
Definition of the Integral

Calculus is built on two operations — differentiation, which is used to analyse instantaneous

rate of change, and integration, which is used to analyse areas. In these notes, we define the

integral.

We’ll start with an example. We’ll find the area under the curve y = ex (and above the

x–axis) for 0 ≤ x ≤ 1. That is, the area of
{

(x, y)
∣

∣ 0 ≤ y ≤ ex, 0 ≤ x ≤ 1
}

. In different

applications this will have different interpretations — not just area. For example, if x is

time and ex is your velocity at time x, then we’ll see later that the specified area is the total

distance travelled between time 0 and time 1. After we finish with the example, we’ll mimic

it to give a general definition of the integral
∫ b

a
f(x) dx.

Example 1

In this example we’ll compute the area of
{

(x, y)
∣

∣ 0 ≤ y ≤ ex, 0 ≤ x ≤ 1
}

. Our strategy

will be to approximate the area in question by the area of a union of a large number of very

thin rectangles, which we can of course compute. As we take more and more rectangles we

get better and better approximations. Taking the limit as the number of rectangles goes to

infinity gives the exact area.

Start by picking a natural number n and subdividing the interval 0 ≤ x ≤ 1 into n equal

subintervals each of width 1/n, and subdivide the area of interest into corresponding thin

strips, as in the figure below. The area we want is exactly the sum of the areas of all of the

thin strips.

x

y
y = ex

1
n

2
n

· · · n
n

Each of these strips is almost, but not quite, a rectangle. The bottom is flat and is perpen-

dicular to the sides, that are straight and parallel to each other. The only problem is that

the top is not horizontal. So we shall approximate each strip by a rectangle, just by levelling

off the top. But now we have to make a choice — at what height do we level off the top?

Consider, for example, the leftmost strip. On this strip, x runs from 0 to 1/n. As x runs from

0 to 1/n, the height y runs from e0 to e1/n. It would be reasonable to choose the height of

the approximating triangle to be somewhere between e0 and e1/n. Which height should we

choose? Well actually it doesn’t matter. We shall shortly take the limit n → ∞ and, in
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x

y y = ex

1
n

e0
e1/n

that limit, all of those different choices give exactly the same final answer. We won’t justify

that statement in this example, but there will be an (optional) section shortly that provides

the justification. For this example we just, arbitrarily, choose the height of each rectangle to

be the height of the graph y = ex at the smallest value of x in the corresponding strip. The

figure on the left below shows the approximating rectangles when n = 4 and the figure on the

right shows the approximating rectangles when n = 8. Now we compute the approximating

x

y

y = ex

1
4

2
4

3
4

4
4

x

y

y = ex

1
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3
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6
8

7
8

8
8

area when there are n strips. We approximate the leftmost strip by a rectangle of height e0.

All of the rectangles have width 1/n. So the leftmost rectangle has area 1
n
e0. On strip number

2, x runs from 1
n
to 2

n
. So the smallest value of x on strip number 2 is 1

n
, and we approximate

strip number 2 by a rectangle of height e1/n and hence of area 1
n
e1/n. And so on. On the last

strip, x runs from n−1
n

to n
n
= 1. So the smallest value of x on the last strip is n−1

n
, and we

approximate the last strip by a rectangle of height e(n−1)/n and hence of area 1
n
e(n−1)/n. The

total area of all of the approximating rectangles is

Total approximating area =
1

n
e0 +

1

n
e
1/n +

1

n
e
2/n +

1

n
e
3/n + · · ·+ 1

n
e
(n−1)/n

=
1

n

(

1 + e
1/n + e

2/n + e
3/n + · · ·+ e

(n−1)/n
)

=
1

n

(

1 + r + r2 + · · ·+ rn−1
)

(1)
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with r = e1/n.

Fortunately there is a simple formula for the sum

1 + r + r2 + · · ·+ rn−1 =
rn − 1

r − 1
if r 6= 1 (2)

So now we’ll make a brief aside to derive (2). Let’s denote the sum of interest Sn−1 =

1 + r + r2 + · · · + rn−1. The derivation is based on the observation that when we multiply

our sum by r, we get almost the same sum back again.

rSn−1 = r
(

1 + r + r2 + · · ·+ rn−1
)

= r + r2 + r3 + · · ·+ rn

= Sn−1 − 1 + rn

So rSn−1 = Sn−1 − 1 + rn, and, as long as r 6= 1, we can solve for Sn−1.

rSn−1 = Sn−1 − 1 + rn =⇒ (r − 1)Sn−1 = rn − 1 =⇒ Sn−1 =
rn − 1

r − 1

as desired.

Now back to (1). Using (2) with r = e1/n, we have that, when we use n slices,

Total approximating area =
1

n

rn − 1

r − 1
=

1

n

(e1/n)
n − 1

e1/n − 1
=

1

n

e− 1

e1/n − 1
(3)

To get the exact area all we need to do is make the approximation better and better by

taking the limit n → ∞. The limit will look more familiar if we rename 1/n to X . As n tends

to infinity, X tends to 0, so

Exact area = lim
n→∞

1

n

e− 1

e1/n − 1

= (e− 1) lim
n→∞

1/n

e1/n − 1

= (e− 1) lim
X→0

X

eX − 1
(with X = 1/n)

Frequently, limits of ratios can be evaluated simply by computing the limits of the numerator

and denominator separately and then dividing. But that won’t work in this case, because

both the numerator, X , and the denominator, eX − 1, converge to 0 as X → 0. One way

to evaluate the limit1 is to observe that the limit of eX−1
X

= eX−e0

X−0
as X → 0 is exactly the

definition of the derivative of ex at x = 0.

lim
X→0

X

eX − 1
=

[

lim
X→0

eX − e0

X − 0

]

−1

=

[

d

dX
eX

∣

∣

∣

X=0

]

−1

=
[

eX
∣

∣

X=0

]

−1

= 1

(4)

1Another way to evaluate the limit is to use l’Hôpital’s rule, if you know it. If you don’t know l’Hôpital’s

rule, ignore this footnote. By l’Hôpital’s rule, lim
X→0

X

eX−1
= lim

X→0

1

eX
= 1.
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That’s it.

Exact area = (e− 1) lim
X→0

X

eX − 1
= e− 1

Example 1

A More Careful Area Computation (Optional)

In Example 1 we considered the area of the region
{

(x, y)
∣

∣ 0 ≤ y ≤ ex, 0 ≤ x ≤ 1
}

. We

approximated that area by the area of a union of n thin rectangles. We then claimed that

the exact area was the limit, as n → ∞, of the nth approximating area. We did not justify

the claim.

We are now going to justify that claim. We are going to carefully compute the exact

area of the region 0 ≤ y ≤ ex, 0 ≤ x ≤ 1. There will be no uncontrolled approximations.

Because the derivative d
dx
ex = ex is always positive, the function ex increases as x in-

creases. Consequently, the smallest and largest values of ex on the interval a ≤ x ≤ b are ea

and eb, respectively. In particular, for 0 ≤ x ≤ 1/n, ex takes values only between e0 and e1/n.

As a result, the first strip

{

(x, y)
∣

∣ 0 ≤ x ≤ 1/n, 0 ≤ y ≤ ex
}

• contains the rectangle of 0 ≤ x ≤ 1/n, 0 ≤ y ≤ e0 (the lighter rectangle in the figure on

the left below) and

• is contained in the rectangle 0 ≤ x ≤ 1/n, 0 ≤ y ≤ e1/n (the largest rectangle in the

figure on the left below).

Hence
1

n
e0 ≤ Area

{

(x, y)
∣

∣ 0 ≤ x ≤ 1/n, 0 ≤ y ≤ ex
}

≤ 1

n
e
1/n (5)

x

y y = ex

1
n

e0
e1/n

x

y y = ex

1
n

2
n

· · · n
n

e0
e1/n
e2/n
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Similarly, for the second, third, . . . , last strips, as in the figure on the right above,

1

n
e
1/n ≤ Area

{

(x, y)
∣

∣ 1/n ≤ x ≤ 2/n, 0 ≤ y ≤ ex
}

≤ 1

n
e
2/n

1

n
e
2/n ≤ Area

{

(x, y)
∣

∣ 2/n ≤ x ≤ 3/n, 0 ≤ y ≤ ex
}

≤ 1

n
e
3/n

...
...

...

1

n
e
(n−1)/n ≤ Area

{

(x, y)
∣

∣ (n−1)/n ≤ x ≤ n/n, 0 ≤ y ≤ ex
}

≤ 1

n
e
n/n

Adding (5) and all of these lines together gives

1

n

(

1 + e
1/n + · · ·+ e

(n−1)/n
)

≤ Area
{

(x, y)
∣

∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ ex
}

≤ 1

n

(

e
1/n + e

2/n + · · ·+ e
n/n

)

=
1

n
e
1/n
(

1 + e
1/n + · · ·+ e

(n−1)/n
)

Using (2), i.e. 1 + r + · · ·+ rn−1 = rn−1
r−1

, with r = e1/n, so that rn =
(

e1/n
)n

= e,

1

n

e− 1

e1/n − 1
≤ Area

{

(x, y)
∣

∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ ex
}

≤ 1

n
e
1/n e− 1

e1/n − 1

Thus the exact area must be at least as large as 1
n

e−1
e1/n−1

for every single integer n ≥ 1. So

the exact area must also be at least as large as

lim
n→∞

1

n

e− 1

e1/n − 1
= (e− 1) lim

X=1/n→0

X

eX − 1
= e− 1

by (4). Similarly, the exact area must be smaller than (or equal to) 1
n
e1/n e−1

e1/n−1
for every

single natural number n. So the exact area must also be smaller than or equal to

lim
n→∞

1

n
e
1/n e− 1

e1/n − 1
= (e− 1) lim

X→0
eX

X

eX − 1
= (e− 1) lim

X→0
eX lim

X→0

X

eX − 1
= e− 1

We have now shown that

e− 1 ≤ Area
{

(x, y)
∣

∣ 0 ≤ y ≤ ex, 0 ≤ x ≤ 1
}

≤ e− 1

so that the area must be exactly e− 1.

Summation Notation

The summation notation
n

∑

i=m

ai

c© Joel Feldman. 2015. All rights reserved. 5 January 29, 2015



means

am + am+1 + am+2 + · · ·+ an−1 + an

For example
7

∑

i=3

1

i2
=

1

32
+

1

42
+

1

52
+

1

62
+

1

72

Note that right hand side — which is the value of
∑7

i=3
1
i2

— does not contain “i”. The

summation index i is just a “dummy” variable and it does not have to be called i. For

example
7

∑

i=3

1

i2
=

7
∑

j=3

1

j2
=

7
∑

ℓ=3

1

ℓ2

Also the summation index has no meaning outside the sum. For example i
7

∑

i=3

1

i2
has no

meaning. It is gibberish.

Let n ≥ m be integers. Then for all real numbers c and ai, bi, m ≤ i ≤ n.

(a)
n
∑

i=m

cai = c

(

n
∑

i=m

ai

)

(b)
n
∑

i=m

(ai + bi) =

(

n
∑

i=m

ai

)

+

(

n
∑

i=m

bi

)

(c)
n
∑

i=m

(ai − bi) =

(

n
∑

i=m

ai

)

−
(

n
∑

i=m

bi

)

Theorem 2 (Arithmetic of Summation Notation).

Proof. This theorem is proven by just writing out both sides of each equation, and observing

that they are equal, by the usual laws of arithmetic. For example, for the first equation, the

left hand side is
n

∑

i=m

cai = cam + cam+1 + · · ·+ can

and the right hand side is

c

( n
∑

i=m

ai

)

= c(am + am+1 + · · ·+ an)

They are equal by the usual distributive law. The “distributive law” is the fancy name for

c(a+ b) = ca + cb.
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Not many sums can be “computed exactly”. Here are some that can. The first few are

used a lot.

(a)
n
∑

i=0

ari = a1−rn+1

1−r
, for all real numbers a and r 6= 1 and all integers n ≥ 0.

(b)
n
∑

i=1

1 = n, for all integers n ≥ 1.

(c)
n
∑

i=1

i = 1
2
n(n+ 1), for all integers n ≥ 1.

(d)
n
∑

i=1

i2 = 1
6
n(n + 1)(2n+ 1), for all integers n ≥ 1.

(e)
n
∑

i=1

i3 =
[

1
2
n(n + 1)

]2

, for all integers n ≥ 1.

Theorem 3.

Proof of Theorem 3 (Optional)

Proof. (a) The first sum is

n
∑

i=0

ari = ar0 + ar1 + ar2 + · · ·+ arn

which is just the left hand side of (2), with n replaced by n+ 1, multiplied by a.

(b) The second sum is just n copies of 1 added together, so of course the sum is n.

(c) We’ll derive the third sum using a trick that generalises to the fourth sum (and also to

higher powers). The trick uses the “generating function”

x+ x2 + x3 + · · ·+ xn = x
(

1 + x+ x2 + · · ·+ xn−1
)

= x
xn − 1

x− 1

=
xn+1 − x

x− 1
(6)

by (2) with r = x. The reason that this is called a generating function is that we can

build the sum that we want out of the left hand side. Specifically, when we differentiate

the left hand side and then take the limit x → 1 we get

lim
x→1

d

dx

[

x+ x2 + x3 + · · ·+ xn
]

= lim
x→1

[

1 + 2x+ 3x2 + · · ·+ nxn−1
]

= 1 + 2 + 3 + · · ·+ n
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which is exactly the sum that we are trying to evaluate. So, by (6),

1 + 2 + 3 + · · ·+ n = lim
x→1

d

dx

[xn+1 − x

x− 1

]

= lim
x→1

[

(

(n+ 1)xn − 1
)

(x− 1)− (xn+1 − x)1

(x− 1)2

]

= lim
x→1

[nxn+1 − (n+ 1)xn + 1

(x− 1)2

]

Both the numerator and denominator of this ratio converge to zero as x tends to one. So,

if you know l’Hôpital’s rule, you can evaluate the limit by applying it twice. But here’s

another evaluation that does not use l’Hôpital’s rule. It is generally easier to see what’s

going on as x approaches zero than it is to see what’s going on as x approaches some

nonzero number. So let’s set x = 1 + h. Then sending x to 1 is equivalent to sending h

to zero, and we have to compute

1 + 2 + 3 + · · ·+ n = lim
h→0

[n(1 + h)n+1 − (n+ 1)(1 + h)n + 1

h2

]

Now imagine multiplying out (1 + h)n+1 and (1 + h)n. (This might be a good time to

review the binomial theorem.) The constant term (i.e. the h0 term) in the numerator

n(1 + h)n+1 − (n+ 1)(1 + h)n + 1 is

n× 1 − (n+ 1)× 1 + 1 = 0

The h1 term in the numerator n(1 + h)n+1 − (n+ 1)(1 + h)n + 1 is

n× (n+ 1)h − (n+ 1)× nh + 0 = 0

The h2 term in the numerator n(1 + h)n+1 − (n+ 1)(1 + h)n + 1 is

n× (n+ 1)n

2
h2 − (n + 1)× n(n− 1)

2
h2 + 0 =

n2(n + 1)− n(n + 1)(n− 1)

2
h2

=
(n+ 1)[n2 − n(n− 1)]

2
h2

=
n(n+ 1)

2
h2

All together, the numerator

n(1 + h)n+1 − (n + 1)(1 + h)n + 1 =
n(n + 1)

2
h2 + terms of degree at least 3 in h

so that the ratio

n(1 + h)n+1 − (n+ 1)(1 + h)n + 1

h2
=

n(n + 1)

2
+ terms of degree at least 1 in h

and the limit

1 + 2 + 3 + · · ·+ n = lim
h→0

[n(1 + h)n+1 − (n + 1)(1 + h)n + 1

h2

]

=
n(n+ 1)

2

as desired.
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(d) (e) The derivation of the fourth and fifth sums is similar to, but even more tedious than,

that of the third sum. One takes two or three derivatives of the generating functional.

The Definition of the Definite Integral

In this section we give a definition of
∫ b

a
f(x) dx, along the lines of Example 1. But first some

terminology and a couple of remarks that motivate the definition.

• The symbol
∫ b

a
f(x) dx is read “the (definite) integral of the function f(x) from a to

b”. The function f(x) is called the integrand of
∫ b

a
f(x) dx and a and b are called the

limits of integration.

• If f(x) ≥ 0 and a ≤ b, one interpretation of the symbol
∫ b

a
f(x) dx is “the area of the

region
{

(x, y)
∣

∣ a ≤ x ≤ b, 0 ≤ y ≤ f(x)
}

”.

x

y

a b

y = f(x)

• If a ≤ b, but f(x) is not always positive, one interpretation of the symbol
∫ b

a
f(x) dx is

“the signed area between y = f(x) and the x–axis for a ≤ x ≤ b”. For “signed area”

(which is also called the “net area”), areas above the x–axis count as positive while

areas below the x–axis count as negative. In the example below, we have the graph of

the function

f(x) =















−1 if 1 ≤ x ≤ 2

2 if 2 < x ≤ 4

0 otherwise

The 2 × 2 shaded square above the x–axis has signed area +2 × 2 = +4. The 1 × 1

shaded square below the x–axis has signed area −1× 1 = −1. So, for this f(x),

∫ 5

0

f(x) dx = +4− 1 = 3
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x

y

1 2 4

−1

2

signed area= +4

signed area= −1

• We’ll come back to the case b < a later.

We’re now ready to define
∫ b

a
f(x) dx. To do so we mimic what we did in Example 1, but

replacing the function ex by a generic function f(x) and replacing the interval from 0 to 1 by

the generic interval from a to b. We’ll eventually allow a and b to be any two real numbers,

not even requiring a < b. But it will be easier on your brain to pretend for a while that

a < b, and that’s what we’ll do.

• We start by selecting any natural number n (we’ll eventually take the limit n → ∞)

and subdividing the interval from a to b into n equal subintervals. Each subinterval

has width b−a
n
. For each integer 1 ≤ i ≤ n, the final value of x on interval number i will

be xi = a+ i b−a
n
. In particular, on the first subinterval, x runs from a, which we’ll also

call x0, to x1 = a + b−a
n
. On the second subinterval, x runs from x1 to x2 = a + 2 b−a

n
.

In general, on subinterval number i (with 1 ≤ i ≤ n), x runs from xi−1 to xi.

x

y

x1 x2 x3 · · ·

y = f(x)

a = x0 xn = bxn−1

• We’ll approximate f on each subinterval by its value at some point of the subinterval.

That is, for each 1 ≤ i ≤ n, we’ll pick any x∗

i,n between xi−1 and xi and we’ll approximate

f(x), for all x between xi−1 and xi, by f(x∗

i,n). Geometrically, we’re approximating the

part of the region between the curve y = f(x) and the x–axis that has x between xi−1

and xi by the rectangle

{

(x, y)
∣

∣ x is between xi−1 and xi, and y is between 0 and f(x∗

i,n)
}
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x∗

i,n
xi−1 xi

f(x∗

i,n)

• So, when there are n subintervals our approximation to the (signed) area between the

curve y = f(x) and the x–axis, with x running from a to b is

n
∑

i=1

f(x∗

i,n)
b− a

n

• Finally we define the integral by taking the limit as n → ∞.

Let a and b be two real numbers and let f(x) be a function that is defined for all x

between a and b. Then we define

∫ b

a

f(x) dx = lim
n→∞

n
∑

i=1

f(x∗

i,n)
b− a

n

when the limit exists and takes the same value for all choices of the x∗

i,n’s. In this

case, we say that f is integrable on the interval from a to b.

Definition 4.

It turns out that any function f that is continuous, except possibly for a finite number

of jump discontinuities, is integrable. We will not justify this statement.

Note that, in Definition 4, we allow a and b to be any two real numbers. We do not

require that a < b. That is, even when a > b, the symbol
∫ b

a
f(x) dx is still defined by the

formula of Definition 4. We’ll get an interpretation for
∫ b

a
f(x) dx, when a > b, later.

It is important to note that the definite integral
∫ b

a
f(x) dx represents a number, not

a function of x. The integration variable x is another “dummy” variable, just like the

summation index i in
∑n

i=m ai. The integration variable does not have to be called x. For

example
∫ b

a

f(x) dx =

∫ b

a

f(t) dt =

∫ b

a

f(u) du

Just as with summation variables, the integration variable has no meaning outside of f(x) dx.

For example

x

∫ 1

0

ex dx and

∫ x

0

ex dx
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are both gibberish.

Here is some terminology associated with Definition 4.

• The sum
∑n

i=1 f(x
∗

i,n)
b−a
n

is called a Riemann sum. It is often written
∑n

i=1 f(x
∗

i )∆x.

• If we choose each x∗

i,n to be the left hand end point, xi−1 = a + (i − 1) b−a
n
, of the ith

interval, [xi−1, xi], we get the approximation

n
∑

i=1

f
(

a + (i− 1)
b− a

n

) b− a

n

which is called the “left Riemann sum approximation to
∫ b

a
f(x) dx with n subintervals”.

• Similarly, the approximation
n

∑

i=1

f
(

a+ i
b− a

n

) b− a

n

is called the “right Riemann sum approximation to
∫ b

a
f(x) dx with n subintervals”.

Of course the word “right” signifies that, on each subinterval [xi−1, xi] we approximate

f by its value at the right–hand end–point, xi = a + i b−a
n
, of the subinterval.

• A third commonly used approximation is
n

∑

i=1

f
(

a + (i− 0.5)
b− a

n

) b− a

n

which is called the “midpoint Riemann sum approximation to
∫ b

a
f(x) dx with n subin-

tervals”. The word “midpoint” signifies that, on each subinterval [xi−1, xi] we approx-

imate f by its value at the midpoint, xi−1+xi

2
= a + (i− 1

2
) b−a

n
of the subinterval.

Example 5

We are now in a position to formulate the conclusion of Example 1 as:

the area of
{

(x, y)
∣

∣ 0 ≤ y ≤ ex, 0 ≤ x ≤ 1
}

is
∫ 1

0

ex dx = e− 1

Example 5

Example 6

Let’s pretend that we are interested in the integral
∫ 1

0
ex dx but that we don’t know how

to evaluate it. We can still use the strategy behind Definition 4 to get approximate values

for the integral, complete with bounds on the error introduced by the approximation. The

reason is that, because the integrand f(x) = ex is an increasing function of x, we approximate

f(x) on each subinterval xi−1 ≤ x ≤ xi
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• by its smallest value on the subinterval, namely f(xi−i), when we compute the left

Riemann sum approximation and

• by its largest value on the subinterval, namely f(xi), when we compute the right Rie-

mann sum approximation.

This is illustrated in the two figures below. The shaded region in the left hand figure is the

left Riemann sum approximation and the shaded region in the right hand figure is the right

Riemann sum approximation.

x

y y = ex

1
n

2
n

· · · n
n

x

y y = ex

1
n

2
n

· · · n
n

For the integral
∫ 1

0
ex dx the left Riemann sum approximation is

∑n
i=1 e

(i−1)/n 1
n
and the

right Riemann sum approximation is
∑n

i=1 e
i/n 1

n
. So

n
∑

i=1

e
(i−1)/n 1

n
≤

∫ 1

0

ex dx ≤
n

∑

i=1

e
i/n 1

n

Thus Ln =
∑n

i=1 e
(i−1)/n 1

n
, which for any n can be evaluated by computer, is a lower bound

on the exact value of
∫ 1

0
ex dx and Rn =

∑n
i=1 e

i/n 1
n
, which for any n can also be evaluated by

computer, is an upper bound on the exact value of
∫ 1

0
ex dx. For example, when n = 1000,

Ln = 1.7174 and Rn = 1.7191 (both to four decimal places) so that, again to four decimal

places,

1.7174 ≤
∫ 1

0

ex dx ≤ 1.7191

Example 6

Example 7

The integral
∫ b

a
dx (i.e. the integrand f(x) = 1) is the area of the shaded rectangle in the

figure on the right below. So

∫ b

a

dx = b− a

x

y

a b

1
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Example 7

Example 8

Let b > 0. The integral
∫ b

0
x dx is the area of the shaded triangle (of base b and of height b)

in the figure on the right below. So

∫ b

0

x dx =
b2

2

x

y

b

b

y = x

The integral
∫ 0

−b
x dx is the signed area of the shaded triangle (again of base b and of height

b) in the figure on the right below. So

∫ 0

−b

x dx = −b2

2

x
y−b

−b

y = x

Example 8

Example 9

The integral
∫ 1

−1

[

1− |x|
]

dx is the area of the shaded triangle (of base 2 and of height 1) in

the figure on the right below. So

∫ 1

−1

[

1− |x|
]

dx =
1

2
× 2× 1 = 1

x

y

−1 1

1

Example 9

Example 10

The integral
∫ 1

0

√
1− x2 dx has integrand f(x) =

√
1− x2. So it represents the area under
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y =
√
1− x2 with x running from 0 to 1. But we may rewrite y =

√
1− x2 as x2 + y2 = 1,

y ≥ 0, so the integral is the area of the quarter circle in the figure on the right below. So

∫ 1

0

√
1− x2 dx =

1

4
π(1)2 =

π

4

x

y

1

1

Example 10

Example 11

The integral
∫ π

−π
sin x dx is the signed area of the shaded region in the figure on the right

below. The part of the shaded region below the x–axis is exactly the reflection, in the x–axis,

of the part of the shaded region above the x–axis. So the signed area of part of the shaded

region below the x–axis is the negative of the signed area of part of the shaded region above

the x–axis and

∫ π

−π

sin x dx = 0 x

y

−π π

1

−1

Example 11

Example 12

Suppose that a particle is moving along the x–axis and suppose that at time t its velocity

is v(t) (with v(t) > 0 indicating rightward motion and v(t) < 0 indicating leftward motion).

What is the change in its x–coordinate between time a and time b > a?

We’ll work this out using a procedure similar to our definition of the integral. First pick

a natural number n. As usual, we will eventually take the limit n → ∞. Divide the time

interval from a to b into n equal subintervals, each of width b−a
n
.

• The first time interval runs from a to a + b−a
n
. Because we are going to take the limit

n → ∞, so that b−a
n

→ 0, we can think of the velocity during the first subinterval as

being essentially constant at v(a). So during the first subinterval the particle travels,

essentially, at constant velocity v(a) for b−a
n

units of time, and its x–coordinate changes

by v(a) b−a
n
.
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• Similarly, the second interval runs from time a + b−a
n

to time a + 2 b−a
n
. Again, we

can think of the velocity during the second subinterval as being essentially constant

at v
(

a + b−a
n

)

. So during the second subinterval the particle’s x–coordinate changes

essentially, by v
(

a + b−a
n

)

b−a
n
.

• In general, time subinterval number i runs from a + (i− 1) b−a
n

to a + i b−a
n

and during

this subinterval the particle’s x–coordinate changes, essentially, by v
(

a+(i−1) b−a
n

)

b−a
n
.

So the net change in x–coordinate from time a to time b is essentially

v(a)
b− a

n
+ v

(

a+
b− a

n

) b− a

n
+ · · ·+ v

(

a+ (i− 1)
b− a

n

) b− a

n
+ · · ·

+ v
(

a+ (n− 1)
b− a

n

) b− a

n

=
n

∑

i=1

v
(

a + (i− 1)
b− a

n

) b− a

n

This exactly the left Riemann sum approximation to the integral of v from a to b with

n subintervals. The limit as n → ∞ is exactly the definite integral
∫ b

a
v(t) dt. Following

tradition, we have called the (dummy) integration variable t rather than x to remind us that

it is time that is running from a to b.

The conclusion of the above discussion is that if a particle is moving along the x–axis and

its x–coordinate and velocity at time t are x(t) and v(t), respectively, then, for all b > a,

x(b)− x(a) =

∫ b

a

v(t) dt

Example 12

It is generally tiresome in the extreme to actually evaluate an integral directly using the

definition. Fortunately, in practice, one virtually never has to do so.
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