
Numerical Integration

It is very common to encounter integrals that are too complicated to evaluate explicitly.

We now study how to find (approximate) numerical values for integrals, without having to

evaluate them algebraically.

Three Simple Numerical Integrators — Derivation

We start by deriving three simple algorithms for generating, numerically, approximate values

for the definite integral
∫ b

a
f(x) dx . In each algorithm, we first select an integer n > 0,

called the “number of steps”. We then divide the interval of integration, a ≤ x ≤ b, into

n equal subintervals, each of length ∆x = b−a
n
. The first subinterval runs from x0 = a to

x

y

x1 x2 x3 · · ·

y = f(x)

a = x0 xn = bxn−1

x1 = a + ∆x. The second runs from x1 to x2 = a + 2∆x, and so on. The last runs from

xn−1 = b−∆x to xn = b. The corresponding decomposition of the integral is
∫ b

a

f(x) dx =

∫ x1

x0

f(x) dx+

∫ x2

x1

f(x) dx+ · · ·+

∫ xn

xn−1

f(x) dx

Each subintegral
∫ xj

xj−1
f(x) dx is approximated by the area of a simple geometric figure. The

three different algorithms use three different figures.

The Midpoint Rule

The integral
∫ xj

xj−1
f(x) dx represents the area under the curve y = f(x) with x running from

xj−1 to xj . The width of this region is xj − xj−1. The height varies over the different values

that f(x) takes as x runs from xj−1 to xj. The midpoint rule approximates this area by

xj−1 xj

f(xj)

f(xj−1)

x̄jxj−1 xj

f
(xj−1+xj

2

)
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the area of a rectangle of width xj − xj−1 = ∆x and height f
(xj−1+xj

2

)

, which is the exact

height at the midpoint of the range covered by x. The area of the approximating rectangle

is f
(xj−1+xj

2

)

∆x. To save writing, set x̄j =
xj−1+xj

2
. So the midpoint rule approximates each

subintegral by
∫ xj

xj−1

f(x) dx ≈ f(x̄j)∆x

and the full integral by
∫ b

a

f(x) dx =

∫ x1

x0

f(x) dx +

∫ x2

x1

f(x) dx + · · · +

∫ xn

xn−1

f(x) dx

≈ f(x̄1)∆x + f(x̄2)∆x + · · · + f(x̄n)∆x

In summary, the midpoint rule approximates
∫ b

a

f(x) dx ≈
[

f(x̄1) + f(x̄2) + · · ·+ f(x̄n)
]

∆x (1)

where ∆x = b−a
n

and

x0 = a x1 = a+∆x x2 = a+ 2∆x · · · xn−1 = b−∆x xn = b

x̄1 =
x0+x1

2
x̄2 =

x1+x2

2
· · · x̄n−1 =

xn−2+xn−1

2
x̄n = xn−1+xn

2

Example 1

Let’s apply the midpoint rule with n = 8 steps to the integral
∫ π

0
sin x dx. First note that

a = 0, b = π, ∆x = π
8
and

x0 = 0 x1 =
π
8

x2 =
2π
8

· · · x7 =
7π
8

x8 =
8π
8
= π

Consequently,

x̄1 =
π
16

x̄2 =
3π
16

· · · x̄7 =
13π
16

x̄8 =
15π
16

and
∫ π

0

sin x dx ≈
[

sin(x̄1) + sin(x̄2) + · · ·+ sin(x̄8)
]

∆x

=
[

sin( π
16
) + sin(3π

16
) + sin(5π

16
) + sin(7π

16
) + sin(9π

16
) + sin(11π

16
) + sin(13π

16
) + sin(15π

16
)
]

π
8

=
[

0.1951 + 0.5556 + 0.8315 + 0.9808 + 0.9808 + 0.8315 + 0.5556 + 0.1951
]

× 0.3927

= 5.1260× 0.3927

= 2.013

The exact answer is
∫ π

0
sin x dx = − cos x

∣

∣

∣

π

0
= 2. So with eight steps of the midpoint rule we

achieved an absolute error of |2.013− 2| = 0.013, a relative error of |2.013−2|
2

= 0.0065 and a

percentage error of 1002.013−2
2

= 0.65%. The definitions of these various types of error are

given in Definition 2, below.

Example 1
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Suppose that α is an approximation to A. This approximation has

• absolute error |A− α| and

• relative error |A−α|
A

and

• percentage error 100 |A−α|
A

Definition 2.

The Trapezoidal Rule

The trapezoidal rule approximates
∫ xj

xj−1
f(x) dx by the area of a trapezoid. A trapezoid is

a four sided polygon, like a rectangle. But, unlike a rectangle, the top and bottom of a

trapezoid need not be parallel. The trapezoid used to approximate
∫ xj

xj−1
f(x) dx has width

xj − xj−1 = ∆x. Its left hand side has height f(xj−1) and its right hand side has height

f(xj). The area of a trapezoid is its width times its average height. So the trapezoidal rule

xj−1 xj

f(xj)

f(xj−1)

xj−1 xj

f(xj)

f(xj−1)

approximates
∫ xj

xj−1

f(x) dx ≈
f(xj−1)+f(xj)

2
∆x

and the full integral by

∫ b

a

f(x) dx =

∫ x1

x0

f(x) dx +

∫ x2

x1

f(x) dx + · · · +

∫ xn

xn−1

f(x) dx

≈ f(x0)+f(x1)
2

∆x + f(x1)+f(x2)
2

∆x + · · · + f(xn−1)+f(xn)
2

∆x

=
[

1
2
f(x0) + f(x1) + f(x2) + · · ·+ f(xn−1) +

1
2
f(xn)

]

∆x

In summary, the trapezoidal rule approximates

∫ b

a

f(x) dx ≈
[

1
2
f(x0) + f(x1) + f(x2) + · · ·+ f(xn−1) +

1
2
f(xn)

]

∆x (2)

where

∆x = b−a
n
, x0 = a, x1 = a+∆x, x2 = a + 2∆x, · · · , xn−1 = b−∆x, xn = b
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Example 3

As an example, we again approximate
∫ π

0
sin x dx but this time we use the trapezoidal rule

with n = 8. We still have a = 0, b = π, ∆x = π
8
and

x0 = 0 x1 =
π
8

x2 =
2π
8

· · · x7 =
7π
8

x8 =
8π
8
= π

Consequently,

∫ π

0

sin x dx ≈
[

1
2
sin(x0) + sin(x1) + · · ·+ sin(x7) +

1
2
sin(x8)

]

∆x

=
[

1
2
sin 0 + sin π

8
+ sin 2π

8
+ sin 3π

8
+ sin 4π

8
+ sin 5π

8
+ sin 6π

8
+ sin 7π

8
+ 1

2
sin 8π

8

]

π
8

=
[

1
2
×0 + 0.3827 + 0.7071 + 0.9239 + 1.0000 + 0.9239 + 0.7071 + 0.3827 + 1

2
×0

]

× 0.3927

= 5.0274× 0.3927

= 1.974

The exact answer is
∫ π

0
sin x dx = − cos x

∣

∣

∣

π

0
= 2. So with eight steps of the trapezoidal rule

we achieved 100 |1.974−2|
2

= 1.3% accuracy.

Example 3

Simpson’s Rule

Simpson’s rule approximates
∫ x2

x0
f(x) dx by the area bounded by the x–axis, the parabola

that passes through the three points
(

x0, f(x0)
)

,
(

x1, f(x1)
)

and
(

x2, f(x2)
)

, the vertical line

x = x0 and the vertical line x = x2. It then approximates
∫ x4

x2
f(x) dx by the area between

x0 x1 x2

(

x0, f(x0)
)

(

x1, f(x1)
)

(

x2, f(x2)
)

the x–axis and the part of a parabola with x2 ≤ x ≤ x4. This parabola passes through the

three points
(

x2, f(x2)
)

,
(

x3, f(x3)
)

and
(

x4, f(x4)
)

. And so on. Because Simspon’s rule

does the approximation two slices at a time, n must be even.

To derive Simpson’s rule formula, we first find the equation of the parabola that passes

through the three points
(

x0, f(x0)
)

,
(

x1, f(x1)
)

and
(

x2, f(x2)
)

. Then we find the area

c© Joel Feldman. 2015. All rights reserved. 4 February 7, 2015



between the x–axis and the part of that parabola with x0 ≤ x ≤ x2. We can make the

formulae look less complicated by writing the equation of the parabola in the form

y = A(x− x1)
2 +B(x− x1) + C

The three points
(

x0, f(x0)
)

,
(

x1, f(x1)
)

and
(

x2, f(x2)
)

lie on this parabola if and only if

A
(

x0 − x1)
2 +B(x0 − x1) + C = f(x0)

A
(

x1 − x1)
2 +B(x1 − x1) + C = f(x1)

A
(

x2 − x1)
2 +B(x2 − x1) + C = f(x2)

Because x1 − x1 = 0, the middle equation simplifies to C = f(x1). Because x0 − x1 = −∆x,

x2 − x1 = ∆x and C = f(x1), the first and third equations simplify to

(∆x)2 A−∆xB = f(x0)− f(x1)

(∆x)2A +∆xB = f(x2)− f(x1)

Adding the two equations together gives 2(∆x)2A = f(x0) − 2f(x1) + f(x2). Subtracting

the first equation from the second gives 2∆xB = f(x2) − f(x0). We now know the desired

parabola.

A = 1
2∆x2

{

f(x0)− 2f(x1) + f(x2)
}

B = 1
2∆x

{

f(x2)− f(x0)
}

C = f(x1)

The area under the part of this parabola with x0 ≤ x ≤ x2 is
∫ x2

x0

[

A(x− x1)
2 +B(x− x1) + C

]

dx =

∫ ∆x

−∆x

[

At2 +Bt+ C
]

dt where t = x− x1

= 2

∫ ∆x

0

[

At2 + C
]

dt since Bt is odd and At2 + C is even

= 2
[

1
3
At3 + Ct

]∆x

0

= 2
3
A(∆x)3 + 2C∆x

= 1
3
∆x

[

f(x0)− 2f(x1) + f(x2)
]

+ 2f(x1)∆x

= 1
3
∆x

[

f(x0) + 4f(x1) + f(x2)
]

So Simpson’s rule approximates
∫ x2

x0

f(x) dx ≈ 1
3
∆x

[

f(x0) + 4f(x1) + f(x2)
]

and
∫ x4

x2

f(x) dx ≈ 1
3
∆x

[

f(x2) + 4f(x3) + f(x4)
]

and so on. All together
∫ b

a

f(x) dx =

∫ x2

x0

f(x) dx+

∫ x4

x2

f(x) dx+

∫ x6

x4

f(x) dx+ · · ·+

∫ xn

xn−2

f(x) dx

≈ ∆x
3

[

f(x0) + 4f(x1) + f(x2)
]

+ ∆x
3

[

f(x2) + 4f(x3) + f(x4)
]

+ ∆x
3

[

f(x4) + 4f(x5) + f(x6)
]

+ · · · + ∆x
3

[

f(xn−2) + 4f(xn−1) + f(xn)
]

=
[

f(x0)+ 4f(x1)+ 2f(x2)+ 4f(x3)+ 2f(x4)+ · · ·+ 2f(xn−2)+ 4f(xn−1)+ f(xn)
]

∆x
3
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In summary, Simpson’s rule approximates

∫ b

a

f(x) dx ≈
[

f(x0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)+ · · ·+2f(xn−2)+4f(xn−1)+f(xn)
]

∆x
3

(3)

where n is even and

∆x = b−a
n
, x0 = a, x1 = a+∆x, x2 = a + 2∆x, · · · , xn−1 = b−∆x, xn = b

Example 4

As an example we approximate
∫ π

0
sin x dx with n = 8, yet again. Under Simpson’s rule

∫ π

0

sin x dx ≈
[

sin(x0) + 4 sin(x1) + 2 sin(x2) + · · ·+ 4 sin(x7) + sin(x8)
]

∆x
3

=
[

sin(0) + 4 sin(π
8
) + 2 sin(2π

8
) + 4 sin(3π

8
) + 2 sin(4π

8
)

+ 4 sin(5π
8
) + 2 sin(6π

8
) + 4 sin(7π

8
) + sin(8π

8
)
]

π
8×3

=
[

0 + 4× 0.382683 + 2× 0.707107 + 4× 0.923880 + 2× 1.0

+ 4× 0.923880 + 2× 0.707107 + 4× 0.382683 + 0
]

π
8×3

= 15.280932× 0.130900

= 2.00027

With only eight steps of Simpson’s rule we achieved 1002.00027−2
2

= 0.014% accuracy.

Example 4

This completes our derivation of the midpoint, trapezoidal and Simpson’s rules for ap-

proximating the values of definite integrals. So far we have not attempted to see how efficient

and how accurate the algorithms are. That’s our next task.

Three Simple Numerical Integrators – Error Behaviour

Two obvious considerations in deciding whether or not a given algorithm is of any practical

value are (a) the amount of computational effort required to execute the algorithm and (b) the

accuracy that this computational effort yields. For algorithms like our simple integrators, the

bulk of the computational effort usually goes into evaluating the function f(x). The number

of evaluations of f(x) required for n steps of the midpoint rule is n, while the number required

for n steps of the trapezoidal and Simpson’s rules is n + 1. So all three of our rules require

essentially the same amount of effort – one evaluation of f(x) per step.

To get a first impression of the error behaviour of these methods, we apply them to a

problem that we know the answer to. The exact value of the integral
∫ π

0
sin x dx = − cos x

∣

∣

π

0

is 2. The following table lists the error in the approximate value for this number generated by
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our three rules applied with three different choices of n. It also lists the number of evaluations

of f required to compute the approximation.

Midpoint Trapezoidal Simpson’s

n error # evals error # evals error # evals

10 4.1× 10−1 10 8.2× 10−1 11 5.5× 10−3 11

100 4.1× 10−3 100 8.2× 10−3 101 5.4× 10−7 101

1000 4.1× 10−5 1000 8.2× 10−5 1001 5.5× 10−11 1001

Observe that

• Using 101 evaluations of f worth of Simpson’s rule gives an error 80 times smaller than

1000 evaluations of f worth of the midpoint rule.

• The trapezoidal rule error with n steps is about twice the midpoint rule error with n

steps.

• With the midpoint rule, increasing the number of steps by a factor of 10 appears to

reduce the error by about a factor of 100 = 102 = n2.

• With the trapezoidal rule, increasing the number of steps by a factor of 10 appears to

reduce the error by about a factor of 102 = n2.

• With Simpson’s rule, increasing the number of steps by a factor of 10 appears to reduce

the error by about a factor of 104 = n4.

So it looks like

approx value of
∫ b

a
f(x) dx given by n midpoint steps ≈

∫ b

a
f(x) dx+KM

1
n2

approx value of
∫ b

a
f(x) dx given by n trapezoidal steps ≈

∫ b

a
f(x) dx+KT

1
n2

approx value of
∫ b

a
f(x) dx given by n Simpson’s steps ≈

∫ b

a
f(x) dx+KM

1
n4

with some constants KM , KT and KS. It also looks like KT ≈ 2KM .

To test these conjectures further, we apply our three rules with about ten different choices

of n of the form n = 2m with m integer. On the next page are two figures, one containing the

results for the midpoint and trapezoidal rules and the other the results for Simpson’s rule.

For each rule we are expecting the error en (that is, |exact value − approximate value|) with

n steps to be (approximately) of the form

en = K 1
nk

for some constants K and k. We would like to test if this is really the case. It is not easy to

tell whether or not a given curve really is a parabola y = x2 or a quartic y = x4. But the eye

is pretty good at determining whether or not a graph is a straight line. Fortunately, there is

a little trick that turns the curve en = K 1
nk into a straight line – no matter what k is. Instead
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y = 0.35− 4.03 x

Figure 1: Error in the approximation, with n steps, to
∫ π

0
sin x dx

of plotting en against n, plot log en against log n. If en = K 1
nk , then log en = logK − k logn.

So plotting y = log en against x = log n gives the straight line y = logK − kx, which has

slope −k and y–intercept logK.1

The three graphs in Figure 1 plot y = log2 en against x = log2 n for our three rules. By

definition, the base 2 logarithm, log2 n, is the power to which 2 must be raised to give n.

1There is a variant of this trick that works even when you don’t know the answer to the integral ahead of

time. Suppose that you suspect that the approximation Mn = A+K 1
n
k , where A is the exact value of the

integral and suppose that you don’t know the values of A, K and k. Then Mn −M2n = K 1
n
k −K 1

(2n)k =

K
(

1− 1
2k

)

1
n
k , so plotting y = log(Mn−M2n) against x = logn gives the straight line y = log

[

K
(

1− 1
2k

)]

−kx.
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In particular, when n = 2m, log2 n = log2 2
m = m is nice and simple. That’s why we are

using the base two logarithm. For example, applying Simpson’s rule with n = 25 = 32 gives

the approximate value 2.00000103, which has error en = 0.00000103. So, the data point

(x = log2 2
5 = 5 , y = log2 0.00000103 = ln 0.00000103

ln 2
= −19.9) has been included on the

Simpson’s rule graph. For each of the three sets of data points, a straight line has also been

plotted “through” the data points. A procedure called “linear regression” has been used to

decide precisely which straight line to plot. Linear regression is not part of this course. It

provides a formula for the slope and y–intercept of the straight line which “best fits” any

given set of data points. From the three lines, it sure looks like k = 2 for the midpoint and

trapezoidal rules and k = 4 for Simpson’s rule. It also looks like the ratio between the value

of K for the trapezoidal rule, namely K = 20.7253, and the value of K for the midpoint rule,

namely K = 2−0.2706, is pretty close to 2: 20.7253/2−0.2706 = 20.9959.

The intuition, about the error behaviour, that we have just developed is in fact correct

— provided the integrand f(x) is reasonably smooth. Precisely, if |f ′′(x)| ≤ M for all x in

the domain of integration, then it turns out that

the total error introduced by the midpoint rule is bounded by M
24

(b−a)3

n2

the total error introduced by the trapezoidal rule is bounded by M
12

(b−a)3

n2

and if |f (4)(x)| ≤ M for all x in the domain of integration, then

the total error introduced by Simpson’s rule is bounded by M
180

(b−a)5

n4

Example 5

The integral
∫ π

0
sin x dx has b− a = π and M , the largest possible value of

∣

∣

d2

dx2 sin x
∣

∣ (for the

midpoint and trapezoidal rules) or
∣

∣

d4

dx4 sin x
∣

∣ (for Simpson’s rule) is 1. So, for the midpoint

rule, the error, en, introduced when n steps are used is bounded by

|en| ≤
M
24

(b−a)3

n2 = π3

24
1
n2 ≈ 1.29 1

n2

The data in the graph in Figure 1 gives |en| ≈ 2−.2706 1
n2 = 0.83 1

n2 which is consistent with

the bound |en| ≤
π3

24
1
n2 .

Example 5

Example 6

In a typical application, one is required to evaluate a given integral to some specified accu-

racy. For example, if you are manufacturer and your machinery can only cut materials to

an accuracy of 1
10

th
of a millimeter, there is no point in making design specifications more

accurate than 1
10

th
of a millimeter. Suppose, for example, that we wish to use the midpoint

rule to evaluate
∫ 1

0
e−x2

dx to within an accuracy of 10−6. (In fact this integral cannot be

evaluated algebraically, so one must use numerical methods.) The first two derivatives of the

integrand are

d
dx
e−x2

= −2xe−x2

and d2

dx2 e
−x2

= d
dx

(

− 2xe−x2)

= −2e−x2

+ 4x2e−x2

= 2(2x2 − 1)e−x2
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As x runs from 0 to 1, 2x2 − 1 increases from −1 to 1, so that

0 ≤ x ≤ 1 =⇒ |2x2 − 1| ≤ 1, e−x2

≤ 1 =⇒
∣

∣2(2x2 − 1)e−x2∣

∣ ≤ 2

So the error introduced by the n step midpoint rule is at most M
24

(b−a)3

n2 ≤ 2
24

(1−0)3

n2 = 1
12n2 .

This error is at most 10−6 if

1
12n2 ≤ 10−6 ⇐⇒ n2 ≥ 1

12
106 ⇐⇒ n ≥

√

1
12
106 = 288.7

So 289 steps of the midpoint rule will do the job.

Example 6

Example 7

Suppose now that we wish to use Simpson’s rule to evaluate
∫ 1

0
e−x2

dx to within an accuracy

of 10−6. To determine the number of steps required, we first determine how big d4

dx4 e
−x2

can

get when 0 ≤ x ≤ 1.

d3

dx3 e
−x2

= d
dx

{

2(2x2 − 1)e−x2}

= 8xe−x2

− 4x(2x2 − 1)e−x2

= 4(−2x3 + 3x)e−x2

d4

dx4 e
−x2

= d
dx

{

4(−2x3 + 3x)e−x2}

= 4(−6x2 + 3)e−x2

− 8x(−2x3 + 3x)e−x2

= 4(4x4 − 12x2 + 3)e−x2

On the domain of integration 0 ≤ x ≤ 1 so that e−x2

≤ 1. Also, for 0 ≤ x ≤ 1,

3 ≤ 4x4 + 3 ≤ 7 and − 12 ≤ −12x2 ≤ 0 =⇒ −9 ≤ 4x4 − 12x2 + 3 ≤ 7

Consequently, the maximum value of |4x4 − 12x2 + 3| for 0 ≤ x ≤ 1 is no more than 9 and

∣

∣4x4 − 12x2 + 3
∣

∣ ≤ 9 =⇒
∣

∣

d4

dx4 e
−x2∣

∣ ≤ 4× 9× 1 = 36

The error introduced by the n step Simpson’s rule is at most M
180

(b−a)5

n4 ≤ 36
180

(1−0)5

n4 = 1
5n4 .

This error is at most 10−6 if

1
5n4 ≤ 10−6 ⇐⇒ n4 ≥ 1

5
× 106 ⇐⇒ n ≥ 4

√

1
5
× 106 = 21.1

So 22 steps of Simpson’s rule will do the job.

Example 7
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