
Techniques of Integration — Partial Fractions

Partial fractions is the name given to a technique of integration that may be used to integrate

any ratio of polynomials. A ratio of polynomials is called a rational function. Suppose that

N(x) and D(x) are polynomials. The basic strategy is to write N(x)
D(x)

as a sum of very simple,

easy to integrate rational functions, namely

• polynomials (which are needed only if the degree1 of N(x) is equal to or strictly bigger

than the degree of D(x)) and

• rational functions of the particularly simple form A
(ax+b)n

and

• rational functions of the form Ax+B
(ax2+bx+c)m

. (We will not cover this case.)

That is, to find the integral of the rational function on the far right hand side of

x+
1

x+ 1
+

1

x− 1
=

x(x+ 1)(x− 1) + (x− 1) + (x+ 1)

(x+ 1)(x− 1)
=

x3 + x

x2 − 1
(1)

you rewrite it as the left hand side and then integrate x and 1
x+1

and 1
x−1

. So the main

problem is to write a complicated rational function as a sum of simple pieces. The techique

that will be used is based on two observations about (1).

• The denominators on the left hand side of (1) are the factors of the denominator

x2 − 1 = (x− 1)(x+ 1) on the right hand side of (1).

• Use P (x) to denote the polynomial on the left hand side (i.e. P (x) = x) and N(x) to

denote the numerator of the right hand side (i.e. N(x) = x3 + x) and D(x) to denote

the denominator of the right hand side (i.e. D(x) = x2 − 1). Then highest degree term

in N(x) is x3. It came from multiplying P (x) by D(x). In particular the degree of N(x)

is the sum of the degree P (x) and the degree of D(x). The presence of a polynomial

on the left hand side is signalled on the right hand side by the fact that the degree of

the numerator is at least as large as the degree of the denominator.

We’ll introduce the technique through some examples.

Example 1 (
∫

x−3
x2

−3x+2
dx)

In this example, we integrate N(x)
D(x)

= x−3
x2

−3x+2
.

Step 1. We first check to see if the degree of the numerator, N(x), is strictly smaller than

the degree of the denominator D(x). In this example, the numerator, x− 3, has degree one

and that is indeed strictly smaller than the degree of the denominator, x2 − 3x+ 2, which is

two. In this case, the first step is not needed and we move on to step 2.

Step 2. The second step is to factor the denominator

x2 − 3x+ 2 = (x− 1)(x− 2)

1The degree of a polynomial is the largest power of x. For example, the degree of 2x3 + 4x2 + 6x+ 8 is

three.
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Step 3. The third step is to write x−3
x2

−3x+2
in the form

x− 3

x2 − 3x+ 2
=

A

x− 1
+

B

x− 2

for some constants A and B. To determine the values of the constants A, B, we put the

right hand side back over the common denominator (x− 1)(x− 2).

x− 3

x2 − 3x+ 2
=

A

x− 1
+

B

x− 2
=

A(x− 2) +B(x− 1)

(x− 1)(x− 2)

The fraction on the far left is the same as the fraction on the far right if and only if their

numerators are the same.

x− 3 = A(x− 2) +B(x− 1)

There are a couple of different ways to determine the values of A and B from this equation.

The conceptually clearest procedure is to write the right hand side as a polynomial in

standard form (i.e. collect up all x terms and all constant terms)

x− 3 = (A+B)x+ (−2A− B)

For these two polynomials to be the same, the coefficient of x on the left hand side and the

coefficient of x on the right hand side must be the same. Similarly the coefficients of x0 (i.e.

the constant terms) must match. This gives us a system of two equations.

A+B = 1 − 2A−B = −3

in the two unknowns A,B. We can solve this system by using the first equation, namely

A+B = 1, to determine A in terms of B: A = 1−B. Substituting this into the remaining

equation eliminates the A from second equation, leaving one equation in the one unknown

B.

A = 1− B −2A−B = −3

⇒ −2(1− B)−B = −3

⇒ B = −1 A= 1− B = 1− (−1) = 2

There is also a second, more efficient, procedure for determining A and B from

x− 3 = A(x− 2) +B(x− 1)

This equation must be true for all values of x. In particular, it must be true for x = 1. When

x = 1, the factor (x− 1) multiplying B is exactly zero. So B disappears from the equation,

leaving us with an easy equation to solve for A:

x− 3
∣

∣

∣

x=1
= A(x− 2)

∣

∣

∣

x=1
+B(x− 1)

∣

∣

∣

x=1
=⇒ −2 = −A =⇒ A = 2

Similarly, when x = 2, the factor (x−2) multiplying A is exactly zero. So A disappears from

the equation, leaving us with an easy equation to solve for B:

x− 3
∣

∣

∣

x=2
= A(x− 2)

∣

∣

∣

x=2
+B(x− 1)

∣

∣

∣

x=2
=⇒ −1 = B =⇒ B = −1
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Step 4. The final step is to integrate.

∫

x− 3

x2 − 3x+ 2
dx =

∫

2

x− 1
dx+

∫

−1

x− 2
dx = 2 ln |x− 1| − ln |x− 2|+ C

Example 1

Example 2 (
∫

3x3
−8x2+4x−1
x2

−3x+2
dx)

In this example, we integrate N(x)
D(x)

= 3x3
−8x2+4x−1
x2

−3x+2
.

Step 1. We first check to see if the degree of the numerator N(x) is strictly smaller than

the degree of the denominator D(x). In this example, the numerator, 3x3 − 8x2 + 4x − 1,

has degree three and the denominator, x2 − 3x + 2, has degree two. As 3 > 2, we have to

implement the first step. The goal of the first step is to write N(x)
D(x)

in the form

N(x)

D(x)
= P (x) +

R(x)

D(x)

with P (x) being a polynomial and R(x) being a polynomial of degree strictly smaller than

the degree of D(x). The right hand side is P (x)D(x)+R(x)
D(x)

, so we have to express the numerator

in the form N(x) = P (x)D(x) +R(x), with P (x) and R(x) being polynomials and with the

degree of R being strictly smaller than the degree of D. P (x)D(x) is a sum of expressions of

the form axnD(x). We want to pull as many expressions of this form as possible out of the

numerator N(x), leaving only a low degree remainder R(x).

This step is accomplished by long division — the same long division you learned in public

school, but with the base 10 replaced by x. We start by observing that to get from the

highest degree term in the denominator (x2) to the highest degree term in the numerator

(3x3), we have to multiply by 3x. So we write,

x2 − 3x+ 2
3x
3x3− 8x2+ 4x− 1

(The denominator is on the left, the numerator is on the right and 3x is written above

the highest order term of the numerator. Alway put lower powers of x to the right of higher

powers of x.) Now we subtract 3x times the denominator, x2−3x+2, which is 3x3−9x2+6x,

from the numerator.

x2 − 3x+ 2
3x
3x3− 8x2+ 4x− 1
3x3− 9x2+ 6x

x2− 2x− 1

3x(x2 − 3x+ 2)

This has left a remainder of x2 − 2x − 1. To get from the highest degree term in the

denominator (x2) to the highest degree term in the remainder (x2), we have to multiply by

1. So we write,
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x2 − 3x+ 2
3x + 1
3x3− 8x2+ 4x− 1
3x3− 9x2+ 6x

x2− 2x− 1

Now we subtract 1 times the denominator, x2 − 3x + 2, which is x2 − 3x + 2, from the

remainder.

x2 − 3x+ 2
3x + 1
3x3− 8x2+ 4x− 1
3x3− 9x2+ 6x

x2− 2x− 1
x2− 3x+ 2

x− 3

3x(x2 − 3x+ 2)

1 (x2 − 3x+ 2)

This leaves a remainder of x− 3. Because the remainder has degree 1, which is smaller than

the degree of the denominator, which is 2, we stop.

In this example, when we subtracted 3x(x2−3x+2) and 1(x2−3x+2) from 3x3−8x2+4x−1

we ended up with x− 3. That is,

3x3 − 8x2 + 4x− 1 − 3x(x2 − 3x+ 2) − 1(x2 − 3x+ 2) = x− 3

or, collecting the two terms proportional to (x2 − 3x+ 2)

3x3 − 8x2 + 4x− 1 − (3x+ 1)(x2 − 3x+ 2) = x− 3

Moving the (3x+ 1)(x2 − 3x+ 2) to the right hand side and dividing the whole equation by

x2 − 3x+ 2 gives

3x3 − 8x2 + 4x− 1

x2 − 3x+ 2
= 3x+ 1 +

x− 3

x2 − 3x+ 2

This is of the form N(x)
D(x)

= P (x) + R(x)
D(x)

, with the degree of R(x) strictly smaller than the

degree of D(x), which is what we wanted. Observe that R(x) is the final remainder of the

long division procedure and P (x) is at the top of the long division computation.

x2 − 3x+ 2
3x + 1
3x3− 8x2+ 4x− 1
3x3− 9x2+ 6x

x2− 2x− 1
x2− 3x+ 2

x− 3

P (x)
N(x)D(x)
3x ·D(x)

N(x)− 3x ·D(x)
1 ·D(x)
R(x) = N(x)− 3x ·D(x)− 1 ·D(x)

This is the end of Step 1.

Step 2. The second step is to factor the denominator

x2 − 3x+ 2 = (x− 1)(x− 2)

We already did this in Example 1.
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Step 3. The third step is to write x−3
x2

−3x+2
in the form

x− 3

x2 − 3x+ 2
=

A

x− 1
+

B

x− 2

for some constants A and B. We already did this in Example 1. We found A = 2 and

B = −1.

Step 4. The final step is to integrate.

∫

3x3 − 8x2 + 4x− 1

x2 − 3x+ 2
dx =

∫

[

3x+ 1
]

dx+

∫

2

x− 1
dx+

∫

−1

x− 2
dx

=
3

2
x2 + x+ 2 ln |x− 1| − ln |x− 2|+ C

Example 2

Example 3 (
∫

x4+9x3+31x2+49x+27
x3+5x2+8x+4

dx)

In this example, we integrate N(x)
D(x)

= x4+9x3+31x2+49x+27
x3+5x2+8x+4

.

Step 1. The degree of the numerator N(x) is greater than the degree of the denominator

D(x), so the first step to write N(x)
D(x)

in the form

N(x)

D(x)
= P (x) +

R(x)

D(x)

with P (x) being a polynomial and R(x) being a polynomial of degree strictly smaller than

the degree of D(x). By long division

x3 + 5x2 + 8x+ 4
x+ 4
x4+9x3+31x2+49x+27
x4+5x3+ 8x2+ 4x

4x3+23x2+45x+27
4x3+20x2+32x+16

3x2+13x+11

so
x4 + 9x3 + 31x2 + 49x+ 27

x3 + 5x2 + 8x+ 4
= x+ 4 +

3x2 + 13x+ 11

x3 + 5x2 + 8x+ 4

Step 2. The second step is to factorize D(x) = x3 + 5x2 + 8x + 4. In the “real world”

factorization of polynomials is often very hard. Fortunately, this is not the “real world” and

there is a trick available to help us find this factorization. The trick exploits the fact that

most polynomials that appear in homework assignments and on tests have integer coefficients

and some integer roots. Any integer root of a polynomial that has integer coefficients, like

D(x) = x3+5x2+8x+4, must divide the constant term of the polynomial exactly. (Why this is
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true is explained in the notes “Roots of Polynomials”.) So any integer root of x3+5x2+8x+4

must divide 4 exactly. The only integers which can be roots of D(x) are ±1, ±2 and ±4. To

test if ±1 are roots, we sub them into D(x):

D(1) = (1)3 + 5(1)2 + 8(1) + 4 6= 0 ⇒ x = 1 is not a root

D(−1) = (−1)3 + 5(−1)2 + 8(−1) + 4 = 0 ⇒ x = −1 is a root

So (x+ 1) must divide x3 + 5x2 + 8x+ 4 exactly. By long division

x+ 1
x2+ 4x+ 4
x3+5x2+8x+4
x3+ x2

4x2+8x+4
4x2+4x

4x+4
4x+4

0

so

x3 + 5x2 + 8x+ 4 = (x+ 1)(x2 + 4x+ 4) = (x+ 1)(x+ 2)(x+ 2)

This is the end of step 2. We now know

x4 + 9x3 + 31x2 + 49x+ 27

x3 + 5x2 + 8x+ 4
= x+ 4 +

3x2 + 13x+ 11

(x+ 1)(x+ 2)2

Step 3. The third step is to write 3x2+13x+11
(x+1)(x+2)2

in the form

3x2 + 13x+ 11

(x+ 1)(x+ 2)2
=

A

x+ 1
+

B

x+ 2
+

C

(x+ 2)2

for some constants A, B and C. To determine the values of the constants A, B, C, we put

the right hand side back over the common denominator (x+ 1)(x+ 2)2.

3x2 + 13x+ 11

(x+ 1)(x+ 2)2
=

A

x+ 1
+

B

x+ 2
+

C

(x+ 2)2

=
A(x+ 2)2 +B(x+ 1)(x+ 2) + C(x+ 1)

(x+ 1)(x+ 2)2

The fraction on the far left is the same as the fraction on the far right if and only if their

numerators are the same.

3x2 + 13x+ 11 = A(x+ 2)2 +B(x+ 1)(x+ 2) + C(x+ 1)

As in Example 1, there are a couple of different ways to determine the values of A, B and C

from this equation.

The conceptually clearest procedure is to write the right hand side as a polynomial in

standard form (i.e. collect up all x2 terms, all x terms and all constant terms)

3x2 + 13x+ 11 = (A +B)x2 + (4A+ 3B + C)x+ (4A+ 2B + C)
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For these two polynomials to be the same, the coefficient of x2 on the left hand side and the

coefficient of x2 on the right hand side must be the same. Similarly the coefficients of x1 and

the coefficients of x0 (i.e. the constant terms) must match. This gives us a system of three

equations,

A+B = 3 4A+ 3B + C = 13 4A+ 2B + C = 11

in the three unknowns A,B,C. We can solve this system by using the first equation, namely

A+B = 3, to determine A in terms of B: A = 3−B. Substituting this into the remaining

equations eliminates the A, leaving two equations in the two unknown B,C.

4(3−B) + 3B + C = 13 4(3− B) + 2B + C = 11

or

−B + C = 1 − 2B + C = −1

We can now solve the first of these equations, namely −B + C = 1, for B in terms of C,

giving B = C − 1. Substituting this into the last equation, namely −2B + C = −1, gives

−2(C − 1)+C = −1 which is easily solved to give C = 3, and then B = C − 1 = 2 and then

A = 3−B = 1.

The second, sneakier, method for finding A, B and C exploits the fact that 3x2+13x+11 =

(A+B)x2 + (4A+3B+C)x+ (4A+2B+C) must be true for all values of x. In particular,

it must be true for x = −1. When x = −1, the factor (x+1) multiplying B and C is exactly

zero. So B and C disappear from the equation, leaving us with an easy equation to solve for

A:

3x2 + 13x+ 11
∣

∣

∣

x=−1
= A(x+ 2)2

∣

∣

∣

x=−1
+B(x+ 1)(x+ 2)

∣

∣

∣

x=−1
+ C(x+ 1)

∣

∣

∣

x=−1

=⇒ 1 = A

Sub this value of A back in and simplify.

3x2 + 13x+ 11 = (1)(x+ 2)2 +B(x+ 1)(x+ 2) + C(x+ 1)

2x2 + 9x+ 7 = B(x+ 1)(x+ 2) + C(x+ 1) = (xB + 2B + C)(x+ 1)

Since (x+1) is a factor on the right hand side, it must also be a factor on the left hand side.

(2x+ 7)(x+ 1) = (xB + 2B + C)(x+ 1) ⇒ (2x+ 7) = (xB + 2B + C)

For the coefficients of x to match, B must be 2. For the constant terms to match, 2B + C

must be 7, so C must be 3. Subbing into 3x2+13x+11
(x+1)(x+2)2

= A
x+1

+ B
x+2

+ C
(x+2)2

, we now have

x4 + 9x3 + 31x2 + 49x+ 27

x3 + 5x2 + 8x+ 4
= x+ 4 +

1

x+ 1
+

2

x+ 2
+

3

(x+ 2)2

Step 4. The final step is to integrate
∫

x4 + 9x3 + 31x2 + 49x+ 27

x3 + 5x2 + 8x+ 4
dx =

∫

(x+ 4) dx+

∫

1

x+ 1
dx+

∫

2

x+ 2
dx+

∫

3

(x+ 2)2
dx

= 1
2
x2 + 4x+ ln |x+ 1|+ 2 ln |x+ 2| −

3

x+ 2
+ C
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Example 3

Example 4 (
∫

sec x dx)

In this example, we integrate sec x. It is not yet clear what this integral has to do with

partial fractions. To get to a partial fractions computation, we first make one of our old

substitutions.
∫

sec x dx =

∫

1

cosx
dx =

∫

cosx

cos2 x
dx

= −

∫

du

u2 − 1
with u = sin x, du = cosx dx, cos2 x = 1− sin2 x = 1− u2

So we now have to integrate 1
u2

−1
, which is a rational function of u, and so is perfect for

partial fractions.

Step 1. The degree of the numerator, 1, is zero, which is strictly smaller than the degree of

the denominator, u2 − 1, which is two. So the first step is skipped.

Step 2. The second step is to factor the denominator

u2 − 1 = (u− 1)(u+ 1)

Step 3. The third step is to write 1
u2

−1
in the form

1

u2 − 1
=

A

u− 1
+

B

u+ 1

for some constants A and B. To determine the values of the constants A, B, we put the

right hand side back over the common denominator (u− 1)(u+ 1).

1

u2 − 1
=

A

u− 1
+

B

u+ 1
=

A(u+ 1) +B(u− 1)

(u− 1)(u+ 1)

The fraction on the far left is the same as the fraction on the far right if and only if their

numerators are the same.

1 = A(u+ 1) +B(u− 1)

The fast way to find A and B is to remember that this equation must be true for all values

of u. In particular, it must be true for u = 1. When u = 1, the factor (u − 1) multiplying

B is exactly zero. So B disappears from the equation, leaving us with an easy equation to

solve for A:

1
∣

∣

∣

u=1
= A(u+ 1)

∣

∣

∣

u=1
+B(u− 1)

∣

∣

∣

u=1
=⇒ 1 = 2A =⇒ A =

1

2

Similarly, when u = −1, the factor (u + 1) multiplying A is exactly zero. So A disappears

from the equation, leaving us with an easy equation to solve for B:

1
∣

∣

∣

u=−1
= A(u+ 1)

∣

∣

∣

u=−1
+B(u− 1)

∣

∣

∣

u=−1
=⇒ 1 = −2B =⇒ B = −

1

2
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So we have now found that A = 1
2
and B = −1

2
. It is a good idea to check that

1 = A(u+ 1) +B(u− 1) =
1

2
(u+ 1)−

1

2
(u− 1)

is really true. It is. So we now know that

1

u2 − 1
=

1

2

[ 1

u− 1
−

1

u+ 1

]

(2)

Step 4. The final step is to integrate.
∫

sec x dx = −

∫

du

u2 − 1

= −
1

2

∫

1

u− 1
du+

1

2

∫

1

u+ 1
du

= −
1

2
ln |u− 1|+

1

2
ln |u+ 1|+ C

= −
1

2
ln | sin x− 1|+

1

2
ln | sin x+ 1|+ C

=
1

2
ln

1 + sin x

1− sin x
+ C

Example 4

Example 5 (
∫

sec3 x dx)

We’ll now do another example that is similar in spirit to, but harder than, Example 5, namely
∫

sec3 x dx. We’ll start by converting it into the integral of a rational function using the sub-

stitution u = sin x, du = cos x dx.
∫

sec3 x dx =

∫

1

cos3 x
dx =

∫

cosx

cos4 x
dx =

∫

cosx dx

[1− sin2 x]
2 =

∫

du

[1− u2]2

We could now find the partial fractions expansion of the integrand 1
[1−u2]2

by executing the

usual four steps. But it is easier to use that we already know, from (2), that

1

u2 − 1
=

1

2

[ 1

u− 1
−

1

u+ 1

]

Squaring this gives

1

[1− u2]2
=

1

4

[ 1

u− 1
−

1

u+ 1

]2

=
1

4

[ 1

(u− 1)2
−

2

(u− 1)(u+ 1)
+

1

(u+ 1)2

]

=
1

4

[ 1

(u− 1)2
−

1

u− 1
+

1

u+ 1
+

1

(u+ 1)2

]

(by (2), again)
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It only remains to do the integrals and simplify.

∫

sec3 x dx =
1

4

∫

[ 1

(u− 1)2
−

1

u− 1
+

1

u+ 1
+

1

(u+ 1)2

]

du

=
1

4

[

−
1

u− 1
− ln |u− 1|+ ln |u+ 1| −

1

u+ 1

]

+ C

= −
1

4

2u

u2 − 1
+

1

4
ln
∣

∣

∣

u+ 1

u− 1

∣

∣

∣
+ C =

1

2

u

1− u2
+

1

4
ln
∣

∣

∣

u+ 1

u− 1

∣

∣

∣
+ C

=
1

2

sin x

cos2 x
+

1

2
ln
∣

∣

∣

sin x+ 1

sin x− 1

∣

∣

∣
+ C

Example 5

The Form of Partial Fractions Decompositions

In Step 3 of the partial fractions algorithm we decompose a rational function N(x)
D(x

(or R(x)
D(x)

),

for which the degree of the numerator is strictly smaller than the degree of the denominator,

into a sum of particularly simple rational functions, like A
x−a

. We seen examples of this in

Examples 1–4. But we have not yet seen what the form of the decomposition is, in general.

We fill this gap now, by stating, without justification, what the form is. The justification is

discussed in the next (optional) section. In the following it is assumed that

• N(x) andD(x) are polynomials with the degree of N(x) strictly smaller than the degree

of D(x).

• The denominator is a product of linear factors.

• K is a constant.

• a1, a2, · · · , aj are all different numbers.

• m1, m2, · · · , mj, n1, n2, · · · , nk are all strictly positive integers.

Simple Linear Factor Case

If the denominator D(x) = K(x − a1)(x − a2) · · · (x − aj) is a product of j different linear

factors, then
N(x)

D(x)
=

A1

x− a1
+

A2

x− a2
+ · · ·+

Aj

x− aj
(3)

General Linear Factor Case

If the denominator D(x) = K(x− a1)
m1(x− a2)

m2 · · · (x− aj)
mj then

N(x)

D(x)
=

A1,1

x− a1
+

A1,2

(x− a1)2
+ · · ·+

A1,m1

(x− a1)m1

+
A2,1

x− a2
+

A2,2

(x− a2)2
+ · · ·+

A2,m2

(x− a2)m2
+ · · ·

+
Aj,1

x− aj
+

Aj,2

(x− aj)2
+ · · ·+

Aj,mj

(x− aj)mj

(4)
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Each line could be rewritten

A1

x− a
+

A2

(x− a)2
+ · · ·+

Am

(x− a)m
=

A1(x− a)m−1 + A2(x− a)m−2 + · · ·+ Am

(x− a)m

=
B1x

m−1 +B2x
m−2 + · · ·+Bm

(x− a)m

which is a polynomial whose degree, m− 1, is strictly smaller than that of the denominator

(x− a)m. But the form of (4) is preferable because it is easier to integrate.

Justification of The Partial Fraction Decompositions (Optional)

We will now see the justification for the form of the partial fraction decompositions. We

will only consider the case in which the denominator has only linear factors. The arguments

when there are quadratic factors too are similar. (Better still, allow complex numbers. Then

there are only linear factors.)

Simple Linear Factor Case

In the most common partial fraction decomposition, we split up

N(x)

(x− a1)× · · · × (x− ad)

into a sum of the form
A1

x− a1
+ · · ·+

Ad

x− ad

We now show that this decomposition can always be achieved, under the assumptions that

the ai’s are all different and N(x) is a polynomial of degree at most d− 1. To do so, we shall

repeatedly apply the following Lemma. (The word Lemma just signifies that the result is

not that important – it is only used as a tool to prove a more important result.)

Lemma 6. Let N(x) and D(x) be polynomials of degree n and d respectively, with n ≤ d.

Suppose that a is NOT a zero of D(x). Then there is a polynomial P (x) of degree p < d and

a numbers A such that
N(x)

D(x) (x− a)
=

P (x)

D(x)
+

A

x− a

Proof. To save writing, let z = x − a. Then Ñ(z) = N(z + a) and D̃(z) = D(z + a) are

again polynomials of degree n and d respectively, D̃(0) = D(a) 6= 0 and we have to find a

polynomial P̃ (z) of degree p < d and a number A such that

Ñ(z)

D̃(z) z
=

P̃ (z)

D̃(z)
+

A

z
=

P̃ (z)z + AD̃(z)

D̃(z) z

or equivalently, such that

P̃ (z)z + AD̃(z) = Ñ(z)

Now look at the polynomial on the left hand side. Every term in P̃ (z)z, has at least one

power of z. So the constant term on the left hand side is exactly the constant term in AD̃(z),
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which is AD̃(0). The constant term on the right hand side is Ñ(0). So the constant terms

on the left and right hand sides are the same if we choose A = Ñ(0)

D̃(0)
. Recall that D̃(0) cannot

be zero. Now move AD̃(z) to the right hand side.

P̃ (z)z = Ñ(z)−AD̃(z)

The constant terms in Ñ(z) and AD̃(z) are the same, so the right hand side contains no

constant term and the right hand side is of the form Ñ1(z)z. Since Ñ(z) is of degree at most

d and AD̃(z) is of degree exactly d, Ñ1 is a polynomial of degree d − 1. It now suffices to

choose P̃ (z) = Ñ1(z).

Now back to
N(x)

(x− a1)× · · · × (x− ad)

Apply Lemma 6, with D(x) = (x− a2)× · · · × (x− ad) and a = a1. It says

N(x)

(x− a1)× · · · × (x− ad)
=

A1

x− a1
+

P (x)

(x− a2)× · · · × (x− ad)

for some polynomial P of degree at most d − 2 and some number A1. Apply Lemma 6 a

second time, with D(x) = (x− a3)× · · · × (x− ad), N(x) = P (x) and a = a2. It says

P (x)

(x− a2)× · · · × (x− ad)
=

A2

x− a2
+

Q(x)

(x− a3)× · · · × (x− ad)

for some polynomial Q of degree at most d− 3 and some number A2. At this stage, we know

that
N(x)

(x− a1)× · · · × (x− ad)
=

A1

x− a1
+

A2

x− a2
+

Q(x)

(x− a3)× · · · × (x− ad)

If we just keep going, repeatedly applying Lemma 1, we eventually end up with

N(x)

(x− a1)× · · · × (x− ad)
=

A1

x− a1
+ · · ·+

Ad

x− ad

The general case with linear factors

Now consider splitting
N(x)

(x− a1)n1 × · · · × (x− ad)nd

into a sum of the form

[ A1,1

x− a1
+ · · ·+

A1,n1

(x− a1)n1

]

+ · · ·+
[ Ad,1

x− ad
+ · · ·+

Ad,nd

(x− ad)nd

]

(If we allow ourselves to use complex numbers as roots, this is the general case.) We now

show that this decomposition can always be achieved, under the assumptions that the ai’s

are all different and N(x) is a polynomial of degree at most n1 + · · ·+ nd − 1. To do so, we

shall repeatedly apply the following Lemma.
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Lemma 7. Let N(x) and D(x) be polynomials of degree n and d respectively, with n < d+m.

Suppose that a is NOT a zero of D(x). Then there is a polynomial P (x) of degree p < d and

numbers A1, · · · , Am such that

N(x)

D(x) (x− a)m
=

P (x)

D(x)
+

A1

x− a
+

A2

(x− a)2
+ · · ·+

Am

(x− a)m

Proof. To save writing, let z = x − a. Then Ñ(z) = N(z + a) and D̃(z) = D(z + a)

are polynomials of degree n and d respectively, D̃(0) = D(a) 6= 0 and we have to find a

polynomial P̃ (z) of degree p < d and numbers A1, · · · , Am such that

Ñ(z)

D̃(z) zm
=

P̃ (z)

D̃(z)
+

A1

z
+

A2

z2
+ · · ·+

Am

zm

=
P̃ (z)zm + A1z

m−1D̃(z) + A2z
m−2D̃(z) + · · ·+ AmD̃(z)

D̃(z) zm

or equivalently, such that

P̃ (z)zm + A1z
m−1D̃(z) + A2z

m−2D̃(z) + · · ·+ Am−1zD̃(z) + AmD̃(z) = Ñ(z)

Now look at the polynomial on the left hand side. Every single term on the left hand side,

except for the very last one, AmD̃(z), has at least one power of z. So the constant term on

the left hand side is exactly the constant term in AmD̃(z), which is AmD̃(0). The constant

term on the right hand side is Ñ(0). So the constant terms on the left and right hand sides

are the same if we choose Am = Ñ(0)

D̃(0)
. Recall that D̃(0) 6= 0. Now move AmD̃(z) to the right

hand side.

P̃ (z)zm + A1z
m−1D̃(z) + A2z

m−2D̃(z) + · · ·+ Am−1zD̃(z) = Ñ(z)− AmD̃(z)

The constant terms in Ñ(z) and AmD̃(z) are the same, so the right hand side contains no

constant term and the right hand side is of the form Ñ1(z)z with Ñ1 a polynomial of degree

at most d+m− 2. (Recall that Ñ is of degree at most d+m− 1 and D̃ is of degree at most

d.) Divide the whole equation by z.

P̃ (z)zm−1 + A1z
m−2D̃(z) + A2z

m−3D̃(z) + · · ·+ Am−1D̃(z) = Ñ1(z)

Now, we can repeat the previous argument. The constant term on the left hand side, which

is exactly Am−1D̃(0) matchs the constant term on the right hand side, which is Ñ1(0) if we

choose Am−1 =
Ñ1(0)

D̃(0)
. With this choice of Am−1

P̃ (z)zm−1 + A1z
m−2D̃(z) + A2z

m−3D̃(z) + · · ·+ Am−2zD̃(z) = Ñ1(z)− Am−1D̃(z) = Ñ2(z)z

with Ñ2 a polynomial of degree at most d+m− 3. Divide by z and continue. After m steps

like this, we end up with

P̃ (z)z = Ñm−1(z)− A1D̃(z)

after having chosen A1 = Ñm−1(0)

D̃(0)
. There is no constant term on the right side so that

Ñm−1(z) − A1D̃(z) is of the form Ñm(z)z with Ñm a polynomial of degree d − 1. Choosing

P̃ (z) = Ñm(z) completes the proof.
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Now back to
N(x)

(x− a1)n1 × · · · × (x− ad)nd

Apply Lemma 7, with D(x) = (x− a2)
n2 × · · · × (x− ad)

nd, m = n1 and a = a1. It says

N(x)

(x− a1)n1 × · · · × (x− ad)nd
=

A1,1

x− a1
+

A1,2

(x− a1)2
+· · ·+

A1,n1

(x− a)n1
+

P (x)

(x− a2)n2 × · · · × (x− ad)nd

Apply Lemma 7 a second time, with D(x) = (x − a3)
n3 × · · · × (x − ad)

nd, N(x) = P (x),

m = n2 and a = a2. And so on. Eventually, we end up with

[ A1,1

x− a1
+ · · ·+

A1,n1

(x− a1)n1

]

+ · · ·+
[ Ad,1

x− ad
+ · · ·+

Ad,nd

(x− ad)nd

]

as desired.
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