
Probability

You perform some experiment (for example roll some dice) whose outcome is not predeter-

mined. Let’s say that, in this experiment, you measure some quantity that you call X and

thatX can take the values x1, · · · , xn. If you repeat the experiment you do not always get the

same result. But you observe that, after numerous repetitions of the experiment, outcome xi

is observed the fraction pi of the times. Then we call X a random variable and we say that

X takes the value xi with probability pi and we write

Pr(X = xi) = pi

If a random variable X can only take values in
{

xk

}

with the index k running either

over a finite set or over the natural numbers, then X is said to be a discrete random

variable.

Definition 1.

We will later also consider continuous random variables. They take values running over

a continuous set, like for example an interval a ≤ x ≤ b. The full definition of a continuous

random variable will be given in Definition 11.

Example 2

Suppose that we have a die (that’s the singular of “dice”) with six sides labelled 1, 2, · · · , 6.
The die is “fair”, meaning that, when we throw it, each of the six sides is equally likely to

end up as the upper face. If we denote by X the number on the upper face, then

Pr(X = 1) = Pr(X = 2) = Pr(X = 3) = Pr(X = 4) = Pr(X = 5) = Pr(X = 6) =
1

6

Example 2

We use the notation

• Pr(a ≤ X ≤ b) to denote the probability that the random variable X takes a

value between a and b, and

• Pr(X < b) to denote the probability that X takes a value strictly less than b,

and

• Pr(X 6= x) to denote the probability that X takes a value other than x, and

• Pr(X = a or X = b) to denote the probability that X takes either the value

a or the value b

and so on.

Notation 3.
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Let X be a discrete random variable.

(a) The set of numbers Pr(X = x), with x running over all of the values that X

takes, is called the probability distribution of the random variable X .

(b) If a random variableX can take values xk with 1 ≤ k ≤ n and if Pr(X = xk) =
1
n

for all 1 ≤ k ≤ n, then X is said to have a uniform probability distribution and

is said to be a uniform discrete random variable. We write X = Uniform(n),

where n is number of different values that X can take.

(c) If a random variable X can only take two values x1 and x2 (for example if X

is the result of a coin toss with x1 representing heads and x2 representing tails)

and if Pr(X = x1) = Pr(X = x2) =
1
2
, then X is called a Bernoulli random

variable with parameter 1/2. We write X = Ber(1/2).

Definition 4.

Example 5

Now suppose that we have two fair dice, one red and one blue, each with six sides labelled

1, 2, · · · , 6. Suppose further that the two dice are independent, meaning that the result of

throwing one of the dice has no effect on the result of throwing the other one. Denote by

Xr the random variable giving the number showing on the upper face of the red die and by

Xb the random variable giving the number showing on the upper face of the blue die. Then,

there are six equally likely possible outcomes for Xr, namely

{

Xr = j
∣

∣ j = 1, 2, 3, 4, 5, 6
}

Similarly, there are six equally likely possible outcomes for Xb, namely

{

Xb = k
∣

∣ k = 1, 2, 3, 4, 5, 6
}

If we now throw both dice, there are 36 equally likely possible outcomes, namely

{

Xr = j, and Xb = k
∣

∣ j = 1, 2, 3, 4, 5, 6, k = 1, 2, 3, 4, 5, 6
}

(1)

Because each of these outcomes are equally likely,

Pr
(

Xr = j and Xb = k
)

=
1

36

for all 1 ≤ j ≤ 6 and 1 ≤ k ≤ 6.

Now suppose that we are interested in the sum of the two numbers appearing on the

upper faces of the two dice. That is, we are interested in the random variable X = Xr +Xb.

This random variable takes integer values between 2 (since Xr ≥ 1 and Xb ≥ 1) and 12 (since

Xr ≤ 6 and Xb ≤ 6).
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• Now X = 2 if and only if Xr = Xb = 1 and so Pr(X = 2) = 1
36
.

• For X to take the value 3, we need either Xr = 1, Xb = 2 or Xr = 2, Xb = 1.

That is, X = 3 is given by two of the thirty six equally likely outcomes in (1) and so

Pr(X = 3) = 2
36

= 1
18
.

• For X to take the value 4, we need (Xr, Xb) to be one of (1, 3), (2, 2), (3, 1). So X = 4

is given by three of the thirty six equally likely outcomes in (1) and so Pr(X = 4) =
3
36

= 1
12
.

and so on. Here is the full probability distribution for X .

Pr(X = 2) =
1

36
Pr(X = 3) =

2

36
Pr(X = 4) =

3

36

Pr(X = 5) =
4

36
Pr(X = 6) =

5

36
Pr(X = 7) =

6

36

Pr(X = 8) =
5

36
Pr(X = 9) =

4

36
Pr(X = 10) =

3

36

Pr(X = 11) =
2

36
Pr(X = 12) =

1

36

As a check, note that
12
∑

k=2

Pr(X = k) = 1

which is exactly what we expect — X must take one of the values between 2 and 12.

Example 5

Here are the basic properties that all discrete random variables obey.

Let X be a discrete random variable that takes values xk with k running over some

index set I. Then

(a) 0 ≤ Pr(xk) ≤ 1 for each k ∈ I.

(b)
∑

k∈I

Pr(X = xk) = 1. That is X must take the value xk for some k ∈ I.

(c) If j ∈ I, then Pr(X = xj) = 1− Pr(X 6= xj) = 1−
∑

k∈I
k 6=j

Pr(X = xk).

(d) Pr(X < x) = 1− Pr(X ≥ x) and Pr(X ≤ x) = 1− Pr(X > x)

(e) If a 6= b, then Pr(X = a or X = b) = Pr(X = a) + Pr(X = b).

Theorem 6.
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The cumulative distribution function (often shortened to CDF) of a random variable

X is the function

F (x) = Pr(X ≤ x)

In particular, if X is a discrete random variable that takes values xk with k running

over some index set I, then its cumulative distribution function is

F (x) =
∑

k∈I
xk≤x

Pr(X = xk)

The notation “
∑

k∈I
xk≤x

” indicates that we sum over all values of the index k that are

in the index set I and that obey xk ≤ x.

Definition 7.

Example 8 (Example 2, continued.)

Suppose that, as in Example 2, we have a fair die. We have already seen that if we denote

by X the number on the upper face, then X can take the values 1, 2, · · · , 6, each with

probability 1
6
. We’ll now compute the cumulative distribution function for X . To get an idea

of how this is done, let’s find F (2.3). (The number 2.3 has been picked a random. There

is nothing special about it.) By definition, F (2.3) is the probability that X ≤ 2.3. Now for

X to be smaller than or equal to 2.3, we must have either X = 1 or X = 2. Each of these

possibility occurs with probability 1
6
, so

F (2.3) =
1

6
+

1

6
=

1

3

The identical logic and calculation will give F (x) = 1
3
for any x obeying 2 ≤ x < 3. Similarly,

if 5 ≤ x < 6, then F (x) is the probability that X takes one of the values 1, 2, 3, 4 or 5, which

is 5
6
. Here is the full cumulative distribution function

F (x) =























































0 if x < 1
1
6

if 1 ≤ x < 2
2
6

if 2 ≤ x < 3
3
6

if 3 ≤ x < 4
4
6

if 4 ≤ x < 5
5
6

if 5 ≤ x < 6

1 if x ≥ 6

and its graph
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x

y

1 2 3 4 5 6

1/6

2/6

3/6

4/6

5/6

1 y = F (x)

Look carefully at this graph.

• F (x) has jump discontinuities at x = 1, 2, 3, 4, 5, 6. These are all of the values that our

random variable X can take. F (x) is constant between the jumps.

• In this example, the height of the jump discontinuity at each such xk is exactly
1
6
, which

is the probability Pr(X = xk).

• For x < 1, the smallest value that X can take, F (x) is identically 0.

• For x ≥ 6, the largest value that X can take, F (x) is identically 1.

• The graph is like a staircase, moving up to the right.

Example 8

Our observations about the graph of the CDF in the last example were not accidental.

For any discrete random variable X , the CDF F (x) of X

• is constant except for jump discontinuities at the values that X can take.

• The height of the jump discontinuity at each such xk is exactly Pr(X = xk).

• For x strictly smaller than the smallest value that X can take, F (x) is identically 0.

• For x larger than, or equal to, the largest value that X can take, F (x) is identically 1.

• The graph is like a staircase, moving up to the right.

If F (x) is a cumulative distribution function, then

• 0 ≤ F (x) ≤ 1 for all x.

• lim
x→−∞

F (x) = 0.

• lim
x→+∞

F (x) = 1.

• F (x) is a nondecreasing function of x. This means that if x < x′, then

F (x) ≤ F (x′).

Theorem 9 (Properties of the CDF).
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Continuous Random Variables

We are now going to concentrate on continuous random variables. For example the height of

a randomly chosen person is a continuous random variable. It usually does not make much

sense to talk about the probability distribution function Pr(X = x) of a random variable X

that, for example, can take all values between 0 and 1. Because it must satisfy

∑

0≤x≤1

P (X = x) = 1 and P (X = x) ≥ 0 for all x

P (X = x) is going to have to be 0 for almost all values of x. In fact, if all x’s are equally likely,

we will have P (X = x) = 0 for all values of x — if P (X = x) = p > 0 for all 0 ≤ x ≤ 1, then
∑

0≤x≤1 P (X = x) = ∞. So, for continuous random variables, the probability distribution

function is not very useful. But the cumulative distribution function still contains all of the

probability information aboutX and so is still useful. That is why we defined it. Recall:

The cumulative distribution function of any random variable X is the function

F (x) = Pr(X ≤ x)

Definition 10 (CDF).

All cumulative distribution functions obey the properties given in Theorem 9. We can now

make a more precise definition of “continuous random variable”.

A random variable X is a continuous random variable if its cumulative distribution

function P (X ≤ x) is a continuous function of x.

Definition 11 (Continuous Random Variable).

Example 12 (Waiting time)

You work in a call centre. Calls come in to the centre at random times. You have just finished

dealing with one call. Let X be the length of time before the next call comes in. Typically,

X has cumulative distribution

F (x) =

{

0 if x < 0

1− e−λx if x ≥ 0
(2)

Here λ > 0 is a constant, called the “rate”. It is the average number of calls per unit time.

(We’ll see later, in Example 24, that, for this CDF, the average waiting time for a call to

come in is 1
λ
. We’ll also derive (2) in an optional section at the end of these notes.)
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x

y

1 y = F (x) = 1− e−λx

Note that, as required,

• 0 ≤ F (x) ≤ 1 for all x, since, for all x ≥ 0, we have 0 < e−λx ≤ 1.

• lim
x→−∞

F (x) = 0, since F (x) = 0 for all x < 0.

• lim
x→+∞

F (x) = 1− lim
x→+∞

e−λx = 1− 0 = 1.

• F (x) is a nondecreasing function of x, since, for x > 0, F ′(x) = λe−λx > 0.

Example 12

Once one knows the CDF of a random variable X , one can compute from it lots of other

probabilities. For example, if a < b, then

Pr(a < X ≤ b) = Pr(X ≤ b)− Pr(X ≤ a) = F (b)− F (a) (3)

Example 13

LetX be any continuous random variable and fix any real number x. Let h > 0. IfX happens

to obey X = x, then it also obeys x− h < X ≤ x, so that Pr(X = x) ≤ Pr(x− h < X ≤ x).

By (3),

0 ≤ Pr(X = x) ≤ Pr(x− h < X ≤ x) = F (x)− F (x− h)

This is true for all h > 0. But, since F is continuous, F (x− h) tends to F (x) as h tends to

zero and so F (x)− F (x− h) tends to zero as h tends to zero. So taking the limit as h tends

to zero of

0 ≤ Pr(X = x) ≤ F (x)− F (x− h)

gives that

0 ≤ Pr(X = x) ≤ 0

so that Pr(X = x) must be exactly zero.

Example 13

For many continuous random variables, F (x) is not only continuous, but is also differentiable.

Its derivative is called the probability density function.
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Let X be a continuous random variable with CDF F (x). If F (x) is differentiable

then

f(x) =
dF

dx
(x)

is called with probability density function (often shortened to PDF) of X .

Definition 14 (PDF).

That is, the CDF F (x) is an antiderivative for the PDF f(x). Then, by the fundamental

theorem of calculus,

Pr(a < X ≤ b) = F (b)− F (a) =

∫ b

a

f(x) dx

Since lim
a→−∞

F (a) = 0

F (b) = lim
a→−∞

[

F (b)− F (a)
]

= lim
a→−∞

∫ b

a

f(x) dx =

∫ b

−∞

f(x) dx

and since limb→∞ F (b) = 1,

1 = lim
b→∞

F (b) = lim
b→∞

∫ b

−∞

f(x) dx =

∫ ∞

−∞

f(x) dx

We have now seen most of

Let f(x) be a probability density function of a random variable X . Then

(a) f(x) ≥ 0 for all x,

(b)
∫∞

−∞
f(x) dx = 1,

(c) F (x) = Pr(X ≤ x) =
∫ x

−∞
f(t) dt

(d) Pr(a < X ≤ b) =
∫ b

a
f(x) dx

Theorem 15.

Proof. We have already seen all but (a), and it follows from the requirement that f(x) be

the derivative of F (x), which is nondecreasing.
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Example 16 (Waiting time, again)

Let X be the waiting time random variable of Example 12. Recall that its CDF is

F (x) =

{

0 if x < 0

1− e−λx if x ≥ 0

For x < 0 this function has derivative F ′(x) = 0. For x > 0 is has derivative F ′(x) = λe−λx.

At x = 0, exactly, its derivative is not defined — look at the graph of F (x) in Example 12.

The graph has a kink in it at x = 0 and does not have a tangent line there. Set

f(x) =

{

0 if x ≤ 0

λe−λx if x > 0

x

y

1

y = f(x) = λe−λx

Then F ′(x) = f(x) for all x’s except x = 0, where F ′(x) is not defined. It is none–the–less

true (because f(x) only has a jump discontinuity at x = 0 — it does not go to infinity at

x = 0) that

F (x) =

∫ x

−∞

f(t) dt

for all real numbers x. This is obvious for x ≤ 0, because both F (x) and
∫ x

−∞
f(t) dt are

zero when x ≤ 0. For x > 0 it is true because then

F (x) = F (x)− F (0) =

∫ x

0

f(t) dt =

∫ x

−∞

f(t) dt

Example 16

Random variables like those of Example 16 are fairly common. So we generalize the

definition of the “probability density function”.

Let X be a continuous random variable with cumulative distribution function F (x).

If a function f(x) obeys

F (x) =

∫ x

−∞

f(t) dt

for all real numbers x, then f(x) is called a probability density function for X .

Definition 17 (PDF, generalized).
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It is pretty easy to invent lots of PDF’s. Any continuous function (or more generally any

function which is continuous except for finitely many jump discontinuities and) which obeys

• f(x) ≥ 0 for all x and

•
∫∞

−∞
f(x) dx = 1

is the PDF for the random variable X with CDF F (x) =
∫ x

−∞
f(t) dt. It is really easy to

invent nonnegative functions. If φ(x) ≥ 0 for all x, we can easily construct a PDF out of it

by just defining f(x) = Kφ(x), with K chosen so that

1 =

∫ ∞

−∞

f(x) dx = K

∫ ∞

−∞

φ(x) dx ⇐⇒ K =

[
∫ ∞

−∞

φ(x)

]−1

(4)

Example 18

For example, if a random number generator produces each number in the interval a ≤ x ≤ b

with each number being equally likely, then its PDF should be proportional to the “charac-

teristic function”

χ[a,b](x) =

{

1 if a ≤ x ≤ b

0 otherwise
(5)

The funny looking symbol χ[a,b] is just a standard notation for the function defined by the

right hand side of (5). We want the PDF to be proportional to χ[a,b]. That is, we want

f(x) = Kχ[a,b](x) for some constant K. The constant K is determined by the condition that
∫∞

−∞
f(x) dx = 1. Since

∫∞

−∞
Kχ[a,b](x) dx = K

∫ b

a
dx = K(b− a), we must choose K = 1

b−a
,

so that the PDF for this random variable is

f(x) =
1

b− a
χ[a,b](x)

Example 18

Example 19 (Time to failure)

Time to failure, for example of a machine, tends to follow a probability distribution called a

“gamma distribution”. It has a PDF which is proportional to

φ(x) =

{

0 if x < 0

xα−1e−x/β if x ≥ 0

with α > 1 and β > 0 being constants. Note that φ(x) is small if x is small (new machines

tend not to fail) or if x is very large (machines don’t live forever either). So the PDF of the

gamma distribution is

f(x) =
1

Kα,β

{

0 if x < 0

xα−1e−x/β if x ≥ 0
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with

Kα,β =

∫ ∞

0

xα−1e−x/β dx

= βα

∫ ∞

0

uα−1e−u du with u = x/β, du = dx/β

= βαΓ(α) with Γ(α) =

∫ ∞

0

uα−1e−u du

The function Γ(α) is called the gamma function. (That’s where the name of the gamma

distribution came from.) We can explicitly compute

Γ(1) =

∫ ∞

0

e−u du = lim
R→∞

∫ R

0

e−u du = lim
R→∞

[

− e−u
]R

0

= 1

and

Γ(2) =

∫ ∞

0

ue−u du = lim
R→∞

∫ R

0

ue−u du

= lim
R→∞

[

− ue−u
∣

∣

∣

R

0
+

∫ R

0

e−u du

]

(by integration by parts with dv = e−udu, v = −e−u)

= lim
R→∞

[

− ue−u − e−u
]R

0

= 1

In fact it is possible to show, by repeated integration by parts, that

Γ(n) = (n− 1)! = 1 · 2 · 3 · · · (n− 1)

for all natural numbers1 n. This was done in Example 11.

Example 19

Expected Value, Variance and Standard Deviation

The probability distribution function gives us extremely detailed information about a random

variable. Often it tells us more than we want to to know. For example, suppose that you

are charged with deciding how far apart to put the seats in an airplane. You want to know

something about the probability distribution of the hip to knee length of your passengers.

But you don’t want a list of all of their hip to knee lengths. You want a few numbers that give

you a decent idea of what the probability distribution looks like. Here is one such number.

1It is standard to define 0! = 1, for notational convenience. Then the formula Γ(n) = (n− 1)! even works

for n = 1.
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The expected value (or mean value, or expectation) of a discrete random variable X

that can take values xk, 1 ≤ k ≤ n is

E(X) =
n

∑

k=1

xk Pr(X = xk)

If X is a continuous random variable with PDF f(x), then

E(X) =

∫ ∞

−∞

x f(x) dx

Definition 20 (Expected Value).

The expected value gives us the “average value” of X but cannot tell us if the values of X

tend to bunch up near E(X) or if they tend to be very widely scattered about E(X). For

example, for the airplane seating random variable X referred to above, if you only know that

E(X) = 60cm and you put your airplane seats 80cm apart it could very well be that

• 99.99% of your passengers can sit down

which is probably OK. But it also could be that

• only 60% of your passengers can sit down.

That would probably not be OK. Here are two related measures of the scatter of a probability

distribution.

The variance, Var(X), and standard deviation, σ(X), of a discrete random variable

X that can take values xk, 1 ≤ k ≤ n are

Var(X) =
n

∑

k=1

(

xk − E(X)
)2

Pr(X = xk)

σ(X) =
√

Var(X)

If X is a continuous random variable with PDF f(x), then

Var(X) =

∫ ∞

−∞

(

x− E(X)
)2

f(x) dx

σ(X) =
√

Var(X)

Definition 21 (Variance, Standard Deviation).
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If X is a continuous random variable with PDF f(x), then

Var(X) = E
(

X2
)

−
[

E(X)
]2

Here, the definition of E(X2) is

E(X2) =

∫ ∞

−∞

x2 f(x) dx

Theorem 22 (Another Formula for Variance).

Proof. To save writing, set

µ = E(X) =

∫ ∞

−∞

x f(x) dx (6)

Using this notation, the definition of the variance is
∫ ∞

−∞

(

x− µ
)2

f(x) dx =

∫ ∞

−∞

x2 f(x) dx− 2µ

∫ ∞

−∞

x f(x) dx+ µ2

∫ ∞

−∞

f(x) dx

= E(X2)− 2µ2 + µ2

= E(X2)− µ2

as desired. To get from the first line to the second line, we used (6) and
∫∞

−∞
f(x) dx = 1,

since f(x) is a PDF.

Example 23 (Beta distribution)

The beta distribution is the family of probability distributions with PDF proportional to

φ(x) =















0 if x ≤ 0

xα−1(1− x)β−1 if 0 ≤ x ≤ 1

0 if x ≥ 1

Here α and β are constants. The beta distribution is used to model continuous random

variables that are restricted to finite intervals. For example it is used for time allocation

problems in project management.

Let X be a random variable with the α = β = 2 beta distribution. We’ll start by

computing the PDF, CDF, expectation value, variance, and standard deviation of X .

(a) PDF: By (4), the PDF of X is

f(x) = K

{

x(1 − x) if 0 ≤ x ≤ 1

0 otherwise

with
1

K
=

∫ ∞

−∞

φ(x) dx =

∫ 1

0

x(1 − x) dx =
[x2

2
− x3

3

]

1

0
=

1

6
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So the PDF is

f(x) =

{

6x(1− x) if 0 ≤ x ≤ 1

0 otherwise

x

y

1

1

y = f(x) = 6x(1− x)

(b) CDF: Recall that the CDF is F (x) =
∫ x

−∞
f(t) dt. Because f(t) = 0 for all t ≤ 0, F (x)

is zero for x ≤ 0. For 0 ≤ x ≤ 1

F (x) =

∫ x

0

6t(1− t) dt = 6
[t2

2
− t3

3

]

x

0
= 3x2 − 2x3

As f(t) = 0 for all t ≥ 1 too, when x ≥ 1

F (x) =

∫ 1

0

6t(1− t) dt =
[

3x2 − 2x3
]

x=1
= 1

So the CDF is

F (x) =















0 if x ≤ 0

3x2 − 2x3 if 0 ≤ x ≤ 1

1 if x ≥ 1

(c) Expectation: The expected value, or mean, of X is

µ = E(X) =

∫ ∞

−∞

xf(x) dx =

∫ 1

0

6x2(1− x) dx = 6
[x3

3
− x4

4

]

1

0

=
1

2

(d) Variance: To compute the variance of X , we first compute

E(X2) =

∫ ∞

−∞

x2f(x) dx =

∫ 1

0

6x3(1− x) dx = 6
[x4

4
− x5

5

]

1

0

=
3

10

Using the formula for the variance given in Theorem 22,

Var(X) = E(X2)−
[

E(X)
]2

=
3

10
−
[1

2

]2

=
1

20
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(e) Standard deviation: The standard deviation

σ(X) =
√

Var(X) =
1√
20

= 0.2236

to four decimal places.

(f) Some probabilities: If 0 ≤ a ≤ b ≤ 1, the probability

Pr(a ≤ x ≤ b) =

∫ b

a

6x(1− x) dx = 6
[x2

2
− x3

3

]
b

a
= 3(b2 − a2)− 2(b3 − a3)

= b2(3− 2b)− a2(3− 2a)

In particular, the probability of being within one standard deviation of the mean is, with

µ = 0.5 and σ = 0.2236,

Pr(µ− σ ≤ X ≤ µ+ σ) = Pr(0.2764 ≤ X ≤ 0.7236)

= 0.72362(3− 2× 0.7236)− 0.27642(3− 2× 0.2764)

= 0.6261

to four decimal places.

x

y

1

1

y = f(x) = 6x(1− x)

µ µ+ σµ− σ

The probability of being within two standard deviations of the mean is, with µ = 0.5

and 2σ = 0.4472,

Pr(µ− 2σ ≤ X ≤ µ+ 2σ) = Pr(0.0528 ≤ X ≤ 0.9472)

= 0.94722(3− 2× 0.9472)− 0.05282(3− 2× 0.0528)

= 0.9839

to four decimal places.

Example 23
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Example 24 (Waiting time, yet again)

Let X be the waiting time random variable of Example 12. We saw, in Example 16, that its

probability density function is

f(x) =

{

0 if x ≤ 0

λe−λx if x > 0

We’ll now compute its mean and standard deviation. Its mean

E(X) = λ

∫ ∞

0

xe−λx dx

In Example 19 we saw that

Kα,β =

∫ ∞

0

xα−1e−x/β dx = βαΓ(α)

So

E(X) = λKα,β

∣

∣

∣

α=2
β=1/λ

= λ
(1

λ

)2

Γ(2)

=
1

λ

Again, to compute the variance of X , we first compute

E(X2) =

∫ ∞

−∞

x2f(x) dx = λ

∫ 1

0

x2e−λx dx = λKα,β

∣

∣

∣

α=3
β=1/λ

= λ
(1

λ

)3

Γ(3)

=
2

λ2

Using the formula for the variance given in Theorem 22,

Var(X) = E(X2)−
[

E(X)
]2

=
2

λ2
−
[1

λ

]2

=
1

λ2

and the standard deviation is

σ =
√

Var(X) =
1

λ

Example 24

Derivation of the Exponential Waiting Time CDF (Optional)

In Example 12, we pretended that we were working in a call centre, that calls come in to the

centre at random times and that we finished dealing with one call at t = 0. We denoted by

X the length of time before the next call comes in and we assumed that the CDF for X was

F (x) =

{

0 if x < 0

1− e−λx if x ≥ 0
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We will now derive this F (x), under some reasonable hypotheses that will be stated shortly.

By definition F (x) = Pr(X ≤ x), which is the probability that a call comes in during

the time interval 0 < t ≤ x. We shall compute, for x ≥ 0, G(x) = 1 − F (x), which is the

probability that no call comes in during the time interval 0 < t ≤ x. We shall do so under

the assumptions that

• If a < t ≤ b and c < t ≤ d are disjoint time intervals, then whether or not there are

any calls during a < t ≤ b has no impact on whether or not there are any calls during

c < t ≤ d. Mathematically, this is formulated as

Pr(“no call during a < t ≤ b” and “no call during c < t ≤ d”)

= Pr(“no call during a < t ≤ b”) Pr(“no call during c < t ≤ d”)

• If a < b, then Pr(“no call during a < t ≤ b”) depends only on the length, b− a, of the

time interval. In particular

Pr(“no call during a < t ≤ b”) = Pr(“no call during 0 < t ≤ b− a”) = G(b− a)

Under these two assumptions, we have that, for any x, h ≥ 0,

G(x+ h) = Pr(“no call during 0 < t ≤ x+ h”)

= Pr(“no call during 0 < t ≤ x” and “no call during x < t ≤ x+ h”)

= Pr(“no call during 0 < t ≤ x”) Pr(“no call during x < t ≤ x+ h”)

= Pr(“no call during 0 < t ≤ x”) Pr(“no call during 0 < t ≤ h”)

= G(x) G(h)

We’ll also assume that the derivative G′(0) exists. Since G(0) = 1 (it’s impossible to have a

call arrive during 0 < t ≤ 0) then the derivative of G at x is

G′(x) = lim
h→0

G(x+ h)−G(x)

h
= lim

h→0

G(x)G(h)−G(x)

h

= G(x) lim
h→0

G(h)− 1

h
= G(x) lim

h→0

G(h)−G(0)

h

= G(x)G′(0)

Since G(x) is the probability that no call comes in during the time interval 0 < t ≤ x, it has

to decrease (or stay constant) as x increases. So let’s call G′(0) = −λ, with λ ≥ 0. Then

G(x) obeys the differential equation G′(x) = λG(x) and the initial condition G(0) = 1. By

Example 2 in the notes “Introduction to Differential Equations”, with a = −λ and b = 0, for

x ≥ 0,

G(x) = G(0)e−λx = e−λx

and

F (x) = 1−G(x) = 1− e−λx

as desired.
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