _ {(ﬂannD;l@;)‘lan itn>1

VIO Vi) 1.14
Dy ﬁnzo} " " A

See Lemma 4.1 and [12, Lemma 12]. In [10, Corollary 4.5] we show that the operator
(2Q°Q + A™) is invertible. To diagonalize the quadratic form in the resulting
Gaussian integral, let D™ be an operator square root of

on — (&Q°Q + A1 (1.15)

Denote by wy, (0,0, pi,; pn) the differential form (in the fields (., on XO(") ) obtained
from w,, through the second substitution

o, = D(n)*c* S = D(n)c

Note, again, that D™* is the transpose of D™ . As in [7], [6, Appendix A] and [8,
§2.2.1] we construct a (2|X0(")| + 1)-dimensional set ) whose boundary consists of

13



o { (¢Q) | (DM, DMC) € 1,(60..,0) }

e B,={ (GO |G=¢, [C@)| <rpforallze ™}
e components on which we would expect w, (6,0, it,;p,) to be nonperturbatively
small.

Here, r, behaves like one over a very small power of a norm of V, . See Def-
inition 1.11.c. Applying Stokes Theorem to the holomorphic — and hence closed
— differential form, we expect, as in part (c) of [8, §2.2.2], that the difference be-
tween ’]1"(e‘A”(¢*’w’¢*”’¢”’“"’V”)er”(w’w)xn) and an wWn (04, 0, ty; pn) is nonperturba-

tively small. See [14, Step 3].

Definition 1.6 (Approximate Blockspin Transformation). Let F'(¢,,%) be an an-

alytic function of complex valued fields ., on Xo(n) . The approximate blockspin
transform at scale n of F' (with respect to ¢, the constant @ > 0 and the radius r,
and the chemical potential p and quartic interaction V) is

(TS F) (0,0 1, V)

_L[H d((m)*/\.dg‘(x)]6—aL*2<€*—Q1lJ*,€—Q1/J)71 Fab,, )

- Nq%n) 271

Ya=wn (0%,0,u,V)+D(1)* *
me?‘o(n)IC(:v)ISrn Y=pn (6,0,1,V)+D (M) ¢

where N’E‘n) = mNrﬁn) .
As said above, we expect the difference between

’]T (6_An(7/1* RURIN O Mnyvn)'f‘Pn(d’* ’w)Xn) and ’]TgSF) (6_An(w*ywy¢*m¢m N7L7V7L)+Pn(7/1* 7w)>

to be nonperturbatively small.
Our main result, Theorem 1.17, is a representation for

((ST S o (STS Yo+ 0 (S’]I‘(()SF))) (er) (1.16)

n—1

where the starting point e is the output (1.3) of the ultraviolet flow, and n < n,,.

1.3 The perturbative corrections

As said before, we shall show that, for n < n,, (1.16) has a logarithm, whose dom-
inant term is of the form —A, (V" ¥, un, On, tin, Vs) with renormalized chemical

14



potential p, and a renormalized quartic interaction V,, close to VT(L“). We will write
the (perturbative) correction to it in the form

RTL (¢*TL(¢*7 w7 /’LTH Vn)7 ¢TL(¢*7 ¢7 /"L’I’H VTL)) + 57’L(w*7 ¢)

where ¢,,, ¢, are the background fields of Definition 1.5, R, (¢x, ¢) is a low degree
polynomial in fields on the fine lattice &,,, and &,(v.,) is an analytic function
on a neighborhood of the origin in 7—[(()") X 7—[(()") . Some motivation for the need to
distinguish between “high degree” and “low degree” monomials and for our choice of
the particular form of the “low degree monomials” is provided in [13, Remark 5.4].

Remark 1.7. We choose to express the “low degree” parts, A, and R,, of the
effective action as functions of the background field ¢, which are in turn functions
of 1., rather than directly as functions of ¢(,). Here is a brief motivation. During
the course of each renormalization group step we perform an integral over . To
do so, we make the change of variables, ¢ = 1, + d1b, (see (1.13) ), where ¢, is
a critical field. The leading part of the critical field is a linear operator, which is
not particularly small, acting on the field “¢» of the next scale” (which is a scaled
version of ). See Proposition 1.15, below. If we simply substitute this leading part
into a monomial in 1), of degree p, we again get a monomial of degree p, but our
bound on the kernel of the monomial can grow because of the linear operator. On
the other hand if we substitute the full critical field into a monomial in @y, (1, 1),
we get, by the composition law Proposition 3.4, followed by the appropriate scaling,
the monomial in ¢,)n41(1«, 1)) with the identical kernel.

On the other hand, we choose to express the “high degree” part, &,, of the effective
action directly as a function of v,). If we were to express it, instead, through the
background field ¢, it would be defined on the fine lattice A, but would only be

translation invariant with respect to the unit sublattice Xo(n). This would complicate
the process of localization and renormalization.

The functions &,(1s,1) and R, (¢, ¢) will depend on the fields in their ar-
guments both directly and through partial derivatives of the fields. To make this
precise, we write

’)]_ngn) = { o= (OK, {Oéy}z/:(],l,2,3) } Q, 0y € Hgn) } (117)
We shall write

En(ta, ) = En (s, {0,0.3), (¥, {0,0)))
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with an analytic function &, on a neighbourhood of the origin in ﬁén) X ﬁén) . In
the next subsection we describe how we measure the size of &,. Similarly we shall
write

with a polynomial R,, on HY x HO Here, for a field a on Xj(n) and v =0,1,2,3
we define the forward derivative by
L% (a(z + +5e0) —alr)) ifv=0
Bu)(a) = 4 1L+ ) ) v
Li(a(z+ Fe,) —a(z))  ifrv=1,23
where e, is a unit vector in the v** direction. To make this precise we use the
Definition 1.8 (Monomial type). For a vector p'= (py, po, psp) of nonnegative inte-

7 is a function of the form

p
/ dus - duy Mur, -+ uy) 1] iy (ue)
XJ'(7L7J.) /=1

gers, a monomial of type p'in the fields a,, & € 3%"_

where each a,, is one of ., a, {a*,,, O‘V}i:o but with

e the number of a,,’s that are a,. or a being p, and

e the number of a,,’s that are a,g or o being py and

e the number of a,,’s that are a,, or «, for some 1 < v < 3 being pqp.

In the monomial above there are p, undifferentiated fields, po fields corresponding
to time derivatives and py, fields corresponding to space derivatives. The subscript
u stands for “undifferentiated” and the subscript sp stands for “spatial”.

A polynomial of type p'is a sum of monomials of type p.

R, will be a sum, over € D, of polynomials, R ), of type p'in the fields ¢., ¢ € HY
where

D ={(1,1,0), (0,1,1), (0,0,2), (6,0,0)} (1.18)
The motivation for this choice of ®© is provided in [13, Remark 5.4].

In the next subsection we describe how we measure the size of the kernels in this
representation.

1.4 Norms for measuring the size of the perturbative cor-
rections

Let X be any lattice that is equipped with a metric d and a “cell volume” vol. As

an example, the lattice Xj("_] ) has vol = Llsj. The following Definition describes how

we measure the size of the kernels R;ﬁ) as above.
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Definition 1.9. Let f(uy,---,u,) be a function on X". For a mass m > 0 we set

| fllm = max max/dul coduy dugey - duy | f(ug, e u)| e )
where the tree length 7(uq,--- ,u,) is the minimal length of a tree in X that has
uy,- -+, u, among its vertices, and [ du g(u) = vol > 1 g(u).

As in [22], our perturbative corrections are analytic functions of the fields. The
following definitions describe how we measure the size of complex valued analytic
functions of fields, like &, (1., 1) and gn((w*, {¢}), (¥, {¢»})). The norms in the
following definition are special cases of the norms in [5, Definition 2.6].

Definition 1.10.
(a) For afield @ on X and @ = (z1, - ,2,) € X" weset a(Z) =[[i_; a(z;).
(b) A power series F in the fields aq,---, a5, on X has a unique expansion

]:(Oéla o ,Oés) _ Z volrtT s Z fm;"ﬂ“s (11_3"1, ... ’fs) H Oéz(fz)

71, ,rs >0 Fexmi
1<i<s

where the coefficients f(fl, e ,fs) are invariant under permutations of the
components of each vector T;.

(c) For each choice of “weights” kq,- -, ks > 0, for the fields aq, - - , o, we define
the norm of F with mass m and weights k1,--- , ks > 0 to be

s
g Hfrl,---,rs(flv"' 7':('_’»8)Hm HH:Z
=1

r1,,rs 20

Similarly, Definition A.3 describes how we measure the size of analytic maps like
the background field map (¢, V) = ¢n (U, U, pin, V).

1.5 The Starting Point Setup

We shall state our results in terms of an abstraction of the output of the temporal
ultraviolet limit outlined following (1.3) and (1.4). We assume that we are given a
mass m > 0, positive odd integers Ly, and Lg,, a small real number € > 0, and
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e a kinetic energy operator
hy = V'HV
where H is a real, translation invariant, reflection invariant, strictly positive def-
inite operator on the space, L?((Z*)"), of functions on the set, (Z*)", of nearest
neighbor bonds of the lattice Z®. The operator V : L*(Z*) — L*((Z?)") is given
by
(V) (xy)) = fly) = fx)
We assume that the kernel of H is exponentially decaying with ||hgl|s,, finite.
e akernel Vo(z1,x2, x3,24) on ((Z/LypZ) X Z3)4 that is invariant under x; <> x3 and

under x5 <> x4 and under the symmetry group & of Definition B.1. We assume
that its average

Vo = Z V(](O,LUQ,Ig, 1’4) >0 and bg = 2||V0||2m
To,T3,04EZL3

are sufficiently small.
e a real chemical potential pg obeying

4_16e 5.,
petoi <o <o’
where®
Hx = 2 /((Z/L S dry -+ -dxs V()(O, T1, T2, [L’g) Dgl(l'g, 0) (119)
tp X

with Dy = 1 — e Po — g7hog, .
The periodized versions, on the lattice Xy = (Z x Z*)/(LywZ x Lg,Z2), of hy, Vy,
Dy are denoted hg, Vi and Dy, respectively. We also assume that we are given
e an & invariant polynomial Ry (1., ) = > e 7%3’3’(@5*, ¥) on HoxHo. Each 7@((]17)
is a polynomial of type p with a real valued kernel® that obeys the bound

b2~ if 5= (6,0,0)

1—4e

R0, <50 - {!

otherwise

o &(1s, 1) is an G invariant, particlenumber preserving function with real valued
kernels and with & (0,0) = 0, that

8We show, in Lemma D.2, that, to leading order, yu., is @ times (1.5).
That is, RE (e, {0ar})s (0, {100 })) = RE (W5, 02,1), (8%, {1 })):
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o is of degree at least four both in 1, and in v, and
o whose norm

1€l < 0
where || - |() is the norm with mass m which associates the weight (0) = n(l)/%
to the fields v, ¥.
We set

Ao(e, ) = = (s, Doth)g = Vo, ) + o (s, ¥)g + Ro(ths, ¥) + Eo(¥, ¥0) (1.20)

where

Vo(tu, ) = %/){4 dxy -+ dry Vo(z1, 2, 13, 24) i (21) 0 (22) s (23)1(24)

0

Ro(ts, V) = Ro (s, {0,104 }), (0, {8,0}))

Under reasonable conditions on the various parameters, the small field part of
the output of the temporal ultraviolet limit, described following (1.2), satisfies these
conditions. This is stated in more detail and proven in Corollary D.3.

1.6 The main results

We start by defining a number of parameters that will be used in the statement of
the main results.

Definition 1.11.

(a) Set
_ : 1,1 logug
Ii(”’) - U(l)/?ﬁ6 with =73 + 3 log(po—pex)
(n) — LT ; 13 _ _loguy
K'(n) = e with U Rl v s B
mn %—25 . 2 log vg
e((n) = LM v with n = (§ — 46) =]

With the notation of Definition 1.10, we define the norm I€]|™, of an analytic
function (1., 1)) , as the norm with mass m which associates the weight r(n)
to the fields o, ¢, and the weight «/'(n) to the fields ¥,.,%,, v =0,--- 3.
Similarly, we define ||€||,, as the norm with mass m which associates the weight
1 to all fields. The parameter ¢;(n) will be used as an upper bound on the size
of the output of the fluctuation integral in the n'" step.
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(b) The number of steps we perform in this paper, using the “parabolic flow”, is
the largest integer n, such that

n De e)mn €
L7 (g — ) < (2%)7 = LEF (g — p1,)) < v

(c) For the radius of integration of the fluctuation variables in Definition 1.6, we

choose
Lry</?

= bt 1) e o) = (2

(d) To specify the averaging profile ¢ of Definition 1.1.a we fix!? a (small) even
natural number g > 4 and denote by 1,(x) the characteristic function of the

rectangle | — L22_1, L22—1] x [— 44, %]3 in Z x 7Z3. Set

q times
.

q:ﬁln*luﬂw--*lD

to be the convolution of 1, with itself q times, normalized to have integral one.

Properties of ¢ are discussed in [10, §2].

Remark 1.12. By construction

3 _logwo -9 _ 3 T_ ¢ 3 Il 3
186 < gty <5 € Tt2e<n<g—3 s<n <i—8¢

2 _16e
Also, by Definition 1.11.b and the condition py — . > 0§ 10 of §1.5,

For the approximate block spin transformations to be well defined, we need to
make sure that the background fields of Definition 1.5.c and the critical fields of
(1.11) are defined for small fields. The main technical work here is to show that the
linearized equations for the background field (see [12, Definition 3.a and (1°)]) are
solvable. This is guaranteed by

Theorem 1.13 (Green’s Functions). There are constants jiy,,mo > 0 and Lqp,
that are independent of n and L, such that the following hold. Let 0 < n < n,,
0<m< % and |p| < pp - The operators Dy, + QQ,Qrn and D, + QQ,Qn — 1

on H are invertible. We set
Sp = (Dn + Q;QnQn)_l Sn(lu) = (Dn + Q;QnQn - :U)_l
Then
[Sallzm s [[Sa(p)]l2m < Top

10The reasons for requiring that q > 4 are discussed in [10, Remark 2.7].
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This theorem is proven in [10, Proposition 5.1].

Proposition 1.14 (Background fields). Let 1 <n <mn,. Let u be a complex number
and V(¢., ) be a quartic monomial with ||V amr(n)? + |u| sufficiently small. Then
there are analytic maps

(w*7¢) = ¢*n(¢*,¢7/~L,V)a ¢n(¢*7wnu’7v>

to H,, that are defined for all (1),,v) € 7-[(()") X 7—[(()") obeying |1, (x)
for all x € XO("), and that fulfill the background field equations

%An(@bﬁwa ¢*,¢,M,V) = g_d)An(,l?b*’,l?b?QS*’ ¢,M,V) = O

U(@)] < K(n)

Y

Furthermore

¢*n(¢*, ¢7 22 V) = Sn(/J/)*QZQn ¢* + ¢>%3) (¢*7 1% 22 V)
On (U, 0, 11, V) = Sp() Qi b + 052 (W, 0, 1, V)
with analytic maps gb%?’) and ¢£F3> that are of degree at least three in (s, ).

This Proposition, with more details and bounds, is proven in [15, Proposition 2.1],
using a contraction mapping argument.

Proposition 1.15 (Critical fields). Let 0 < n <mn,. Let i be a complex number and
V(¢., @) be a quartic monomial with ||V||amr(n 4+ 1)2 4+ |u| sufficiently small. Then
there are analytic maps

(9*7 9) = w*n(eﬂﬂ 97 :uv V)? wn(e*v 07 ,Uﬂ V)
to ”H(()"), that are defined for all (6.,0) € 7—[(_"1+1) X 7—[(_"1+1) obeying |0.(y)|, ‘Q(y)} <
“(L’?/rzl) for ally € X" and that fulfill the the critical field equations

Vol s (o= QU 0=Qu) 1t A0 01 V) o s} = ifn>1
Vol (0, = Quin, 0— Q) + A (s 0, b 11, V) =

vw*{%(9*—Q¢*79—Q¢>_1+A0(¢*,¢7M7V)}:0 an:O
Vw{% <9*_ Q¢*79 - Q¢>—1 +A0(¢*>¢a#>v)} =0

¢>(*>=¢<*>n(w*,w,p,w} =0

Furthermore

,lvb*n(e*a 9) ,U, V) = %C(n) (M)*Q* 9* + ¢£%3) (9*7 97 :U“a V)
Un (0,0, 1, V) = CM (1)Q* 0 + 72 (6.,0, 1, V)
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where!!

C () = (£QQ+ A" ()™
Dy —p ifn=0
are well defined operators. Both w%g) and %(123) are of degree at least three in (0, 0).

This Proposition, with more details and bounds, is proven in Proposition 3.4 and
[15, Proposition 5.1and Remark 5.3].

Definition 1.16. The “scaling/weight relevant” monomials are those of type
7€ D =2U{(2,0,0), (1,0,1), (3,0,1), (4,0,0)}
= {(2,0.0), (1.1,0), (1.0,1), (0,1,1). (0,0.2), (4,0,0), (3.0,1), (6,0,0)}

The motivation for this choice of ®, is provided in [13, Remark 5.4].

Theorem 1.17. Assume that the parameter € of §1.5 is sufficiently small, that the
parameter L of Definition 1.1 is sufficiently large, and that vg is sufficiently small,
depending on € and L. There exists, for each 1 <n < n,,

15€

4_
e a number p, with }un — L2 (1o — p)| < 057 + L0
o a quartic interaction Vo(¢., ) with |V, — Vi ||om < %05_76

e a G invariant polynomial ﬁn(é*, <Z;) = Zﬁeg 7%5@((2)*, (&) on Hy, X H, . Each 73?’
is a polynomial of type p’ that obeys the bound

I1R9)| op " L~ if = (6,0,0)
R, <
05 if = (1,1,0), (0,1,1), (0,0,2)

e an & invariant analytic function gn(@*,qz) with £,(0,0) = 0, whose power series
expansion does not contain scaling/weight relevant monomials and which has norm

1€ < o

e and a normalization constant Z,

1By [12, Remark 10.a] A (0) is the A of (1.14) and consequently C™(0) is the C() of
(1.15).
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such that
(7)o (8T -0 (ST ) ()

- Zinexp{ — AV Gens G s V) + Ron(Gems 60) + Enl )}
with the A, and the background fields
Gan = Gun (Vs ¥, fims Vi) I = Gn (s, 0, i, Vi)
as in Definition 1.5, and
Ru(6s,6) = R (0, {0,0-}), (6, {,0}))
Ea(,¥) = E((V {0}, (0, {80))

Here, for each 0 < j <n—1, TgSF) 1s the approzimate block spin transformation of
Definition 1.6 with chemical potential pn = p; and quartic interaction V;.

Remark 1.18. Theorem 1.17 will be proven by induction on n. The proof runs over
§4-[13, §6], and is completed at the end of [13, §6]. In the inductive proof for the
estimates on i, V, and R,,, we will prove slightly stronger estimates that are more
suited for the induction. Set pf = 1 and, for n > 1,

M;kl = LG,uo - %/ duy - - - duy Vygu)(ulvu% Uus, U4) Sn(“4,U1)
‘Xo ‘ X,%
Then we will show that there are constants Cyp and Cg such that, forall 0 < n <n,,

1_5e
b — | < L 0y Z ot (08 + L (o — )]

. (1.21)
Vo = Vil < G2 3 et = 1)
and 3
IRP],,, < ta(n, Cr) (1.22)
where
(
115(C) v5(0) + C z AT (C) if 5= (1,1,0)
LI(C) e5(0) + S 3 L) it = (0,1,1)
tﬁ(nv C) = 9 n =t
I5(C) w(0) + C 22 e na(ey it 7=(0,0,2)

A II2(C) t5(0) + 5 z LA (O) i 5= (6,0,0)

Ve
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with

me) = J] (1+0552)
j=t+1

More precisely, we shall show that there are constants Csy, and Cr such that if (1.21)
and (1.22) are valid for some n > 0, they are also valid for n+ 1. Observe that (1.21)
and (1.22) are trivially satisfied when n = 0. See [13, Lemma 6.7], for |, — |, [13,
Lemma 6.4], for the construction of Cjsy, and [13, Lemma 6.6], for the construction
of CR

That (1.21) and (1.22) imply the bounds on j,,, V,, and R,, of Theorem 1.17 is proven
in Corollary C.4 and Lemma C.1.d.

We are grateful for some very useful comversations with Martin Lohmann and
Serena Cenatiempo.

1.7 Outline

The rest of this paper contains the more algebraic parts of the proof of Theorem 1.17.
The more analytical part of the proof is given in [13]. Here is a more detailed outline
of these two papers, as well as an indication of their connections to [14, 15, 10].

e In Appendix D, we review the results of [7] and rewrite the main output of that
paper in the form of §1.5.

e §2 provides a number of simple preparatory results regarding the interaction of the
scaling operation of Definition 1.3 with objects that will be encountered during
the course of the construction.

e Various algebraic properties of the background and critical fields, such as the
“composition rule”, are reviewed in §3.

e The algebraic steps of the application of one block spin transformation, ’]I'gSF), and
subsequent scaling, S, leading up to the formulation of the “fluctuation integral”,
are performed in §4.

e The fluctuation integral is evaluated and bounded in [13, §5].

e In [13, §6], the output of the fluctuation integral is reorganized to complete the
inductive proof of Theorem 1.17. Part of the reorganization is the renormalization
of the chemical potential and the interaction.

e The translation and reflection symmetries we use are discussed in Appendix B.

e A large number of inequalities relating our weight factors and various other pa-
rameters are proven in Appendix C. In particular we prove that the detailed
inequalities of Remark 1.18 imply the simple bounds of Theorem 1.17.
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Localization operations and decompositions, that are used in the renormalization
of the chemical potential, are discussed in [13, Appendix BJ.

In [13, Appendix A] we identify the u, of (1.5) as the limit of the y’s of Remark
1.18.

The effect of scaling on the norms used in this paper is discussed in [13, Ap-
pendix C]. This is used to identify “scaling relevant and irrelevant” monomials.
See Definition 1.16 and [13, Remark 5.4].

In [14], we give reasons, on a handwaving level, why we expect that the errors
introduced by approximating the blockspin transformation T by the small field
blockspin transformation TF) are nonperturbatively small.

Estimates on the background and critical fields are crucial for our construction.
They are proven in [15]. The upper bounds of that paper involve a number of
constants K7, Ky, - -- that are all independent of L and the scale index n. In [15,
Convention 1.2], we define K, to be the maximum of the K;’s. We shall refer
only to Ky, as opposed to the K;’s, in the main body of this paper.

The estimates in this paper, and in particular, the bounds on the background
and critical fields, depend heavily on bounds on various linear operators like the
averaging operators of Definitions 1.5.a and 1.11.d, the covariances 1.12, and the
Green’s functions of Theorem 1.13. Such bounds have been proven in [10]. They
involve constants I'y, 'y, - - - that are all independent of L and n. In [10, Convention
1.2], we define I',, to be the maximum of the I';’s. Again, we shall refer only to
I'op, as opposed to the I';’s, in this paper.

Here are the conventions that we use in naming the various constants that appear
in this paper.

The constants I'y, and p,, were defined in [10, Convention 1.2 and Proposition
5.1], respectively. They are independent of n and L.

The constants K;’s and their maximum K3, and the constants p;, and their min-
imum pp, are defined in [15]. They are independent of n and L.

The constants Csy, Cr, C, and C., are the more important n and L independent
constants of the main body of this paper. They depend only on I'gp, Ky, phe and
m.

The constants As,, A; and A’ are independent of n, but depend on L.

The constants cioc, ¢4, ¢, csv, Ko, Coar, ¢u. and ¢; are the less important n and L
independent constants. They depend only on I'y,, Ky, pbe and m.
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2 Scaling

We extend Definition 1.3 to
Definition 2.1 (Scaling).

(a) As in Definition 1.5.a, let L be the linear isomorphism

L:x" - x" | (u,u)— (LPup, Lu)
For a field a on Xj(f)l, we define the scaled fields
L2 ifv=0
_73/2 —
(Sa)(u) = L*? a(Lu) (Sya)(u) = {L5/2 e {1, 2’3}} o(Lu)

on Xj(k) For a = (o, {au}3_y) € 7—~l§k_)1 as in (1.17), we define
Sa = (Sa, {S,a,}2_y) € H
)

: (k .
(b) For a complex valued function F'(a., ) of fields on X7}, we define the function
(SF)(B., B) of fields on X" by

(SF)(B.,8) = F(S7'8.,S7'8)
Similarly, for a function F(G,,&) on subset of 7-[§k_)1 X 7-[§-k_)1, we define the
function (SF)(B,, /) on a corresponding subset of 7—25“ X 7—25“ by
(SF)(B., B) = F(S7'A..87'5)
Remark 2.2.

(a) The definition of S, acting on Hﬁ-k_)l, can be rephrased, using the notation L, of

Definition 1.5.a, as S = L3?L_'. In particular conjugation with S is the same
as conjugation with L.

(b) The definition of S, is motivated by
S,0, =0,S 0<vr<3
If F(,, &) is a function on a subset of 7:[§k_)1 X 7-[§k_)1 and
Flawa) = F((aw {d,0.}). (o, {0,0}))
then i
(SF)(B..5) = (SF)((B..{.8.1) , (8.{0,Y))
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(c) For a,a/ € H§»Ii)1,
(Sa, So/>j =L%{a, o/)j_1

(d) The inverse map S7' : ”H§k> — ’Hgk_)l is given by (S7'8)(u) = L~32B(L " u).
The adjoint S* = L72S™!, by part (c).

(e) By Definition 2.1.b,

/[H“ Sa | (sF)(5, 8) = /[Hdaw 2a01] (o )

(k) (k)
uer UEXJ-71

(k) (k)
where the normalization constant N&¥ = (L?’)lXj - (L?’)lxﬂ'*l‘.
(f) For a complex valued function F'(a,«) of fields on X -(E)l,
o5 (SF) (8., B) = L2 2 ES (S8, 8716)

(g) Let A : 7—[ LA 7—[(_1 be a linear operator with kernel A( -, - ). Then the
kernel of SAS-! HY = 1P s

(SAS™) (u,u') = L* A(Lu, L)
(h) Let

M((, {an}), (@ {a})) = /X;k>1 oo, M) T (00

3

be a monomial of degree n. Here each a,, is one of o, «a, {a*,,,ay}yzo. We
denote by
e n,, the number of a,,’s that is either a, or a and
® 19, the number of «,,’s that is either a,o or oy and
® ng,, the number of a,,’s that is one of {a*y, a,,}izl.
Then
(S) (B (Bod) s (BABD) = [ duredtug MOur,+ ) T )
: -
has kernel

M (uy, -+ uy) = L2™t2m005me N (L., - - -, Luy,)
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Definition 2.3. Let n > 1. The dominant contribution, A,,, to the effective action
was defined in Definition 1.5.b. Its scaled version is

An(‘g*a 0, QB*’ (ng H, V) = (S_lAn>(9*u 0, (5*7 (57 L2/~L7 SV) = An(SH*a S0, S(ﬁ*, S(&, L2/~L7 SV)
where 6,,60 € 7—[(_"1), by, 0 € Hﬁ?_’l, i € C and V is a quartic monomial in the fields
¢*7 ¢
Lemma 2.4.
(a) For eachn >0, VW =SV, D, = L2 S"DyS™" and Q™ = SrQS™.
(b) Set, for eachn > 1, Q, = S7'Q,S and Q, = 5S7'Q,S. Then Q, = QQn_1
(with Qo = 1) and
y =1 ifn=1
Qn = ; 2 —1
(E1+09,1,Q7) ifn>2
(c) For alln > 1,

An(‘g*u ‘97 (5*7 (ng 2 V) = <‘9* - QQn—l(&* ) Qn (‘9 - QQn—IJ))>_1 + <(Zg*7 Dn—ld)>n_1
+ V(qj)ﬂw (ﬁ) — K <(5*7 Qg>n_1
In particular Ay(6,,0,,,¢, 1, V) = 75 (0 — Qs 0 — Q1b) _y + Ao(, 0, 1, V)
Proof. (a) By part (h) of Remark 2.2, the kernel of S™V is
L14TL ‘/O(Lnuh ]L’nu27 ]L’nu37 ]L’nu4> = VrEU) (Ul, Uz, U3, U4)

by Definition 1.5.a. The remaining two claims follow immediately from Remark 2.2.a
and Definition 1.5.a.

(b) The first part follows immediately from part (a) and Definition 1.5.a. By Defi-
nition 1.5.b, when n > 2,

|
SR
/N

n—2
=11+ 2e1+ T He]e)
= 2 (51+09,5,Q)

28



(c) By definition

An(0.,0, 6., 6, 11,V) = (S0, — QuSd., (SO — QuSP) ), + (S, DuSP),
+ (SV)(Sé.,S¢) — L1 (S, S9),,
=L7?(0. —S7'QuS¢., ST'Q.S(0 — ST'QuS))_, + L (¢, ST DS
+ V(s 8) — 11 (0n, 6),
= {0, — QQu-10«, Qn (0 — QQn—ng)>_1 + (s, Dn—l@n_l
+ V(s 8) — 1 (0n, &),
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3 The Background Field and its Variations

Let 1 <n <n,. If |u] and ||V||2m are small enough, the background fields
¢(*)n( Tyt My V) : H((]n) X 7_[(()71) — %n
were defined in Proposition 1.14. They are solutions of the background field equations

%An(w*vqbu (b*v(bnuav) = %An(w*uwa(b*, (b,,u,V) =0

Putting in the action A,, of Definition 1.5.b, we get

Sp ()¢ + ViV (o, 0) = QrQuts
S (1)d + V. Ve, 9) = Qr Q01

with the S, (u) = (D, + Q*Q,Q, — 1)~ of Theorem 1.13. See [12, Remark 8]. To
evaluate the gradients of V we use

(3.1)

Definition 3.1. Let

M, ¢) = %/ duy - - - dug M(uq, ug, ug, uyg) Gu(ur)d(uz)du(us)P(uy)

4
Xn

be a quartic monomial whose kernel M (uy, us, u3, uy) is invariant under u; <> uz and
under us <> uy. We denote its gradients by

M (u; G, €, Go2) = /dulduzdus M (uy, uz, uz, u) G (ur)C(uz)Cua(us)
M/(U; (1, G, G2) = /duzdu3du4 M (u, ug, us, ug) G (uz)Ce(us)Caua)

Using this notation, the background field equations become

S;_l(u)¢* + VL(QS*a Cba Cb*) = Q;Qn@D*
Syt (1)d + V' (¢, sy ) = Q1 Q)

In [15, Proposition 2.1] we prove that these equations have a solution ¢, (¢, ¥, 1, V)
which is analytic on the set of all (1, 1)’s obeying |, ()|, |(x)| < k(n).

(3.2)

Definition 3.2. The scaled versions
S +s 1 V) s HY x 1YY = Hy
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of ¢(4), are
é(*)n(e*a ‘97 Ky V) = S_l [¢(*)n(89*, Seu L2,U/7 SV)]
That is

Olayn (B, 0, 1, V) (0) = L2000y, (8., S8, L2 11, SV) (L~ w)

k(n)

They are analytic on the set of all (6,,0)’s obeying |0.(z)|,[0(z)| < 373

Remark 3.3. By Definition 2.3 and Remark 2.2.f,
1 (S0.,80, ¢, ¢, L1, SV) = G0 (S0,, 50, b, b, 11, V)

— L2 00 (6,,0,576.,876,1,V)

Consequently, by Definition 1.5.c,
(ﬁ(*)n(e*a ‘97 122 V) = S_l [¢(*)n (SH*, Sev L2,U/7 SV)}
are critical fields for A, (6,,0, ¢., o, 1, V).
Proposition 3.4. Define, V(0. 0, 11,V) = él(*)(e*,e,,u,V) and, forn > 1,
a * -17 4 * 7

(a) The 1y, s solve the critical field equations of Proposition 1.15. They are ana-

lytic on the set of all (0.,0)’s obeying 0,(x)|,|0(x)| < “(L’?/rzl).

(b) Forn > 1, we have the composition rule
é(*)n—i—l(e*v 97 22 V) = ¢(*)n ( w*n(e*v 97 22 V) ) ¢n(9*7 97 22 V) y 1y V)
(c) For allmn > 1,

An+1(9*, 97 QB*TL+1(9*7 97 H, V)a én—i—l(e*u 97 H, V)a K, V)
% <9* - Q¢*n(9*> 97 s V)> 0 — an(e*a 9) 2 V))—l
+ An (¢*n(9*7 97 22 V)> wn(eh 97 22 V)> ¢*n+1(9*> 97 22 V)> ¢n+1(9*> 97 22 V)> H, V)
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Proof. Case n > 1: We apply the strategy of [12, Remark 5.c] with

H = H H_ =M, H,o=H"T
Q- =Q, 9 =9, b= 2
D=D,—p P(ds,0) =V(¢s, )

AU(Ps; @) = (Du, Dn@),, + V(b &) — 11 (s, 9),,

and the background/next scale background fields
(b(*)bg(w*v ¢) = ¢(*)n(¢*, ¢7 1y V) (Zg(*)bg(‘g*a 9) = é(*)n—i—l (0*7 ‘97 122 V) (33b)

Then [12, Proposition 9] applies, and, in particular, gives the proof of part (a) for
n > 1. Part (b) follows by the uniqueness provision of [12, Proposition 9] and part
(c) of [12, Proposition 4]. Then part (c) follows by [12, Proposition 4.b].

(3.3.a)

Case n = 0: It suffices to observe that, by Lemma 2.4.c, the fields (;31(*)(9*, 0, 1,V)
are critical (with respect to v(,)) for 75 (0. — Qu, 0 — Q) _, + Ag(Ps, ¥, ). O

The main part of the action, A,, is expressed in terms of the background field
Oy (Vs ¥, fin, Vi) (See Theorem 1.17.) In the fluctuation integral we make a change
of variables V) = V(yn (0,0, tin, Vi) + 09y. (Set DM k) = 01,y in Definition
1.6.) So we must study the impact of this change of variables on ¢.y,.

Definition 3.5. Let 1 < n < n,, and let ||V||amr(n)? + |u| be sufficiently small as
in Proposition 1.14.

(a) Define 8., (s, ¥, 0%, 0, 11, V) and 8¢y, (14,9, 6¢bu, 6, 1, V) by

and set

5(5(*)7%‘1-1 (9*7 07 5¢*7 5% H, V)
= 5¢(*)n (w*n(e*u 0, Hy V) ) %(9*, 0, 2 V) ) 57#* , 01, Hy V)
(b) Define 667, (6., 0; 0., 3¢, 11, V) by

(¥)n+1

where S, = (D,, + Q*9,Q,,)" as in Theorem 1.13.
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Remark 3.6. (a) By the composition rule Proposition 3.4.b,

¢(*)n (w*n(e*a 9) K, V) + 5¢* 5 ¢n(9*7 97 M, V) + 5% K, V)
= ¢(*)n+1 (9*, 9) My V) + 5¢(*)n+1 (9*7 9, 5¢*7 577Z)7 H, V)

(b) The quantities dp(syn, 5gz3(*)n+1, 5@&:))”“, Sy (p) correspond to the quantities

5D (ybgs 0D ()bes 5(;35;5), S in [12] under the substitution (3.3.a,b). Hence, by [12,
Remark 11], the fields 5gz3(*)n+1 obey

¢*:<Z’*n+1(9*;Q;H;v)‘l’&z’*nﬁ»l
. ¢:¢B7l+1(9*797“7v)+6¢57l+1
* * *
0Punt1 = Sn(1)* Q0 6Ys — S;VeV(u, 9)|
¢*:¢*n+1(9*797#7v)
d=dp41(0%,0,1,V)

Sx=Pun41(0%,0,1,V)+8 s 11
d=br g1 (0%,0,1, V)48 11

6(23n+1 = Sn(:“)QZQn 57vb - Snv(z)*V(Qﬁ*, ¢)

Sx=smt1(0%,0,1,V)
d=¢n41(0,6,1,V)

(¢) Since S,(p) = [1 — pS,] 1S, the equations of part (b) may be rewritten

¢*:<Z’*n+1(9*;Q;H;v)‘l’&z’*nﬁ»l
. - ¢:¢B7l+1(9*797“7v)+6¢57l+1
* )k * *
Pk =Fxn+1(0x,0,1,V)
d=dpn41(0%,0,1,V)

Sx=0sn41(05,0,1,V)+6bsn 11
6= (G50, V) + 5y 11

5Q§n+1 = SnQ;Qn CW + ,LLSn(SQZBn_H - Snv¢*v(¢*> ¢)

b5 =Fun11(0%,0,1,V)
d=bn41(0x,0,1,V)

In particular, if g = V = 0, then 0¢uyy1 = ST(L*)Q,’;Q,L 0th(). This is the
motivation for the definition of 5@3&2@ 41 in Definition 3.5.b.
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4 One Block Spin Transformation — The Algebra

In this section we consider the output of the approximate block spin transformation
T acting on e, with the Ay of (1.20) in the case n = 0, and on e~ An+Rntén in
the case n > 1 (see Theorem 1.17). The main result of this section is Proposition 4.2,
which provides a representation of this output that will be used in the (inductive)
proof of Theorem 1.17. If the conclusion of Theorem 1.17 holds for some 1 < n < n,,
then Proposition 4.2 gives a representation for

(17 0 (STE) 0 -+ (STE)) () (6., 0)
which, up to a multiplicative constant, is of the form
00 F (9., 6)

where
e the “contribution from the critical field” is

CN(Q*’ 9) = _An-l-l (9*, 9? qg*n-i-l(e*a 9? o, Vn)a an-i-l(e*a 9> Hops Vn)a Hon Vn)
+ R (Q;*n-i-l(e*a 0, Hon, Vn)a an_,_l(@*, 0, Hon, Vn)) + gn-i-l,l(e*a 9)
with
gn—l—l,l(e*a 9) = ETL (¢*n(9*7 97 Hn, Vn)7 wn(e*v 97 Mo, Vn))

and the w,, V,, R, and &, of Theorem 1.17 for n > 1 and of §1.5 for n = 0,
e and the “fluctuation integral” is

ﬁn(e*, 9) = [H Me_|qx)|2:|

271

2eX"|¢(a)|<rn

exp {= 340(0., 0,000, 00) + R, (0,0, 810, 00) + 6, (60,50, 5v)}

with 9, = D™*(*, 6 = D¢, D™ being an operator square root of O, as
in (1.15), and
o forn>0

- gn (¢*n(9*> 99 Mo, Vn)a ¢n(9*7 9) o, Vn))
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o forn >0
SR (0, 0, 5., 60))
= [Rn (Qb* +5¢*7 ¢+5¢) _Rn (¢*7 ¢)] ¢(*):é(*)n+1(9*,9,un,vn)

5‘15(*):5‘5(*)7%‘»1(9*79$5¢*75¢7#n’vn)

where, for n > 1, 5&(*)%1 was defined in Definition 3.5.a and, for n = 0,
5@51(*) = (ﬁb(*) and,
o forn >1,

1
5An(0,,0,50.,00) = — / dt (59, Q0 Q6657 (05, 051 60, 8, p1, Vi) )
0

1
= [ (0,03 0005850 80, V). B0),
0
and, for n =0,

51210(9*7 97 5¢*> 5¢)

1
= /(1 — 1) %Vo(%o(e*,@,lto’]}o)ﬂLw%7 Yo (0., 0, 110, Vo) +t01) dt
0

- ,U’O <51/}*7 51/}>(]

The integral in § Ay is the part of V, (Vs0(0s, 0, 110, Vo )+61s , ¥o(0s, 6, 110, Vo)+01))
that is of degree at least two in d1),).

The significance of §A,, may be seen in
Lemma 4.1.
(a) For alln > 1,
[% <9* _Qw*a 9—Q¢>_1 +An (wh wa ¢*> ¢> Hn, Vn)i| P(4) = (s )n (0 0:1m V) +69 )

9 () =Pt (x) O 0ot V) +68 () 11

— [ (0= Q0= QU)_y + A (0000000 V) | o 0min i

¢(*):¢(*)n+1(9*’9’unyvn)

= (5%, €7 ) + 6A4,(6.,0, 95, 50)
(b) Forn =0,
Py =10(x) (0x,0,10,V0) +5% ()
90, —Qubn, 0— Q)+ Ao (v, 0, pi0, V
|40~ QU 0-QU)_ + Ao (2,0, o 0)]w(*):%(*)(e*ﬂ’uo’%)
— (5., CO 7 5) + 5A0(0..,0, 0., 50))
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Proof. (a) We use [12] with the substitutions

H = Hy" Ho=H, Hy = HOY
Q— = Qn 0 = Qn b= %
They give

Aot (01, 0,01, V5 04, 0) = L5 (0 — QU , 0 — Q) + (s — Qn @, Qu(v — Qn @)
+ <¢*> Dn¢>n + Vn(¢*a ¢) — MHn <¢*> ¢>n
= % <‘9* - Qw* ) 0 — Q¢>_1 + An(w*aquj)*u (b?,unvvn)

Comparing [12, (12), (14) and Remark 10.a] with Theorem 1.13, (1.15) and (1.14),
we have C = C™ and S = S,,. Also

¢(*)bg(¢*7 w) = ¢(*)n (¢*7 ¢7 Hn, Vn)
¢(*)cr(9*> 9) = ¢(*)n(9*> 97 Mo Vn)

¢(*)bg(9*> 9) = ¢(*)n+1 (e*a 9, My Vn)

are the background, critical and next scale background fields, respectively, in the
sense of [12, Definition 3.
The claim now follows from [12, Lemma 12].

(b) Observe that
% <9* - Q¢*7 0 — Q¢>—1 + AO (¢*7 wv o, VO)

is the sum of the quadratic form 7% (6, — Q.0 — Q) _, + (¥, Do)y — o (Us, ¥),
and Vy(¢«,v). Now imagine substituting in ) = ow)(0s, 0, po, Vo) + 09 and
expanding in powers of d¢(,). The total contribution that is of degree precisely one
in 01)(,) vanishes by the criticality of 1(.o. By Taylor’s theorem with remainder,

L0, —Qubu, 0— Q) +Ag (1, 0 V)]w(*):wo(*)(6*707M0,V0)+61/1(*)
72 \Ux *9 -1 0\ ¥, ¥, Ho, Vo oy =otey (6o 0o Vo)

= 15 (Q0., Q0p) ) + (0ths, Dodrp)y — po (3¢, 01p),
1
+ / (1 - t) %VO (w(]*(eﬂw 07 Ho, VO) + t6¢* ) ¢0(6*7 07 Ho, VO) + t6¢) dt
0

O
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Proposition 4.2.
(a) Let 1 <n <ny. Let pin, Vo, Ry and &, be as in Theorem 1.17. Set

An(¢*7 w> = |: - An(¢*7 ¢7 ¢*n7 ¢n7 Hn, Vn) + Rn(¢*n7 (bn)]
+ &by, ¥)

B )n=0(xyn (Yx, ¥, 10, Vn)

Then

T(S >< An(¥1, ¢)(9*,9 fis Vi) = <L eCn0-0) F (9. )

(b) Forn =0, T&" (A)(0,,0; 10, Vo) = <y @) Fy(6..0).
Proof. Case n > 1: By Definition 1.6,
']I‘( )< An (P, w>(9*’9 Lins Vi)

_ 1 [H dc(x)*Adc(:c)] o 12 (0= Qun 0=Qu) _y ,An (s ¥n Vi)

271

(4.1)

where Yy, = Ve (s, 0, pin, Vy), 61b, = D¢ 51 = D¢, and
An(,lvb*a,lvbnu“navn) = _A (w*?,lvb ¢*7¢7 :U%> ) +R (¢ ¢)
+ &t ¥)

Px=¢xn (Yx,¥,un,Vn)
d=on(Vx,¥,un,Vn)

When ¢ = 0 the exponent of the integral (4.1) reduces to

— 15 (0 — Qvun (04,0, 110, V), 0 — Q0 (04,0, 1, Vi) 4
n(lp*n7¢n7¢*n+l(9*7e7unv n)v¢n+1(9*797:u’n7vn)7/~l’nvvn)

,R’n(qg*n—l—l(e*aenumVn)vén+1(‘9*aevﬂ’m)}n)>
+ En (un (04, 0, finy Vi), U (04,0, 1, V) )
= —An1(04,0, Guni1 (05,0, 110, Vi), G165, 0, 1 Vi) i Vi)
R (Gsns1 (04, 0, iy Vi), g (65, 6, 1, Vi)
+5n(¢*n(9*,9 Loy Vi )y Un (04, 0, 1y Vi, ))

w(*)n:w*n(e*veuu'n7v’n)
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by Proposition 3.4.b,c.
The part of the exponent of the integral (4.1) that is of degree at least one in §1)
is
— (1., C 7 51y — 0 AL (0., 0,60, 60) + 6R (6., 6, 6., 60)

by Lemma 4.1.a. Since D is an operator square root of C'™)

(306, O 60Y, 4y peee = (€ g

syp=D(M)¢
Case n = 0: By Definition 1.6,

(T5™e™) (0., 0; 1o, Vo)
S—— / L)) ] =01 0:-Q0 001 Aol

zex, v IC@)<ro

Y=Y (0x,0,110,V0) +0Ux
=10 (0%,0,10,V0)+Y

(4.2)

where, again, di, = DO*¢* 51 = D¢, By (1.20) and Definition 1.5.b, when ¢ = 0
the exponent of the integral (4.2) reduces to
— aL™* (0 — Quiou(0s, 0, 110, Vo), 0 — Qo (6s, 0. 110, Vo))
— Ao (%*(9*, 0, po, Vo)ﬂﬁo(@*, 0, o, Vo), Ko, Vo)
+ Ro (%*(9*, 0, 110, Vo), ¥o(0+, 0, 1o, VO))
+ & (%*(9*, 0, 110, Vo), ¥o(0+, 0, 1o, VO))
= —A1(9*, 0, Qél*(e*, 0, 110, Vo), le(e*, 0, 11o), o, Vo)
+Ro(@1+(0:, 0, 110, V0), 6165, 6, 110, Vo))
+ & (%*(9*, 0, 110, Vo), o (0x, 0, pio, Vo))

by Lemma 2.4.c and Proposition 3.4.b.
The part of the exponent of the integral (4.2) that is of degree at least one in §1)
is
_ <5¢*, cO! 5¢>0 — 6Ay(6,,0,8,,0) + 57?,0(9*, 0,01, cw)
+ 55‘0 (9* ) 97 5¢* ) 5¢)

by Lemma 4.1.b.
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Corollary 4.3, below, gives a representation for

((STED) 0 -+ 0 (STE™) () (1, )
= (T&LSF) o (S’]I‘(SF)) 0---0 (S']T(()SF))) (eAO) (S™'¢, ST1p)

n—1
which, up to a multiplicative constant, is of the form
) Fo (s )

where

e the “contribution from the critical field” is
Cn(w*v 1/}) = _An-i-l(w*v 1/}7 ¢*n+1(d}*7 wv L2Mn7 SVn)v ¢n+1(d}*7 wv L2Mn7 SVn)v L2/~l’n7 SVTL)
+ (SRn) (¢*n+1(w*7 1/}7 L2/~Ln7 Svn)u ¢n+1(w*7 1/}7 L2/~Ln7 Svn)) + gn—i—l,l(w*a 1/})
with
8n+1,1(7vb*7 1/}) = (Sgn) (lz*n(d}*a 1% M, Vn)a lﬁn(w*v 1/}7 Hn, Vn))
'J}(*)n (w*a ’17/), 22 V) =S [¢*N(S_1w*a 8_1% 1, V)} (43)

and the p,, V,, R, and &, of Theorem 1.17 for n > 1 and of §1.5 for n = 0,
e and the “fluctuation integral” is

‘Fn(,lvbww) - [ H / dZ(W);;\idZ(W)e_‘Z(w)F}

weX{"|z(w)|<r,

exXp {_ 5An(1/}*7 1/}7 Zxy Z) + 6Rn(w*7 1/}7 Ry Z) + 55n(¢*7 1/}7 Zxy Z)}
(4.4)
with
o forn >0

55 (¢ ¢ ) (Sg )(\I] \II)‘\Ij(*):'J}(*)n(w*7wvﬂn7Vn)+L3/2SD(”)(*)Slz(*) (4 )
* Zwy 2) = *9 R .
' ’ " ql(*):w(*)n(d}*va/ln,vn)

o forn>0

D () =G (yn+ 1 (a1, L2, SVn) 40D () 1 (s 10, 24,2)
SRa(e 0,70, 2) = (SR, (@, @) (4.6)
¢(*):¢(*)n+1(w* 7¢7L2M7L7SV7L)
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where,

~

5¢(*)n+1 (w*a ¢> s Z)
{S[&é(*)nﬂ(Slw*, S, , DMLz, , DMLz, i, V)] ifn>1

Lg/st(O)(*)S_lz(*) ifn=20
(4.7)

and
o forn >1,

1
S An(uy, 24, 2) = —=L7% [ dit {2z, SD™Q, QuS™' [§65, (1, 05t 2,1 2)]
+ 1

0
1
_ L7/2/ dt (SD™*Q,, Q8™ (04 (v, it 2,1 2)], 2),
0
(4.8.a)
and, for n = 0,

5A0(w*7 1/}7 Zxe Z)
1 " ~
_ /0 (1= £) o (SVo) (s + 00 , 1 + 1) dt| (4.8.b)

P () =P0(x) (29,10, V0)
§%(4=L3/2sDO(M)s=12 )

— ,uOL5<z*, SC(O)S_12>1
where, forn > 1,

6L (e, 20, 2) = 6 (0,0, 20, 2) — LSS Q5 0, DMIS 2,
(4.9)

Corollary 4.3.
(a) Let 1 <n <n,. Let i, Ry, and &, be as in Theorem 1.17. Set

An(d}*u w> = |: - An(d}*a 1/}7 ¢*n7 ¢n7 Hn, Vn) + Rn(¢*n7 ¢n)]
+ &y, V)

B )n=0(xyn (Yx, ¥4, Vn)

Then

(STED) (A ) Warts s Vi) = gy €0 Fote )
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(b) Forn =0, @Tfm)GA)W%wumJ%%=§%e%ww”fa¢m¢)
Proof. By Proposition 4.2, it suffices to verify that

for all n > 0. That we have SC, = C,, follows immediately from

An+1(9*,9 ¢*n+1(9*,9 ,Una ) ¢n+1(9*>9 :Unav )nunavn) 0y =519,

= An-l-l(w*v 1/}7 ¢*n+1(d}*7 wv L2Mn7 SVn)v ¢n+1(¢*7 wv L2:U’TL7 SVn)v L2,U/n7 SVTL)
by Definition 2.3 and Definition 3.2, and

Rn (Qg*n—i-l(e*u ‘97 Hors Vn)a an—i-l(‘g*v 97 Hns Vn)) ’6( =51y,

= (SRa) (S[6ens (0o 0spin, V) Sl6nia (O, 0, ns Vo)),
= (SRn) ( ¢*n+l (wh % L2,un> Svn) ; ¢n+l('¢)*> w, L2,un> Svn) )

and

Yin (04,0, 1, Vi), Y (0, 0, pin, Vi
(o ). ]

= (S¢&») (@Z)*n(w*a Y, tiny Vi), @/A)n(@/)*, ), s Vn))

by (4.3).
Under the substitution ¢(z) = (L.2)(z) = 2(L ')

[ “eppseear]ge.

2€X{M|¢(2)|<rn

(4.10)

271

- 1I / Lp M) ol | (L, 24, L 2)
weX{|z(w)|<ry
By (4.3) and Remark 2.2.a,

6E,(0.,0,0,.,6 E (. Dy =S~ (ayn (Wos i,V )+ DM )L, 2,
n( *5 Uy %m ¢)’ 0(*)25*11&(*) - n(whw) 1&(*):8711;(*”(1#*Wﬂmvn)

61[)(*):D(n)(*)ﬂ‘*z(*)

U (= (ayn (Yn 0, pin Vi )+ L3/ 2SDM (g =1z
= (SE,)(V,, \11)) :
U () =Y (s yn (Y5810, Vi)

(4.11)
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and, by Definition 3.2 and (4.7)

OR0:,0, 602, 50)| oo,

5¢(*):D(7l)(*)]1,*z(*)
¢(*)=S71[¢(*)n+1(¢*ﬂlJ,LQanSVn)]‘FS*l[5$(*)n+1(¢*7¢72*,z)]

= Rn(¢*a Qﬁ)‘ L 9

¢(*)287 [¢(*)n+1(¢*,¢,L B ,SVn)]

q’(*)=¢(*)n+1(w*7¢7L2Mn,SVn)+5<f;(*)n+1(¢*7¢7Z*7z)

q>(*)2¢(*)n+1(¢*7¢7L2AU'TL7SVTL)

(4.12)
~ (SR.)(.,®)

Since, for n > 1,
OO (02,0 00,00, 1 V)| oo

5¢(*):D(n)(*)]1,*z(*)

= 5Q\gn+l (9*7 97 577Z)*a 5% My Vn) ‘ 0y =519,y - SnQ;QnD(n)]L z

61[)(*):D(”)(*)]L*Z(*)
0Bt (s, 24, 2)] — L¥28,Q502, DS
- [5(?51—:—)1 (1/}*7 wv Zy Z)]

by Definition 3.5.b, (4.7) and Remark 2.2.a, we have

(0060, 20 Q002 (00, 055000, 1 Va) | v

S (s ):D(n)(*)L*z( 9

= L2<SD(n)*L*Z* ; SQTL Qn [ ¢n+l *) w Pxs & >1
= L7/2 <SD(n)*S_IZ* s SQ Qn [5¢n+1(¢*’ w’ Py 2 )]>
= L7/2<Z* ,SD™Q, Q, S~ o ¢n+1(¢*a Y, 2, z)]>1

by Remark 2.2.a,c,d. Consequently, for n > 1,

5An(9*,9,5¢*,51p)) o, = ALY, 2, 2) (4.13)

5(a) =DMz,

For n =0,

VO (1/}0* (9*7 97 Ko, VO) + 51/}* ) 1/}0(6*7 97 Ko, VO) + 51/}) ’ 0 =571y

61/)(*):D(0)(*)]L*z(*)

= (SVO) (,IZ)O*(,QZ)M wa Ko, VO) + L3/2SD(O)*S_1Z* ) 77[)0 (wh wa Ko, VO) + L3/2SD(O)S_1Z)
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and

— ]2 (0)= (0)
<5w*’ 5w>0 61[1(*)=D(0)(*)IL*Z(*) L <SD L*Z*’ D L*Z>1
= L*(SDW*s™'z,, SDS™'2),

= L%(z,, SCUS™'2),

by (4.3) and Remark 2.2.a,c,d. Therefore (4.13) also holds for n = 0. That SF, = F,

now follows from (4.10), (4.11), (4.12) and (4.13).
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A Compendium of Definitions

A.1 Lattices

We use many different lattices. Our initial system is a finite volume (continuous)
spin system having one (complex valued) spin at each site of the lattice!?

Xo = (Z/LyZ) x (Z°]Ly,Z?)

where Ly, € L?N and Ly, € LN are the temporal and spatial sizes of this initial,
finite volume, lattice and L > 3 is a fixed odd natural number. AXj is a unit lattice
in the sense that the distance between nearest neighbours in the lattice is 1. During
each renormalization group step this lattice is scaled down. In each of the first n,
steps, which are the steps considered in this paper and in [9, 13], we use (anisotropic)
“parabolic scaling” and decrease the lattice spacing in the temporal direction by a
factor of L? and in the spatial directions by a factor of L. So after n renormalization
group steps the lattice spacing in the spatial directions is g, = L—ln and in the temporal
direction is £2 = 1= and the torus X has been scaled down to

X, = () ) x (522 7)

Ln

We call X, the “g,—lattice” and denote by
H,, = CHr

the space of all complex valued functions on X,,. We endow H,, with the norm and
bilinear'® form

1£lln = vol, Y [ f(a)? (f:9), = vol, Y flx)g(x)
TEX, TEX,

where

vol, = &>

is the volume of a cell in X,,. We view H,, as the Hilbert space L?(X,) with (positive
definite) inner product (f*, g), and norm || f||,,. Many of the operators acting on H,,
that we consider are periodizations of operators acting on L? of the “universal cover”

Z, =7 x e, 7°

120f course A} is a finite set and so is perhaps more accurately described as a discrete torus,
rather than a lattice.

3Note that the form is not sesquilinear. We will explicitly write complex conjugates when we
want them.
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of X,,.

We implement each renormalization group step by performing a block averaging
of the spins. During each of the steps in the parabolic regime, we average'? over
blocks of L? x L x L x L sites. So a k-block, that is a block of sites averaged over in
each of the first k£ renormalization group steps, consists of L% x LF x L* x LF sites
when k < n,. The number of sites averaged over is 01

It is necessary to repeatedly compose critical pomt ﬁeld configurations. For this
purpose, we introduce an array of intermediate sublattices. For each 0 < k <n+1,
define the sublattice X, (k) v, of (centres of) k-blocks in the e,-lattice &, and the
corresponding Hilbert space, bilinear form and norm, to be

X" = (2 Z)2LyL) x (60422 JenLpZ?)  HY, = LX)
and

Fo =2 > f(a)g IF107, = sk ™ | f(a)?

zex®, zex®,

The lower index gives the “scale” of the lattice. That is, the distance between nearest
neighbour points of the lattice. The upper index gives the block size and determines
the number of points in the sublattice (the number of points in &, divided by the
number of points in a k-block). The sum of the upper and lower indices gives the

number of the renormalization group step. For example, Xj(k)

e has the lattice spacing 5? in temporal directions and

e has the lattice spacing ¢; in spatial directions and

e has (¢ L) (xLsp)? points and

e has volume [volume of single cell] x [number of points| = £5(ej Lip) (e Lsp)?

Observe that X" = X, and #” = H,, and that XO(") = (Z/e2 LpyZ) % (22 e Ly ZP)
is a unit lattice in Z*.
A.2 Scaling
Scaling is performed by the linear isomorphisms
L:x® - a®) (ug, u) — (L2uo, Lu)

For a function « € ’H;k) , define the function L,(a) € ”Hgk_)l by L.(a)(Lu) = alu).
Set S = L¥?L;". That is, for a field 6 on X",

(S0)(z) = L¥?0(Lx)

HMTechnically, this might be modified by smoothing.
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is a field on Xj(k) .

A.3 Block Spin Operators

The block spin averaging operator Q) : ’Hé") — HYL1+1), which averages fields ¥ (z),
indexed by points x of the unit lattice Xo(n), over blocks centered on the points of
the L-lattice XY is defined by

@Q)(y) = 22 q(@x)v(y + [2]) (A1)

TELXT3

where [z] denotes the class of z € Z x Z? in the quotient space XO(") . The averaging

profile ¢ is the g—fold convolution of the characteristic function, 1,(x), of the rectangle
[ _L2-1 L2—1] 5¢ [ L—1 L—l}?’

2 2 T2 T2

, normalized to have integral one. That is,

q times
.

q= L5q1 1y %ok 1o

For bounds on @, see [10, Lemma 2.3].

The block spin averaging operator Q,, : H, — ’H((]"), which averages fields ¢(u),
indexed by points u of the fine lattice X,,, over blocks centered on the points of the
unit-lattice X\ is defined by

Qn = (L;'Q)"Ly (A.2)

For bounds on @, see [10, Remark 2.1.a and Lemma 2.2].
The operator

,_.

n—

Q, = a(]l 50,Q;)

1

-1

<.
Il

appears in the term (¢* — Q, ¢s, Q, (¥ — Qn ¢)), of the dominant part of the action.
For bounds on 9, see [10, Remark 2.1.c and Proposition 2.4]. See [12, Remark 1]
for the recursion relation that builds £,,.

A.4 Differential and Related Operators

The forward derivatives of o € ’Hg-n) are defined by

(O,)(x) = 8,1 [a(:)s +ej0€0) — a(x)] (A.3)

Vild
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where e, is a unit vector in the v*" direction and

2 _ 1 —
P gj_ﬁ forv =0
-771/—

gj=1; forv=123

We associate to an operator hg on L*(Z*/Lg,Z?) the operators
D, =L"L"(1—e" —eM9,)L} (A4)

Here 0y is the forward time derivative of (A.3). We assume that hq is the peri-
odization of a translation invariant operator hy on L? (Z3) whose Fourier transform

f10 (p)

e is entire in p and invariant under p, — —p, foreach 1 < v <3
e is nonnegative when p is real and is strictly positive when p € R? \ 2773

e obeys hy(0) = 881;1)0 (0) =0 for 1 < v < 3 and has strictly positive Jacobian matrix

v

9% hy 0]
[apuapu( ) 1§M7V§3

Think of hy, which is (a constant times) the single particle “kinetic energy” operator,
as being essentially a positive constant times the discrete spatial laplacian. The
operator D,, is studied in [10, §3].

A number of important operators are built from D,,. One is the covariance for
the fluctuation integral in [13]. It is

C = (£Q'Q+AM)™

where

A (14 9,Q.D;'Q:)"'Q, ifn>1
E Do ifn=20

It is bounded in [10, Corollary 4.5].
Another family of important operators built from D,, are the Green’s functions

Su() = [Dn+ Q12 Qu — 4]~
They are bounded in [10, Proposition 5.1].

} : Hén) — Hén)

A.5 Norms

Let X be any lattice that is equipped with a metric d and a “cell volume” vol. As
an example, the lattice Xj("_] ) has vol = ++. The following Definition describes how

we measure the size of the kernels whose arguments run over X.
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Definition A.1. Let f(uq,---,u,) be a function on X”. For a mass m > 0 we set

| fllm = max max/dul coeduy dugy - duy | f(ug, -] e )
where the tree length 7(uq,--- ,u,) is the minimal length of a tree in X that has
uy,- -+ ,u, among its vertices, and [ du g(u) = vol >, 1 g(u).

The following definitions describe how we measure the size of complex valued
analytic functions of fields. The following norms are special cases of the norms in [5,
Definition 2.6].

Definition A.2.
(a) For afield @ on X and @ = (z1,---,2,) € X" weset a(Z) =[[_; a(z;).

(b) A power series F in the fields aq,---,a,, on X has a unique expansion

Flog, - a5) = Z ol Z Frive s @1y Ts) [T ()

r1,-,r5>0 7 eXTi =1
1<i<s
where the coefficients f,, .. ,, (:)?1, ce ,9?8) are invariant under permutations of
the components of each vector ;.
(c) For each choice of “weights” kq,- -, ks > 0, for the fields aq, - - - , o, we define

the norm of F with mass m and weights k1,--- , ks > 0 to be

) TR ST I s

P >0 =1

The following definition describes how we measure the size of analytic maps like
the background field map (¢, ¥) — &, (s, ¥, tin, V). The norms in the following
definition are special cases of the norms in [11, Definition 2.3].

Definition A.3. Let X and ) be sublattices of a common finite lattice having metric
d, with X having a “cell volume” vol and with ) having a “cell volume” voly. Write!®
Xt = XX X X,

1,015 20

T (#y,--+ ,Ts_1) € X" x -+ X XT==1 then (T, ,Ts_1,—) denotes the corresponding element
of X" x -+ x XTs-1 x X0 with “no s*® entry”. In particular, X° = {~} and a(-) = 1.
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(a) An s—field map kernel is a function
A (wala 7fs) € y X X(S) — A(yufla wfs) S C
which obeys A(y; —,---,—) =0 forall y € ).

(b) If A is an s—field map kernel, we define the “field map”

(ala"' ’as) — A(al’... ’as)
by
A(ab e ,as)(y) = Z V01r1+~~~+r5 Z A(y7 fb e >fs) O‘l(fl) U O‘s(fs)
71, ,rs >0 Fexmi
1<i<s
(A.5)
(c) We define the norm [||A[||, with mass m and weight factors kq, -, kg, of the
s—field map A by
=>4l
Tl ,ms >0
ritetrs>1
where
HAHTL .y, = Max {L(A; T1, o0, Ts), R(A;r, - ,7“5)}
and
L(A: . $) = 1T1+"'+7”s Aly: Ty, - - - —»S r1 rs ;M7 (Y,T1, ,Ts)
( 1T, ,T) I?Sleaj?( Vo AZ ‘ (yvxla y L )}"{ kg€
zle<E€X<.f
. ri+-4rs—1 =
R(A;ry, -+ rg) = max :1r1<13a<>§ VOlyZVOl ! Z ‘A Y Ty, s)‘
1<’L<T] yey xleff)ise Iill K;TS emT(y Tt S)
(acj)l.:ac
Remark A.4. Denote by C* and CY the spaces of fields on X and ), respectively.
If A is an s—field map kernel whose norm, |||A]||, is finite, then (ay,---,as) —
A(aq, -+, ) is an analytic map from the polydisc
{ (Oél,"' ,CYS) GCX Xoee XCX } ||Oéj||Loo <l‘€j, 1 S]SS }

to the polydisc
{BeC |18~ < IAll }
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Most operators we deal with are bounded with respect to a norm of the following
kind.

Definition A.5. Let X and ) be sublattices of a common lattice having metric d,
with X having a “cell volume” voly and with ) having a “cell volume” voly. For
any operator A : C¥ — CY, with kernel A(y,z), and for any mass m > 0, we define
the norm

All,, = max{su voly ™= A(y, 2)| , su voly, el 4 ,x}
41 p 3 vl A2 sup 3 vy 4. )

xeX

In the special case that m = 0, this is just the usual £!-¢> norm of the kernel.

B Symmetries

Fix any integers j > 0 and n > j. We discuss the natural symmetries of the lattlce
Xj(" 7 (see Definition 1.5. a) and the corresponding symmetries induced on 7—[(" 2
and on functions on 7—[ . Define ; = .

Definition B.1.

(a) We define (unit) translation and reflection operators, acting on the ;- lattice
(n—7)
Xj ) by
—u; ifi=v

Tou=u+x (Rou), = {

for all z € XO("), = Xj("_j) and 0 < v < 3.
(b) We next define translation operators, acting on the field « : Xj(n_j ) C, by
(Tyo) (u) = a(T-pu) = au — )
and reflection operators, acting on the fields o, and a, ), by

(Ruap)(u) = oy (Ryw)
— () (R — 5?6,/) ifr=1=0
(Roau) (u) = =y (Rou—eje,) ifv=1v#0
oz,,(*)(R,,/u) if v #1v/

For the fields & = (a,{a,}) € 7—[ , as in (1.17), define
T,a = (Tyo, {Tya,})  Rya = (Rya, {Rya,})
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(c) We next define translation and reflection operators, acting on functions of the
fields by

(T F) (0, @)
(BoF) (0, @)
(B F) (0, @)

F(T e, T &)
F(Ry'ar, Ry'ar)

F(R)'a., R)'a), 1</ <3

(d) We denote by & the symmetry group generated by translations and reflections
acting on functions F (07*, &). Since

R2=1 R, R, =R,R, R,)T, =Tr, R,

the group is finite. We denote by Ggpatiai the subgroup of & generated by
translations and spatial reflections. It is of index two, meaning that every
element g € & is of one of the forms g = ¢’ or g = ¢'Ry, with ¢’ € Gypatial-

(e) A function F(d., &) is said to preserve particle number if

Flea,,e’a) = F(a., @)

for all 0 € R.
Remark B.2. Let F(,, &) be given and set
F(Oé*, Oé) = ﬁ((a*> {aVa*}) ) (Oé, {al/a}))

then
(g]:) (Oz*,Oé) = (gj:—)((ah {aua*}) ) (Oé, {0,,@}))
for all g € G.

Proof. 1t suffices to consider g a generator of &. If g is a translation operator, the
conclusion is obvious. If ¢ is a reflection, and, for example, 1 < v < 3, observe that

€0 (RVa) (u) = [(RVQ) (u+ejen) — (RVO‘) (u) = a(Ryu —¢gje,) — a(Ryu)
= — [a(Ruu —¢cje, +eje,) —a(Ru — ejeu)] = —¢;0,a(R,u —¢gje,)
O
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Example B.3. If
Flaw, o) = /( ) dudu’ o, (u) K(u,u’) a(u)
X"

is invariant under &, then
Ku+z,u +1z)=K(u,u') K(Ro,Rou)=K(u,v') K(Ryu, Ryu') = K(u,u')
for all u,u’ € Xj("_j), x € XO(") and 1 < v <3.

Lemma B.4. Let 1 < v <3 and assume that

.Fg = / ) du1 dUQ oz*(ul) KQ(Ul, UQ) OKV(UQ)
X

n—j
J

Fi= /( ) duy - - - duy K4(U1, Uz, U3>U4) a*(ul)a(u2)a*(u3)au(u4)
Xj”ﬂ

are invariant under Sgpatial. 1hen

KQ(Ul + T, U9 + ZL’) = Kg(ul,u2) KQ(RV/ul, R,,/Ug) = Kg(ul, Ug)
Kz(uhuz) = _K2(Ruu17 Ryuy — €j€u)

and

Ky(uy + z,us + z,us + z,uy + ) = Ky(ug, ug, us, uy)
K4(RV'U1, Ryug, Ryus, RV/U4) = K4(U1, Uz, U3, U4)

K4(U1,U2, Uus, U4) = —K4(RVU17 Ryuy, Ryusz, Ryuy — é?j@u)

for alluy, -+ ,uy € Xj("_j), T € Xo(n) and 1 <V <3 with V' # v.

Proof. We prove the last K5 identity. The other cases are similar.

/dul dus o, (uy) Ko(ug, ug) o, (us)
= — /du1 dUQ Oé*(R,,’Lh) Kg(’ul, Ug) OKV(RVUQ - 6]‘6,,)
= — /du1 dUQ oz*(ul) K2(R,,u1, R,,’LLQ> OéV(UQ — 6]‘6,,)

= —/du1 duy o (uy) Ko(Ryuy, Ryus — €5e,) oy (ug)
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There are obvious Lemma B.4 analogs for monomials of type ay, a and a,,a o, .

Remark B.5. Let m>0,9g€ &, 0< v,/ <3 and
Flaw, o) = /du du’ e (u) K (u,u’) o, (u)

Then, with the notation of Definition 1.11,
lgF llm < €™ | F I

Proof. 1If g is a translation, or a reflection R,» with v # v, 1/, or if ¢ = R, and
V' = v, then ||gF]||lm = || Fllm- f ' # v and g = R,, with 1 < v < 3, then

—u _ / .
max E | — K(Ryu, Ryu' — gje,)[e™" ™ = max E | K (u, o) [emBrufvutrese]
u u
u’ u/

< e[ Flm

Similarly, [|gF|lm < €™ F|lm when ¢/ # v and g = Ry. By the relations of Definition
B.1.d, every g € & may be written as a product of a translation and reflections, with
each R,», 0 <" < 3 appearing at most once. The claim follows. O

C Inequalities for Parameters

Lemma C.1. Assume that € is sufficiently small.

(a) We have

U5€ _1
L < ( 0 )2+5€

10— b

and, for 0 <n <mn,,

e log L™ < —4(1 — 6¢) log v + O(c*| log o)

(b) For0<n <mn,

8,
e(n) < g

0 5 (n)2ki(n)? < vf Cei(n)

aa
=
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(c) The quantity H/(i;)(:)(n) 1s monotonically decreasing with n and bounded above by

v/?

(d) Let vy be sufficiently small, depending on €. Then, for all C > 0, the infinite
product 1I5°(C) = [[2, (1+ C’e‘(]_l)) is finite and, forn > 1 and all P € D

#(5)?
1 if p=(1,1,0)
I~ =n)n if p= (0 1 1)
- ’C<1+CHoocnl—55 ) L
p(n.0) < (L+ O)IF(C) 057§ if 7= (0,0,2)
vy [—4n Zfﬁ: (67 0, 0)

Proof. (a) follows from Remark 1.12.
(b) By part (a),

log ex(n) = (5 — 2¢€) log by + (§ — 4e) a2, log L”
< (5= 2¢) (1 — (1 = 66)) log vy + O(| log vy|)
= 2elog vy + O(€*|log vg))

and

log (£ k(n)*ki(n)?) — loge(n) = log (Ué/3+EL(2"_1+E)") — log (v 2€ )
=3elogvy+ (2n —1 —n +€) log L™

< 3elogvg + (46% + e) log L"

16 log v n
S 3€ lOg vy + ?Em IOgL

< felog vy + O(e*| log vo|)

(c) By Remark 1.12,

log ri(n) —log &'(n) —loge((n) = (£ —n —n) log L™ — (5 — 2 4+ €+ % — 2¢) log vg
= —[3(1 =€) = (5 +46) i 5] log L" + 5 log v

is monotonically decreasing with n.
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(d) The fact that the infinite product is finite is immediate. Clearly,

(
1 4 1-3 Lt e oo
‘ _I_ UO EZZ L(n+n")e 1fp = (1? 170)
1

1—4e
t)L” L2n'¢ 1fﬁ: (Oa ]-7 1)
ty(n, C) < (14 C)II5°(C)
op* + vé * LLJ,;,Z if 7= (0,0,2)
=1
2—¢ 7/3 7e N n L
Do+ ZL“L " if 5= (6,0,0)

\

In the case that = (0,1, 1), the successive terms in the sum increase by a factor of
at most L'~ while in the other cases they decrease by a factor of at least Lconste,

U
As in [13, Definition 5.2 and Lemma 5.5, we define, for p'= (pu, po, Psp),
(ﬁ) gpu 2p0 _I_ gpsp I{,‘ﬁ(’)’l,) — /{(n)pu ,{’(n)po-kpsp
With this notation
ty(n, C) = t;(0)LOE-AE)" )+ CZL (5—-A®R))(n—0) e[(f( ;) 1 (C) (C.2)

Lemma C.2. Assume that € is sufficiently small. Let C' > 0 and assume that vq is
so small that €|logvg| > 2log(1+ C)IIF(C) . Let pe ® and 1 <n <n,. Then

(a) Tts(n, C) <vg > and
m(n) D ﬂ C < 1/8 — 6 0 O
w(n) (n) tz(n, C) < vy e(n) if 7 # (6,0,0)
kP (n) e5(n, C) < vjei(n) if 7= (6,0,0)
(b) We have

i
t5(n, C') < vfmin {o] " 2

}{m(n)m(n) if = (1,1,0), (0,1,1), (0,0,2)
R[(ln)z @fﬁ: (6a 0, 0)
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Proof. (a) By Lemma C.1.d

(3 —3e)logvg + (n+1')log L™ if 7= (1,1,0)
. 1_36)1 log L™ if = (0,1,1
log (/{p(n)tﬁ(n,C)) < 5llogvg| + (‘I’ 3¢) log vy + i log 1 ]i (0,1,1)
(5 — 3¢€) log vy + 27 log L™ if 7= (0,0,2)
elogug + (61 —4)log L" if p'= (6,0,0)
(C.3)
Consequently
(1 - e)logvy — (n— 1) log L™ if = (1,1,0)
1— e logog — (2 log L™ if = (0,1,1
10g()(n0)) (1 —3€)logvg — (27— ny) log p=( )
(1-— 17 Ylogvg — 2(n —n')log L™ if 5= (0,0,2)
(2 —3€)logvg —4(1—n)log L if 7= (6,0,0)

The first inequality of the Lemma is immediate.

As
log zfgzg —loge(n) = Slogog — (7' 4+ — §)log L"
log I:((:LL)) —loge(n) = Slogvy — (n+n — §)log L™

the inequalities (C.3) give for the case p'= (1, 1,0)

log(:fgzgnﬁ(n) t5(n,C) ) —loge(n) < (5 — 3¢)log vy + (n — i+ §) log L™

< (% — 3¢) logvg + (1'2Fe — (5—46)71%5%?“*)) log L™
< (% — 3¢) log vy + (% + 56)% log L™
< £log vy

again by Remark 1.12 and Lemma C.l.a. Since 1’ < 7, the same bound applies in
the case = (0,0, 2). In the case p'= (0,1, 1), the desired inequality is easy. Finally,
in the case p'= (6,0,0)

(:) KP(n)ts(n, C)) —loge(n) < elogby + (5 — 4 —n+ £) log L"
< elogvg + (— % + (1 +45)1°g7°° + 5) log L"

log (’:

log (10— )
< elog vy
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(b) By Lemma C.1.d,

1—13¢
oy if 5= (1,1,0), (0,1,1), (0,0,2)
ty(n, C) < v - (C.4)
L=l 2 if 5= (6,0,0)

The case (6,0,0) is obvious. The remaining cases follow from

13

1-13,
/{(t:”(b))/;(n) = L9707 < min {U(%_?E’ 1z L(l_n)npt’é_?E} < min {U(%_?E’ %}
. _ L 7e 1, Lo7e —1(2_3¢) 17
since, by Remark 1.12, LO=Mmep3 ™" < Limpd " <p, 03 “pd < 1. O
Lemma C.3.
(a) If 1 <n <mn,,
—15¢

8 & 1 ¢ 4
vy SGZZ ot (08 + L7 (o — )] < of
=1

n 56

b)Y Laa(t—1)<vf "
=1

Proof. (a) The claim follows from

n 1_ge 1_6e .
L [o6 " + L% (o — )] < 0f " 409 LA (1o — 1)

L

<vd " 4+ 05 — 1) by Definition 1.11.b
1—6e e S(1-2¢)

<v;  +050 by §1.5

(b) By Definition 1.11.a,

(1—dn+n)t 56 3—6e
L vg < oj

gL

> et —1) <
/=1

(=1
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Corollary C.4. Let 1 <n < n,.

L_6e
(a) If the real number i obeys |pn—p| < L2 05~ Y70 T7 (00 ‘ + L (po — 1) ]

then ‘1
<oiTC 4 LPoi "

| — L (po — p1.)

and 8
el < 2L (1o — 1) + 0§~ < 4min {vf*, L*"vg "}

(b) If the quartic monomial V obeys HV — V,(@u)HQm < U%UO Dy #;)Zle[(ﬁ — 1) then

IV =Vl < eod ™ and ||V, < %

Proof. (a) By Lemma C.3.a and [13, Lemma A.1],

<

| = L (o — p)| < gy = L7 (a0 — po)

n . 1—8e 1_6e
+ L0y~ ZE remmr (05 + L (po — )]

=1

_ on 215
< vy 4 508

4_16c o

The second inequality now follows from v 10 < o — p and Definition 1.11.b.

(b) is trivial. O
Lemma C.5. Let 0 < n < n,.

(a) If0 < a <1, then L2(po— ) < L2 00 (g — ).

(b) L2 (st — ) < min {v3°, L2"0 "}
(c) L2 (g — 1) < "k (n)?
(d) L (o — ) ki(n)? < 0§ e(n)

Proof. (a) By Definition 1.11.b,

n an n 1-a a an . De(l—a a
L2 (o — ) < L2 [L2% (g — )] (o — )™ < L**™og "™ (g — i)

§ €
(b) By part (a) with o = 0, L (g — 1) < 03¢, By §1.5, L2 (jug — p) < L20 .
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(c) By part (a) with @ =7 — 3 and Definition 1.11.b,

1+4€
%

log [LG(ﬂo - ,U/*>:| - ].Og |: n H(n)2:|
56(% — 7}) log vy + (1 — %) log (o — pts) — (% + 36) log v
Lelog b + 1 log vy — (% + 3€) log vy

<
<
<

e}

(d) By part (a) with a = %<, Definition 1.11.b and Remark 1.12,

log [L2"(,u0 — p.)] — log [v§ :“((:))2]
< 5e(1 — ) log vy + 2= log (o — p1x) — 3 log vg
< 5e(1 — 4)logvy — 2elog vy — 5log(po — pis)
< Be(1— 4 x 2 x 2)log g — 2elog vy — X log vy
<0

O

D Rewriting the Output of the Ultraviolet Flow
D.1 The Model

We now give a technically complete description of the output of [7] and, in Propo-
sition D.1, give the mathematically precise description of the starting point (1.3) of
our analysis. The models under consideration are characterized by

e a kinetic energy operator
h =V*"HV

where H is a real, translation invariant, reflection invariant, strictly positive def-
inite operator on the space, L?((Z*)"), of functions on the set, (Z*)", of nearest
neighbor bonds of the lattice Z3.
e a real, symmetric, translation invariant, reflection invariant, strictly positive defi-
nite two-body interaction v on Z* and
e a real chemical potential u.
We denote by h and v the periodizations of h and v to the finite lattice X =
73] Ls,73.
The results of [7] apply under the following conditions on the above data. Pick

any mass m > 0 and constants c,, Dy, K, > 0, % <e, <land 0 <cy < Cy. There

59



is a number 1 > v > 0, depending on these constants, such that for all 0 < v < b,
the results of [7] hold for all u’s, v’s and H’s that satisfy
o > mdx07((0,e;) , (x,x+¢€;))| < Dy, where ¢; is the unit vector in the

x€z3
1<4,j<3

ith direction and d(x,y) is the Euclidean distance from x to y, and

the eigenvalues of the periodization of H lie between ¢y and Cy and
the norm

vl = Sup 2 I |y (x,y))|
XEL® yEel

obeys 1o < |[|v]| < iv and
the smallest eigenvalue of v is at least ¢,|||v]|| and
lp| < K, 0.

D.2 The Output of [7]

Let H be the second quantized Hamiltonian with kinetic energy operator h and two—
body interaction v, and let N be the number operator. Fix, as in [7, Hypothesis
2.14], strictly positive exponents e,, eg, and eg/ that obey

3er +4e, < 1 1 < deg + 2e, 2(er + &) <e, er +e <1 < ep

N[

Think of e, as being just slightly larger than 0, eg as being slightly smaller than
%, e, as being slightly smaller than %, and e as being between one half and one.
In [7, Theorem 2.16] (a self-contained treatment of the pure small field part of the
argument is also given in [6]) we prove that there exist constants K,6 > 0 (we may
assume that @ < 1) and a function Ip(ay, ) of two complex valued fields o, and

on X such that

Tremsr (o) = [T [ I fesehtectsd et e] sy (D)
XE

T€0ZN(0, 2]

for all temperatures 7' > 0. Here ag = « a1 We also proved that it is possible to

write Iy as the sum of a dominant part IéSF), called the pure small field contri-
bution'®, and terms, indexed by proper subsets of X, which are nonperturbatively

16 IGESF) is the @ = X term in the formula given for Iy(a*, ) in [7, Theorem 2.16]
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small, exponentially in the size of the subsets. The dominant part has a logarithm.
More precisely

18D (ar, B) = 2J¥1ela" 308 x+Va(@" B+Pole™ B)y o (o, B) (D.2)

where

e Z,is a normalization constant,

e (f,g9)x = Y f(x)g(x) is the “real” inner product of f,g € L*(X),
xeX

o j(t)=etm
o Vila®,8) = = J§ ([i(®)a*] [50 = )] , o[ji(t)a’] [0 = 1)8]) . dt

e the function Dy(a, ) is analytic in the fields a, and § and is invariant under
the U(1) symmetry a, — e “a,, 8 — €“3. Furthermore, it can be decomposed
in the form

Dy(av; B) = Ro(aw, B) + Eplau, B)

with

o a function Ry(au, ) that is bilinear in «, and 5 whose norm, as in Definition
1.10, with mass 2m and weight xk = 2(%)6R+er, for both a, and 3, is bounded
by K §v™°8 5 and

o a function &p(au,3) that has degree at least two!” both in a, and in 3, whose
norm with mass 2m and weight £ = 2(Z )", is bounded by K (0f)> 65,

e The “small field cut off function” xy(c, 8) is one if

o |a(x)],|8(x)] < (%)elﬁer for all x € X and

o |[Va(d)|,|VB(b)| < (3)™ (%)™ for all bonds b on X and

o |a(x) — (%) < (6—10)6r for all x € X

and is zero otherwise.

7By this we mean that every monomial appearing in the power series expansion of these functions
contains a factor of the form . (x1) a.(x2) S(x3) 5(x4) -
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D.3 The Rewriting
Proposition D.1. Make the hypotheses of §D.1 and §D.2. Then

ar(x)*Ndor (x)  —ar(x)*or(x SF *
JTI [ I toetitostst mertor e 150 )

xeX
T€0ZN(0, 2]

_ g%l / [ I dw(x)*Adw(x)] ¢ (s Dovho=Vo(the ) +ao (s 0o+ RO )€ )y (1)

2€Xo 2m
where
o Z, = Zpe O
o Xo=(Z x 7% /(572 x LypyZ?)

o Dy=1—¢e"0 —e 9y with hy = Oh and Oy the forward time derivative.

e There is a real-valued kernel Vo(z1, za, x3,24) on ((Z/5572) x Z3)4 that is invari-
ant under x; <> x3 and under o <> x4 and under the symmetry group &, and
there is a constant K,, depending only on 0, m, c,, K, and H, such that
o Vo(t, ) = %fxg dzy - - dry Vo(xy, xe, 23, 14) Vi (21)0(22) s (23)10(24) where Vg

1s the spatial periodization of Vo,
o Vo2 < Koo and [[Vo, > 70

L doy iy day Vil 0) — 0 [y dx (0, )| < K2

e}

2—2ep—4 ;
°© HVO - 59E1,079E3,0 5902,0,904,0 59E1,079E2,0—1 Vo (X17 X2, X3, X4) Hzm < Ko™ R0 with
3

VG(X17 te 7X4)

= Z foedt e ™ (x, Xl)e_(e_t)h(x, X5) v(X,y) e ™ (y,x3) e_(e_t)h(y,x4)

x,y€E€Z3

+ 37 fldt e (x,x5) e @M (x,x5) v(x,y) e Py, x1) e M (y, xy)
X,y€E€Z3
o |uo— (1 —e )| < Kfomioss

o Ro(the,¥) = Rin (e, {00.}), (. {0,0})) + R (1, 1)
where Rin((Vu, {0 }), (W, {¥,}) is an & invariant, particle-number preserving
function with real valued kernels that

o s of degree two in the fields, with either one 1) field and one ) field or two
Yy fields, with both having 1 <v <3 and

o obeys the bound ||7ém||]m < Crnmlog% with a constant C, that depends only on m,
K, and K.
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and 72(()6) (s, 1) is an & invariant, particle-number preserving function with real
valued kernel

o that thas degree three both in 1, and 1, and
o fulfils the estimate | R ||om < e~3016m K (04)2-20

o Eo(Vi, ) is an S invariant, particle-number preserving function with real valued
kernels that

o 1s of degree at least four both in 1, and in 1, and

o has norm with mass 2m and weight 269“/2_111(%)611%r at most K (vf)?~0er=8er,
o the “small field cut off function” xo() is one if

o |Y(z)| < 69“/2(%)6R+6r for all x € Xy and

o |0,p(x)| < P2 (L) (L) foralll <v <3 and allx € X, and

o ot ()] < /(L) for all z € X

and is zero otherwise.

Proof. We start by defining a field v on the lattice A by
(@, x) = "y, (x)

Making a change of variables from o, (x) to ¥ (x) converts the integral on the left
hand side to

2%l =00l / [ [ 2elndvte)] 760y ()

r€Xp
where
F (s, 0 Z{ (Qars 7)) x+ (Cur—g, §(0)ar) ¢ + Vo(Qur—g, r) + Do(Qur—g, r) }
Teem(o 1]
— e v+ D { e —1,0) L (€M) (0, )y

2o €ZN(0, leT}

+ 6_20u‘/:9 (%(930 - 17 ' )a ¢($0> ' ))
+ DG (e_gu/zqvb* (IO - 1a ' )7 6_0”/2¢($0’ ) ))}
==Y (@) (M= e — e ap]p) (@) + (1 — ™) (1),

reXp

- Vin(,lvbw w) + Rin(w*a ’QD) + gin(,lvbh w) (DB)
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with

Vin(w*,'@b) = - 6_29”‘/0(¢*($0 - 1a : )>w(x0a : ))

onZﬂ(O,ﬁ}

R 0) = D " Ry(vulzo—1, ), vz, -))

20€ZN(0, g17]

gin(¢*u ¢) = Eo (6_6M/27vb* (xo —1, ')7 e_eu/27vb(x07 ))

20€ZN(0, g17]

All of Vi, R, &, are invariant under & and have real-valued kernels.

n’

Observe that

Vin(th, 1) = €72~ [Tt (1) (%, x1)tbu (w0 — 1,%1) (0 = )(x, %2) (w0, %2)
OSOIT u(x,y) G(6)(y, xa) (w0 — 1,x5) G(6 — ) (y, Xa)t(0, X4)

X1,%2,X3,X4 €X

= %/ dry - dry Vin(wy, - 24) Yu(1)00(22) 000 (13)10(74)

Xy
where V4, is the spatial periodization of
Vin(xlf Y 113'4) = 61‘170,1‘370 51:2’0,:(:4’0 51‘170,1‘270—1 VG(X1> X2, X3, X4)

As in [7, Lemma 3.21],
[ Viallsm < 20 %™ v]] (D.4)

By translation invariance
%/dffz drsdry Vin(xy, -+, 74)
0 2
= [fde ’U(O,X)}/ dt [fde e_th(O,x)} [fde e_(e_t)h(O,X)]
0

= G/XdX v(0, %)

since, using h to denote the Fourier transform of h,

2

/ dx e”™(0,x) = e~h0) = 1
X
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Similarly

||Vin||0 > /dl'g dl’g d{L’4 Vin(l'l, . ,1'4) — 29/

ZS

dx v(0,x) = 26’/ dx v(0,x)
b

. <17v1>L2(X)

= 20 e

> Oy
(D.5)

We now move onto a discussion of R;,. By the bound on Ry following (D.2)

2(eg +er)

Rl llam < 2% R < e2me o P e pomioes

By [13, Lemma B.3.c],

Rot)= | X O Ralnloo, ) oGan, )

"EQGZO(O,%

H X R ) ), )

moEZﬂ(O,ﬁ}

~ Ay /X de () (x) + Rin((tha, {00.3), (8, {D,0}))

with a real number Ay obeying |Au| < KAv™°2s and a function Ri, that has the
properties specified in the statement of the proposition. (The contribution with one
time derivative and one space derivative that is allowed by [13, Lemma B.3.c| vanishes
in this case since the time arguments of the two fields in Ry (¥ (2o, - ), ¥(zo, -)) are
always equal.)

Next, we discuss &,. If the part of & that is homogeneous of degree 2n has kernel
Egn(x1, - ,Xp;¥1,- -+ ,Yn), then the part of &, that is homogeneous of degree 2n
has kernel

. _ . —nb
Ein,n(xla"' y Ly Y1, -0 ayn) — E@,n(xla"' y Xny Y1, ayn)e K

[ H 5I1,07 xi,0:| [ H 5%’,07 Yio — 1
i=1 i=1

Let T be a shortest tree on X having xq, ---, X,,, y1, - -+, Y among its vertices.
Then the tree on A, whose edges are

o {(210,2), (10,2")} if {z,2'} is an edge of T
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e and an edge from (z10,y;) to y = (z10+ 1,y;) foreach 1 <i <n
has x1, -+, xp, Y1, - - -, Yp among its vertices so that

T(xlv"' y Ly Y1y 00 7yn) ST(le"' y Xn, Y1, 0 7Yn)+n

Consequently,
||Ein7n||2m < ||E6,n||2me_"9“e2m"

and the norm of &, with mass 2m and weight k;, is bounded by the norm of & with
mass 2m and weight & provided ri,e %*/?t™ < k. So the norm, with mass 2m and
weight ki, of &y, obeys the bound quoted for & (but with mass 2m and weight k)
following (D.2), if we choose ky, = e#/2 ™k = eeﬂ/z_mQ(%)eR%r.

Denote by &4 and Rg& the two monomials in &, that are of degree four and six,
respectively, and set

Mo = (1 — 6_9“) + A,u V(] = Vin - 84 50 = gin - 54 — R((]6)

and

Ro(n, ) = Rin (¢, {0,80.3), (0, {0,01)) + R (1., 1)

Obviously
~Vin+Rin +&n=—"Vo+Ro+ &

and Ro and & have the desired properties. Except for the definition and properties
of Vy, the Proposition now follows from (D.3) and the discussion above.
Set

Lep
2

1 3 Lg
F = { X1,T2,T3,Tyg € (Z/WZ) X 7 ’ 2p < Ty — X1 <

forall i =2,3,4and j = 1,2,3 }
Here z; ; is the j' (spatial) coordinate of ;. Set, for x1, zq, z3, 74 € (Z/ﬁZ) x 73

E e if F
Ba(21, 72, 73, 74) — 4([%]7 a[$4]) 1 (%;%’2@3@4) <
0 otherwise
where F, is the kernel of £,. Then FE, is the spatial periodization of E4. Define
Vi = Vi, — symmetrization of Ey

It remains only to prove that ||E4||%m < ||E4|l2m- The desired bounds on V{ will
then follow from (D.4) and (D.5).
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Denote by 7 the tree length in (Z/5=7Z) x Z*. See Definition 1.9. If we have
(1,22, x3,24) € F, then

T(21, T2, T3, T4) < T2 — 1| + |x3 — 21| + |24 — 21| < 37([21], [202], [23], [24])
It follows that ||E4||%m < || E4l|2m- O

In the setting of Proposition D.1, the p, of (1.19) has a particularly simple form.
We thank Martin Lohmann for pointing this out.

Lemma D.2. We have

3k ¥(0)+¥(k —9ep—de,
2 [ R o)
R3 /2773

where h(k) and v(K) are the Fourier transforms of h(x,0) and v(x,0) and 3 = .
Proof. As a preliminary calculation, we evaluate
Z e ™ (x,%2)Dy ! (3, 72)e” " (y, x3)

Xo,X3EZ3

(7D e™™) (230, y) , (72,0,%))
(Dg'e™™) ((230,5) 5 (220,%))
(™ = 1—80) " ((z30,¥) (220,%))

where

e we have used that h is a symmetric operator

e we are thinking of e"™(x,y) as being tensored with an identity operator in the
temporal arguments xg, yo

e we have used that =™ and D' are both translation invariant operators and hence
commute with each other

e the operator (eeh —1- 00)_1 is the inverse of e?® — 1 — 9y = ¢’®D, acting on the
space L2 ((Z)5:52) x Z3).

Since A
Z 6;{7’h(x/’y/) — e—Th(O) -1
y’EZS

67



we have (recalling the definition of vy from Proposition D.1

Z vo(0,x1,%a,x3) Dy (3, 2)

x1,X2,x3€2Z3

- / LY e {0 [ -1-8) " (@a0y) . (22009)]

0 X,y€Z3

+ €_th(y, 0) [(66}1—]1—00)_1 ((1'370, y) s (1’270, X))} }
=03 v(0,x) {(69h — 11— ) ((x30,0), (220,0))

x€Z3

+ (e —1-8) " (230, %), (552,070))}

Recall from Proposition D.1 that

AV4 K' 2—2er—4e
H 0 5901,0,903,0 59E2,079E4,0 5901,0,902,0—1 VG(le X2, X3, X4) H 2m < w0 A '
3

As Dy (23, 75) is bounded, we have

e =20 U(o,x){(e"h —1—3p) " ((1,0), 0) + (™ — 11— 3p) "' ((1,%), o)}

x€7Z3
4 0(02—26R—46r)
(D.6)

On the other hand

(6911 —1- 80)_1((1,X), O)

d3k eikx—0h(k) 1 }: etko
R3 /2773 (2m)? Lep 1—e?*0e~ho()
TC L~ 27
koeL—th/%Z

— &k ikx ,—~0h(k) e~ (Ftp—Dho (k)
R3 /2773 (2m)? 1—e Ltpho (o)

_ &k ikx e~ Bh(k)
 Jrojonzs @’ L—e=PR09

27

Here, we applied Lemma D.4, below, with p = Ly, ( = e*» and w = e_ﬁo(k), to the
ko sum. The Lemma now follows by combining (D.6) and (D.7).

(D.7)

0
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Corollary D.3. With H = 0H, the data of Proposition D.1 fulfill the conditions of
§1.5 provided v is small enough (depending on € and ), m > 3m and

i SO0 4 42 5 420
Q/M L O gty T O < <0
s

and % —e<er< % — %6 and e, < 5. Observe that

Bk v(0)+Vv(k) 0

lim Gn a0y =

p=o0 JR3 j2r73
Proof. By the definition of vy in §1.5 and Proposition D.1,

720 < 2/[Volly < 00 = 2[[Vol2m < 2[[ Vo2, < 2K,0

The condition on po in §1.5 is satisfied since Oy = 19 + O(12) + O(p™8 ).
U

Lemma D.4. Let ¢ be a primitive p* root of unity and w € C not be a p'* root of
unity. Then

p—1
LY S = 55
1—wCk ™ 1—wp
L ¢

Proof. First consider the case 0 < w < 1. Expanding the geometric series and
interchanging sums

PR e X R e k
n n
52 T = 2 p 2. W'
k=0 n=0" k=0

Now
0 if n+4 1 is not an integer multiple of p

p—1
Ly ¢k =
P =0

If n > 0, the integer m above has to be at least one. Therefore

1 if n =mp — 1 for some integer m

1 p—1 Ck o) 1 o1
= — mp—1 __ w
k=0 m=1

The claim now follows by analytic continuation in w. O
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