
Trignometric Integrals

Integrals of polynomials of the trigonometric functions sin x, cosx, tan x and so on, are gen-

erally evaluated by using a combination of simple substitutions and trigonometric identities.

There are of course a very large number of trigonometric identities, but usually we use only

a handful of them. The most important are:

sin2 x+ cos2 x = 1 (1a)

sin(2x) = 2 sin x cosx (1b)

cos(2x) = cos2 x− sin2 x (1c)

= 2 cos2 x− 1 (1d)

= 1− 2 sin2 x (1e)

sin2 x =
1− cos(2x)

2
(1f)

cos2 x =
1 + cos(2x)

2
(1g)

Identities (1d) and (1e) follow easily from (1c) by using sin2 x + cos2 x = 1. Identities (1f)

and (1g) follow directly from (1e) and (1d), respectively.

Integrating
∫
sinm x cosn x dx

If n is an odd integer this can be integrated by substituting u = sin x, du = cosx dx and

then using cos2 x = 1 − sin2 x = 1 − u2 to convert all remaining cosx’s to u’s. Here is an

example.

Example 1 (
∫
sin2 x cos3 x dx)

Start by factoring off one power of cosx to combine with dx to get cosx dx = du.
∫

sin2 x cos3 x dx =

∫

sin2 x cos2 x cosx dx

=

∫

u2 (1− u2) du with u = sin x, du = cos x dx, cos2 x = 1− u2

=
u3

3
− u5

5
+ C

=
sin3 x

3
− sin5 x

5
+ C

Example 1

Of course if m is an odd integer we can use the same strategy with the roles of sin x and cosx

interchanged. That is, we substitute u = cosx, du = − sin x dx and sin2 x = 1 − cos2 x =

1− u2.

If m and n are both even, the strategy is to use the trig identities (1f) and (1g) to get

back to the m or n odd case. Here are a couple of examples that arise quite commonly in

applications.
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Example 2 (
∫
cos2 x dx)

By (1g)

∫

cos2 x dx =
1

2

∫
[
1 + cos(2x)

]
dx=

1

2

[

x+
1

2
sin(2x)

]

+ C

Example 2

Example 3 (
∫
cos4 x dx)

First we’ll prepare the integrand cos4 x for easy integration by applying (1g) a couple times.

We have already used (1g) once to get

cos2 x =
1

2

[
1 + cos(2x)

]

Squaring it gives

cos4 x =
1

4

[
1 + cos(2x)

]2
=

1

4
+

1

2
cos(2x) +

1

4
cos2(2x)

Now by (1g) a second time

cos4 x =
1

4
+

1

2
cos(2x) +

1

4

1 + cos(4x)

2

=
3

8
+

1

2
cos(2x) +

1

8
cos(4x)

Now it’s easy to integrate
∫

cos4 x dx =
3

8

∫

dx+
1

2

∫

cos(2x) dx+
1

8

∫

cos(4x) dx

=
3

8
x+

1

4
sin(2x) +

1

32
sin(4x) + C

Example 3

Example 4 (
∫
π

0
cos2 x dx and

∫
π

0
sin2 x dx)

Of course we can compute the definite integral
∫

π

0
cos2 x dx by using the antiderivative for

cos2 x that we found in Example 2. But here is a trickier way to evaluate that integral,

and also the integral
∫
π

0
sin2 x dx at the same time, very quickly without needing the an-

tiderivative of Example 2. We just need to observe that
∫
π

0
cos2 x dx and

∫
π

0
sin2 x dx are

equal because they represent the same area — look at the graphs below — the darkly shaded

regions in the two graphs have the same area and the lightly shaded regions in the two graphs

have the same area.
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y

x
ππ/2

1
y = sin2 x

y

x
ππ/2

1
y = cos2 x

Consequently,

∫
π

0

cos2 x dx =

∫
π

0

sin2 x dx =
1

2

[ ∫
π

0

sin2 x dx+

∫
π

0

cos2 x dx

]

=
1

2

∫
π

0

[
sin2 x+ cos2 x

]
dx

=
1

2

∫
π

0

dx

=
π

2

Example 4

Integrating
∫
tanm x secn x dx

The strategy for dealing with these integrals is similar to the strategy that we used to evaluate

integrals of the form
∫
sinm x cosn x dx. It uses

d

dx
tanx = sec2 x

d

dx
sec x = sec x tanx 1 + tan2 x = sec2 x

(There is no need to memorize 1 + tan2 x = sec2 x. To derive it very quickly just divide

sin2 x+ cos2 x = 1 by cos2 x.) To integrate
∫
tanm x secn x dx,

• if m is odd, write tanm x secn x dx =
(
sinx

cos x

)m( 1
cos x

)n
dx = sinm−1

x

cosn+m x
sin x dx and sub-

stitute u = cosx, du = − sin x dx, sin2 x = 1 − cos2 x = 1 − u2. See Examples 5 and

6.

• Alternatively, if m is odd and n ≥ 1, move one factor of sec x tan x to the side so that

you can see sec x tanx dx in the integral, and substitute u = sec x, du = sec x tanx dx

and tan2 x = sec2 x− 1 = u2 − 1. See Example 7.

• If n is even with n ≥ 2, move one factor of sec2 x to the side so that you can see sec2 x dx

in the integral, and substitute u = tan x, du = sec2 x dx and sec2 x = 1+tan2 x = 1+u2.

See Example 8.
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• If n = 0 and m is even we can still use the u = tanx substitution, after using tan2 x =

sec2 x− 1 (possibly more than once) to create a sec2 x. See Example 9.

• There is still one more case, namely n odd and m even. There are strategies like those

above for treating this case. But they are more complicated and also involve more

tricks (that basically have to be memorized). Examples using them are provided in the

optional section entitled “Integrating sec x, csc x, sec3 x and csc3 x”, below. A more

straight forward strategy uses another technique called “partial fractions”. We shall

return to this strategy after we have learned about partial fractions. See Examples 4

and 5 in the notes “Partial Fractions”.

Example 5 (
∫
tan x dx)

Write the integrand tanx = 1
cos x

sin x. We can substitute u = cos x, du = − sin x dx just as

we did in treating integrands of the form sinm x cosn x with m odd.

∫

tanx dx =

∫
1

cosx
sin x dx =

∫
1

u

du

−1
= − ln |u|+ C = − ln | cosx|+ C

= ln | cosx|−1 + C = ln | sec x|+ C

Example 5

Example 6 (
∫
tan3 x dx)

Write the integrand tan3 x = sin2 x
cos3 x

sin x. Again substitute u = cosx, du = − sin x dx and

sin2 x = 1− cos2 x = 1− u2.

∫

tan3 x dx =

∫
sin2 x

cos3 x
sin x dx =

∫
1− u2

u3

du

−1
=

u−2

2
+ ln |u|+ C

=
1

2
sec2 x+ ln | cosx|+ C

Example 6

Example 7 (
∫
tan3 x sec4 x dx)

Start by factoring off one copy of sec x tanx and combine it with dx to form sec x tan x dx,

which will be du. Then, substituting u = sec x, du = sec x tan x dx and tan2 x = sec2 x− 1 =

u2 − 1,

∫

tan3 x sec4 x dx =

∫

tan2 x
︸ ︷︷ ︸

u2
−1

sec3 x
︸ ︷︷ ︸

u3

sec x tanx dx
︸ ︷︷ ︸

du

=

∫
[
u2 − 1]u3 du
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=
u6

6
− u4

4
+ C

=
1

6
sec6 x− 1

4
sec4 x+ C

Example 7

Example 8 (
∫
sec4 x dx)

Start by factoring off one copy of sec2 x and combine it with dx to form sec2 x dx, which will

be du. Then, substituting u = tanx, du = sec2 x dx and sec2 x = 1 + tan2 x = 1 + u2,
∫

sec4 x dx =

∫

sec2 x
︸ ︷︷ ︸

1+u2

sec2 x dx
︸ ︷︷ ︸

du

=

∫
[
1 + u2] du

= u+
u3

3
+ C

= tan x+
1

3
tan3 x+ C

Example 8

Example 9 (
∫
tan4 x dx)

By way of preparation, we try to create a sec2 x from tan4 x, by using tan2 x = sec2 x− 1.

tan4 x = tan2 x tan2 x = tan2 x
[
sec2 x− 1

]

= tan2 x sec2 x− tan2 x

= tan2 x sec2 x− sec2 x+ 1

Now we can subtitute u = tanx, du = sec2 x dx.
∫

tan4 x dx =

∫

tan2 x
︸ ︷︷ ︸

u2

sec2 x dx
︸ ︷︷ ︸

du

−
∫

sec2 x dx
︸ ︷︷ ︸

du

+

∫

dx

=

∫

u2 du−
∫

du+

∫

dx

=
u3

3
− u+ x+ C

=
tan3 x

3
− tanx+ x+ C
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Example 9

Of course we have not considered cot x and csc x. But they can be treated in much the

same way as tanx and sec x were.

Integrating sec x, csc x, sec3 x and csc3 x (Optional)

Example 10 (
∫
sec x dx — by trickery)

The standard trick used to integrate sec x is to multiply the integrand by 1 = secx+tanx

secx+tanx
and

then substitute u = sec x+ tan x, du = (sec x tanx+ sec2 x) dx.
∫

sec x dx =

∫

sec x
sec x+ tanx

sec x+ tanx
dx =

∫
sec2 x+ sec x tan x

sec x+ tanx
dx

=

∫
du

u

= ln |u|+ C

= ln | sec x+ tanx| + C

Example 10

There is a second method for integrating
∫
sec x dx, that is more tedious, but more

straight forward. In particular it does not involve a memorized trick. The integral
∫
sec x dx

is converted into the integral
∫

du

1−u2 by using the substitution u = sin x, du = cos x dx. The

integral
∫

du

1−u2 is then integrated by the method of partial fractions, which we shall learn

about in the notes “Partial Fractions”. The details are in Example 4 in those notes. This

second method gives the answer
∫

sec x dx =
1

2
ln

1 + sin x

1− sin x
+ C

which appears to be different than the answer in Example 10. But they are really the same

(of course) since

1 + sin x

1− sin x
=

(1 + sin x)2

1− sin2 x
=

(1 + sin x)2

cos2 x

=⇒ 1

2
ln

1 + sin x

1− sin x
=

1

2
ln

(1 + sin x)2

cos2 x

∣
∣ = ln

∣
∣
∣
sin x+ 1

cos x

∣
∣
∣ = ln | tanx+ sec x|

Example 11 (
∫
csc x dx — by the u = tan x

2
substitution)

The integral
∫
csc x dx may also be evaluated by both the methods above. That is either

• by multiplying the integrand by 1 = cot x−cscx
cot x−cscx

and then substituting u = cot x− csc x,

du = (− csc2 x+ csc x cot x) dx or

c© Joel Feldman. 2015. All rights reserved. 6 February 3, 2015



• by substituting u = cos x, du = − sin x dx to give
∫
csc x dx = −

∫
du

1−u2 and then using

the method of partial fractions.

These two methods give the answers

∫

csc x dx = ln | cotx− csc x| + C = −1

2
ln

1 + cosx

1− cosx
+ C (2)

In this example, we shall evaluate
∫
csc x dx by yet a third method, which can be used

to integrate rational functions of sin x and cosx. A rational function of sin x and cosx is

a ratio with both the numerator and denominator being finite sums of terms of the form

a sinm x cosn x, where a is a constant and m and n are positive integers. This method uses

the substitution

x = 2 arctanu i.e. u = tan
x

2

dx =
2

1 + u2
du

sin x = 2 sin
x

2
cos

x

2
= 2

u√
1 + u2

1√
1 + u2

=
2u

1 + u2

x/2

1

u
√
1 + u2

cosx = cos2
x

2
− sin2 x

2
=

1

1 + u2
− u2

1 + u2
=

1− u2

1 + u2

This substitution converts
∫
csc x dx into

∫

csc x dx =

∫
1

sin x
dx =

∫
1 + u2

2u

2

1 + u2
du =

∫
1

u
du = ln |u|+ C

= ln
∣
∣
∣ tan

x

2

∣
∣
∣+ C

To see that this answer is really the same as that in (2), note that

cotx− csc x =
cosx− 1

sin x
=

−2 sin2(x/2)

2 sin(x/2) cos(x/2)
= − tan

x

2

Example 11

Example 12 (
∫
sec3 x dx — by trickery)

The standard trick used to evaluate
∫
sec3 x dx is integration by parts with u = sec x,

dv = sec2 x dx, du = sec x tan x dx, v = tanx.

∫

sec3 x dx =

∫

sec x
︸︷︷︸

u

sec2 x dx
︸ ︷︷ ︸

dv

= sec x
︸︷︷︸

u

tanx
︸ ︷︷ ︸

v

−
∫

tanx
︸ ︷︷ ︸

v

sec x tanx dx
︸ ︷︷ ︸

du
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Since tan2 x+ 1 = sec2 x, we have tan2 x = sec2 x− 1 and
∫

sec3 x dx = sec x tanx−
∫

[sec3 x− sec x] dx

= sec x tanx+ ln | sec x+ tan x|+ C −
∫

sec3 x dx

where we used
∫
sec x dx = ln | sec x+tanx|+C. Now moving the

∫
sec3 x dx from the right

hand side to the left hand side

2

∫

sec3 x dx = sec x tanx+ ln | sec x+ tan x|+ C

⇒
∫

sec3 x dx =
1

2
sec x tan x+

1

2
ln | sec x+ tan x|+ C

for a new arbitrary constant C (which is just one half the old one).

Example 12

The integral
∫
sec3 dx can also be evaluated by two other methods.

• Substitute u = sin x, du = cosx dx to convert
∫
sec3 x dx into

∫
du

[1−u2]2
and evaluate

the latter using the method of partial fractions. This is done in Example 5 in the notes

“Partial Fractions”.

• Use the u = tan x

2
substitution. We use this method to evaluate

∫
csc3 x dx in Example

13, below.

Example 13 (
∫
csc3 x dx – by the x = tan x

2
substitution)

As another example of the

u = tan
x

2
dx =

2

1 + u2
du sin x =

2u

1 + u2
cosx =

1− u2

1 + u2

substitution, that we used in Example 11, we evaluate
∫

csc3 x dx =

∫
1

sin3 x
dx =

∫ (1 + u2

2u

)3
2

1 + u2
du =

1

4

∫
1 + 2u2 + u4

u3
du

=
1

4

{u−2

−2
+ 2 ln |u|+ u2

2

}

+ C

=
1

8

{

− cot2
x

2
+ 4 ln

∣
∣
∣ tan

x

2

∣
∣
∣+ tan2 x

2

}

+ C

This is a perfectly acceptable answer. But if you don’t like the x

2
’s, they may be eliminated

by using

tan2 x

2
− cot2

x

2
=

sin2 x

2

cos2 x

2

− cos2 x

2

sin2 x

2

=
sin4 x

2
− cos4 x

2

sin2 x

2
cos2 x

2

=
sin2 x

2
− cos2 x

2

sin2 x

2
cos2 x

2

since sin2 x

2
+ cos2

x

2
= 1

=
− cosx
1
4
sin2 x

by (1b) and (1c)
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and

tan
x

2
=

sin x

2

cos x

2

=
sin2 x

2

sin x

2
cos x

2

=
1
2
[1− cosx]
1
2
sin x

by (1b) and (1c)

So we may also write

∫

csc3 x dx = −1

2
cot x csc x+

1

2
ln | csc x− cotx| + C

Example 13
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