
Introduction to Differential Equations

A differential equation is an equation for an unknown function that involves the derivative

of the unknown function. For example

dy

dx
= 7y + cosx

is a differential equation for an unknown function, y(x). This particular equation is said to

be a first order linear differential equation.

• It is a differential equation because it involves the derivative dy
dx

of the unknown function.

• It is a first order equation because the highest order derivative that appears is the first

order derivative.

• It is a linear equation because y and its derivatives appear only to the power one. There

are no y2’s or y dy
dx
’s or cos(y)’s. The most general first order linear differential equation

is a(x)dy
dx

+ b(x)y = c(x) where a(x), b(x), c(x) are given functions.

Differential equations play a central role in modelling a huge number of different phenom-

ena. Here is a table giving a bunch of named differential equations and what they are used

for. It is far from complete.

Newton’s Law of Motion describes motion of particles

Maxwell’s equations describes electromagnetic radiation

Navier–Stokes equations describes fluid motion

Heat equation describes heat flow

Wave equation describes wave motion

Schrödinger equation describes atoms, molecules and crystals

Stress-strain equations describes elastic materials

Black–Scholes models used for pricing financial options

Predator–prey equations describes ecosystem populations

Einstein’s equations connects gravity and geometry

Ludwig–Jones–Holling’s equation models spruce budworm/Balsam fir ecosystem

Zeeman’s model models heart beats and nerve impulses

Sherman–Rinzel–Keizer model for electrical activity in Pancreatic β–cells

Hodgkin–Huxley equations models nerve action potentials

We are just going to scratch the surface of the study of differential equations. Most

universities offer half a dozen different undergraduate courses on various aspects of differential

equations. We will just look at one special, but important, type of equation.
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A separable differential equation is an equation for a function y(x) of the form

dy

dx
(x) = f(x) g

(

y(x)
)

Definition 1.

Usually one supresses the argument of y and writes the equation

dy

dx
= f(x) g(y)

We’ll start by developing a recipe for solving separable differential equations. Usually one

supresses the argument of y and writes the equation

dy

dx
= f(x) g(y)

and solves such an equation by cross multiplying/dividing to get all of the y’s on one side of

the equation and all of the x’s, including the dx, on the other side of the equation.

dy

g(y)
= f(x) dx

(We are of course assuming that g(y) is nonzero.) Then you integrate both sides
∫

dy

g(y)
=

∫

f(x) dx (1)

This looks illegal, and indeed is illegal — dy
dx

is not a fraction. But we’ll now see that the

answer is still correct. This procedure is simply a mnenomic device to help you remember that

answer. Let G(y) be an antiderivative of 1
g(y)

(i.e. G′(y) = 1
g(y)

) and F (x) be an antiderivative

of f(x) (i.e. F ′(x) = f(x). If we reinstate the argument of y, (1) is

G
(

y(x)
)

= F (x) + C (2)

To check that a function y(x) obeys dy
dx
(x) = f(x) g

(

y(x)
)

if and only if it obeys (2), just

differentiate both sides of (2) with respect to x. By the chain rule

G
(

y(x)
)

= F (x) + C ⇐⇒ G′
(

y(x)
)

y′(x) = F ′(x) ⇐⇒
y′(x)

g(y(x))
= f(x)

⇐⇒ y′(x) = f(x) g(y(x))

(We have again assumed that g(y) is nonzero.)

Observe that the solution (2) contains an arbitrary constant, C. The value of this arbi-

trary constant can not be determined by the differential equation. You need additional data

to determine it. Often this data consists of the value of the unknown function for one value

of x. That is, often the problem you have to solve is of the form

dy

dx
(x) = f(x) g

(

y(x)
)

y(x0) = y0
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where f(x) and g(y) are given functions and x0 and y0 are given numbers. This type of

problem is called an “initial value problem”. It is solved by first using the method above to

find the general solution to the differential equation, including the arbitrary constant C, and

then using the “initial condition” y(x0) = y0 to determine the value of C. We’ll see examples

of this shortly.

Example 2

Let a and b be any two constants. We’ll now solve the family of, first order, linear, differential

equations
dy

dx
= a(y − b)

using our mnemonic device.

dy

y − b
= a dx =⇒

∫

dy

y − b
=

∫

a dx =⇒ ln |y − b| = ax+ c =⇒ |y − b| = eax+c = eceax

=⇒ y − b = Ceax

where C is either +ec or −ec. We were a bit sloppy here. We implicitly assumed that y − b

was nonzero, so that we could divide it across. But the constant function y = b is a perfectly

good solution — when y is the constant function y = b, both dy
dx

and a(y − b) are zero. So

the general solution to dy
dx

= a(y − b) is y(x) = Ceax + b, where the constant C can be any

real number. Note that when y(x) = Ceax + b we have y(0) = C + b. So C = y(0)− b and

the general solution is

y(x) = {y(0)− b} eax + b

Example 2

Example 3

Solve dy
dx

= y2

Solution. When y 6= 0,

dy

dx
= y2 =⇒

dy

y2
= dx =⇒

y−1

−1
= x+ C =⇒ y = −

1

x+ C

When y = 0, this computation breaks down because dy
y2

contains a division by 0. We can

check if the function y(x) = 0 satisfies the differential equation by just subbing it in:

y(x) = 0 =⇒ y′(x) = 0, y(x)2 = 0 =⇒ y′(x) = y(x)2

So y(x) = 0 is a solution and the full solution is

y(x) = 0 or y(x) = −
1

x+ C
, for any constant C

Example 3
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Example 4

When a raindrop falls it increases in size so that its mass m(t), is a function of time t. The

rate of growth of mass, i.e. dm
dt
, is km(t) for some positive constant k. According to Newton’s

law of motion, d
dt
(mv) = gm, where v is the velocity of the raindrop (with v being positive

for downward motion) and g is the acceleration due to gravity. Find the terminal velocity,

lim
t→∞

v(t), of a raindrop.

Solution. In this problem we have two unknown functions, m(t) and v(t), and two differential

equations, dm
dt

= km and d
dt
(mv) = gm. The first differential equation, dm

dt
= km, involves

only m(t), not v(t), so we use it to determine m(t).

dm

dt
= km =⇒

dm

m
= k dt =⇒ lnm = kt+ c =⇒ m = dekt where d = ec

for some positive constant d. Now that we know m(t) (except for the value of the constant d),

we can substitute it into the second differential equation, which we can then use to determine

the remaining unknown function v(t). Observe that the second equation, d
dt
(mv) = gm(t) =

gdekt tells that the derivative of the function y(t) = m(t)v(t) is gdekt. So y(t) is just an

antiderivative of gdekt.

dy

dt
= gm(t) = gdekt =⇒ dy = gdekt dt =⇒ y(t) =

∫

gdekt dt = gd
ekt

k
+ C

Now that we know y(t) = m(t)v(t) = dektv(t), we can get v(t) just by dividing out the dekt.

y(t) = gd
ekt

k
+ C =⇒ dektv(t) = gd

ekt

k
+ C =⇒ v(t) =

g

k
+

C

dekt

Our solution, v(t), contains two arbitrary constants, namely C and d. They will be deter-

mined by, for example, the mass and velocity at time t = 0. But since we are only interested

in the terminal velocity lim
t→∞

v(t), we don’t need to know C and d. Since k > 0, lim
t→∞

C
ekt

= 0

and the terminal velocity lim
t→∞

v(t) = g
k
.

Example 4

Example 5

A glucose solution is administered intravenously into the bloodstream at a constant rate r.

As the glucose is added, it is converted into other substances at a rate that is proportional to

the concentration at that time. The concentration, C(t), of the glucose in the bloodstream

at time t obeys the differential equation

dC

dt
= r − kC

where k is a positive constant of proportionality.

(a) Express C(t) in terms of k and C(0).
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(b) Find lim
t→∞

C(t). Discuss.

Solution. (a) Since r − kC = −k
(

C − r
k

)

this equation is of the form solved in Example 2

with a = −k and b = r
k
. So the solution is

C(t) =
r

k
+
(

C(0)−
r

k

)

e−kt

(b) For any k > 0, lim
t→∞

e−kt = 0. Consequently, for any C(0) and any k > 0, lim
t→∞

C(t) = r
k
.

We could have predicted this limit without solving for C(t). If we assume that C(t) ap-

proaches some equilibrium value Ce as t approaches infinity, then taking the limits of both

sides of dC
dt

= r − kC as t → ∞ gives

0 = r − kCe =⇒ Ce =
r

k

Example 5

Carbon Dating

Example 6

Scientists can determine the age of ancient objects by a method called radiocarbon dating.

The bombardment of the upper atmosphere by cosmic rays converts nitrogen to a radioactive

isotope of carbon, 14C, with a half–life of about 5730 years. Vegitation absorbs carbon dioxide

from the atmosphere and animal life assimilates 14C through the food chain. When a plant or

animal dies, it stops replacing its carbon and the amount of 14C begins to decrease through

radioactive decay. Therefore the level of radioactivity also decreases. A parchment fragment

was discovered that had about 74% as much 14C radioactivity as does plant material on earth

today. Estimate the age of the parchment.

Solution. Let Q(t) denote the amount of 14C in the parchment t years after it was first

created. The number of radioactive decays per unit time, at time t, is proportional to the

amount Q(t) present at time t. Thus

dQ

dt
= KQ(t)

for some constant of proportionality K. This is a separable differential equation. We solve

it in the usual way.

dQ

dt
= KQ =⇒

dQ

Q
= K dt =⇒ lnQ = Kt + C =⇒ Q(t) = eCeKt

At time 0, Q(0) = eC . So

Q(t) = Q(0)eKt
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To finish the problem, we still have to determine (a) the value of the constant of propor-

tionality K and (b) the time, call it tp, for which Q(tp) = 0.74Q(0). In the statement of

the problem, we are also given two constants — the half–life of 5730 years and the “0.74”

in Q(tp) = 0.74Q(0). Not surprisingly, the first will determine K and then the second will

determine tp.

(a) By definition, the half–life of 14C is the length of time that it takes for half of the 14C to

decay. That is, the half–life t1/2 is determined by

Q(t1/2) =
1
2
Q(0) ⇐⇒ Q(0)eKt1/2 = 1

2
Q(0) ⇐⇒ eKt1/2 = 1

2

Taking the logarithm of both sides gives

Kt1/2 = ln
1

2
= − ln 2 =⇒ K = −

ln 2

t1/2

We are told that, for 14C, the half–life t1/2 = 5730, so

K = −
ln 2

5730
= −0.000121

Note that K is negative. We should have known that K would be negative — Q(t) is

positive and dQ
dt

is negative, since Q(t) decreases as t increases. So dQ
dt

= KQ forces K

to be negative.

(b) Finally, the time t = tp at which Q(t) reaches 0.74Q(0) is determined by

Q(tp) = 0.74Q(0) =⇒ Q(0) eKtp = 0.74Q(0) =⇒ eKtp = 0.74

=⇒ Ktp = ln 0.74 =⇒ tp =
ln 0.74

K
= 2490

The parchment is about 25 centuries old.

Example 6

Newton’s Law of Cooling

Newton’s law of cooling says:

The rate of change of temperature of an object is proportional to the difference in tem-

perature between the object and its surroundings. The temperature of the surroundings is

sometimes called the ambient temperature.

If we denote by T (t) the temperature of the object at time t and by A the temperature of

its surroundings, Newton’s law of cooling says that there is some constant of proportionality,

K, such that
dT

dt
(t) = K

[

T (t)− A
]

(3)

Let’s start by thinking a little about the sign of the constant of proportionality. At any time

t, there are three possibilities.
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• If T (t) > A, that is, if the body is warmer than its surroundings, we would expect heat

to flow from the body into its surroundings and so we would expect the body to cool

off so that dT
dt
(t) < 0. For this expectation to be consistent with (3), we need K < 0.

• If T (t) < A, that is the body is cooler than its surroundings, we would expect heat to

flow from the surroundings into the body and so we would expect the body to warm

up so that dT
dt
(t) > 0. For this expectation to be consistent with (3), we again need

K < 0.

• Finally if T (t) = A, that is the body and its environment have the same temperature,

we would not expect any heat to flow between the two and so we would expect that
dT
dt
(t) = 0. This does not impose any condition on K.

In conclusion, we would expect K < 0. Of course, we could have chosen to call the constant of

proportionality −k, rather than K. Then the differential equation would be dT
dt

= −k
(

T −A
)

and we would expect k > 0.

Example 7

The temperature of a glass of iced tea is initially 5◦. After 5 minutes, the tea has heated to

10◦ in a room where the air temperature is 30◦.

(a) Determine the temperature as a function of time.

(b) What is the temperature after 10 minutes?

(c) Determine when the tea will reach a temperature of 20◦.

Solution. (a) Denote by T (t) the temperature of the tea t minutes after it was removed

from the fridge. By Newton’s law of cooling,

dT

dt
= K(T −A) = K(T − 30)

for some, as yet unknown, constant of proportionality K, since, in this problem, the ambient

temperature A = 30◦. By Example 2 with a = K and b = 30,

T (t) = [T (0)− 30] eKt + 30 = 30− 25eKt

since the initial temperature T (0) = 5. This solution is not complete because it still contains

an unknown constant, namely K. We have not yet used the given data that T (5) = 10. We

can use it to determine K. At t = 5,

T (5) = 30− 25e5K = 10 =⇒ e5K =
20

25
=⇒ 5K = ln

20

25

=⇒ K =
1

5
ln

4

5
= −0.044629

(b) At t = 10,

T (10) = 30− 25e10K = 30− 25e−10×0.044629 = 30− 16 = 14◦
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to the nearest degree.

(c) The temperature is 20◦ when

30− 25eKt = 20 =⇒ eKt =
10

25
=⇒ Kt = ln

10

25

=⇒ t =
1

K
ln

2

5
= 20.5 min

to one decimal place.

Example 7

Example 8

A dead body is discovered at 3:45pm in a room where the temperature is 20◦C. At that time

the temperature of the body 1s 27◦C. Two hours later, at 5:45pm, the temperature of the

body is 25.3 ◦C. What was the time of death?

Solution. Denote by T (t) the temperature of the body at time t, with t = 0 corresponding

to 3:45pm. If we call the time of death td, we have been told that

(1) dT
dt

= K(T −A) where K is an unknown constant and A is the ambient temerature. This

is Newton’s law of cooling.

(2) A = 20

(3) T (0) = 27

(4) T (2) = 25.3

(5) T (td) = 37. That’s the normal body temperature.

By Example 2,

T (t) = [T (0)− A] eKt + A = 20 + 7eKt

Two unknowns remain, K and td. The first, K, is determined by condition (4).

25.3 = T (2) = 20 + 7e2K =⇒ 7e2K = 5.3 =⇒ 2K = ln
(

5.3
7

)

=⇒ K = 1
2
ln
(

5.3
7

)

= −0.139

Finally, td is determined by (5).

37 = T (td) = 20 + 7e−0.139td =⇒ e−0.139td = 17
7

=⇒ −0.139td = ln
(

17
7

)

=⇒ td = − 1
0.139

ln
(

17
7

)

= −6.38

Now 6.38 hours is 6 hours and 0.38×60 = 23 minutes. So the time of death was 6 hours and

23 minutes before 3:45pm, which is 9:22am.

Example 8

Example 9

On a hot day, a thermometer is taken outside from an air–conditioned room where the tem-

perature is 21◦C. After one minute, it reads 27◦C and after two minutes, it reads 30◦C. What

is the outdoor temperature?
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Solution. Let A be the outdoor temperature and T (t) be the temperature of the thermometer

t minutes after it is taken outside. Then the temperature of the thermometer obeys, by

Newton’s law of cooling,

dT

dt
= K(T − A) =⇒ T (t) = A+

(

T (0)−A
)

eKt

by Example 2. We are told T (0) = 21, so T (t) = A+
(

21−A
)

eKt. We are also told T (1) = 27,

which gives

27 = A+
(

21− A
)

eK =⇒ eK =
27− A

21− A

and T (2) = 30, which gives

30 = A+
(

21− A
)

e2K = A+
(

21−A
)

(27− A

21− A

)2

= A+
(27−A)2

21−A

or

30− A =
(27− A)2

21− A
⇒ (30− A)(21−A) = (27− A)2

⇒ 630− 51A+ A2 = 729− 54A+ A2

⇒ 3A = 99 ⇒ A = 33◦C

Example 9

Logistic Growth

Logistic growth is a simple model for predicting the size P (t) of a population as a function

of the time t.

In the most naive model of population growth, each couple produces β offspring (for

some constant β) and then dies. Thus over the course of one generation β P (t)
2

children are

produced and P (t) parents die so that the size of the population grows from P (t) to

P (t+ tg) = P (t) + β
P (t)

2
− P (t) =

β

2
P (t)

where tg denotes the lifespan of one generation. The rate of change of the size of the popu-

lation per unit time is

P (t+ tg)− P (t)

tg
=

1

tg

[β

2
P (t)− P (t)

]

= bP (t)

where b = β−2
2tg

is the net birthrate per member of the population per unit time. If we

approximate P (t+tg)−P (t)
tg

≈ dP
dt
(t) we get the differential equation

P ′(t) = bP (t)
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Logistic growth adds one more wrinkle to this model. It assumes that the population

only has access to limited resources. As the size of the population grows the amount of food

available to each member decreases. This in turn causes the net birth rate b to decrease.

In the logistic growth model b = b0
(

1− P
K

)

, where K is called the carrying capacity of the

environment, so that

P ′(t) = b0

(

1−
P (t)

K

)

P (t)

This is a separable differential equation and we can solve it explicitly. We shall do so

shortly. See Example 10, below. But, before doing that, we’ll see what we can learn about

the behaviour of solutions to differential equations like this without finding formulae for

the solutions. It turns out that we can learn a lot just by watching the sign of P ′(t). For

concreteness, we’ll look at solutions of the differential equation

dP

dt
(t) =

(

6000− 3P (t)
)

P (t)

We’ll sketch the graphs of four functions P (t) that obey this equation.

• For the first function, P (0) = 0.

• For the second function, P (0) = 1000.

• For the third function, P (0) = 2000.

• For the fourth function, P (0) = 3000.

The sketchs will be based on the observation that (6000− 3P )P = 3(2000− P )P

• is zero for P = 0, 2000,

• is strictly positive for 0 < P < 2000 and

• is strictly negative for P > 2000.

Consequently

dP

dt
(t)























= 0 if P (t) = 0

> 0 if 0 < P (t) < 2000

= 0 if P (t) = 2000

< 0 if P (t) > 2000

Thus if P (t) is some function that obeys dP
dt
(t) =

(

6000 − 3P (t)
)

P (t), then as the graph of

P (t) passes through the point
(

t, P (t)
)

the graph has























slope zero, i.e. is horizontal, if P (t) = 0

positive slope, i.e. is increasing, if 0 < P (t) < 2000

slope zero, i.e. is horizontal, if P (t) = 2000

negative slope, i.e. is decreasing, if 0 < P (t) < 2000

as illustrated in the figure

c© Joel Feldman. 2015. All rights reserved. 10 February 16, 2015



t

P (t)

1000

2000

3000

As a result,

• if P (0) = 0, the graph starts out horizontally. In other words, as t starts to increase,

P (t) remains at zero, so the slope of the graph remains at zero. The population size

remains zero for all time. As a check, observe that the function P (t) = 0 obeys
dP
dt
(t) =

(

6000− 3P (t)
)

P (t) for all t.

• Similarly, if P (0) = 2000, the graph again starts out horizontally. So P (t) remains at

2000 and the slope remains at zero. The population size remains 2000 for all time.

Again, the function P (t) = 2000 obeys dP
dt
(t) =

(

6000− 3P (t)
)

P (t) for all t.

• If P (0) = 1000, the graph starts out with positive slope. So P (t) increases with t. As

P (t) increases towards 2000, the slope (6000 − 3P (t)
)

P (t), while remaining positive,

gets closer and closer to zero. As the graph approachs height 2000, it becomes more

and more horizontal. The graph cannot actually cross from below 2000 to above 2000,

because to do so it would have to have strictly positive slope for some value of P above

2000, which is not allowed.

• If P (0) = 3000, the graph starts out with negative slope. So P (t) decreases with t. As

P (t) decreases towards 2000, the slope (6000 − 3P (t)
)

P (t), while remaining negative,

gets closer and closer to zero. As the graph approachs height 2000, it becomes more

and more horizontal. The graph cannot actually cross from above 2000 to below 2000,

because to do so it would have to have negative slope for some value of P below 2000,

which is not allowed.

These curves are sketched in the figure below. We conclude that for any initial population

size P (0), except P (0) = 0, the population size approachs 2000 as t → ∞.

t

P (t)

1000

2000

3000
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Now we’ll do an example in which we explictly solve the logistic growth equation.

Example 10

In 1986, the population of the world was 5 billion and was increasing at a rate of 2% per

year. Using the logistic growth model with an assumed maximum population of 100 billion,

predict the population of the world in the years 2000, 2100 and 2500.

Solution. Let y(t) be the population of the world, in billions of people, at time 1986 + t.

The logistic growth model assumes

y′ = ay(K − y)

where K is the carrying capacity and a = b0
K
.

First we’ll determine the values of the constants a and K from the given data.

• We know that, if at time zero the population is below K, then as time increases the

population increases, approaching the limit K as t tends to infinity. So in this problem

K is the maximum population. That is, K = 100.

• We are also told that, at time zero, the percentage rate of change of population, 100y′

y
,

is 2, so that, at time zero, y′

y
= 0.02. But, from the differential equation, y′

y
= a(K−y).

Hence at time zero, 0.02 = a(100− 5), so that a = 2
9500

.

We now know a and K and can solve the (separable) differential equation

dy

dt
= ay(K − y) =⇒

dy

y(K − y)
= a dt =⇒

∫

1

K

[1

y
−

1

y −K

]

dy =

∫

a dt

=⇒
1

K
[ln |y| − ln |y −K|] = at + C

=⇒ ln
|y|

|y −K|
= aKt + CK =⇒

∣

∣

∣

y

y −K

∣

∣

∣
= DeaKt

with D = eCK . We know that y remains between 0 and K, so that
∣

∣

∣

y
y−K

∣

∣

∣
= y

K−y
and our

solution obeys
y

K − y
= DeaKt

At this stage, we know the values of the constants a and K, but not the value of the constant

D. We are given that at t = 0, y = 5. Subbing in this, and the values of K and a,

5

100− 5
= De0 =⇒ D =

5

95

So the solution obeys the algebraic equation

y

100− y
=

5

95
e2t/95

which we can solve to get y as a function of t.

y = (100− y)
5

95
e2t/95 =⇒ 95y = (500− 5y)e2t/95

=⇒
(

95 + 5e2t/95
)

y = 500e2t/95

=⇒ y =
500e2t/95

95 + 5e2t/95
=

100e2t/95

19 + e2t/95
=

100

1 + 19e−2t/95
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Finally,

• In the year 2000, t = 14 and y = 100
1+19e−28/95 ≈ 6.6 billion.

• In the year 2100, t = 114 and y = 100
1+19e−228/95 ≈ 36.7 billion.

• In the year 2200, t = 514 and y = 100
1+19e−1028/95 ≈ 100 billion.

Example 10

Mixing Problems

Example 11

At time t = 0, where t is measured in minutes, a tank with a 5–litre capacity contains 3 litres

of water in which 1 kg of salt is dissolved. Fresh water enters the tank at a rate of 2 litres

per minute and the fully mixed solution leaks out of the tank at the varying rate of 2t litres

per minute.

(a) Determine the volume of solution V (t) in the tank at time t.

(b) Determine the amount of salt Q(t) in solution when the amount of water in the tank is

at maximum.

Solution. (a) The rate of change of the volume in the tank, at time t, is 2 − 2t, because

water is entering at a rate 2 and solution is leaking out at a rate 2t. Thus

dV

dt
= 2− 2t =⇒ dV = (2− 2t) dt =⇒ V =

∫

(2− 2t) dt = 2t− t2 + C

at least until V (t) reaches either the capacity of the tank or zero. When t = 0, V = 3 so

C = 3 and V (t) = 3 + 2t − t2. Observe that V (t) is at a maximum when dV
dt

= 2 − 2t = 0,

or t = 1.

(b) In the very short time interval from time t to time t + dt, 2t dt litres of brine leaves

the tank. That is, the fraction 2t dt
V (t)

of the total salt in the tank, namely Q(t) 2t dt
V (t)

kilograms,

leaves. Thus salt is leaving the tank at the rate

Q(t) 2t dt
V (t)

dt
=

2tQ(t)

V (t)
=

2tQ(t)

3 + 2t− t2
kilograms per minute

so

dQ

dt
= −

2tQ(t)

3 + 2t− t2
=⇒

dQ

Q
= −

2t

3 + 2t− t2
= −

2t

(3− t)(1 + t)
=

3/2

t− 3
+

1/2

t+ 1

=⇒ lnQ =
3

2
ln |t− 3|+

1

2
ln |t+ 1|+ C
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We are interested in the time interval 0 ≤ t ≤ 1. In this time interval |t − 3| = 3 − t and

|t+ 1| = t + 1 so

lnQ =
3

2
ln(3− t) +

1

2
ln(t+ 1) + C

At t = 0, Q is 1 so

ln 1 =
3

2
ln(3− 0) +

1

2
ln(0 + 1) + C =⇒ C = ln 1−

3

2
ln 3−

1

2
ln 1 = −

3

2
ln 3

At t = 1

lnQ =
3

2
ln(3− 1) +

1

2
ln(1 + 1)−

3

2
ln 3 = 2 ln 2−

3

2
ln 3 = ln 4− ln 3

3/2

so Q = 4

33/2
.

Example 11

Example 12

A tank contains 1500 liters of brine with a concentration of 0.3 kg of salt per liter. Another

brine solution, this with a concentration of 0.1 kg of salt per liter is poured into the tank at

a rate of 20 li/min. At the same time, 20 li/min of the solution in the tank, which is stirred

continuously, is drained from the tank.

(a) How many kilograms of salt will remain in the tank after half an hour?

(b) How long will it take to reduce the concentration to 0.2 kg/li?

Solution. Denote by Q(t) the amount of salt in the tank at time t. In a very short time

interval dt, the incoming solution adds 20 dt liters of a solution carrying 0.1 kg/li. So the

incoming solution adds 0.1 × 20 dt = 2 dt kg of salt. In the same time interval 20 dt liters

is drained from the tank. The concentration of the drained brine is Q(t)
1500

. So Q(t)
1500

20 dt kg

were removed. All together, the change in the salt content of the tank during the short time

interval is

dQ = 2 dt−
Q(t)

1500
20 dt =

(

2−
Q(t)

75

)

dt

The rate of change of salt content per unit time is

dQ

dt
= 2−

Q(t)

75
= −

1

75

(

Q(t)− 150
)

The solution of this equation is

Q(t) =
{

Q(0)− 150
}

e−t/75 + 150

by Example 2, with a = − 1
75

and b = 150. At time 0, Q(0) = 1500× 0.3 = 450. So

Q(t) = 150 + 300e−t/75
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(a) At t = 30

Q(30) = 150 + 300e−30/75 = 351.1 kg

(b) Q(t) = 0.2× 1500 = 300 kg is achieved when

150 + 300e−t/75 = 300 =⇒ 300e−t/75 = 150 =⇒ e−t/75 = 0.5

=⇒ −
t

75
= ln(0.5) =⇒ t = −75 ln(0.5) = 51.99 min

Example 12

Interest on Investments

Suppose that you deposit $P in a bank account at time t = 0. The account pays r% interest

per year compounded n times per year.

• The first interest payment is made at time t = 1
n
. Because the balance in the account

during the time interval 0 < t < 1
n
is $P and interest is being paid for

(

1
n

)th
of a year,

that first interest payment is 1
n
× r

100
×P . After the first interest payment, the balance

in the account is P + 1
n
× r

100
× P =

(

1 + r
100n

)

P .

• The second interest payment is made at time t = 2
n
. Because the balance in the account

during the time interval 1
n
< t < 2

n
is
(

1+ r
100n

)

P and interest is being paid for
(

1
n

)th
of

a year, the second interest payment is 1
n
× r

100
×
(

1+ r
100n

)

P . After the second interest

payment, the balance in the account is
(

1+ r
100n

)

P+ 1
n
× r

100
×
(

1+ r
100n

)

P =
(

1+ r
100n

)2
P .

• And so on.

In general, at time t = m
n
(just after the mth interest payment), the balance in the account is

B(t) =
(

1 +
r

100n

)m

P =
(

1 +
r

100n

)nt

P (4)

Three common values of n are 1 (interest is paid once a year), 12 (i.e. interest is paid

once a month) and 365 (i.e. interest is paid daily). The limit n → ∞ is called continuous

compounding1. Under continuous compounding, the balance at time t is

B(t) = lim
n→∞

(

1 +
r

100n

)nt

P

You may have already seen the limit

lim
x→0

(1 + x)a/x = ea (5)

1There are banks that advertise continuous compounding. You can find some by googling “interest is

compounded continuously and paid”
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If so, you can evaluate B(t) by applying (5) with x = r
100n

and a = rt
100

(so that nt = a
x
). As

n → ∞, x → 0 so that

B(t) = lim
n→∞

(

1 +
r

100n

)nt

P = lim
x→0

(1 + x)a/xP = eaP = ert/100P (6)

If you haven’t seen (5) before, that’s OK. In the following example, we rederive (6) using a

differential equation instead of (5).

Example 13

Suppose, again, that you deposit $P in a bank account at time t = 0, and that the account

pays r% interest per year compounded n times per year, and denote by B(t) the balance at

time t. Suppose that you have just received an interest payment at time t. Then the next

interest payment will be made at time t+ 1
n
and will be 1

n
× r

100
×B(t) = r

100n
B(t). So, calling

1
n
= h,

B(t + h) = B(t) +
r

100
B(t)h or

B(t+ h)− B(t)

h
=

r

100
B(t)

To get continuous compounding we take the limit n → ∞ or, equivalently, h → 0. This gives

lim
h→0

B(t+ h)−B(t)

h
=

r

100
B(t) or

dB

dt
(t) =

r

100
B(t)

By Example 2, with a = r
100

and b = 0, B(t) = ert/100B(0) = ert/100P , once again.

Example 13

Example 14

(a) A bank advertises that it compounds interest continuously and that it will double your

money in ten years. What is the annual interest rate?

(b) A bank advertises that it compounds monthly and that it will double your money in ten

years. What is the annual interest rate?

Solution. (a) Let the interest rate be r% per year. If you start with $P , then after t years,

you have Pert/100, under continuous compounding. This was (6). After 10 years you have

Per/10. This is supposed to be 2P , so

Per/10 = 2P =⇒ er/10 = 2 =⇒
r

10
= ln 2 =⇒ r = 10 ln 2 = 6.93%

(b) Let the interest rate be r% per year. If you start with $P , then after t years, you

have P
(

1 + r
100×12

)12t
, under monthly compounding. This was (4). After 10 years you have

P
(

1 + r
100×12

)120
. This is supposed to be 2P , so

P
(

1 +
r

100× 12

)120
= 2P =⇒

(

1 +
r

1200

)120
= 2 =⇒ 1 +

r

1200
= 21/120

=⇒
r

1200
= 21/120 − 1 =⇒ r = 1200

(

21/120 − 1
)

= 6.95%
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Example 14

Example 15

A 25 year old graduate of UBC is given $50,000 which is invested at 5% per year compounded

continuously. The graduate also intends to deposit money continuously at the rate of $2000

per year.

(a) Find a differential equation that A(t) obeys, assuming that the interest rate remains 5%.

(b) Determine the amount of money in the account when the graduate is 65.

(c) At age 65, the graduate will withdraw money continuously at the rate of W dollars per

year. If the money must last until the person is 85, what is the largest possible value of

W ?

Solution. (a) Let’s consider what happens to A over a very short time interval from time

t to time t + ∆t. At time t the account balance is A(t). During the (really short) specified

time interval the balance remains very close to A(t) and so earns interst of 5
100

×∆t×A(t).

During the same time interval, the graduate also deposits an additional $2000∆t. So

A(t+∆t) ≈ A(t) + 0.05A(t)∆t+ 2000∆t =⇒
A(t+∆t)−A(t)

∆t
≈ 0.05A(t) + 2000

In the limit ∆t → 0, the approximation becomes exact and we get

dA

dt
= 0.05A+ 2000

(b) The amount of money at time t obeys

dA

dt
= 0.05A(t) + 2,000 = 0.05

(

A(t) + 40,000
)

So by Example 2 (with a = 0.05 and b = −40,000),

A(t) =
(

A(0) + 40,000
)

e0.05t − 40,000

At time 0 (when the graduate is 25), A(0) = 50,000, so the amount of money at time t is

A(t) = 90,000 e0.05t − 40, 000

In particular, when the graduate is 65 years old, t = 40 and

A(40) = 90,000 e0.05×40 − 40, 000 = $625,015.05

(c) When the graduate stops depositing money and instead starts withdrawing money at a

rate W , the equation for A becomes

dA

dt
= 0.05A−W = 0.05(A− 20W )
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assuming that the interest rate remains 5%. This time, Example 2 (with a = 0.05 and

b = 20W ) gives

A(t) =
(

A(0)− 20W
)

e0.05t + 20W

If we now reset our clock so that t = 0 when the graduate is 65, A(0) = 625, 015.05. So the

amount of money at time t is

A(t) = 20W + e0.05t(625, 015.05− 20W )

We want the account to be depleted when the graduate is 85. So, we want A(20) = 0. This

is the case if

20W + e0.05×20(625, 015.05− 20W ) = 0 =⇒ 20W + e(625, 015.05− 20W ) = 0

=⇒ 20(e− 1)W = 625, 015.05e

=⇒ W =
625, 015.05e

20(e− 1)
= $49, 437.96

Example 15

c© Joel Feldman. 2015. All rights reserved. 18 February 16, 2015


