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Abstract

This paper is a contribution to a program to see symmetry breaking in a
weakly interacting many Boson system on a three dimensional lattice at low
temperature. It is part of an analysis of the “small field” approximation to the
“parabolic flow” which exhibits the formation of a “Mexican hat” potential
well. Here we complete the analysis of a renormalization group step, started
in [7], by “evaluating” the fluctuation integral and renormalizing the chemical
potential.
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Part of our program to construct and analyze an interacting many Boson system
on a three dimensional lattice in the thermodynamic limit is the “small field parabolic
flow” which exhibits the formation of a potential well in the effective interaction. For
an overview of this part, see [3]. The starting point of this program is a representation
of a “small field approximation” to the partition function which is written in the
form of a functional integral | X e over a 3 + 1 dimensional unit lattice Ap, with
an action A4y of the form described in [7, §1.5]. This action is the outcome of the
previous step in our program that had settled the temporal ultraviolet problem in
imaginary time (see [2], [7, Appendix D]). For the “small field parabolic flow” we
perform a number of approximate block spin transformations ’JI‘(()SF), e ,TSLSF), each
followed by a rescaling. Our main result [7, Theorem 1.17] is a representation of
((STSLSF)) o---0 (S’JI‘SSF))) (e*) for all integers n smaller than a given number n,
defined in [7, Definition 1.11.b]. The representation clearly shows the development
of the potential well, see [7, (1.8)].

The proof of the main theorem consists of several steps, outlined in [3]. It is a
combination of block spin transformation and complex stationary phase techniques.
In [7] the algebraic aspects of these steps are presented in detail. The estimates
needed to show that these algebraic steps are meaningful are presented in [8] and in
this paper. [8] deals with the existence of, and estimates on, the background fields
(introduced in [7, Definition 1.5] ) on which the represention of the effective action
in the main theorem is based. Here, we use these estimates as input to complete
the inductive proof of [7, Theorem 1.17] which rewrites the representation e F,, for
((STSLSF)) 0--:0 (ST(()SF) ) €) (¢4, ¥) given in [7, Corollary 4.3] in the form specified
in [7, Theorem 1.17]. The main steps are

e “evaluation” of the fluctuation integral and

e renormalization of the chemical potential.

They are performed in the two main sections of this paper.

The symmetry breaking in the many Boson system is expected to happen only
when the chemical potential is above a critical value. The renormalization of the
chemical potential performed in this paper gives some insight into the leading term
of the expansion of this critical chemical potential in powers of the coupling constant.
This is presented in Appendix A. The more technical Appendixes B and C deal with
the localization operation that we use during the course of renormalization, and with
the effect of scaling on the norms we use.

We keep the terminology and notation of [7], which is summarized in [7, Appendix
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5 One Block Spin Transformation — The Fluctu-
ation Integral

In this section, we evaluate the fluctuation integral. Fix any 0 < n <n,. We assume
that, if n > 1, the conclusions of [7, Theorem 1.17 and Remark 1.18] hold. In the
case of n = 0, we use the data of [7, §1.5].

We start by introducing the main norm that will be used in this section. In this
and the following section we abbreviate the weight factors of [7, Definition 1.11] by

k= k(n) k' =K'(n)

/ 5.1
k=k(n+1)=L"% F=rn+1)=L"k F=r(n+1)=4r, 5-1)

We also use the notation
v, = 22 =2V,

Remark 5.1. By [7, Remark 1.18 and Corollary C.4],
Vallom < 0n
] < 2L% (g — 1) + 057 < 4rmin {03, L2"0] ")

By Remark 5.1, [7, Definition 1.11, Remark 1.12 and Lemma C.1.b], we have,
choosing vy small enough depending on € and L,

max { L*|pa| , [[Vallom (R + L°R) (R + & + LR } < Lpug (5.2)

with the ppg of [8, Convention 1.2]. Denote by IG]] the norm of the analytic function
(¢*,w z*, z) with mass 2m which associates the weight % to the fields o, ¥,
weight &' to the fields t,.,%,, v =0,---,3, and the weight & to the fields z,, z.
Similarly we denote by [||F]|| the norm of the ﬁeld map F(i,, 1), 2., z) with the same
mass and field weights. See [7, Definition A.3].
In Lemma 5.5, below, we prove the bounds that will be needed for evaluation of
the fluctuation integral. It uses

Definition 5.2 (Scaling Divergence Factor). Set, for each constant C' > 1 and each
ﬁ: (puap0apsp)a

K K K
where
(ﬁ) qu 2p0 + gpsp



Furthermore set
sdf (C) = sup sdf(p; C)
ﬁggrcl

Remark 5.3. Assuming that L > (208)1/6, we have sdf(C) < 575

Proof. When = (pu, po, Psp) and [p] = pu + po + Pep
log; sdf (p, C') = log; sdf(p, 1) + |p] log; C

and
logp sdf(p, 1) = —(3 = m)(pu +po + psp) — (14 (1= 1)) (po + Psp) — o
(8G-m)  if[=38
10 -5n—n" if |p] =6 and py + psp > 1
<—48=3n—n" if|pl=4and py > 1
8—2n—2n if |p] =4 and py, > 2
7—2r if py = psp =0, po =2
< —5— max {e, 1(171 - )}
Consequently,

log, (2L5sdf(ﬁ, C’)) < log; (2C®) + (|p] — 8) log; C' — max {e, %(|ﬁ] — 8)}
<e€e— 61 %f <8
1(p1 —8) if |p| > 10
<0
O

Remark 5.4. This remark provides the motivation for our choice ®,¢ (in [7, Defi-
nition 1.16])) and ® (in [7, (1.18)]).
Let M be a monomial of type p, as in [7, Definition 1.8]. By Lemma C.2.b,

[SM]l < L7 sdf(p; 1) | M| ™

(If the mass were zero in both norms, this would be an equality.) So the “scale
(n+1) norm” of the scaled monomial SM is smaller than the “scale n norm” of the
monomial M when L°sdf(p;1) < 1. This is the case if and only if ' € D,. In fact
it was exactly this that determined our choice of ®,,. Monomials of type p with
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P ¢ D, are said to be “scaling—weight irrelevant”. When such terms are generated
during the course of renormalization group step number n, they are placed in the
“high degree” part, &, of the action.

Now let M be a monomial of type p € .. For some p’s, the size of the kernel of
M decreases, or at least does not increase, under scaling. (This does not contradict
ISM]| > || M]|™ because the field weights in |[SM|| are greater than the field weights
in [|M]|™.) Indeed, by Lemma C.2.a,

ISM |lam < L5 L™ 37— 370730 || M|,

(Again, if the mass were zero in both norms, this would be an equality.) The only
p's with %pu + %po + gpsp < b, i.e. the only scaling relevent monomials, are those
with p'= (2,0,0),(1,0,1). Here is what we do with monomials M of type p' € D,q
that are generated during the course of renormalization group step number n. See
§6.

o If = (6,0,0), (1,1,0), (0,1,1), (0,0,2), (i.e. if p € ®) the monomial is placed
in the “low degree” part, R,, of the action.

o If 5/ = (4,0,0), the monomial is placed in the “main” part, A, of the action,
renormalizing V.

e If = (3,0,1), Lemma B.3.b is used to express M as a sum of monomials of type
P with p' = (2,1,1), (2,0,2), which are placed in the “high degree” part, &, of
the action.

o If ) = (2,0,0), Lemma B.3.c is used to express M as a sum of a local degree
two monomial, which is placed in the “main” part, A, of the action, renormal-
izing the chemical potential p, and a sum of monomials of type p' with p' =
(1,1,0),(0,1,1), (0,0,2), which are placed in the “low degree” part, R, of the
action.

e If p=(1,0,1), Lemma B.3.a is used to express M as a sum of monomials of type
P with ' = (0,1,1), (0,0,2), which are placed in the “low degree” part, R,, of
the action.

There is one other complication which we have supressed from these bullets. Mono-

mials generated by the fluctuation integral are naturally functions of the fields 1,).

But the “low degree” part R, and the chemical potential and interaction parts of the

“main” part A, of the action are functions of the background field ¢ ., (¥, 9, fin, Vn)-

Expressing the various functions above in terms of the “right” fields complicates the

above procedure, but does not introduce any serious obstructions.

Lemma 5.5. There is a constant C; that depends only on I's,, Kps and pyng such
that the following holds.



(a) Let 5AD and §AZY be the parts of A, that are of degree two and of degree at
least three, respectively, in z(y. Then

[EEN
!|5A§F‘°’ |

LECH|IVallam (7 + &

< 07 + || YR
S L420[ HVnHQm(H —+ H[)FL

(b) Let &, refer to the &, of [7, Theorem 1.17] for n > 1 and the & of [7, §1.5] for
n = 0. There are analytic functions Ent1.1 (Ui, V) and 6E, (s, 1), 24, 2) such that

Enit 1 (Vs V) = Enira (Vs {000}) s (0, {8,00}))
0En (s, 24, 2) = &, (Vi {D0:}) , (0, {00}), 24, 2)

and
Ssdf(Cr) || €a]| ™
B R sdf(Cy) (€]

Furthermore, £,+11 contains no scaling/weight relevant monomials.

(c) We have
(SRA)(®.,®) = > (SRP)((P., {9,9.}), (2,{0,9}))

PED

and

ISR, < 2727 RPY,

For each p = (py,po,psp) € D, there is an analytic function SRP Vs, 0, 24, 2)
such that

ORn(Wur ¥, 20,2) = Y ORP (4, {0,00}) , (0, {04}) , 24, 2)

PED
and A
MM o5 (@)1 A
[SRP| < CF LP=2®) e IRP,,
where
/%ﬁ = gPu R’pO-HUsp
and

EJES

ifp0 +psp#0
ifpozpspzo

.§||I‘ TJ|>—A

an@:%{

\]



= 2 1 [5-AG) | [5-A@) _RF

p 70 (7) 70 (7)
(1,1,0) | RR' | L35 L (L?R) (L' Ry)
(0,1,1) | &2 | o8 | L' | (L&) (L"Ry) (5.3)
(0,0,2) | &2 | weft | L0 | (L2R))(LMRy)
(6,0,0) | &% | nZ | Lt | LR (LM &)

Proof. (a) We first consider the case n > 1. We apply [8, Proposition 3.1.b] with
m = 2m, ¢t = R, ¥ =K and ¢ = K. The hypotheses of [8, Proposition 3.1] are
fulfilled by (5.2) so that

11665, 1Tl < 22K {1Villam (5 + 7)? + |1}

The claim follows easily using [7, (4.8.a)].

We now consider n = 0. The kernel %VO(S) = %Vl(“) of SV is given in [7, Remark

2.2.h] and fulfills ||V\™]|2n < 1|IVollam by Lemma C.2.a. Expanding the quartic

(SVo) (¢ + 6., 0 + 6)

1/3(*):1130(*)(1/)*,1/),#0)
M)(*):L3/2§D(0)(*)sflz(*)

in powers of z(,), we get, by [8, Remark 5.2and Proposition 2.1.a] and [5, Proposition
3.2.a

HéA((f) I< (;1) [Villom [||51(L2M0)(*)Q>{Dl||2m+KbgH‘/1||2mR2}2’_€2 [L% ||SD(0)S—1H2mF€[]2
+ o] L |SCOS ™Yo, A2
< L2 C(||VollamR® + o] ) 72
[6AS < () IVillzm [1S1(L2100) % Qi1 l2m + Ko | Villom?] & [L3 [SDOS™ | i)’
+ (i)”vl||2m [LgHSD(O)S_lemR[F
< LEC||Vollam (R + R R}

(b) Set

5n+1,1(7vz*7 d) = (Sgn>( (\11*7 {\Il*u}> ) (\Il7 {\IIV}) ) ‘

‘I’(*)Z’lﬁ(*)n(w*ﬂ/hun,Vn)
‘I’(*)V:lls(*)7l,u(1/)*,U),U)*V»’lbu»ﬂn,vn)



and

0 (e, U, 20, 2) = (SE,) (L4, 1)

V(=P (x)p W tonin V) +L3/ 28 DM (g =1z
\I}(*)u:’Z’(*)n,u(w*,w,w*mwu,Hn»Vn)+L3/QSu5VD(n)(*)Silz(*)

— (SE,)(¥.,0) )

‘I’(*):iﬁ(*)n(%,w,un,vn)
‘I'(*)u:d’(*)nyy(w* s Ysvy Y, un, Vn)

with the &, of [7, Theorem 1.17] and the ﬁ(*)mu of [8, Proposition 5.1]. By [7, Remark
2.2.b] the two equations of part (b) hold. That &,.1, contains no scaling/weight
relevant monomials follows from the degree properties of 1@(*)” and ﬁ(*)n,y specified
in [8, Proposition 5.1].

We set

A= {Kpg + 5[ISD™S o } R
' a1 (mg—1(. 1=
A Oréll?é(g{Kbg“‘ 11 ||8VSD S ||2m}'% (54)
1 F
o=—-——
13 R

As vg is being chosen sufficiently small, depending on L,

1 . KR I
U:ﬁmm{’_{—[, Lz—/?a[}zl (5.5)
by [7, Definition 1.11]. Denote by || - ||x the (auxiliary) norm with mass 2m that
assigns the weight factors A to the fields () and X to the fields ¥, (. By |8,
Proposition 5.1], with ¢ = &, ¥ = &’ and & = &y,

[l + o TIZ*28DM OS2 < A (5.6)
Ml + o TL2S,0,DPES 2 I < X, 0 < v < 3

IA A

so that, by [5, Proposition 3.2.a,b],

[€nsiall S ISEallx IOEN < SIISEallx

For each monomial M of type p'in &,, Lemma C.2.b with m = 2m, v = m, € = ),
V=N, t=rkand ¥ =K/, gives

[sM|, < 27 sdf(M) [|m]| ™



with

I A\pay 1 MNypoys 1 Nyps .
SAE(M) = (T )" (725) (Fms) " < sdii
provided

Koy + 7a18DS o + max k10,85 o < Kiy + 36T,y < €

So we have . .
IS, ||, < L2 sdf(Cy) || €n]|™ (5.7)

and the conclusion follows.
(c) The first equation holds by [7, Remark 2.2.b] and the bound on HS?@,(%H )H2m is an

immediate consequence of Lemma C.2.a.
Set

SRD (4, ], 2., 2) = (SRP) (.., D)

q’(*):¢(*)n+1(111*,¢,L2#n,SVn)+5¢A>(*)n+1(#’*ﬂb,z*,z)
<I>(*)V:¢n+1(*),y(w*,w@w,wy,ﬂumsvn)
F60 (s nt1,0 (Wx s ¥xv P 2x,2)

— (SR (P, &
(SR )((I)*’ ) ® ()= (s )np1 (Y9, L20un SVn)
P40 =Pn1 (w0 (Yx ¥ Ywr Yu, L2 i ,SVn)

where, by [8, Proposition 2.1],

Gnt1(0) (s ;Y oy Dpin, SV2) = B 1o i
+ B (Ve U, Wy, L1, SV,)
The properties of 5qu5 “n+1,» are given in [8, Proposition 3.1.e]. By [7, Remark 2.2.b]

we have R, = ) 50 0 SRP.
To bound ||5R£Lﬁ) || we proceed as we did in part (b), but setting

A= {HS"H Lzﬂn)(*)QZHQnHHzm + Kighy + Kbg} K

N= 0211?2(3 { rgleaf HBn-i-l L2 i, VH2m + KbgA¢ + Kbg}l‘%,

Denote by || - ||x the (auxiliary) norm with mass 2m that assigns the weight factors
A to the fields ®(,) and X" to the fields ®,,). By [8, Propositions 2.1 and 3.1.a,e],
with € = I_i E/ =g and E[ = l_i[,

M1 (W ¥y L, SV + 0@ 10l < X if pu # 0
MBS, e s + 050+ 0@ 166 @nir ol S X if po + pep # 0

10



As in (5.5), 0,(p) > 1, so that, by [5, Proposition 3.2.b],

3
[RP] < ASISRP |y < AL AP RP||,, Av-wte 1§ R

O'n(ﬁ) on(p
v=0

O

Parts (b) and (c) of Lemma 5.5 provide bounds on the constituents &,411 and
SR, of the contribution, C,, from the critical field in [7, Corollary 4.3]. We now
provide a bound on the fluctuation integral F,.

Proposition 5.6. There is an analytic function E(i,,1) and a constant Z! such
that

Faltho ) = 2800w 000D g [IE] < e(n)

M

Proof. By [7, 4.4] and Lemma 5.5 the fluctuation integral is

]:n('l/f*,@b) = /dﬂrn(Z*,z) 675(1;*7121@*@)

Dy =) {0 () })
where
Janiea-[I] [ s
weX{™|2(w)|<rn
and

75(1;*7 iv Rk Z) = _5A£L2) (w*v ¢7 ks Z) - 5A£23) (¢*7 ¢7 ks Z)
b (st 2r2) + 3 ORD (B 2, )

PED
By Remark 5.1 and [7, Definition 1.11, Lemma C.5.d and (C.1.b)],

2L C{[|Vallam (R + Fo)* + |pnl 7 < 2L2Co {474 + 2L (1o — 11.) + 0g~“}&{
< ei(n) (5.8.a)

By [7, Definition 1.11],

L35 sdf(Cy) v < Leg(n) (5.8.b)

11



By [7, Lemma C.2.a] and (5.3),

L5(%)A(‘§j anl(ﬁ) R ty(n, Or) < Ze(n) for each pe ® (5.8.¢)

provided vg is small enough that the hypothesis €|logvg| > 2log(1 + Cr) II5°(Cr)
of [7, Lemma C.2] is satisfied. By Lemma 5.5 and (5.8) we have ||D]| < le[( ) < 5
by [7, (C.1.a)]. [1, Theorem 3.4] yields the existence of an analytic function & ('Q/NJ* 0
such that o

J dpr, (27, 2) 202D

f dpy, (2, 2) ¢D(0,0,2,2)
and ||&] < e(n). O

In order to renormalize the chemical potential we will need more detailed in-
formation about the monomial in 5[(¢*,w) that is of type 1,1. To extract that
information, we need more detailed information about the part of

'15(@;*, 'J;a 2y Z) = —5An(w*, Y, 24, Z) + 5‘§n ('J}*a @Ea Zx Z) + Z 57@217) (77;*7 'J}a 2y Z)
pED
that is of degree at most one in each of 1, and v and is of degree zero in (. So

we define, on the space of field maps ,C’;(@E*, D, 2, z) with H(jﬂ < 00, the projections

° Pﬁl’ which extracts the part which is of degree exactly one in each of ¢, and 1, of
degree zero in the v(,),’s and of arbitrary degree in z. and

° Pfl’ which extracts the part which is of degree exactly one in 1)), of degree zero
in the 9(,),’s and of arbitrary degree in z(,) and

° Péb which extracts the part which is of degree zero in 9,y and the 1(,),’s and of
arbitrary degree in z().

Lemma 5.7. There is a constant Ay, depending only on L, I'y,, Ky, and pyg, such
that the following holds.

(a) Ifn =0, [P35 Aol < Ay (|po| + v0) &
and P2 0Ay = — M,y where

Mot 5,2) =~ [ doyeedo [ ditdel [ dshal Voo o, )
Xo Xo Xt
DO (ay,2}) 2 (L")
(S1(L2110) Q70 ) (L™ g, a5) ()
(S1(L2p0)" Qr ) (L™ s, @) ()
D(O)(374>a74) 2(L71ah)

. 1PV A < Ayoori?

12



Ifn>1, ||P¢5A H < A1(|Nn| + Un-i-l)'%[ H 0AL || < Alnn-i-l"%"%?

and ||Pw5A + M,|| < A0? (R2R] where

Mn = —% / du1 cee dU4/ dl‘gdl‘g/ d$1d$4 Vn(ul,u2, U3,U4>
3 Xo(n+1) Xé

(D™ Q QnSn(tn)) (1, 1) 2 (L")
(Spa1 (L2 n) Qo1 Q) (L g, 2) b (o)
(St (L2 4n) Qi Q) (L g, 3) (3)
(Sn (1) Q5 Q0 D) (g, 24) 2(L7"y)

fulfills |M,]| < Ao, 7R}

(b) (P + PV + PY)6E,] < L* sdf(Cy) 25 ||€,]|™

(c) For each p €D,

R ifi=(6,0,0)

[Py SR < Ay vp(n,Cr) { RRc if §=(1,1,0)

R ifp=(0,1,1),(0,0,2)
(kR if = (6,0,0)
IPYSRP < Avep(n, Cr) S Rl if 7= (1,1,0)

|Rf  otherwise
_ - kS if p=(6,0,0
IPSRET < Mregim.C) {71000

K2 otherwise

Proof. In this proof, when we say that a contribution has norm of order zyz, we
mean that the || - || norm of the contribution is bounded by a constant, depending
only on L, Iy, Kpe and ppg, times xyz.

(a) We first consider the case n = 0. By [8, (4.8.b), Remark 5.2 and Proposition
2.1.a) and [7, Definition 2.1],
1

S50 = [ (1= ) Ga(8V0) (e + 100+ 150)

1!3(*):1;0(*)(111*71117#07\/0)
61#(*):LS/QSD(O)(*)S*1Z(*)

+ poL? (2, SCOS™'2),

13



1
= % 22 2/(1 — 1) % / dxq - -dm/ dx’ldxzt/(l)dxéda:g Vo(x1, xa, 23, 24)
0 Xo Xo X

D(O)*(:L’l,x/l) tz*(lL_lx/l)
L3S (L2 u0) Q391 ) (L g, ) ()
L732 (8 (L2 1o)* Q591) (L™ g, ) . (2%)
DO (x4, 2) tz(L7'2)) + h.o.

= %/ d.ﬁlfl <. d$4/ d.fl,’/ldl'i/ dl‘;dl‘é %($1,I2,$3,5L’4)

Ao Ao xW

0

DO*(zy, 2 2, (L71a)
(S1(L?110)Q1Q1) (L™ g, ) ()
(S1(L2p0)* Q1 ) (L™ g, a3) ()
DO (x4, ) 2(L~'2},) + h.o.

with the contributions in h.o. being either

e independent of ¢,y with norms of order (|puo| + vo)%; or

e of order precisely one in 1,) with norms of order voiK; or

e of order at least two in ¢ or of order at least two in ¢, or of order at least three
in w(*).

We now consider the case n > 1. By [7, (4.8.a)],

1
5 A, (s, 0, 20, 2) = — L7/ /0 dt (2., 8D, QST 66\, (¢ st 2,1 2) ),
(5.9)

1
L7 / dt (SD™W*Q, QST 650 (Y st 2a 1 2), 2),
0
By [8, Proposition 3.1.d], using the notation of [7, Definition 3.1],

OO (e, 20, 2) = LP2S[S, (1) V= S Q2, DM 2,
Px=0¢x+0Px

3. * =¢+8¢ 7 (h.o.
— L2171 S (1) IV (9000, 95, 90(*>)‘:=¢* + o
p=¢

with the substitutions

Sy = S St (L241n) W Qi1 Qi U

Dy e (5.10)
0s) = Snlitn) Q5 Qu L¥*DMOIS 2

14



and with the contributions in 5(;3?50') being of order at least five in (4, 2()) and
obeying

1P/ 0005 < L i ol WK for j=0,1,2

Here (%) means the opposite of (x) — i.e nothing when (%) = % and % when
(*) =nothing.
So the two terms on the right hand side of (5.9) are (minus)

L7/2/ dt (20, SD™, QS 665, (e, st 24,1 2) ),

—2L7/2/ dt (., SD™Q,, QS (1) V' (6, 1, t5¢)), + h.o.
0
— —L3/2<S—1z*, D™, QnSn(pin)V (0, 0s, 5¢)>0 +h.o.

= —L_s/ du1 B 'dU4/( )dIQdIg/( )dIldI4 Vn(ul,u2,u3,u4) (511)
” XOnJrl Xon
(D™, QuSy(pn)) (w1, ur) 2 (L")
( n+1(L2/~Ln>Q:<L+IQn+1>(L_1u27 x2) ¢(x2>
(Sn+1(L2Nn)*Q;+1Qn+1)(}L_1u3u 373) (8 ($3)
(S (11n) Q8 D™) (g, 24) (L7 2y) + heo.

and, similarly,

1
L7? / dt (SD™*Q,, QST 6O (b, st 2a,t 2), 2),
0

= —L_g/ du1 s dU4/ dIldIQ/ dl‘3d$4 Vn(ul, U9, U3, U4> (512)
” Xo(n+1) Xén)

(D" Qy, QS () (224, ua) 2(L " 4)

(St (L2 pn)* @5y 1 Q) (L, 1) (1)
(Sn—l—l(Lzﬂn)QZ+IQn+l>(L_lu2v x2) w(@) (5'13>
(S (11n)* Q20 D™ (us, x3) 2, (L™ z5) + heo.

with the contributions in h.o. being either

e independent of ¢,y with norm of order (|| + v,41)&{ or

e of order precisely one in 1(,) with norm of order v, KR} or
e of order precisely two in ¢, with norm of order v2,&*%} or
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e of order at least two in ¢ or of order at least two in ¢, or of order at least three
in @D(*).

Finally, observe that the two integrals of the right hand sides of (5.11) and (5.12)

are equal — just make the change of variables x1 <+ x3, u; <> us in one of them.

(b) The bound on §&, given in Lemma 5.5.b is

16€.]| < L' E sdf(C)) HgnH(n) < L1 L—(n'—e/2)(n+l)n(1)/3—e/2

I

which implies that the kernel of the monomial of type ¥, in 6, has L'-L* norm
bounded by

L13 L—(n’—e/2)(n+l)né/3—5/2 _ L13 L_(2n+nl_e/2)("+l)Ué_5€/2

1 =
R2

This is not adequate for our present purposes. We want a power of vy that is strictly
greater than one — the contributions from 6&, should be of higher order than the
dominant contributions coming from 0A,, which are of order exactly one in the
coupling constant. We can get that by exploiting the fact that we only care about
the part of 55}(@, 0, 2, z) that is of degree at most 2 in ¢,y and of degree zero in
the w(*)W’S.

Recall that

0 (P, P, 24, 2) = (SEn) (\i]*’ V) ‘ W (=8 () (Y01, V) + L3/ 28D (M) ()5 =1z )

U (00 =P ey, (B si Yusin Vi )+ L3/ 28,8, DIV ()5 —12 )

— (SE,) (V.. D) ‘

‘1’(*):1&(*)n(¢*ywyﬂnyvn)
‘I’(*)V:#A’(*)nyl,(w*,w,w*u,dlu,#n,vn)

with the &, of [7, Theorem 1.17] and the @(*)n,y of [8, Proposition 5.1]. Let us denote
by 555;2)(@*, W, 60, 00,) the part of
(SE,) (T + 60, ¥ + 60) — (SE,)(V., )

that is of degree at most two in W(,) and of degree zero in W(,),. Set 5ELSY (1/;*, 0, 2, z)
to be 5E¢(L§2)(\if*, 0,60, 00,) evaluated at

Uiy = Dy (U, ¥, i, Vi)
Uy = Yoy (Ver Oy Yoy oy iy Vi)
6W(y = L¥*SDMWMS 2,
00y, = L¥?S,0,DMMS 2,

16



Since @2(*)” is of degree at least one in 1)) and @(*)n,y is of degree at least one in

Y(+)v, €very monomial in 6, — 5EL=Y is either of degree at least one in the 1)(,,’s or
of degree at least three in 1)(,). So

(PY + P + PY)o&, = (Py + Py + Py) &Y

Note further that, since every monomial in &, that is of degree at least one in 1,
is actually of degree at least 4 in (@D(*), w(*)y), and every monomial in 5~n is of degree
at least 2, we have that every monomial in §ESY is of degree at least 2 in 2.

We define A, X’ and o by (5.4). As in the proof of Lemma 5.5.b, denote by || - ||a
the (auxiliary) norm with mass 2m that assigns the weight factors A to the fields W,
and )" to the fields W, (.. Then, by [5, Lemma 3.1.a and Proposition 3.2.a], (5.5),
(5.6) and (5.7),

BEEI] < L|SE, |y < HLPsdf(Cy) ||E,]|™ < L3 sdf(Cy) 2% ||€,]|™

(¢) Recall from Lemma 5.5.c that

SRD (4, b, 2., 2) = (SRP) (.., D)

P ()= ()nt 1 (Px L2 0n SVn) 466 ()4 q (a1, 2x,2)
P4y =P 1 ()0 (Pr 0 ¥wr Yu, L2 i ,SVn)
+6a3(*)n+1,,,(w*,w,w*u,wu,uz)

P()=9 (synp1 (Yx:¥, L2 un SVn)
<I>(*),,=¢n+1(*),u(¢*,w,W*V,WV,L2Mn,SVn)
The claims follow from the observations that
® Q(nt1 is of degree at least one in 1)) and @ )n+1,, is of degree one in ¥y, and,
e by [8, Propositions 2.1.a and 3.1.a,¢],

|||¢(*)n+1(¢*7 ¥, L2:U“n> Svn)m < {‘}57(121@;+1Qn+1‘}2m + Kbgpbg} K
166y lll < L Kig iy
L

=g
S
O
3
F

and,
e by Lemma C.2.a,

ISRP [lam < L 2P| RP ||y < L2 Pry(n, Cr)
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Proposition 5.8. There is a constant Ay, depending only on L, I'yy, Kpg and phg
such that the following holds.

(a) Denote by Py, the projection, on the space of analytic functions G (1., ), which

extracts the part which is of degree exactly one in each of 1, and 1, of degree
zero in the ), ’s. Also set, for n > 0,

/ _ fd,u,,n(z*,z) Mn(¢*a¢72*’z)
Mn(,lvb*/w) - fdﬂrn(3*7z)

Then

& / L_5e _
1Pyt = My, (s, ) [lam < Az oo (05 + [ ) &7
(b) Set

Mo(iﬂ*,lp) —%/ d.ﬁlfl s d$4/ dl‘édl‘g %(ml,xg,xg,x4)
Xo X

(S1(L? o) Q1 Q1) (L™ g, ) ()
(S1(L?10)* Q1) (L s, ) 1y ()
C(O)(ZL’4,I1)
and, forn > 1,

Mn(@b*, ’QD) = —% / du1 cee dU4 /X(n+1) dl’gdl’g Vn(ul, Ug, U3, U4)

" (Su () Q52 CM 9y QS (1)) (1, )
(St (L) Qo1 Quy1) (L un, 22) ()

(St (L2 ) Q1 Q1) (L g, 3) Y (3)
Then

||M1/1(¢*a ’QD) - Mn(,@b*, w)||2m < A2 v, Tie_ri
Proof. (a) Set

Da(th, 20 2) = (B + P+ ) { =040 + 08, + 3 0RP }

PED

18



We are to bound

Ay, (2%, z) €PWetze2)
: D(0,0 — M, (Y, 9)
fdur'n(z*)Z) e ( ’ 7Z*,Z)
fd,urn(z*,z) eﬁ2(i*,i,z*7z)
fd/J“T’n(Z*,Z) eﬁ2(0,0,z*7z)

Py.y& — M, (s,10) = Py.yIn {

= Pw*w In |: :| - Mﬁ(qﬁ*,w)

We use [1, Corollary 3.5] with n = 1, du being the normalized measure
i, [ dpn (2,2

with f = D,, and with the norm || - ||, of mass 2m which assigns a weight w (that
we shall choose shortly) to 1,1 and the weight % to the fields z,, z. We have, by
Lemma 5.7 and [7, Theorem 1.17, Definition 1.11 and Lemma C.2.b],
|PYDs — M, ||, & < Ao2 Rl + I3 20 sdf(C) ||€a]|™
fi[/’% lfp:(lvlu())
+ A vy, Cr) S RZ/R? i 5= (0,1,1), (0,0,2)
peR RY O if p=(6,0,0)

_ _ / — _ £ . 4_7
< Ao2R{ + L 2+ )(”H)Ué/g 5506/@[2 + v &7 min {03 ‘ %}
4
PR i_7
< R min {og ‘ v, }
(5.14)

and

Py D), L < || Py Do — My||,, 2 + [Ma]l2 < Abo,&?

ww2 =

Also

|PYDa|, L < Ayo, sl + L2 25 sdf(Cy) || €a]|™
Re ifp=(1,1,0)
+ A1 Y ty(n,Cr){ B/Rif p=(0,1,1), (0,0,2)
PR R if = (6,0,0)

9

< AR R? 4 L3sdf(Cy) L0 0mgd=2 72 4 o7 2R
1— 5 3
< vy K

M
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if vy is small enough, by [7, Definition 1.11, Lemma C.1.d], in the case (1,1,0) and
[7, Lemma C.2.b] in the other cases. Furthermore

1B Dal,, < A (paal + 0+ L7 Z sdf(CY) 1€

kS if p=(6,0,0
+Alztﬁ(n,CR){ [ ( )

PED

2
< Ay ([t + 00) R + LPsdf(C) L2702 B2 + 03 !

K?  otherwise

< A (|| + 0 )l

by [7, Definition 1.11 and Lemma C.1.d]. We now set

“|/~Ln‘+00
so that
™~ n + —€
sl < 8] £l + 0] ) ol L2l E0 5 (ol 4 )t

< 35 ([l + U0 )R

and, by [1, Corollary 3.5] with du(z*, z) being the normalized du.., (2%, z),

)Pw*w (&= Jau Do, 2*,2)) | < 407 Dalls, < (120A0)° (lun| + 05 )R

g

Hence
| P (6= Jdu Dot w272 ) || < || P (6= S Paws 2,2 ) |

< (12005) 00 (Jpta] + 0§ )0

w

It now suffices to observe that, by (5.14),

| P (M1 00 0) = [ Doy, 2, 2)) |
< LHPw M, (Vi U, 24, 2) _ﬁ2(w*a¢>z*>z))Hw

4
S—Te_
<vj R
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(b) This follows from the observations that, for r, > 1,

'fd,um(z*,z) (L7 twy)2(Lay)
fd:um(z*v z)

and, recalling that D©" is the transpose of D©),

2 —r2
— Opyzo| < 217

/ de’ DO (21, 2) DO (24, ) = CO (24, 1)
Xo

/( )dx’ D(n)(xlux) D(n)(%xz) = C(n)(%,%’z)
Xn

0
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6 One Block Spin Transformation — Renormal-
ization and Conclusion of the Induction

Lemma 5.5 and Proposition 5.6 provide, for each 0 < n < n,, an integral free
representation for the e F, = Nj(T")Zn ((ST&LSF)) 0--:0 (ST(()SF) )) ) (¥, ¥) of [T,
Corollary 4.3]. It is

log e“r F,, + log 2,
2
- [ Ap1 (Vay 0, bay &, L2 11, SV,) + (SRn)(qb*,qﬁ)] st oLy (61)
- 5n+1,1(¢*7 v+ &l ¢)] Py =) 10w })

To convert this representation into the form specified in [7, Theorem 1.17 and Remark
1.18] (with n replaced by n + 1) we shall
e move the scaling/weight relevant part of & into Rp+1 and
e renormalize the chemical potential and the interaction.
We again fix any 0 < n < n, and assume that, if n > 1, the conclusions of [7,
Theorem 1.17 and Remark 1.18] hold. In the case of n = 0, we use the data of [7,
§1.5]. In this section, we will show that these assumptions imply [7, Theorem 1.17
and Remark 1.18] with n replaced by n + 1, thus concluding the induction step.

We shall construct a chemical potential p,.1, an interaction V,; and a poly-
nomial R, that fulfil the conclusions of [7, Theorem 1.17 and Remark 1.18], and
an analytic function gn+1,2(1ﬁ*,1;) whose power series expansion does not contain
scaling /weight relevant monomials such that

| w1 (e, 0,60, 6, L, SV2) + (SR) (91 9)]
+ g[('J)*a @E))

D)= ()41 (Yx 1, L2 pin SV

Py =) {0y })

= [ - An+1(¢*, 'l/)a ¢*7 ¢a Hn+1, Vn—i—l) + Rn—i—l (¢*a Cb)]
+ gn+1,2(1ﬁ*7 1&)‘

(6.2)

D) =P(xyn+1(Wss¥spn+1,Vn1)
Dy =W {000 })

With gn+1 = 5~n+171 + gn+1,2 we will get the desired representation for

((S']r,gm) oo (STED )) (eAO) (s, )
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The first term on the left hand side of (6.2) is written in terms of the back-
ground fields @n+1 (¢, ¥, L1, SV,) , and the second term in terms of the fields
Yy themselves. For the proof of (6.2) we will reshuffle this arrangement — i.e.
write background fields in terms of () fields and conversely. To take care of the
special degree properties of the relevant monomials, the chemical potential and the
interaction, we have to keep track of the degrees of the monomials arising in the
conversion process. The background fields are defined in terms of the v, fields (see
[7, Proposition 1.14]), so conversion from ¢ fields to ¢ is in principle “easy”. The
converse is taken care of in Lemma 6.3.

We set up and solve (in Lemma 6.2) the equation for §ju,, = pins1 — L*,. Then,
we derive and solve the equation for 0V, = V,;1 — SV,,. See Lemma 6.4. The
polynomial R,+; and the function 5~n+1,2 of (6.2) are constructed in Lemma 6.6.

We again use the abbreviations (5.1) and the norms || - || (for analytic functions)
and ||| - ||| (for field maps) with mass 2m and weight factors &, &’ defined at the
beginning of §5. For the output of the renormalization procedure, we use the norm
| - ||®*Y with mass m which associates the same weight & = x(n+ 1) to the fields
Y., ¥, and the same weight &' = k’(n + 1) to the fields ¥,.,¢,, v =0,---,3. We
abbreviate || - |[=| - ||™*" and use|]| - ||| to denote the corresponding norm for
field maps. Recall also, from [7, Definition 1.11], that || - ||, is the norm with mass
2m which associates the weight 1 to all fields.

To keep track of relevant monomials, we use

Definition 6.1. For a vector p'= (pu, Po, Psp) 0f nonnegative integers denote by B,

respectively PR, the space of & invariant, particle number preserving, polynomials

in the fields 1., 1, respectively ¢., ¢, of type p, as in [7, Definition 1.8]. For any

analytic function F(1),, 1), denote by My(F) the part of F that is in 9. Let

e Po, respectively Ry, denote the space of & invariant, particle number preserving,
polynomials in the fields 1,1, respectively ¢,,¢, that contain only monomials of
type p€ © as in [7, (1.18)].

e B, denote the space of & invariant, particle number preserving, polynomials in
the fields 9., ¥ that contain only monomials of type p € D,q as in [7, Definition
1.16].

e ‘I3, denote the space of G invariant, particle number preserving, analytic functions
of the fields v, v, that contain only scaling/weight irrelevant monomials, i.e. of
type ﬁ ¢ ©re1~

Po and P, are direct sums of Pz's with p running over the vectors specified in [7,

(1.18) and Definition 1.16], respectively. By construction, Pyp is a subspace of Piq.
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We also use the projections L4, Lo and Z and mass extraction operator ¢ of Propo-
sition B.4 and Definition B.5.

By Corollary B.6 and Proposition 5.6,

E((, {00.}), (0, {0,0})) = L(&) / da P, (2)(x) + La(E) (s, 1)

+ Lo(&) (W, {0,0.)), (0, {0,0)))
+Z(E) (U, {00.)) , (0, {8,0)))

(€] < Feu(n)
TE@T 1£a@] IZEN < [1+ 1800 aln)
(6.3)
Set
A (6, 011,6V)
= Ans1 (Yo, G0, &, Ljin + 010, 8Vn) 0y =(yn 1 (e, L2 i +0, SV +6V) (6.4)

- An+1(¢*7 wv ¢*7 ¢7 L2,un7 SVn)

¢(*):¢(*)n+1(w* 7¢7L2M7L7§Vn)

Note that the last argument of the first A, on the right hand side is SV, rather
than SV, + 0V. See the definition of A before (6.15).

Lemma 6.2 (Renormalization of the Chemical Potential). There is a unique i, in
[ — Phbgs pbg} such that for all 0V € P .0

C(A (-, - O, OV)) + L(E) = 0
Furthermore Sy, has the same sign as ((E) and
HOE)] < 10p] < §IUEN] < Frer(n)

Proof. The part of ¢y = Gons1(x, ¥, L2y, + 01, SV, + 6V) that is linear in ¢y, ¢
18 B(*)’l/}(*) + (m AB(*)((S,U) ’QD(*) with

By = S"+1(L2Mn)(*)Q:L+1Qn+1 AB(6p) = S(670)®) B

) * L (6.5)
(o)™ = SEL[L = (L2 + 0)STH]
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See [8, Propositions 2.1 and 4.1]. In particular it is independent of §). Similarly,
the part of ¢p = Dny1@pyni1(Ve, ¥, L2py, + 00, SV, + 6V) that is linear in ¢ is
Bp Y+ 6 ABp v where

_ n®) _
Bp =B, 1120, p  ABp=Buiir20,,0

Therefore, the part of A¥" that is quadratic in the fields v, 1 is

Avar (w*’ w’ 5,u <'¢}* Qn+1¢*> Qn-ﬁ-l (’QD - Qn+1¢) >0

D () =(B(a) TORAB (1) )9 ()
¢p=(Bp+duABp)y

+ <¢*7 ¢D>n+1 - L2/~Ln <¢*7 ¢>n+1

P()=B(0)¥(x)
¢p=Bpy

n ’(25 x)— * .

In particular

1A < ealL + L2 |l ] 10p] 72 (6.7)

Denote by 1 and 1g, the functions on X" (1) and X1, respectively, which always
take the value 1. By Remark B.7,
B(*)l - an+(in—+£2ﬂn 1ﬁn AB(*)l [an+1— Lzﬂni%;}l[anﬂ L2pun) 1

(B(*) +0u AB(*))l = %nfl .

ant1—L2pn—dp

Bpl=ABpl=0

where .
tpsr = a(l+ 2 )7 (6.8)
Therefore, by Corollary B.6.b. !
C(A™ (-, -, 0p,0V)) = L(AF (-, -, 0p)) = - A3 (1, 1, 0p)
= own (et ts)” — Goti)’) = P Getiis)” — Gottin)')

2
_ _ On41
5”[%“ LQun—M]
_ an+1(L2N7L+6N) an+1 L2 Hn
ant1—L2pn—bp " any1—L2un

2 2
I an+1 a‘n+1
ant1—L2pn—bp " any1—L2un

(6.9)
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This function vanishes when o = 0 and has first derivative, with respect to du,
given by

2
1
o Vo 00) = =, 5P~ = B
For |op| < é, this derivative is between —g and —4. So, as du runs from —é to +%,
E(Avar( <0, 5V)) decreases monotonically over an interval that contains [—1—18, 1—18 )
As (&) is a constant, independent of du, the claims follow by (6.3). O

Set fini1 = L pty + O pt,.

Lemma 6.3 (¢ to ¢ conversion). There ezists a constant cq, depending only on Iy,
and Ky, and there are maps

Q:Po — NRop Q- s13(4,0,0) — %(4,0,0) Qg : s13(4,0,0) X i)%(4,0,0) — %(6,0,0)
Qe (Po © PBa,0,0) X Rw0,0) = Pier

with 2, Q4 and Qg being linear and with i, being linear in the first variable, such
that the following holds for all 6V € R4 0,0)-

e For all’P € Vo,

P00 A1) (8, 10,61) = AP)G D) oo vmmmrovnson

¢(*),V:3u¢(*)7n+1(w*ﬂr/h#nJrl SVn+4dV)

+ Qies (P, V) (¢, {0000 3) , (¢, {000}))
and for all P € Ba,0,0)

P ) = [U(P)60d) + WPV G0)]
+ Que(P, V) (4, {801 1) , (0, {B0}))
o [fP Py, for some peD then Q(P) € Ry and

1P lm < ZIPI (2P 2m < P

® [fP c s3(47070), then

1%P)lam < LIPT 1P, V) |l2m < L[SV + 6V ||2m [ P]]
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e For all P € Po UPB4,0,0),

[26: (P, 6V)|| < call SV + V]l B || P

[Que(P, V)] < callSVi + 0V |om & [[P]

Proof. Let B,y = St

n+1,tnt1
B,(Li,mﬂ v be the operators of [8, Proposition 2.1.b]. By [4, Lemma 5.7] the operators
B*B, B!B. and (B}
the operators

Qr 19,41 be the operators of [8, Proposition 2.1.a]' and

)*B(i) all have bounded inverses. Consequently

"+1 yHn+41,V n+1,upy1,v

Ry = [B{, B B,

+) _ (+) (+) —1pE) *
Rl(/ ) = [(Bn-i-l Hn41, V) Bn-i-l Jn41, V} (Bn+1,un+1,1/)
are left inverses of B(,) and Bn 1 mir o Tespectively.  All have uniformly bounded

| - |l2m norms.

For P € Py and pe DU {(4,0,0)}, set
Q(P) (¢, 0) = P((Ruto. {RV0.0}) . (Ro, {R{70,}))

Then [|Q(P)[lm < ZP| and [[(P)]l2m
o If e ® and P € Py, we set Q(P)
2.1.a,b] and [5, Corollary 3.3],

< 2P|l

/()

<

In this case, by [8, Proposition

Q(P) (¢*7 ¢) ‘ ¢(*):¢(*)’n+1(¢*,w,un+l,svn+6v)
D(5),0 =W P () nt+1 (%P hn41,.5Vn+6V)

=P((W {00 }) . (0 {00})) — Quine(P, V) (¥, {000}, (¥, {01}))

with an Qi (P,0V) € P satistying | Qun(P)|| < callSVi + V|| & |P|| and
Qi (P < callSVy + V|2 &2 | P
o If P € Bao,0), then there are Ps € Pys,0,0) and (P, V) € By, fulfilling

wrr

||Q (P OV < cal| SV + 0Vl 7 || P

U (P, V)] < call SV + 0V |20 &2 [[P]

!The hypothesis of this Proposition is fulfilled by (5.2).
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such that

Y(P)(s, 0)
()= (x) n+1 (s, ¥, in41,5Vn+6V)
= 77(1% ¢) - ,Pﬁ(w*v w> - 1rr(73 6V)(7vb*7 w>
Set
Qu(P) = Q/(P) Qs(P,0V) = QUPs) Qune(P,0V) = Q:rr('P, 0V) + Qire(Ps, V)
O

Lemma 6.4 (Renormalization of the Interaction).

a) There exists a constant csy, depending only on I'y,, Kye, ppe and m, and a
p g; Pbg
unique 0V, € %(470,0) such that

6Vn(¢*7 ¢) + Q4 <£4 (Avar( Ty T 75/~Ln7 5Vn) + g[)) =0

a(n).

It fulfills the estimate ||6V,]|2m
(b) Set

Vn+1 = SVn + 5Vn and C(sy = Csy

Then
_l’_

HVnJrl n+1H2m = L7 ( 1)

Part (b) provides our choice for the Csy of [7, Remark 1.18]. By [7, Corollary C.4],
]

Proof. (a) By [8, Propositions 2.1 and 4.1 and (4.3)]
Gt (U, ¥, L4, SV,) = 0 + 0 + 027

Syt (U fingr, SV + 6V) = Gt (U, 10, L1, SV,) = AD() + AP + AR
(6 10)

where
o) = B, 1. AP = Sp1n AB(oy (011n) ey = Ot S (011) 7 )

with
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. A@Ei’) = ‘PE?) + @Ei)) (0V) with, using the notation of[7, Definition 3.1],

c 5 x & * (o =[1+6p1. 3 (5pm) @)
S0>(k ) = Ot S(Spt) (b>(k3) — S(0p1n)" (SV0)u(@s, @, D)

_eM
CI>(*)—cb(*)

® (o) =[148n 5 (Sn ) ] B)

) = Ot (1) O = S(3ps,) (SV.) (@, @, )|
() =% ()

eV (6V) = =S (0p,) VL (DN + AP 1 4 AGD d1) + ADM)

e (V) = =S (6p1,) V' (@Y + AP @) + AW o) 4 ADWM)
e and @Ef)s), ACDE*Z)@ being of degree at least five in the fields 1, 1.
Observe that @Eig , @Ei’g , CI)E*Z)@ , A@Ei; and gogi)) are independent of §) and that
gogi))((ﬂ)) is linear in 6. By [8, Propositions 2.1 and 4.1] and [4], there is a constant
Kg, depending only on I'y, and Ky, such that

ﬂq)ﬁim ) me;)l@EiW < K¢k ﬂfbgf;ﬂ < K@%f_ﬁ?’ (6.11)
m 1) m * 1) :
AW, DS AN < Kolou,|R
and
m c) _ I l I _
IO < Ka 011,52 & ol GV < Ko [[6V [l 7 (6.12)
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By inspection

Ly(A™ (Ui, 6pin, 6V))
- _<(¢* - Qn+1q>>(k1) - Qn+1Aq>>(k1)) ) Qn+1Qn+lA®(3)>0
- <A<I)>(k3) , Qr Qg (¢ — Qni1 @ — Qn+1A<I>(1))>n+1

+ <Qn+1A(I)(1) ; n+1Qn+1(I)(3)>0 + <(I)>(k3) ; QZ+IQn+1Qn+1A®(1)>n+1
P(x)= <I>(1)+A<I>(1)

+ SV, (0n0)|
= L (0 + 209 0 1 A0W) |~ (@, o)

+ (01 + A | 6B 4 AD®) (a1, q><3>>n+1)

n+1 n+1

— Ofin <<<I>£3) + A0 o) 4 A<I>(1)>n+l + <<I>§k1) +APD | B 4 A®(3)>n+l>

+ <Aq)(3) ) Dn+1q)(1)> + <(I)>(k3) + A(I)>(k3) ) Dn+1A(I)(1)>n+1
+(D; 0 AGE)) (AR D, (P + AGD)))

n+1

By [8, Proposition 2.1.¢],

Dg:_lq)(l = QZ+IQn+1¢ - (Q:L+1Qn+1Qn+1 - L2Mn)B(*)w*
= Q1 Qi1 (V) — Quin®)) + L2, L)

This leads to a cancellation between lines 1,2,5,6 and the last two lines in the formula
for £,(A). Inserting the decomposition A@Ei’; = gogi)) + gpgi))(cﬂ/) we get

Ly(A™ (s ¥, 041, 0V)) = Asv(¥,10,0V) — B(thi, )
with
Ay (e, 1, 6V) = (AP, Q19,41 Qnr19" (V)
+ (DY), Qi1 Q1 Quin AW
L ((¢D0V), A00) |+ (a0, oO6V), )
= ((PV(0V), @0 + A0 (0 + A0, pO(0V)), )
+ (V(0V), Dun ABW)  +(Dy ALY, o1 (5V))

n+1
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linear in 6V and

B, 1) = <A(I) ) QZ+1Qn+1Qn+1<P(C)>O - <80>(kc) ) Q:L+lﬂn+1Qn+1A(I)(l)>0
- <Qn+1Aq)(l) ) n+1Qn+1(I)(3)>0 - <(I)>(k3) 9 Q:+1Qn+1Qn+1A®(l)>n+1

(1) (1)
D)= <I>( )+ACI>( 0

- SV (¢*7 ¢)

_o)
D )_‘I)(*)

c 1 3 c
+ L, ((cbf’ +@, Ay + (A, o) 4 )>n+1)
+ Ot <<<I>S;°’> +ol?, W+ AW) 4B + A, ) 4 <p(c)>n+1>
- <(I)>(k + ¢!, D, AW > <Dn+1 o), (@) + 90(0))>n+1
independent of §V. By (6.11) and (6.12), there is a constant ¢; such that

|Asv ]l < e1]0pn] |6V || 2m R Bl < c1]|dpn| 3 Rt

Therefore, by Lemma 6.3, (6.3) and the estimate on du, in Lemma 6.2
1924 (A)llzm < 218V [lom 45" 194(B)||2m < c5% 5
1€2(L4(E)))llom < c2™5

Assuming that vg is small enough, the linear operator §V — €4(Asy) has operator
norm at most 1 with respect to the norm || - ||5,, . Therefore the operator

OV — o0V + Q4(A5V)

has an inverse I5, whose operator norm is bounded by 2. Set
OV = I (u(B — £:(&)))
By [7, (C.1.b)],
L) < 2(1 4 2p1) 28

K

[6Vnll2m < 2 %) (82 4
(b) By [7, (C.3), Remark 1.18] and part (a),
WVasr = Vetillzm < [[SOVa = V) ||, + 118Vall2m
< Ve =V, + 16Vall2m

s,

n , "
Ln+ z:: L e[(g— 1)_'_05])&(7;:-1))4

IA
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Lemma 6.5 (Garbage Collection from R). There is a constant cg,y, depending only
on Lop, Ky and pyg, such that the following holds. There are

Pr = Z P with PE € P for each fe D
PED
IR € ‘Birr
such that
¢(*):¢(*)n+1(w*7¢uu'7l+17v7l+1)

(5R.)(61,0) = [Pr(d, ) + Za(¥..0) |

G()=P(x)nt1(Ww 10, L2 pin,SVn) Py =) {0y })

Furthermore
PRI < CoarlOptnl || SRE]|, R?
1Zr || < cgar (|0n|0ns1 + [[60Vall2m) &2 ¥(n, Cr)

where

t(n,C) =Y L 20 g ryn, C)

PED
Proof. Similar to (6.10) we write

(I)(*) = ¢(*)n+l (,lvb*a ¢> L2,“Jn, Svn)
A(I)(*) = ¢(*)n+1 (w*, Y, fnt1, Vn—l—l) — ¢(*)n+1 (¢*7 v, L2Ium SVn)

and, for each p e D,

~ |2 =P)TAPRG), Sy =00 P TOLAD()

RE (U, 0) = (SRE) (¢4, 0)

=Py () =0 P(x)

As in the proof of Lemma 6.4 we decompose

By (1, 1) = L) (U, ) + O (11, 1)
AD() (1., 1) = ADL) (10, ) + A (4, 1))
0,0y (10, ¥0) = <1>“ (e, ¥) + 0,257 (1, )
(9,,A(I>(*)(w*, @Z)) = aqu)(*)(?/’*a @Z)) + 8VA(I>(*Z)3 (¢*7 ?/))
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where the superscript “(1)” signifies the part that is of degree precisely one in 9,
and the superscript “(> 3)” signifies the part that is of degree at least three in 1),
By [8, Propositions 2.1 and 4.1],

el < Kok LRI e
Naoll < Kolopali — [[ASEV]] < Ko (10palonss + 16Va]lom)7* 613
o0l < Kar! llo,257 || < Kavnyi 72w
o, Aol < Kaldpals' [[0,A2EY [ < Ka(10m0l0er + 118Vl )55

where

@ ) ) )
Sy =P)FAPL),  G(a)y=0u®( |+ AD()

RY, (0, 00) = (SRE) (6x, 0)

fi)(*):‘I’Ei;, D(x)py =00 P (1)

Clearly R, € P, and
| < 3 ISR |l 1672 | 77

IR7 [
IR .1l < €5 ISR (184001 + [6Vall2m) 5 &7

Set . . .
Pr =TRi, I =) R,
pPED
The estimates follow by Lemma 5.5.c and the bound Hﬁ%ﬁ)Hm < tz5(n,Cr) of [7,
Remark 1.18]. O

Lemma 6.6. There exist

e a polynomial Ryy1(¢w, d) = 2 5 Rﬁﬂ@, ) on Hn+1 X %n—l—l? with each 7@@1
being an & invariant polynomial of type p, and

e an & invariant analytic function €412, ) on a neighbourhood of the origin
mn 7:[(()"“) X 7:[((]"+1) with gn+172(0,0) = 0, whose power series expansion does not
contain scaling/weight relevant monomials
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such that
[ - An+1(¢*> w, Cb*a ¢> L2,Un> SVH) + (SRH)(¢*a ¢)]
i 5[(1/}*’ 1/}) ‘@(»«F(W*),{arﬂl}(*)})
= |: - An+1(w*7 wv ¢*7 ¢7 Mn41, VTH-I) + Rn+1(¢*7 (b)]

+ gn+1,2(1;*7 1/;))

¢(*):¢(*)n+1(w*vvazﬂ'ruSVn)

(6.14)

Gy =P(ynt1 (W, Pstint1,Vny1)

Dy =) {00 () })

where
Rui1(0es 8) = Rt (6, {00021, (6, {0,0}))

Furthermore

(a) there ezists a constant Cr, depending only on Loy, Kpg, ppg and m, such that
if [7, (1.22)] holds for n, then

IRZL], < es(n+1,Cr)

(b) there exists a constant Cyen, depending only on Iy, Kue, ppg and m, such that

Ug"‘HQU < Cron e[(n)

Part (a) provides our choice for the Cx of [7, Remark 1.18].
Proof. Set

Avar %y :An Ky &y Py By Mim >Vn
(w w) +1(w ¢ ¢ ¢ Hn1 +1) ¢(*):¢(*)n+1(w*7¢7ﬂn+lvvn+l)

- An—l—l (1/}*7 1/}7 ¢*7 ¢7 L2Mn7 SVTL)

D)= (x)nt1 (Y10, L2 p1n,SVn)

= A (), 0, Ofin, OV) + OV (04, 0)

d’(*):¢(*)n+1(¢*7¢7ﬂn+17vn+1)

and . .
’PA — £©(Avar) IA — I(Avar)

By Corollary B.6.a and Lemmas 6.2, 6.3 and 6.4,
A (0, 0) = ~E) [dn 6. (@)00) - £4(8)

o o (6.15)
+ [PAW*’@ +IA(¢*’¢)}

P =) {00 })
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By (6.7) and [8, Propositions 2.1 and 4.1]

45T < a1+ 22|y 610
A — A3 — Ly(A™)[] < ca(vnsa|0pn] + [6Vallom)R*
To prove the second bound, use (6.11), (6.13) and
D210E < Kavnai®  [[D7LASEI] < K (10pn[vner + 16Vl lom) 5

and also the observation that if one substitutes

¢(*)”+1 (¢*7 ¢7 Hn+1, Vn+1) = (I)El + q) + Aq) _'_ A(I)Ef)s)

and @(nt1(Vs, ¥, L2 1, SV,,) = @Ei; + (IDE*Z)?’) into Avar — AP — L4(A") and expands
out, then
. : (=3) (=3)
e every surviving term must contain at least one <I>(*) or Aq)(*) and
e every surviving term, except for those coming from 6, (¢s, @), 1 and IV, (¢s, @),

must contain at least one A(ID ) or A®(>3

So, if we write Pa = o Ph Wlth Ph € 9B, then, by Proposition B.4,

[P < 18cioccaldpal R if 5 (6,0,0) 6.17)
IPSOON, NZall < calOniadin] + 10Vl |2m) R

Set
RP) =SRP + Qy(Lo(&) + Pa—Pr) forje®d
Enirz =T(E) + Ta — Ir + U (Lo (E) + Pa — Pr, V)

Here Q5(P) is the part of Q(P) in Rz The identity (6.14) now follows from (6.3),
(6.4), (6.15) and Lemmas 6.3 and 6.5. .
Write Lo(&1) = ) 500 Pe with each Pg € BP. By (6.3), (6.17), Lemma 6.5, and
the estimate [dp,| < Ze((n) of Lemma 6.2,
, 2
IPE+ P = PR| < |1+ ] () + 3 cgu 5 ISR mer(n)
+ CAéﬁ, (670,0)(307&1!—{ e[(n) + ||(5VnH2mFL4)

=/ 2 =7 ~
< { [1 + 05(% + Un_|_1:‘?&2)] + C5%HSR€L||m} e[(n)
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with a constant ¢; depends only on c4, Cgar, ca and csp. For the second inequality

we used Lemma 6.4. Using Lemma 5.5.c and the bound H?@%ﬁ) Hm < tz(n,Cg) of [7,
(1.22)],

[ £0(&) + Pa—Pr| < {4[1 +os(E 4+ unﬂ,gz)r + Se(n, CR)}e[(n) (6.18)

(a) By Lemmas 6.3 and 5.5.c and [7, (1.22)],
IRZL],, < HSﬁ@H + || PE+ Ph — Pl
< (14 2e@) ISR, + 51+ (L + vani?)| )
<(1+ %e[(n))LS—A@tﬁ(n, Cr) + [1 +os(E + nnHK?)r ei(n)

If Cx is large enough, depending only on cq, ¢ and pr,, then by [7, (C.2)],

IRDL],, < (14 SBei(n) L>2Pry(n, Cr) + Crttds

n+1

< tp(0) L APV T (O ) 4 O Yy LO-APN =0 8 Tt ()
/=1

= tﬁ(n + 1a CR)
(b) We have, by (6.3), (6.17), Lemmas 6.5 and 6.3 and (6.18),
~ 12
“€n+1,2u < |:1 + 18Cloc%} e[(n) +ca (Un+1|5lu“n| + ||5Vn||2m)’%4
+ Cgar (On41|0pn| + ||5Vn||2m)/%2 t(n, CR)
_ 2
+ CQUn+1R2{4 [1 + Cy (% + Un+1/7€2):| + %t(n, CR)}Q[(H)

< 3Ca{ 1+ (onnr + &)e(n, Cr) } en)
S C’ren e[(n)

y [7, (C.1.b) and Lemma C.2.a}, provided v, is small enough that the hypothesis
e[ log vo| > 2log(1 + Cr) 115 (Cr)

of [7, Lemma C.2] is satisfied. O

36



Lemma 6.7 (Properties of 6u,). There is a constant As,, depending only on L,
Lop, Kbg, ppg and m, such that the following holds. Set ui = po and, for n > 0,
Sps =yt — L. Then, forn >0,

(a) (&) = 6103] < Mg 00 (0F > 4 lpua] +r2e773) RO
(8) 167t = 8] < Ay 070> 4+ L7 (ag = ) L0

* n —8e¢ n+1 3—5e
(C) |,Un+l - ,Un+1| < LA D) U(l) s 4:1 ﬁ [08 + Lzz(UO - ,U*)]

The bound on |41 — 4| in part (c) is exactly the bound of [7, Remark 1.18] with
n replaced by n + 1.

Proof. (a) The monomials M, (1., 1) of Proposition 5.8.b are translation invariant
"H), despite the fact that C™ is only translation invariant with

respect to XE?H). Using Corollary B.6.b and Remark B.7 and using 1(()1) to denote

with respect to XO(

the constant function on Xo(l) that always takes the value 1, and using My(z}, z%) to
denote the kernel of M,,

(M) = b [ et Mo )
0

- _LS;U_)/ dy -+ deg Vo(1, 29, 03, 24) (S1(L2110) Q31157 (L)
0 Xy
(S1(L210)" Q1115 (L targ) €O (g, a0)

a 2
- 2 (‘11_[1/2NO) /X d[lfl e dI4 ‘/0(1'17 X2,T3, x4) C(O)(:L'4, l’l)
0

Y

= ¢/ day - - - dxy Vo(1, 22, 73, T4) C(O)(I4,!E1)+O(|M0|UO)
Xo

)
Recalling that
S1=(D1+ Q@)™ Qi=al D =L"L'"DL, Q =L;'QL,
we have
£CO = (aQ"Q + L?Dy) ™ = (L.QiQu QL' + L.DL) ' = L.SL!
or, in terms of kernels,

C(O)(ZL'4, 1’1) = %51(1[4_11’4, L_ll'l)

37



by [4, Lemma 15.a]. So
7/ dey - - duy Vo(x1, 22, 23, 24) S1(L7 2s, L 21) + O(|polvo)

= _W/ duy - - - dug Vi (uy, ug, us, ug) Sy (g, uy) + O (|polvo)
0 X
= 6415+ O(|10]v0)

Similarly, for n > 1, using 177" to denote the constant function on X"*" that

always takes the value 1, and using M, (x2, r3) to denote the kernel of M,,,

() = ke /X . dadey My(zs, )
0

= —W/X duy - - - dug Vi (ur, ug, us, ug)
" (Sn(/in)QZQ C(n)ﬂ QnSn (1 ))(U47U1)

(Sn+1(L2/~Ln)Qn+1Qn+11 (n+l) )
(Sns1(L7pn) Qi Qi 167 (L7 u)
- _LS‘X§n+1)| (anﬁnleQ,un)z v duy -+ - duy Vi (ur, ug, us, ug)
(Sn (Mn)Q:Qn C(H)Qn QnSn (IUN)) (U4, ul)

= —W / duy - - - duy Vi (ur, ua, us, uy) (SnQ:LQn C(H)Qn QnSn) (g, u1)
0 n
+ O(|pnlvy)

= m/ duy -+ - dug V. (ur, uz, ug, ua) (SnQiQn C™0y, QnSn) (wa, ur)
2 _6e
O(“Nn‘ + Ug ]Un)

since _—2 = 14 O(|pal) and [|Sy(1n) — Sull2m < Toplpal, by [4, Proposition

5.1], and ||V,, — Vi |gm < C(;VUO b, by [7, Remark 1.18 and Lemma C.3.b]. By
[6 Remark 10.c|

S,Q:9,0"0,.Q,5, = L*S'S,1S - S,
In terms of kernels, by [4, Lemma 15.a],
(80 Q50,C™0,Q,8,) (g, ur) = 7581 (L ug, L ug) — Sy (ug, ug)
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Now, by [7, Definition 1.5.a,b],
—2 duy -+ - duy V(“)(ul Ug, U3, Uy) 25 Spp1 (L gy, L)
L3|Xén+1)\ N n y W2y U3, 3°n+1 45 1
= X(++1>|/ dvy -+ - duy foﬂ(vlavz,v&w) Snt1(vs, v1)
0 Xng1
so that
((M,) = —%/X dvy - - - dvy Vn(i)l(vl,vzw?nw) Snt1(va, v1)
n+1
+ W dU1 tee dU4 Vn(U)(U‘l’ Ug, Uz, U4) Sn(u47 ul)
0 Xn

+O([|tal + 050,
= 6115, + O ([l + 05" J0n)

since |X0("+1)| = %XO("). Using Corollary B.6.b, Proposition 5.8.a,b gives the claim.
(b) Recall, from Lemma 6.2 and (6.9), that du,, obeys

2 2
G _ i1 — (&)
Ap41 — L2,Un - 6,Un Ap4+1 — Lz,un
As

2 (L2un+5u)2

Ant1 _ n+1 _ L2 pn+0p An+1
12 Su Dpnton  Ontl L+ ant1 + L2015, +6
Qp41 — Hn — Ol 1—% 1—%

n n

(L + 0p1)?

= Qpi1 + L2, + 6+
i a s an41 — L2,Un - 5:“

the left hand side
iy 6”:&“/__5 o (Lt Opa)? (L?n)?
Ani1 — L2,un - 5;“ Spu=0 fin Ani1 — L2,un - 5ILLn Ani1 — L2/~Ln
5:Un [an-l-l(QLzlun + 5,Un) - (Lzrun + 5,Un)L2,Un}
(an—i-l - L2,Un - 5:“71) (a'n-i-l - L2,un)
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As L2|,Un|> |5:Un| < ian—i-la

|6,un - E(£[)| =

g1 (2Lt + Optn) — (L2 pin 4 Opt) L 1
(an—i-l - L2,un - 5:“71) (a'n-i-l - L2,un)

O fhn,

< 2L |5:un|(|/~bn‘ + ‘5:“”‘)

— Qn+1

< 2 Se(n) (|l

an+41 K

Part (a) and

R2

now implies, using Remark 5.1, that

|0t — Spu] < AG, 057" (0

+ Ze(n)) (by Lemma 6.2)

e(n) L—(277—77()nu(1)—4e < U(1)—45

—be 6

+ || 4+ 7267 RS
—5e

Swlm Ol

< A&,u Ué—?e (U + L2"(,u0 . M*))Li’)e(n—i-l)

with a new A,

(c) Since pin41 = LPp, + O, and g, = L2k + Sy, we have

|t =ty | < L2 | — | + |10 — Op,

ntl 1_5¢
S L2(TL+1) U(1]—86 éz: ﬁ [Ug + L2£(,LL0 o :Ll’*):|
=1

by [7, Remark 1.18] and part (b).

O

Completion of the Inductive Proof of [7, Theorem 1.17 and Remark 1.18]

Proof. Set

S
-

Rt 1(0ar 8) = Rt (6, {00021, (6, {000}))
gn+1(?2*, @E) = 5:n+1,1(@z*, QL) + £n+1,2(@z*> QL)

gn-i—l(w*a ’QD) = gn-l-l ((w*? {0V¢*})7 (w’ {al/w}))
Zpy = Z,N 2!

where 5~n+1,1 was defined in Lemma 5.5, 7én+1 and 5~n+1,2 were defined in Lemma 6.6,
Nq(rn) was defined in [7, Definition 1.6] and Z], was defined in Proposition 5.6. Then,
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by [7, Corollary 4.3], Lemma 5.5.b,c, Proposition 5.6 and Lemma 6.6,
((STE™) 0 (BTED) 0+ o (STE) ) (")

= zan exp { — An1 (Ve ¥, Gung1, Pty Mgt Vogl)
+ Rn+l (¢*n+1> ¢n+l) + gn—i—l(w*a ’QD)}

The bounds on |fty4+1 — 4,441, HVHH —V,ﬁ)l H2m and Hﬁﬂl Hm required by [7, Remark

1.18] were proven in Lemmas 6.7, 6.4 and 6.6. That these bounds in turn imply the
bounds on |pni1 — L2 (g — )], || Vi1 — V,(fflﬂgm and Hﬁ,ﬂl“m specified in [7,
Theorem 1.17] was pointed out in [7, Remark 1.18].

By Lemma 5.5.b, Lemma 6.6 and [7, Theorem 1.17], gn+1 does not contain any
scaling/weight relevant monomials and

||| Y < L sdf(C)) 0§ + Cren e1(n) < 0

by Remark 5.3 (with L chosen big enough that L°sdf(C) < 3) and [7, (C.1.a)]. O
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A The Limiting Behaviour of

In [7, §1.5], we defined

s :2/ dl‘l"'dl’g Vo(O,ZL’l,SL’Q,LEg) Dal(l’g,O)
(Z/LypZ)x23)?

with Dy = 1 — e — ¢78g; and in [7, Remark 1.18], we defined, for n > 1,
/"L;kz = LG,uo - % / dul tre dU4 Vygu)(uh Ug, Uz, U4) Sn(u47 ul)
‘Xo ‘ X,%

From [7, (1.5)], we see that there will be a well developed potential well when ,, is
sufficiently positive for large n. As p, =~ p (see [7, (1.21)]), the following lemma
shows that this is the case if g — u, is sufficiently positive. That is why we expect
1+ to be the critical u, to leading order in the coupling constant.

Lemma A.1. There is a constant c,,, depending only on I's, and m, such that

112" (o — 1) — ] < €00
forall1 <n <mn,.

Proof. In [4, (5.5)] we defined, on A&, the operator
S = [Dn +a, exp{—An}} - where
n—1
A, = 0500+ (0701 + 050, + 0505) and a, =a(l+ Y %)_1

Jj=1

It is fully translation invariant with respect to X, is exponentially decaying, and
has the same local singularity as S,. Precisely, we proved in [4, Lemma 5.4.d] that

‘Sn(u, u/) _ S;L(U, u/)‘ < F0p6—2m|u—u/‘

so that

/ duy - -+ dug VI (ur, ug, ug, wa) {Sn(ua,ur) — Sh(ua, u) }
X3

_2
B

2Top () 0o
< 2 | e dun VO, 0] < 2
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and, by [7, Definition 1.5.b],
L2n,u0 — u; = |X%—n)| / du1 cee dU4 Vn(u) (ul, U9, U3, U4) S;L(U4, Ul) + O(%)
0 x4

= % / du1 tee dU4 Vo(]Lnul, LnUQ, ]L"u3, ]L"u4) S;L(U4, Ul) + O(%)
0 x4

LG”\XO(")\

_ 2 / dxy -+ -dry Vo(l’h To, I3, 3:4) S;L(}L_nim, ]L_"xl) + O(%)
X
— L”|2X()‘ /X4 dxl te d.fl}'4 ‘/0(:1:17 Lo, X3, ZL’4) S;L(H"_nx‘l’ ]L’_nxl) + O(%)
0

= % /X3 dl’l B 'dSL’g ‘/O(O,xl,xQ, 1’3) S;L(L_nl’g, 0) + O(%) (Al)

0

The operator S/, acts on on L*(X,) with, as in [7, Definition 1.5.a],
X, = (5%Z/LtpaiZ) X (5nZ3/LSp5nZ3) where ¢, = &+

Ln

It may be expressed as the spatial periodization of an operator S/, on L?*(X,,) where
X, = (e2Z/Lipesl) % €,L°
We define S/, in terms of its Fourier transform
Q ip-(u—u') d*
S u.ut) = [ 8, P
Xn
where the dual space
X, = (EL*Z)2x1*"Z) x (R®/2xL"Z°)

and the integral

d'p L dp1dpadps
/j‘n f(p> (2m)% Z Lip /1%3/27&/”23 f(p07p17p27p3) (2m)3

poeg—;LZ”Z/%rLZ”Z

The Fourier transform

A ~ - sin 22 pg 3, rsinlenpy
SL(p) = [Du(p)+anexp{—A,(p)}] " with Au(po,p) = [TEl] % 3 [FgrPe]?

1.2
2¢n
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and

1.2, 72 —ho(e, 2
smgsnpo} 1 — e ho(enp) - ho(enp) SINERDO

D, (. p) = dete )| e

e

1e2 g2

Define, for us, uy € X, S;L(u;),, uy) = S/ (13, Uy), where @3 and 4 are representatives
of uz, uy in X, that minimize the magnitude of each spatial component of i3 — .
Thanks to the exponential decay of S/ proven in [4, Lemma 5.4.d], the difference

S! (L "xg, L "xy) — S/ (L™"23, L™ "x4) is bounded, uniformly in n. Hence

2
n

/ dl’l tee dl’g VE)(O, Xy, 1'2,1’3) {S;L(L_nl’g, O) — g;(L_n"L’g, 0)} = 0(0—2) (AQ)
Xo
So we consider
lim L_2" / d!L’l tee dl’g ‘/0(0, T1,T9, 1’3) S;L(L_nl’g, O)
Xo

If Z3 € X is the representative of x3 € Xy whose spatial components have minimum
magnitude, then

S -n A ip-(L™"% 4
B8 00) = 3 [ S (gt g

n

=L / S, (L k)e* ™ Lk with k =L™"p
Xo

Observe that

-1
LS (L"k) = {2e—h0<k> sin? Lo + (1—e P00 — j e=holo) gin oy 4 %Q—An(ﬂﬂk)}

converges pointwise, as n — oo, to

A~

A ) A -1
Dy(k)™! = {Qe_hO(k) sin® 1 ko + (l—e_ho(k)) — e oM gip ko} (A.3)

and is bounded, uniformly in n, by }f)o(k)‘_l € LY(X,). Hence L—ﬁ,lS’ (L™"x3,0) is

n
bounded, uniformly in n and z3 and converges pointwise, as n — oo, to

Dgl(fs, O) i ﬁo(k)_leik.ig (3?;1
Xy
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Hence, by (A.1) and (A.2),

(o — ) — Tty = Q/Fdi"l <o+ diz Vo(0, %1, T2, 73) [5S,, (L 7"@3,0) — Dy (23, 0)]
+ O(2) + O(vge™™Hr)

(A4)

Lep

where F = { (Z1, T, T3)° € X} }

< T, < % foralli,j =1,2,3 } To bound
the right hand side, observe that

L2n

1 Q! (T —nx —1/= an_ 1 d*k
‘WSTL(L IL’3,0) _DO (,’L’3,0)‘ S 2n /;YO \ﬁo(k) an 7An(JLnk)| |D()(k)\( )4

As 2\?0 is a compact set, both terms 2e~Po(k) gip2 %k‘o and (1 — e_flo(k)) of the real
part of Dy(k) are nonnegative, and Dg(k) is bounded away from zero outside of any
neignbourhood of ky = 0, k = 0 we have
}IA)O ‘ > const}ik‘o + k2‘
‘]/jo(k) I(/zznn 6—A (L™k) ‘ > COI’lSt‘Zl{ZO + k2 S;n e—COnstL2n[k8+k2}‘

For the part of the integral with kg # 0,

™
an_ 1 d*k < const dk 1 d3k 1
L2n %, |ﬁo(k)+%e—An(Lnk)‘ |Do(k)| 2m)* — L2 / 0 Tko[377 <20 k572
kg#0 -7 [k|<
< const

— [2n

For the part of the integral with ko = 0, scaling k = #,

an 1 d*k const 1 dgk
N 5 - = > PIw)
L2n x, [Do(k)+2pe An(L7E)| |Dg (k)| (2m)* L2 L, e|<ar [k2+L2ne const L2112 |2

ko=0
___const Ln/ d3
- LGLt 2 constp
* Jip<arrn PTE

const L™
— L2n Ltp

const
S I2n

for all n <mn,

Putting these bounds into (A.4),
2 (L7 (10 — 1) — ] < O(38:) + O(53) + O(voe™™)
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B Localization

Fix masses m > 0 and m > m.

Lemma B.1. Let 0 < 57 < n. For each point u of the fine lattice Xj("_j), we
use X (u) to denote the point of the unit lattice Xo(n) nearest to u. There exists a
constant Cy s, depending only on m and m, such that the following holds. For each

linear tansformation B : ’H((]") — H§"_j) there are linear maps B,,, 0 < v < 3, such
that

" Blu,x) [Y(@) — (X ()] =D B(04)(u)  for allue X"

xeXén)

and
IBullw < Couwll Bllw  0<v <3

Proof. Define
e B{" to be the set of (oriented) bonds on the lattice X"
e For any bond b = (z1,22) € B((]n)u Vi(b) = Lea)vi) — U(x2) — ¥(1).

lzo—w1]

e Given fields ¥, 0 < v < 3 on XO("), we write, for each (z1,z5) € B(()")

Do ({1 (a1, 22)) = {1%(351) if 29 — 21 = |23 — 1€y (B.1)

_wy(x2) if T — X9 = ‘ZL’Q — l’1|€y

where e, is the usual unit vector in direction v. Observe that g ({0,1¥})(b) =
Vip(b).

o If 2,2/ € X™ we select by any reasonable algorithm a set I(z,a’) C BY” of
bonds forming a path from x, 2’. This algorithm must be such that no bond ever
appears more than once, even ignoring orientation, in any Il(z,z’) and such that
if z is any point on a path Il(x,2’), then |z — z|, |z — 2/| < |z — 2'|. We have
(") = (1) = X perey VHO)

Using this notation,

> B(u,x) [(x) = v( Z Z (u, z) Vb (b)

Y Y Buaw@en= Y 5 vee)
vex(™ bEN(X (u)) v=0 e x(m
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with
B,(u;z) = Z B(u,z) -— Z B(u, )

cex(™ cex(™
(z,z+ep)ell(X (u),z) (z+ey,z)ell(X (u),z)

Recall, from [7, Definition 1.9], that

IBulln = max{ supvolo 3 1B, us2)jem
ue‘)(_("*j)
J sup voly 30 |By (s )}

zeé\,’o(") uer(nfj)

zeXO(")

Now, writing m’ = £(m —m),

B2l <2 3 |Blu,z)|emt

xeXén)
zonIl(X (u),z)

< 2e2m Z ‘B(u, x)}eﬁ‘l\u—x\—(ﬁl—mﬂu—ﬂ

zGX(gn)
zonII(X (u),z)

< 9p2m Z ‘B(u, x)}6ﬁ1\u—x\—m’\u—z\—m’|z—x\

xeXén)
so that
- /
IBullm < 2¢( sup S0 e ) B
uEXj(nij) zeXé")

Corollary B.2. Let
Plo.w) = [ dody 2(a) K(,y) ()

be a bilinear form on 7—[(()") with translation wnvariant kernel K. Then there exist
bilinear forms P, (% w,,), 0 <wv <3, such that

3

P.6) =K [ dea@t) + > Pulr.00)

v=0

where K = [dy K(0,y). Furthermore, for each 0 < v < 3, the kernel K, of P,
obeys | Kyllm < ComllK||a -
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Proof. Write
Plr.i) = / de dy () K (2, 9) [0(y) — (z)] + K / 0 ~(x) (z)

where K = [dy K(x,y) is independent of x. Lemma B.1, with j = 0, and thus
X(x) =z, gives kernels K, 0 < v < 3 such that

3
/ dy K(2,) [0(y) — ()] = 3 / dy K, () Db (y)
v=0
and || K, |lm < CumllK||la, 0 < v < 3. Setting

P, (7) ’QD,/) = Z 7(3:) K,,(x,y) ,lvbu(y)

x,yeXén)
the corollary follows. O

Lemma B.3. There is a constant ci., depending only on m and wm, such that the
following holds.

(a) Let 1 <v <3 and let

Plint) = [

Xo(n

Jdrdy o (2) K (2, y) ¥(y)

be invariant under Ggypatial. Then there exists a bilinear form

Pren (10 {0}, o)

that is also invariant under Ggypatial, such that
POyt ) = Pren (00, {000}, _))  and || Prenllm < ctocl|Pllm
(b) Let 1 <v <3 and let
P, 4hy) = /d:c1 ceedry K (21, 22, 75, 24) Yu(00)0(202) 00 (25) 10 (24)

be invariant under Gypatial. Then there exists, in the notation of Definition 6.1,

Pren((w*, {¢*V’}) ) (% {a ¢V’})) S ‘13(2,1,1) ® %(2,0,2)
that
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e is of degree at least one in 1, and

b obeys P(w*u wv 81/¢) = Pren((w*a {8u’¢*}) 5 (¢, {ay’w}>) and with

e cach monomial in Pren having || - ||m norm bounded by cioc||P||m
(c) Let

Xo(n

Jdvdy ¥ () K(z,y) ¥ (y)
be invariant under ©. Then there exists

7Dron (w*v ¢7 w*ua ¢1/) S (‘]3(1,1,0) s> (‘]3(0,1,1) S (‘]3(0,0,2)

such that each monomial in Pyen has || - ||m norm bounded by cioc||P||sm and

P(6ns ) =6 [ do 0(2) 6(0) + Prn (0,00, ,0)
where
Mz/@K@w
is real and obeys |0p| < || K||m=o-
Proof. (a) By Corollary B.2, with v = 1.,

3
P ) = K / 07 Yo (2)0@) + 3 P ()

v'=0
We have K(x,y) = —K(R,x — e,, R,y), by [7, Lemma B.4], so that

K= [y K0) =~ [y Ko ) = = [ dy K(=es9) = K

yielding K = 0. Set

3

,P;on (¢*V7 {¢V’ }) = Z P (w*ua 7vbu’)

v'=0

It has all of the properties required of P, with the possible exception of invariance
under Ggpatial. To recover invariance under Ggpatial We define P, by averaging over

_ 1 § : /
PI‘CH IGspatiall gPren

gEGSpatial

6spatial .
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The claim follows by [7, Remark B.5].
(b) Write

P, th,1h) = K / 0 () (@) (2), (2) + 5P (b, 6, 1)

where

]C = /dl‘ldl’gdl’g K(Il,l’g,l’g,O)

and

OP (s, ¥, 1)
= /dl‘l dIQ dl’g d.l’ K(Il,l’g,x:g,x) [¢*(I1)w($2)lp*($3) —1/1*(.]7)1/}(.]7)1/}*(25)]1/},/(1’)

As K(x1, 19,23, 24) = —K(R,x1, R,x2, R,x3, R,x4—e¢,), by [7, Lemma B.4], we have

K= /dl’ldl'gdl'g K(l’l, T2, T3, 0)

= — /dl‘ldl’gdl’g K(I‘l, T2,T3, —61,)

= —/dl’ldllfgd!lfg K(xy+e,, 0+ €,,23+€,,0)

=-K

so that L = 0. As in Lemma B.1,
5P(¢*7¢7¢V)
- / oy day dug do K (1,03, 73, 7) 6, (00)16(2) [ (5) — 0, ()] (2)
dy dy dos de K (1, 2, x5, 2) Pu(21) [$(22) — (2)] (@), (2)

/dml dxy dxsdr K(xq, 9, x3,7) [w*(xl) —w*(x)}w(x)w*(x)w,,(x)
P (W, 0, {00}, ) + Py, 0, {80}, ) + P, b, {80}, 4,)
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where

Pt ¥, {w } ) = > [ doydeydes de K(zy, 22, 235, 7)

e Gul@0) () v ({16r) () ()
Py, 0, {thur },00) = Y /d:zld:vgd:zg dz K (z, 29, 73, 2)

e () Yo ({8) (0) () ()
Py, ¥, {wr },00) = > [ doyduydes de K(zy, 29, 3, 1)

e Yoo ({t0o) () () . (2) 3 )
For each i = 1,2, 3, we may write

3

Pz(w*u wv {¢(*)V’}7 7pl/) = Z Piz/’ (¢*7 ¢7 7p(*)zj’v ¢1/)

v'=0

and bound P, just as P, was bounded in Lemma B.1. Then it suffices to set

3 3
Pren((w*a {w*l/}) ) (¢> {7 wl/’})) = m Z Z Z gPiV’(,lvb*? wa 'QD(*),/, ,lvblf)

gEGSpatial v'=0 =1

(c¢) By Corollary B.2, with v = 1,

P ) = b [ do ula)ula) + 3Py (1, 0,0)

with
1Py lmsmy/2 < Crl|Pllm

We have K(Ryy, Rox) = K(z,y), by [7, Example B.3], so that
= [y 5(0.9) = [ dy KTRoy,0) = [ dy K0, ~Fa) = [y KTO.) = 5

so that du is real. By averaging as in part (a), we may assume that each P, (w*, @D,,)
is invariant under Ggpaiar. It now suffices to apply part (a) to each P,, 1 < v < 3,
and average over &. O
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We fix any €, €, and £, and use norms | F (4., 4)]| and || F (¢, ) || which associate

the weight factor £ to the fields 1)), the weight factor & to the fields Y0, and the

weight factor E;p to the fields 9., 1 < v < 3. The norm H . H has mass m and the
norm || - || has mass m.

Let P, Vo and P, be the spaces of Definition 6.1 and, as in Definition 6.1,
denote by B4,0,0) the space of quartic monomials in ¢,, that are & invariant and
particle number preserving.

Proposition B.4. There exist linear maps
0P — C Ly Bra = Pao,0) Lo : Bra — Po T : PBrat — Pir
such that, for all P € P,

P A }), (,{0,0})) = 5(7’)/6136 Uu(@)p(x) + La(P) (¢4, )

+ £@<P>(<w*, {0.0.}), (¥, {0.0}))
Z(P) (s, {D20}) , (1, {B,0)))

and

o for P € Py,

o for P € B0,
(P)=0 Liy(P)="P Lo(P)=0 Z(P)=0

o for P = [drdx' ¥.(x)K(x,2")(2") € Boo)
P) = [dz' K(0,2")
54(77) =

@)

o

o Lo(P) = L1,1,0(P) + Lo1,1)(P) + Lio2)(P) with
'C(l,l,(]) (P) € g’B(l,l,O) Uﬁ(lvl,o) (P)J S 2CIOC%HPH
Lo11)(P) € By 1£0.1,1)(P)]| < 6010(:{’0{%_7)]
L0,0,2) (P) € PB(0,0.2) _|£(070,2) (7))_| < 9010312 _|77_|
o Z(P) =0
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o for P € Puoy), we have {(P) = 0, L4y(P) = 0, Z(P) = 0 and Lo(P) =
L0,1,1)(P) + L0,0,2)(P) with

Lo,1,1(P) € B L0110 (P)]| < cioe 2] P]]
L0,02)(P) € B2 1L£0,0,2)(P)|| < 3coe||P|

o for P € Bo1), we have {((P) =0, L4(P) =0, Lo(P) =0 and

Proof. Just apply the previous lemma. O

Definition B.5. Let F (1;*, 1%) be an analytic function of the fields in a neighbour-
hood of the origin in 7:[(()") X ﬂén) that obeys F(0,0) = 0. Write F = Fr + Firr with
frel S sq3rel and Err S 3]31”. Deﬁne

e(f) = e(frel) £4(f) = £4(frel) 'C'D(f) = E’D(-Frol) I(f> = I(frel) +Err

Corollary B.6. Let F(i),,1) be an analytic function of the fields in a neighbourhood
of the origin in ﬁén) X 7:[(()") that obeys F(0,0) = 0.

(a) Then

F(( {0,00}) . (0, {0,0})) = 0(F) / 0 o (@)b(x) + La(F) (1o )
)

+ Lo (F) (¢, {0,0.1) , (0, {0,4))
+Z(F) (s, {00.}) 5 (0, {D,0}))

(b) If the monomial in F of type (2,0,0) is Fo(thy,¥) = [ dudx’ . (x) K (z,2")ip(2)
then

(F) = / dz K(0,2) = 2 }(;’;) and  U(F)| < S| F

(¢c) We have
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(d) Define a partial ordering® on the set of vectors p'= (pu,Po, Psp) by
(Pus 0, Psp) S (P P Pap) = Do < Doy Psp < Dy PutPotPsp < P +06+H00,

If -FG(‘B;E then £33(.F) S @ (ﬁpﬁr.
2097
Remark B.7. The following are useful when exploiting Corollary B.6.b.

(a) Denote by 1,14 and 1g, the functions on Xo(n), XY{H) and X, respectively,

which alway take the value 1. Then
Ql - 1crs Q*lcrs =1 inﬁn =1 Q;]- - ]-ﬁn Qn]- - a'n]- Dn]-ﬁn =0

where, as in (6.8),

n—1
ap = a(l+ Zl %)_1
iz

(b) We have
Snlin = Splan = o lan Su(1)Lin = Sn(1) Lin = - Lon
Su(1) Q501 = 2215 (Sn (1) Q5 Q0) L = 7221
Blonul = e $ugrar— Lin Blonulin = G sian = Ln
Bynpupl =0 By uplin =0
B ) 1=0 B ) )l =0

where By, and B, ..p are the operators of [8, Proposition 4.1] and BT(L’_J,D
is the operator of [8, Proposition 2.1].

Proof. (a) Taking Fourier transforms, both of the equations
inﬁn = 1 and Q:;l = 1ﬁn

follow from the facts that the function u,(p) of [4, Remark 2.1.b] obeys u,,(k+¢) = 1,
when k = ¢ = 0 and u,(k+¢) = 0 when k = 0 and 0 # ¢ € B,,. See [4, Remark 2.1.¢
and Lemma 2.2.b,c|. Similarly, both of the equations Q1 = 1.5 and Q*1.s = 1 follow
from the facts that the function u (p) of [4, (2.4)] obeys u (¢+¢) = 1, when ¢ = ¢ =0
and u, (64 ¢) = 0 when € = 0 and 0 # £ € BT. See [4, Remark 2.1.e and Lemma

2“Converting a nonderivative field to a derivative field” or “adding a field”, increases (pu, po, Psp)
under this partial ordering.
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2.3.c,d]. As Q, = a(1+3772 ! L123 Q;)_l the equality 9Q,1 = a(l—i-zgl;ll %)_11 =
a,1 follows. That D,1g, = 0 is true is trivial since discrete derivatives annihilate
constant functions.

(b) follows from part (a) and the definitions

S = Dy + Q30.Q,
Su(i)® ™" = Dy + Qi0,Qn — 1
Bl = S [1— (4 01)S] S (1) Q18,
Blongp = Su(1) Q50 — (Q520Qn — 1t — 618) By
BO) )1 = [1— (Q19,Qn — 1)Sa(1)] Q0

C Scaling and Bounds

Let n > 0and 0 <14,7 <n-+ 1. In this appendix we consider the impact of scaling
on norms of functions

- ,H(n—l—l 7) fH(n—l—l 7) o C
and field maps

A ’Hyjl_j) X 7:15»75[1_") ) HTD s Ty gy (0)

Recall from [7, Definition 2.1.b], that (SF)(B., 8) = F (S~ 3., S 5) maps
L n1—g)  y(nl—j)
SF 7 =D L ¢

Similarly, define the scaled field map

A(B,, B, 2, 2) = L7 [A(ST'B,,S7'3,87 2, S712)] (C.1)
with the L, of [7, Definition 1.5.a]. It maps

5) . (n+1— 7 (n+1—7 n+1—1 n+1l—1 0

A A s G s g s ) )
We fix any m, € € & > 0 and use the norms || F(a., )|, [||A(, &, &, ||| with

mass 1 > 0 and weight factors & &, & to measure the unscaled functions and field
maps. See [7, Definition A.3]. The weight factor £ is used for the a(’s, the weight
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factor € is used for the Q(x’'s, 0 < v < 3, and the weight factor £ is used for the
C(*)’S.

Also, fix any m, €, ¢, € > 0 and use the norms ||(SF)(B., B)||, [IIA®) (3., 3, 2., 2)|
with mass m > 0 and weight factors €, ¥, ¢ to measure the scaled functions and field
maps. The weight factor £ is used for the §(,)’s, the weight factor € is used for the

B

's, 0 < v < 3, and the weight factor € is used for the z.’s.

Definition C.1 (Scaling Divergence Factor).

(a)

(b)

Let

M( (o {aw}), (. {a})) :/

(n+1-3)
X

p
d’Ul . 'dUp M('Ul, U >'UP) H aUe(UZ)
(=1

. . 3
be a monomial of degree p. Here each «, is one of a,, a, {a*,,, O‘V}u:o' Denote
by

e p,, the number of a,,’s that is either o, or o and
® Py, the number of a,,’s that is either a,o or oy and

® pyp, the number of a,,’s that is one of {a.,, Oéu}izl-

Set
Sdf(M) = (z578)" (72 8)" (Fre)™

L7/2 @ L5/2 ¢

Let F be an analytic function on a neighbourhood of the origin in 7:[5-7?{1_]‘ ) x

7-2;7?{1_]' ). Then Sdf(F) is the supremum of Sdf(M) with M running over the
nonzero monomials in the power series representation of F.

Lemma C.2. Assume that m < Lm.

(a) Let

M((andond), fodad) = [

J

p
d’Ul - 'dUp M('Ul, o avp) H aUe(,UZ)
(=1

be a monomial as in Definition C.1.a. Then the kernel of SM is
MO (uy, -+ ) = LPatarotare N (L, - -+ Luy,) (C.2)

and ]
HM(S) Hm < L3 [, 5Pu=5Po—3psp

M| (C.3)
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(b) Let F be an analytic function on a neighbourhood of the origin in 7—[("+1 D x
Hﬁﬁl D Then
IsF|| < L*Sdt(F) |7
In the event that & < L3/2¢ and ¥ < L%2¥, then HS]—"H < L3 ||F.
(c) Assume that € < L*/%€, ¢ < L°?¥ and & < L3/2E[ Let A be a field map deﬁned

on a neighbourhood of the origin in 7—[ n+1 =9 % 7—[ n+1 ) H("H g ”HZ(T{I g

and taking values in 1. Then [I| A ||| § Al

Proof. (a) [7, Remark 2.2.h] gives (C.2). Then, introducing the local shorthand
notation X = Xj("ﬂ_]) and X = Xj(ﬁrl_]),

[
m
LASUTIE T po
= max max | duy - --du;_y dugyy - - - du, LEPP2PORRPe M (L, - oo Tay,) @™ @)
1<i<p wi ) yp—1
7 3 5
3Put5Po+5Psp ~ —1 LT -1
< LW max max [dvy - - - dv;_y dviyy -+ - dv, M(vy, -+, vp) LT (L™ v, L™ p)
L 1<i<p v,
7 3 5
5Put5P0+ 5Psp 0
<L 222 maxmax [ dop e dvig dviy o dvy M(vp, - vp) T (v1,vp)
L 1<i<p v
— [5],~5Pu—5Po—3Dsp MH )
m
since, if t(vy, - - -, vp) is the length of a specific tree T" that is minimal for 7(vy, - -+, v,)
and if ty(vy,---,v,) is the length of the tree constructed from 7" by moving the

location v of each vertex of T to L™tv,

LT(L_IUD e 7L_1Up) < LtL(Ulv' o 7U;D> < t(U1,~ e 7U;D> = T(Ula T 7Up)

(b) It suffices to consider the case that F is a monomial as in part (a). Then

HS]_—H _ HM(S)Hm gPu _E/p0+psp
< L5L—%pu—%po—%Psp(%)p“ (g’)?oﬂ’sp

- MH ) %pu é/p0+psp
= L° Sdf(F)||F|f

(c¢) Once again it suffices to consider monomials
p
A (e {aw}), (e {aw}), G, €)(vo) = /dvl - dvy M(vg, vy, -+ ,Up)zl:ll g, (r)
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of degree p. Here each a,, is one of a,,a, {a*l,,oz,,}izo,c*,c. If o, is one of
Uy, U, {O‘*V’O‘V}i:o’ then v, runs over Xj(f;rl_j). If a,, is one of (,, ¢, then v, Tuns
over Xz(ffr 9 The argument vy runs over X,. We denote by

e p,, the number of a,,’s that is one of o, o, (., C.

® Py, the number of «,,’s that is either a,y or oy and

® D, the number of a,,’s that is one of {oz*,,, O‘V}i:r
The analog of (C.2) for A is

MO (ug, uy, -+ uy) = LaPutapotarse M (Lug, Lug, - -+, Lu,)
The analog of (C.3) for A is

HM(S) Hm < L_%p“_%po—gpsp

M,

and the claim follows. ]
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D Notation

The references in the following tables are to [7] and this paper.

Notation Definition Comments
X 61.1 spatial lattice
h 61.1 “kinetic energy” operator
h 61.1 periodization of h
ho = 6h after (1.4) periodization of hy
hy = V'HV §1.5
Ly, 61.1 spatial cutoff
Ly = 517 after (1.2) temporal cutoff
Xy = (Z/ L Z) x (Z3]Le,Z3) after (1.2) unit lattice
Xn = ( =7/ fgg ARSC YA Lep 273) Defn. 1.5.a “fine” scaled lattice
=(Z /7% f;i Z) x (23] 3 Lep 273) before Defn. 1.1 unit blocked lattice
X("+1 (LZZ/£§§Z) (LZ?’/LS" Z3) Defn. 1.1.a “coarse” blocked lattice
Xj(") Defn. 1.5.a blocked, scaled lattices
L Theorem 1.17 scaling parameter
H, = L*(X,) Defn. 1.5.a
7—[((]") = Lz(é\?o(")) Defn. 1.5.a
”Hg-n) = Lz(é\?j(")) Defn. 1.5.a
(a1, 9); = [ ar(u) az(u) du Defn. 1.5.a bilinear form for 7—[5-")
fxgn) du :J & Euexf”) Defn. 1.5.a “Integral” over Xj(")
L: Xj(") — Xj(f)l Defn. 1.5.a (ug, u) + (L*ug, Lu)
L. : H" — H", Defn. 1.5.a L, (a)(Lu) = o(u)
S=L?L;t: ’Hgk_)l — ’Hg-k) Defn. 2.1.a field scaling operator
S, Defn. 2.1.a scales differentiated fields
Q : ’Hén) — ’H(_nlﬂ) Defn. 1.1.a blockspin average
Qn: HY ’H(()") Defn. 1.5.a blockspin average
Qn Lemma 2.4 Qn =S"1Q,S = QQn_1
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Notation Definition Comments
q Definition 1.11.d block spin averaging profile
Ao (i, ) (1.20) initial action
Ao(Vu, 0, 1, V) Definition 1.5.b dominant part of Ay
A (s, 1) Proposition 4.2.a scale n action

An (s, ¥, 64 6, 1, V)

Definition 1.5.b

dominant part of A,

Dy=1—¢e "0 —ehog, (1.4)
Dy §1.5 Dy is the periodization of Dy
D, = L[> L;" Dy L" Definition 1.5.a scaled Dy
v 61.1 original two—body interaction
Vo(u, ) (1.4), [7, Prop. D.1] scale zero interaction
Vo §1.5 kernel of V,
Vo §1.5 Vb is the periodization of V|
vo= », Vo(0,2q, 23, 24) §1.5
©2,03,4
vo = 2[|Voll2m §1.5
b, after (5.1) 20— 2Vl
y Definition 1.5.b n—fold scaled YV,
Vn(u) Definition 1.5.b kernel of V,(Lu)
Vi (0x, @) Theorem 1.17 scale n interaction
Ro(ts, ) (1.4), [7, Prop. D.1]
Eo(u, ) (1.4), [7, Prop. D.1]
0 61.1 original chemical potential
Lo (1.4), [7, Prop. D.1] | scale zero chemical potential
I (1.19) ool <py <ol
Lhn Theorem 1.17 scale n chemical potential
T Definition 1.1.b block spin transformation
a=1 Definition 1.1.b block spin parameter
i (6.8) o1+ 350 )
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Notation Definition Comments
Q, Definition 1.5.b | a(1+ 07 15Q,Q;) ifn >2
0, Lemma 2.4 9, = %S_IQHS
Nj(rn) Definition 1.1.b normalization constant for T
T Definition 1.6 small field blockspin transformation
Nj(rn) Definition 1.6 normalization constant for TESF)

Cb(*)n (%, @D, 22 V)

Proposition 1.14

background fields

S (e, 1, V)

Proposition 1.14

part of @), of degree at least 3

¢(*)n (‘9*7 97 Hn, Vn)

Proposition 1.15

critical fields

w(%i) (9*7 97 Hns Vn)

Proposition 1.15

part of ¢, of degree at least 3

A (1.14)
c) (1.15) covariance
D™ before (1.15) square root of C'(™
C™(p) Proposition 1.15 C™(p) = (£Q*Q + AW (,u))_1
A™ () Proposition 1.15
) (1.13) fluctuation fields
0y = D(")(*)C(*) after (1.15) fluctuation fields
z(w) = ((Lw) before (4.10) fluctuation field
o= (a,{a,,}l,:071,273) (1.17) o, € ”Hg-")
A (1.17) {al=#""
D= (Pus Do, Psp) Definition 1.8 monomial type
D (1.18) low degree watch list
Dyl Definition 1.16 | scaling/weight relevant monomial types
sdf(p; C) Definition 5.2 Scaling divergence factor
sdf (C) Definition 5.2 SUpj¢a,,, SAf(P; C)
A(p) Definition 5.2 %pu + %po + gpsp where p'= (pu, Do, Psp)
Ro (s, ¥) §1.5 Ro(Ve, ) =Ro (s, {0,00.), (1, {0,4}))
ﬁéﬁ) §1.5 part of Ry of type 7

R (6., 0)

Theorem 1.17

polynomial of type p’
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Notation Definition Comments

(64, 6) Thm. 1.17 R(64,0) = Y e R (64, 9)
Ro(6+,0) Thm. 117 | Ru(¢x, ¢) = Ru((, {0,6:}), (6, {0,0}))
En(Vi, V) Thm. 1.17 scaling/weight irrelevant function

En (e, 1) Thi. L17 | Eu(¥s, ) = Ea(( {000 )), (0. {09)))

Z, Thm. 1.17 normalization constant

Z, (1.6) Z, =[I, L3%"

z Prop. 5.6 normalization constant

I 1l Defn. 1.9 ('—¢> norm with mass mof f: X — C
Defn. 1.10 norm with mass m and weights xq, -, kg
I Al [7, Defn. A.3] | field-map norm of mass m and weights x;
k(n) = n?;i Defn. 1.11.a weight for ¢, in the n'" step
Ui %Jr%bgl&gﬁ Defn. 1.11.a %+2€<7}<£—§
K'(n) = n?—gi Defn. 1.11.a weight for 8,1, in the n'™ step
n’:%—bgﬁif)w— Defn. 1.11.a S<n <3 -8
ei(n) = LM Ué_ze Defn. 1.11.a | bound on fluctuation integral of n'® step
Ul:(%—‘k)bgﬁﬁ Defn. 1.11.a

R (5.1) k(n+1)

R/ (5.1) K'(n+1)

R (5.1) ki(n+1) =4r,

RP Lemma 5.5.c kP = RPeRPotPe where = (pu, Po; Psp)
1€ (W, )| ™ Defn. 1.11.a | norm with mass m and weights k(n), <'(n)
1€ (@, 0 ||m Defn. 1.11.a norm with mass m and weights all one

n, < log; 0%17& Defn. 1.11.b number of steps in the “parabolic flow”
rn = 1ri(n :— 1) Defn. 1.11.c | radius of domain of integration in n'® step
ki(n) = (ﬁ—:)e/z Defn. 1.11.c

t5(n, C) Remark 1.18 H?@@Hm < tz(n,Cr)

I17(C) Remark 1.18
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Notation Definition Comments
Cr Remark 1.18 n, L, independent constant
Csy Remark 1.18 n, L, independent constant
Ci Lemma 5.5 n, L, independent constant
Clren Lemma 6.6 n, L, independent constant
Lop Convention 1.2 n, L, independent constant
fup Convention 1.2 n, L, independent constant

K, Ky, --- Convention 1.2 n, L, independent constants
Ky, Convention 1.2 max;

P1yP2y " Convention 1.2 n, L, independent constants
Phg Convention 1.2 min {% , in; pj}
Asy Lemma 6.7 n independent, L dependent constant
Cloc Lemma B.3 n, L, independent constant
cA (6.7) n, L, independent constant
cQ Lemma 6.3 n, L, independent constant
Csy Lemma 6.4 n, L, independent constant
Ko (6.11), (6.12) n, L, independent constant
Coar Lemma 6.5 n, L, independent constant
Cp, Lemma A.1 n, L, independent constant

Theorem 1.13

Green’s functions

Sl Theorem 1.13 Sn(1t) = (Dy + Q59,Q,, — 1)~
€, ER, €u, €R before [7, (D.1)] | parameters in [2, Hypothesis 2.14]
Zy [7, (D.2)] normalization constant
Zin [7, Prop. D.1] Zi, = Zge
j(t) = e 0w 7. (D2)]
Vo(a*, B) [7, (D.2)] interaction output from [2]
Ro(ow, B) [7, (D.2)] degree two output from [2]
Eo(a, B) [7, (D.2)] higher degree output from [2]
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Notation

Definition

Comments

D0<a*7ﬂ)

[7, (D.2)]

Dg(@*,ﬁ) = R@(Oé*,ﬁ) + 59(04*,B)

ATL(e*? 97 é*? (57 M? V)

Definition 2.3

A, (S6,,S6,S¢,,S¢, L1, SV)

QE(*)H(Q*, 0, 1,V)

Definition 3.2

S~ [¢(uyn(Sh., SO, L1, SV)]

6¢(*)n (w*v @D, 6¢*7 61/}7 ,U, V)

Definition 3.5

5@(*)71 (9*7 97 5¢*7 5’(/}7 2 V)

Definition 3.5

0 1), (0., 0; 3¢, ¢, 11, V)

Definition 3.5

~

Dy (s ¥ 1, V) (4.3) S [hun(S 40w, S0, 1, V)]
0ns1 (s, ¥, 24, 2) (4.7)
0 sy (s ¥, 20, 2) (4.9)
Ca(6-,0) beginning §4
Fu(6-,6) beginning §4

51’L+1,1(0*7 9)

beginning §4

ETL (w*n<‘9*7 97 M, Vn)? ¢TL(6*7 97 Hn, Vn))

0 (8., 8, 61, 00)

beginning §4

6Rn(0,, 0,01, 51))

beginning §4

0AL(0.,0,00.,0¢)

beginning §4

Cn (s, ) before (4.3)
Fo(thi, ) (4.4) Also see Proposition 5.6
Eniin (¥, 0) (4.3) (SEn) (G (P s pin, Vi)
0En (Vu, ¥, 24, 2) (4.5)
IRy (i, Y, 24, 2) (4.6)
O A, (Vu, 1, 24, 2) (4.8)
5AD 5AEY Lemma 5.5.a
Ens11(ths, D) Lemma 555 | Eu41.1(, ) =11 (Y {000 }))
5~n+1,2(1;*7 15) Lemma 6.6 gn—i—l = 5~n+1,1 + gn+1,2
55~n(@E*, 0, 2, 2) Lemma 5.5.b

57?'5?‘) (Q/;*v 77;7 Z*v Z)

Lemma 5.5.¢

67én(¢*7 @D, Z*7 Z)

Lemma 5.5.¢c
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Notation Definition Comments
on(P) Lemma 5.5.c
AR Proposition 5.6
15(@5*, ¥, 2, z) | before Lemma 5.7
Pzw before Lemma 5.7 | degree 1 in each of 1., v, any degree in z)
le before Lemma 5.7 | extracts degree 1 in 1), any degree in z()
Péﬁ before Lemma 5.7 | degree 0 in (), ¥ (), any degree in z()
M, Lemma 5.7.a
Py, Proposition 5.8.a | degree 1 in each of ¥, ¥, degree 0 in 1),
M Proposition 5.8.a
M, Proposition 5.8.b
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