
Sequences and Series

You have probably learned about Taylor polynomials and, in particular, that

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ En(x)

where En(x) is the error introduced when you approximate ex by its Taylor polynomial of

degree n. You may have even seen a formula for En(x). We are now going to ask what

happens as n goes to infinity? Does the error go zero, giving an exact formula for ex? We

shall later see that it does and that

ex =

∞∑

n=0

xn

n!

But we shall also see other functions for which the corresponding error obeys lim
n→∞

En(x) = 0

for some values of x and not for other values of x. Before we can deal with such questions,

we have to build some foundations.

Sequences

A sequence is a list of infinitely many numbers with a specified order. It is denoted

{
a1, a2, a3, · · · , an, · · ·

}
or

{
an
}

or
{
an
}∞
n=1

Definition 1.

Example 2

Here are three sequences.

{

1,
1

2
,
1

3
, · · · , 1

n
, · · ·

}

or
{

an =
1

n

}∞

n=1

{

1, 2, 3, · · · , n, · · ·
}

or
{

an = n
}∞

n=1

{

1, −1, 1, −1, · · · , (−1)n−1, · · ·
}

or
{

an = (−1)n−1
}∞

n=1

It is not necessary that there be a simple explicit formula for the nth term of a sequence. For

example the decimal digits of π is a perfectly good sequence.

{
3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, · · ·

}

Example 2

Our primary concern with sequences wil be the behaviour of an as n tends to infinity and,

in particular, whether or not an “settles down” to some value as n tends to infinity.
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A sequence
{
an
}∞
n=1

is said to converge to the limit A if an approaches A as n tends

to infinity. If so, we write

lim
n→∞

an = A or an → A as n → ∞

A sequence is said to converge if it converges to some limit. Otherwise it is said to

diverge.

Definition 3.

Example 4

Three of the four sequences in Example 2 diverge:

• The sequence
{
an = n

}∞
n=1

diverges because an grows without bound, rather than

approaching some finite value, as n tends to infinity.

• The sequence
{
an = (−1)n−1

}∞
n=1

diverges because an oscillates between +1 and −1

rather than approaching a singe value as n tends to infinity.

• The sequence of the decimal digits of π also diverges, though the proof that this is the

case is a bit beyond us right now.

The other sequence in Example 2 has an = 1
n
. As n tends to infinity, 1

n
tends to zero. So

lim
n→∞

1

n
= 0

Example 4

Example 5 ( lim
n→∞

n
2n+1

)

Here is a little less trivial example. To study the behaviour of n
2n+1

as n → ∞, it is a good

idea to write it as
n

2n+ 1
=

1

2 + 1
n

As n → ∞, the 1
n
in the denominator tends to zero, so that the denominator 2 + 1

n
tends to

2 and 1
2+ 1

n

tends to 1
2
. So

lim
n→∞

n

2n+ 1
= lim

n→∞

1

2 + 1
n

=
1

2

Example 5

You already have already had a fair bit of experience dealing with limits like limx→∞ f(x).

This experience can be easily transferred to dealing with limn→∞ an limits by using the

following result.
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If

lim
x→∞

f(x) = L

and if f(n) = an for all positive integers n, then

lim
n→∞

an = L

Theorem 6.

Example 7 ( lim
n→∞

e−n)

Set f(x) = e−x. Then e−n = f(n) and

lim
x→∞

e−x = 0 =⇒ lim
n→∞

e−n = 0

Example 7

The bulk of the rules that you have used to work with limits like limx→∞ f(x) also apply

to limits like limn→∞ an.

Let A, B and C be real numbers and let the two sequences
{
an
}∞
n=1

and
{
bn
}∞
n=1

converge to A and B respectively. That is, assume that

lim
n→∞

an = A lim
n→∞

bn = B

Then the following limits hold.

(a) lim
n→∞

[
an + bn

]
= A+B

(The limit of the sum is the sum of the limits.)

(b) lim
n→∞

[
an − bn

]
= A− B

(The limit of the difference is the difference of the limits.)

(c) lim
n→∞

Can = CA.

(d) lim
n→∞

an bn = AB

(The limit of the product is the product of the limits.)

(e) If B 6= 0 then lim
n→∞

an
bn

=
A

B
(The limit of the quotient is the quotient of the limits provided the limit of the

denominator is not zero.)

Theorem 8 (Arithmetic of limits).
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If an ≤ cb ≤ bn for all natural numbers n, and if

lim
n→∞

an = lim
n→∞

bn = L

then

lim
n→∞

cn = L

Theorem 9 (Squeeze theorem).

If lim
n→∞

an = L and if the function g(x) is continuous at L, then

lim
n→∞

g(an) = g(L)

Theorem 10 (Continuous functions of limits).

Example 11 ( lim
n→∞

sin πn
2n+1

)

Write sin πn
2n+1

= g
(

n
2n+1

)
with g(x) = sin(πx). We saw, in Example 5 that

lim
n→∞

n

2n + 1
=

1

2

Since g(x) = sin(πx) is continuous at x = 1
2
, which is the limit of n

2n+1
, we have

lim
n→∞

sin
πn

2n+ 1
= lim

n→∞
g
( n

2n+ 1

)

= g
(1

2

)

= sin
π

2
= 1

Example 11

Series

A series is a sum

a1 + a2 + a3 + · · ·+ an + · · ·

of infinitely many terms. In summation notation, it is written

∞∑

n=1

an

An example is the decimal expansion of 1
3
which you will recall is 0.3333 · · · . You will also

recall that 0.3333 · · · means

3

10
+

3

100
+

3

1000
+

3

10000
+ · · · =

∞∑

n=1

3

10n
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The summation index n is of course a dummy index. You can use any symbol you like (within

reason) for the summation index.

∞∑

n=1

3

10n
=

∞∑

i=1

3

10i
=

∞∑

j=1

3

10j
=

∞∑

ℓ=1

3

10ℓ

A series can be expressed using summation in notation in many different ways. For example

∞∑

n=1

3

10n
=

n=1
︷︸︸︷

3

10
+

n=2
︷︸︸︷

3

100
+

n=3
︷ ︸︸ ︷

3

1000
+ · · ·

∞∑

j=2

3

10j−1
=

j=2
︷︸︸︷

3

10
+

j=3
︷︸︸︷

3

100
+

j=4
︷ ︸︸ ︷

3

1000
+ · · ·

3

10
+

∞∑

n=2

3

10n
=

3

10
+

n=2
︷︸︸︷

3

100
+

n=3
︷ ︸︸ ︷

3

1000
+ · · ·

all represent exactly the same series. To get from the first line to the second, substitute

n = j−1 everywhere, including in the limits of summation (so that n = 1 becomes j−1 = 1

which is rewritten as j = 2). Whenever you are in doubt as to what series a summation

notation expression represents, write out the first few terms, as above.

Of course a sum of infinitely many terms may or may not add up to a finite number. To

decide whether or not it does, we approximate it by a finite sum, say of N terms, and take

the limit as N tends to infinity. Here are the associated definitions.

The N th partial sum of the series
∑∞

n=1 an is

SN =
N∑

n=1

an

If the sequence
{
SN

}∞
N=1

converges as N → ∞, say to S, then we say that the series
∑∞

n=1 an converges and we write

∞∑

n=1

an = S

If the sequence of partial sums diverges, we say that the series diverges.

Definition 12.
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Example 13 (Geometric Series)

Let a and r be any two fixed real numbers with a 6= 0. The series

a + ar + ar2 + · · ·+ arn + · · · =
∞∑

n=0

arn

is called the geometric series with first term a and ratio r. Note that we have chosen to

start the summation index at n = 0. That’s fine. The first term is the n = 0 term, which

is ar0 = a. The second term is the n = 1 term, which is ar1 = ar. And so on. We could

have also written the series
∑∞

n=1 ar
n−1. That’s exactly the same series — the first term is

arn−1
∣
∣
n=1

= ar1−1 = a, the second term is arn−1
∣
∣
n=2

= ar2−1 = ar, and so on. Regardless

of how a geometric series is written, a is the first term and r is the ratio between successive

terms.

The partial sums of any geometric series can be computed exactly. Define

SN =
N∑

n=0

arn = a + ar + ar2 + · · ·+ arN

The secret to evaluating this sum is to see what happens when we multiply it r:

rSN = r
(
a+ ar + ar2 + · · ·+ arN

)

= ar + ar2 + ar3 + · · ·+ arN+1

This is almost the same as SN . The only differences are that the first term, a, is missing and

one additional term, arN+1, has been tacked on the end. So

rSN = SN − a+ arN+1 ⇐⇒ (1− r)SN = a
(
1− rN+1

)

If r 6= 1, we can now solve for SN just by dividing the 1 − r across. If r = 1, SN is exactly

N + 1 copies of a added together. So

SN =







a1−rN+1

1−r
if r 6= 1

a(N + 1) if r = 1

If |r| < 1, then rN+1 tends to zero as N → ∞, so that SN converges to 1
1−r

as N → ∞ and

∞∑

n=0

arn =
a

1− r
if |r| < 1

On the other hand if |r| ≥ 1, SN diverges because

• if r > 1, then rN grows to ∞ as N → ∞.

• If r < −1, then the magnitude of rN grows to ∞, and the sign of rN oscillates between

+ and −, as N → ∞.

• If r = +1, then N + 1 grows to ∞ as N → ∞.

• If r = −1, then rN just oscillates between +1 and −1 as N → ∞.

So if |r| ≥ 1 the geometric series
∑∞

n=0 ar
n diverges.

Example 13
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Example 14 (Decimal Expansions)

The decimal expansion

0.3333 · · · = 3

10
+

3

100
+

3

1000
+

3

10000
+ · · · =

∞∑

n=1

3

10n

is a geometric series with the first term a = 3
10

and the ratio r = 1
10
. So, by Example 13,

0.3333 · · · =
∞∑

n=1

3

10n
=

3/10

1− 1/10
=

3/10
9/10

=
1

3

just as we would have expected. Similarly,

0.16161616 · · · = 16

100
+

16

10000
+

16

1000000
+ · · ·

is a geometric series with the first term a = 16
100

and the ratio r = 1
100

. So, by Example 13,

0.16161616 · · · =
∞∑

n=1

16

100n
=

16/100

1− 1/100
=

16/100
99/100

=
1

6

again, as expected. In this way any periodic decimal expansion converges to a ratio of two

integers — that is, to a rational number.

Example 14

Example 15 (Telescoping Series)

In this example we are going to study the series
∑∞

n=1
1

n(n+1)
. This is a rather artificial series

that has been rigged to illustrate a phenomenon call “telescoping”. Because

1

n(n + 1)
=

1

n
− 1

n+ 1

we can compute the partial sums for this series exactly.

SN =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1

N · (N + 1)

=
(1

1
− 1

2

)

+
(1

2
− 1

3

)

+
(1

3
− 1

4

)

+ · · ·+
( 1

N
− 1

N + 1

)

The second term of each bracket exactly cancels the first term of the following bracket. So

the sum “telescopes” leaving just

SN = 1− 1

N + 1

and we can now easily compute
∞∑

n=1

1

n(n+ 1)
= lim

N→∞
SN = lim

N→∞

(

1− 1

N + 1

)

= 1

Example 15
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The usual addition and multiplication by constants rules also apply to series.

Let A, B and C be real numbers and let the two series
∑∞

n=1 an and
∑∞

n=1 bn
converge to A and B respectively. That is, assume that

∞∑

n=1

an = A

∞∑

n=1

bn = B

Then the following hold.

(a)
∞∑

n=1

[
an + bn

]
= A+B and

∞∑

n=1

[
an − bn

]
= A−B

(b)
∞∑

n=1

Can = CA.

Theorem 16 (Arithmetic of series).

Convergence Tests

It is very common to encounter series for which it is difficult, or even virtually impossible, to

determine the sum exactly. Often you try to evaluate the sum approximately by truncating

it, i.e. having the index run only up to some finite N , rather than infinity. But there is no

point in doing so if the series diverges. So you like to at least know if the series converges

or diverges. Furthermore you would also like to know what error is introduced when you

approximate
∑∞

n=1 an by the “truncated series”
∑N

n=1 an. That’s called the truncation error.

There are a number of “convergence tests” to help you with this.

The Divergence Test

Our first test is very easy to apply, but it is also rarely useful. It just allows us to quickly

reject some “trivially divergent” series. It is based on the observation that

• by definition, a series
∑∞

n=1 an converges to S when the partial sums SN =
∑N

n=1 an
converge to S.

• Then, as N → ∞, we have SN → S and, because N − 1 → ∞ too, we also have

SN−1 → S.

• So aN = SN − SN−1 → S − S = 0.

If the sequence
{
an
}∞
n=1

fails to converge to zero as n → ∞, then the series
∑∞

n=1 an
diverges.

Theorem 17 (Divergence Test).
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Example 18

Let an = n
n+1

. Then

lim
n→∞

an = lim
n→∞

n

n + 1
= lim

n→∞

1

1 + 1/n
= 1 6= 0

So the series
∑∞

n=1
n

n+1
diverges.

Example 18

Warning 19

The divergence test is a “one way test”. It tells us that if limn→∞ an is nonzero, or fails to exist,

then the series
∑∞

n=1 an diverges. But it tells us absolutely nothing when limn→∞ an = 0. In

particular, it is perfectly possible for a series
∑∞

n=1 an to diverge even though limn→∞ an = 0.

An example is
∑∞

n=1
1
n
. We’ll show in Example 21, below, that it diverges.

Warning 19

The Integral Test

Let c be any real number. If f(x) is a function which is defined and continuous for

all x ≥ c and which obeys

(i) f(x) ≥ 0 for all x ≥ c and

(ii) f(x) decreases as x increases and

(iii) f(n) = an for all n ≥ c.

x

y a1

1

a2

2

a3

3

a4

4

y = f(x)

Then ∞∑

n=1

an converges ⇐⇒
∫ ∞

c

f(x) dx converges

Furthermore, when the series converges, the truncation error

∣
∣
∣
∣

N∑

n=1

an −
∞∑

n=1

an

∣
∣
∣
∣
≤

∫ ∞

N

f(x) dx

Theorem 20 (The Integral Test).
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Proof. Let I be any fixed integer bigger than c + 1. Then
∑∞

n=1 an converges if and only if
∑∞

n=I an converges — removing a fixed finite number of terms from a series cannot impact

whether or not it converges. Since an ≥ 0 for all n ≥ I > c, the sequence of partial sums

sℓ =
∑ℓ

n=I an increases as ℓ increases. It must either converge to some finite number or

increase to infinity. That is, either
∑∞

n=I an converges to a finite number or it is +∞.

aI

I

aI+1

I + 1

aI+2

I + 2

aI+3

I + 3

y = f(x)

x

Look at the figure above. The shaded area in the figure is
∑∞

n=I an because

• the first shaded rectangle has height aI and width 1, and hence area aI and

• the second shaded rectangle has height aI+1 and width 1, and hence area aI+1, and so

on

This shaded area is smaller than the area under the curve y = f(x) for I − 1 ≤ x < ∞. So

∞∑

n=I

an ≤
∫ ∞

I−1

f(x) dx (1)

and, if the integral is finite, the sum
∑∞

n=I an is finite too.

aI

I

aI+1

I + 1

aI+2

I + 2

aI+3

I + 3

y = f(x)

x

For the “divergence case” look at the figure above. The (new) shaded area in the figure

is again
∑∞

n=I an because

• the first shaded rectangle has height aI and width 1, and hence area aI and

• the second shaded rectangle has height aI+1 and width 1, and hence area aI+1, and so

on

This time the shaded area is larger than the area under the curve y = f(x) for I ≤ x < ∞.

So ∞∑

n=I

an ≥
∫ ∞

I

f(x) dx
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and, if the integral is infinite, the sum
∑∞

n=I an is infinite too.

Finally, the bound on the trunction error is just the special case of (1) with I = N + 1:

∞∑

n=1

an −
N∑

n=1

an =
∞∑

n=N+1

an ≤
∫ ∞

N

f(x) dx

Example 21 (
∞∑

n=1

1
np )

Let p > 0. We’ll now use the integral test to determine whether or not the series
∑∞

n=1
1
np

converges. To do so, we need a function f(x) that obeys f(n) = an = 1
np for all n bigger

than some c. Certainly f(x) = 1
xp obeys f(n) = 1

np for all n ≥ 1. So let’s pick this f and try

c = 1. (We can always increase c later if we need to.) This function also obeys the other two

conditions of Theorem 20:

(i) f(x) > 0 for all x ≥ c = 1 and

(ii) f(x) decreases as x increases because f ′(x) = −p 1
xp+1 < 0 for all x ≥ c = 1.

So the integral test tells us that the series
∑∞

n=1
1
np converges if and only if the integral

∫∞
1

dx
xp

converges. We have already seen, in Example 4 of the notes “Improper Integrals”, that the

integral
∫∞
1

dx
xp converges if and only if p > 1. So we conclude that

∑∞
n=1

1
np converges if and

only if p > 1. In particular the series
∑∞

n=1
1
n
, which is called the harmonic series, diverges.

On the other hand the series
∑∞

n=1
1
n2 converges. If we approximate

∑∞
n=1

1
n2 by the

truncated series
∑N

n=1
1
n2 , we make an error of at most

∫ ∞

N

dx

x2
= lim

R→∞

∫ R

N

dx

x2
= lim

R→∞

[

− 1

R
+

1

N

]

=
1

N

Example 21

Example 22 (
∞∑

n=2

1
n(logn)p

)

Let p > 0. We’ll now use the integral test to determine whether or not the series
∞∑

n=2

1
n(logn)p

converges. As in the last example, we start by choosing a function that obeys f(n) = an =
1

n(logn)p
for all n bigger than some c. Certainly f(x) = 1

x(log x)p
obeys f(n) = 1

n(logn)p
for all

n ≥ 2. So let’s use that f and try c = 2. Now let’s check the other two conditions of Theorem

20:

(i) Both x and log x are positive for all x > 1, so f(x) > 0 for all x ≥ c = 2.

(ii) As x increases both x and log x increase and so x(log x)p increases and f(x) decreases.
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So the integral test tells us that the series
∞∑

n=2

1
n(logn)p

converges if and only if the integral
∫∞
2

dx
x(log x)p

converges. To test the convergence of the integral, we make the substitution

u = log x, du = dx
x
.

∫ R

2

dx

x(log x)p
=

∫ logR

log 2

du

up

We already know that the integral the integral
∫∞
1

du
up , and hence the integral

∫ R

2
dx

x(log x)p
,

converges if and only if p > 1. So we conclude that
∞∑

n=1

1
n(logn)p

converges if and only if p > 1.

Example 22

The Comparison Test

Our next convergence test is called the comparison test.

Let N0 be a natural number and let K > 0.

(a) If |an| ≤ Kcn for all n ≥ N0 and
∞∑

n=0

cn converges, then
∞∑

n=0

an converges.

(b) If an ≥ Kdn ≥ 0 for all n ≥ N0 and
∞∑

n=0

dn diverges, then
∞∑

n=0

an diverges.

Theorem 23 (The Comparison Test).

“Proof”. We will not prove this theorem. We’ll just observe that it is very reasonable. That’s

why there are quotation marks around “Proof”.

(a) If
∞∑

n=0

cn converges to a finite number and if the terms in
∞∑

n=0

an are smaller than the terms

in
∞∑

n=0

cn, then it is no surprise that
∞∑

n=0

an converges too.

(b) If
∞∑

n=0

dn diverges (i.e. adds up to ∞) and if the terms in
∞∑

n=0

an are larger than the terms

in
∞∑

n=0

dn, then of course
∞∑

n=0

an adds up to ∞, and so diverges, too.
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Example 24 (
∑∞

n=1
1

n2+2n+3
)

We could determine whether or not the series
∑∞

n=1
1

n2+2n+3
converges by applying the inte-

gral test. But it is not worth the effort. Whether or not any series converges is determined by

the behaviour of the summand for very large n. So the first step in tackling such a problem

is to develop some intuition about the behaviour of an when n is very large.

• Step 1: Develop intuition. In this case, when n is very large n2 ≫ 2n ≫ 3 so that
1

n2+2n+3
≈ 1

n2 . We already know from Example 21, with p = 2, that
∑∞

n=1
1
n2 converges,

so we would expect that
∑∞

n=1
1

n2+2n+3
converges too.

• Step 2: Verify intuition. We can use the comparison test to confirm that this is indeed

the case. For any n ≥ 1, n2 + 2n + 3 > n2, so that 1
n2+2n+3

≤ 1
n2 . So the comparison

test, Theorem 23, with an = 1
n2+2n+3

and cn = 1
n2 , tells us that

∑∞
n=1

1
n2+2x+3

converges.

Example 24

Of course the previous example was “rigged” to give an easy application of the comparison

test. It is often relatively easy, using arguments like those used in Example 24, to find a

“simple” comparison series
∑∞

n=1 bn. However it is pretty rare that an ≤ bn. It is much more

common that an ≤ Kbn for some constant K. This is enough to allow application of the

comparison test. However finding the constant K can be really tedious. Here is a variant of

the comparison test that eliminates the need to find K.

Let
∑∞

n=1 an and
∑∞

n=1 bn be two series with bn > 0 for all n. Assume that

lim
n→∞

an
bn

= L

exists.

(a) If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges too.

(b) If L 6= 0 and
∑∞

n=1 bn diverges, then
∑∞

n=1 an diverges too.

Theorem 25 (Limiting Comparison Theorem).

“Proof”. We will not prove this theorem, but we will explain the idea behind the proof.

Let’s start with part (a). Because we are told that limn→∞
an
bn

= L, we know that, when

n is large, an
bn

is very close to L, so that
∣
∣
∣
an
bn

∣
∣
∣ is very close to |L|. In particular, there is some

natural number N so that
∣
∣
∣
an
bn

∣
∣
∣ ≤ |L| + 1, and hence |an| ≤ Kbn with K = |L| + 1, for all

n ≥ N . The comparison Theorem 23 now implies that
∑∞

n=1 an converges.

Now for part (b). Let’s suppose that L > 0. (If L < 0, just replace an with −an.)

Because we are told that limn→∞
an
bn

= L, we know that, when n is large, an
bn

is very close
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to L. In particular, there is some natural number N so that an
bn

≥ L
2
, and hence an ≥ Kbn

with K = L
2
> 0, for all n ≥ N . The comparison Theorem 23 now implies that

∑∞
n=1 an

diverges.

Example 26 (
∑∞

n=1

√
n+1

n2−2n+3
)

Set an =
√
n+1

n2−2n+3
. We first try to develop some intuition about the behaviour of an for large

n and then we confirm that our intuition was correct.

• Step 1: Develop intuition. When n ≫ 1, the numerator
√
n + 1 ≈ √

n, and the

denominator n2−2n+3 ≈ n2 so that an ≈
√
n

n2 = 1
n3/2 and it looks like our series should

converge by Example 21 with p = 3
2
.

• Step 2: Verify intuition. To confirm our intuition we set bn = 1
n3/2 and compute

lim
n→∞

an
bn

= lim
n→∞

√
n+1

n2−2n+3
1

n3/2

= lim
n→∞

n3/2
√
n+ 1

n2 − 2n+ 3

= lim
n→∞

n2
√

1 + 1/n

n2 − 2n+ 3
= lim

n→∞

n2
√

1 + 1/n

n2 − 2n+ 3

1/n2

1/n2

= lim
n→∞

√

1 + 1/n

1− 2/n + 3/n2
= 1

We already know that the series
∑∞

n=1 bn =
∑∞

n=1
1

n3/2 converges by Example 21 with

p = 3
2
. So our series converges by the limiting comparison test, Theorem 25.

Example 26

The Ratio Test

Let N be any natural number and assume that an 6= 0 for all n ≥ N .

(a) If lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = L < 1, then

∞∑

n=1

an converges.

(b) If lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = L > 1, or lim

n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = +∞, then

∞∑

n=1

an diverges.

Theorem 27 (Ratio Test).

Proof. (a) Pick any number R obeying L < R < 1. We are assuming that
∣
∣
∣
an+1

an

∣
∣
∣ approaches

L as n → ∞. In particular there must be some natural number M so that
∣
∣
∣
an+1

an

∣
∣
∣ ≤ R for all
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n ≥ M . So |an+1| ≤ R|an| for all n ≥ M . In particular

|aM+1| ≤ R |aM |
|aM+2| ≤ R |aM+1| ≤ R2 |aM |
|aM+3| ≤ R |aM+2| ≤ R3 |aM |

...

|aM+ℓ| ≤ Rℓ |aM |

for all ℓ ≥ 0. The series
∑∞

ℓ=0R
ℓ |aM | is a geometric series with ratio R smaller than one

in magnitude and so converges. Consequently, by the comparison test with an replaced by

Aℓ = an+ℓ and cn replaced by Cℓ = Rℓ |aM |, the series
∞∑

ℓ=1

aM+ℓ =
∞∑

n=M+1

an converges. So the

series
∞∑

n=1

an converges too.

(b) We are assuming that
∣
∣
∣
an+1

an

∣
∣
∣ approaches L > 1 as n → ∞. In particular there must be

some natural number M > N so that
∣
∣
∣
an+1

an

∣
∣
∣ ≥ 1 for all n ≥ M . So |an+1| ≥ |an| for all

n ≥ M . That is, |an| increases as n increases as long as n ≥ M . So |an| ≥ |aM | for all n ≥ M

and an cannot converge to zero as n → ∞. So the series diverges by the divergence test.

Warning 28

Beware that the ratio test provides absolutely no conclusion about the convergence or diver-

gence of the series
∞∑

n=1

an if lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = 1. See Example 30, below.

Warning 28

Example 29 (
∑∞

n=0 anx
n−1)

Fix any two nonzero real numbers a and x. We have already seen in Example 13 — we have

just renamed r to x — that the geometric series
∑∞

n=0 ax
n converges when |x| < 1 and di-

verges when |x| ≥ 1. We are now going to consider a new series, constructed by differentiating

each term in the geometric series
∑∞

n=0 ax
n. This new series is

∞∑

n=0

an with an = a n xn−1

Let’s apply the ratio test.

∣
∣
∣
an+1

an

∣
∣
∣ =

∣
∣
∣
a (n+ 1) xn

a n xn−1

∣
∣
∣ =

n+ 1

n
|x| =

(

1 +
1

n

)

|x| → L = |x| as n → ∞

The ratio test now tells us that the series
∑∞

n=0 a n xn−1 converges if |x| < 1 and diverges if

|x| > 1. It says nothing about the cases x = ±1. But in both of those cases an = a n (±1)n

does not converge to zero as n → ∞ and the series diverges by the divergence test.
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Example 29

Example 30 (L = 1)

In this example, we are going to see two different series that have limn→∞

∣
∣
∣
an+1

an

∣
∣
∣ = 1. One is

going to converge and the other is going to diverge.

The first series is the harmonic series
∞∑

n=1

an with an =
1

n

We have already seen, in Example 21, that this series diverges. It has
∣
∣
∣
an+1

an

∣
∣
∣ =

∣
∣
∣
∣

1
n+1
1
n

∣
∣
∣
∣
=

n

n + 1
=

1

1 + 1
n

→ L = 1 as n → ∞

The second series is ∞∑

n=1

an with an =
1

n2

We have already seen, also in Example 21, that this series converges. But it also has

∣
∣
∣
an+1

an

∣
∣
∣ =

∣
∣
∣
∣

1
(n+1)2

1
n2

∣
∣
∣
∣
=

n2

(n+ 1)2
=

1

(1 + 1/n)2
→ L = 1 as n → ∞

Example 30

Power Series

Remember that we set as our goal, in studying sequences and series, the development of

machinery which would allow us to answer questions like, “Is ex =
∞∑

n=0

xn

n!
?”. We are now

ready to start working on series like
∞∑

n=0

xn

n!
. We’ll start with the definition of a power series.

A series of the form

A0 + A1(x− c) + A2(x− c)2 + A3(x− c)3 + · · · =
∞∑

n=0

An(x− c)n

is called a power series in (x− c) or a power series centered about c. The numbers

An are called the coefficients of the power series. Often c = 0 and then the series

reduces to

A0 + A1x+ A2x
2 + A3x

3 + · · · =
∞∑

n=0

Anx
n

Definition 31.
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The x in a power series is to be thought of as a variable. So each power series is really

a whole family of series — a different series for each value of x. Notice what happens if we

apply the ratio test to try and determine which series in this family converge. The nth term

in the series
∑∞

n=0An(x− c)n is an = An(x− c)n. So the ratio test tells us to compute

∣
∣
∣
an+1

an

∣
∣
∣ =

∣
∣
∣
∣

An+1(x− c)n+1

An(x− c)n

∣
∣
∣
∣
=

∣
∣
∣
An+1

An

∣
∣
∣ |x− c|

Now we are to try and take the limit n → ∞. There are several possibilities.

• If the limit limn→∞

∣
∣
∣
An+1

An

∣
∣
∣ exists and equals some nonzero value, say A, then the ratio

test says that the series
∑∞

n=0An(x − c)n converges when A|x − c| < 1, i.e. when

|x − c| < 1
A
, and diverges when A|x − c| > 1, i.e. when |x − c| > 1

A
. This R = 1

A
is

called the radius of convergence of the series.

• If the limit limn→∞

∣
∣
∣
An+1

An

∣
∣
∣ exists and equals zero, then limn→∞

∣
∣
∣
An+1

An

∣
∣
∣|x − c| = 0 for

every x and the ratio test tells us that the series
∑∞

n=0An(x− c)n converges for every

number x. In this case we say that the series has an infinite radius of convergence.

• If the
∣
∣
∣
An+1

An

∣
∣
∣ tends to +∞ as n → 0, then limn→∞

∣
∣
∣
An+1

An

∣
∣
∣|x− c| = +∞ for every x 6= c

and the ratio test tells us that the series
∑∞

n=0An(x − c)n diverges for every number

x 6= c. When x = c, the series reduces to A0 + 0 + 0 + 0 + 0 + · · · , which of course

converges. In this case we say that the series has radius of convergence zero.

• If
∣
∣
∣
An+1

An

∣
∣
∣ does not approach a limit as n → ∞, then we learn nothing from the ratio

test.

All of these possibilities do happen. Here is an example of each.

Example 32

If a 6= 0, the geometric series
∑∞

n=0 ax
n has An = a. So

1

R
= lim

n→∞

∣
∣
∣
An+1

An

∣
∣
∣ = lim

n→∞
1 = 1

and
∞∑

n=0

axn has radius of convergence 1. Of course, we already knew that.

Example 32

Example 33

Recall that n! = 1× 2× 3× · · ·× n is called “n factorial”. The series
∞∑

n=0

xn

n!
has An = 1

n!
. So

lim
n→∞

∣
∣
∣
An+1

An

∣
∣
∣ = lim

n→∞

1/(n+1)!

1/n!
= lim

n→∞

n!

(n+ 1)!
= lim

n→∞

1× 2× 3× · · · × n

1× 2× 3× · · · × n× (n+ 1)
= lim

n→∞

1

n + 1

= 0
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and
∞∑

n=0

xn

n!
has radius of convergence ∞. It converges for every x.

Example 33

Example 34

The series
∑∞

n=0 n!x
n has An = n!. So

lim
n→∞

∣
∣
∣
An+1

An

∣
∣
∣ = lim

n→∞

(n+ 1)!

n!
= lim

n→∞

1× 2× 3× 4× · · · × n× (n + 1)

1× 2× 3× 4× · · · × n
= lim

n→∞
(n+ 1) = +∞

and
∑∞

n=0 n!x
n has radius of convergence zero. It converges only for x = 0.

Example 34

Example 35

Let A0 = 4 and for each natural number n, let An be one plus the nth decimal digit of π. So

every An is an integer between 1 and 10 and the series

∞∑

n=0

Anx
n = 4 + 2x+ 5x2 + 2x3 + 6x4 + 10x5 + · · ·

Because π is an irrational number An+1

An
cannot have a limit as n → ∞. (If you don’t know

why this is the case, don’t worry about it.) So the ratio test tells us nothing about the

convergence of this series. But we can still figure out for which x’s it converges.

• Because every coefficient An is no bigger (in magnitude) than 10, the nth term in our

series obeys
∣
∣Anx

n
∣
∣ ≤ 10|x|n

and so is smaller than the nth term in the geometric series
∑∞

n=0 10|x|n. This geometric

series converges if |x| < 1. So, by the comparison test, our series converges for |x| < 1

too.

• Since every An is at least one, the nth term in our series obeys

∣
∣Anx

n
∣
∣ ≥ |x|n

If |x| ≥ 1, this an = Anx
n cannot converge to zero as n → ∞, and our series diverges

by the divergence test.

In conclusion, our series converges if and only if |x| < 1. We say that it has radius of

convergence 1.

Example 35

Though we won’t prove it, it is true that every power series has a radius of convergence,

whether or not the limit of
∣
∣
∣
An+1

An

∣
∣
∣ exists.
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Let
∞∑

n=0

An(x − c)n be a power series. Then one of the following alternatives must

hold.

(i) The power converges for every number x. In this case we say that the radius

of convergence is ∞.

(ii) There is a number 0 < R < ∞ such that the series converges for |x− c| < R

and diverges for |x− c| > R. Then R is called the radius of convergence.

(iii) The series converges for x = 0 and diverges for all x 6= 0. In this case, we say

that the radius of convergence is 0.

Theorem 36.

Working With Power Series

Here is a theorem that can be used help build power series representations for complicated

functions from power series representations of simple functions.
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Assume that the functions f(x) and g(x) are given by the power series

f(x) =
∞∑

n=0

An(x− c)n g(x) =
∞∑

n=0

Bn(x− c)n

for all x obeying |x− c| < R. In particular, we are assuming that both power series

have radius of convergence at least R. Also let A be a constant. Then

f(x) + g(x) =
∞∑

n=0

[An +Bn] (x− c)n

Af(x) =

∞∑

n=0

AAn (x− c)n

(x− c)Nf(x) =

∞∑

n=0

An (x− c)n+N for any natural number N

=

∞∑

k=N

Ak−N (x− c)k where k = n+N

f ′(x) =
∞∑

n=0

An n (x− c)n−1

∫ x

c

f(t) dt =
∞∑

n=0

An
(x− c)n+1

n+ 1
∫

f(x) dx =

[ ∞∑

n=0

An
(x− c)n+1

n+ 1

]

+ C

for all x obeying |x− c| < R. In particular the radius of convergence of each of the

five power series on the right hand side is at least R. The C in the last formula is

of course an arbitrary constant.

Theorem 37 (Operations on Power Series).

We’ll now use this theorem to build power series representations for a bunch of functions

out of the one simple power series representation that we know — the geometric series

1

1− x
=

∞∑

n=0

xn for all |x| < 1

Example 38 ( x
2+x2 )

Find a power series representation for x
2+x2 .

Solution. The secret to finding power series representations for a good many functions is to

manipulate them into a form in which 1
1−y

appears and use the geometric series representation
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1
1−y

=
∑∞

n=0 y
n. We have deliberately renamed the variable to y here — it does not have to

be x. We can do that for the given function.

x

2 + x2
=

x

2

1

1 + x2/2
=

x

2

1

1−
(
− x2/2

)

=
x

2

1

1− y

∣
∣
∣
∣
y=−x2/2

=
x

2

[ ∞∑

n=0

yn
]

y=−x2/2

=
x

2

∞∑

n=0

(

− x2

2

)n

=
x

2

∞∑

n=0

(−1)n

2n
x2n

=

∞∑

n=0

(−1)n

2n+1
x2n+1

This is a perfectly good power series. There is nothing wrong with the power of x being

2n + 1. In fact, you should try to always write power series in forms that are as easy to

understand as possible. The geometric series that we used in the second line converges for

|y| < 1 ⇐⇒
∣
∣− x2/2

∣
∣ < 1 ⇐⇒ |x|2 < 2 ⇐⇒ |x| <

√
2

So our power series has radius of convergence
√
2. It converges for −

√
2 < x <

√
2.

Example 38

Example 39 ( 1
(1−x)2

)

Find a power series representation for 1
(1−x)2

.

Solution. Once again the trick is to express 1
(1−x)2

in terms of 1
1−x

.

1

(1− x)2
=

d

dx

1

1− x

=
d

dx

∞∑

n=0

xn

=
∞∑

n=1

nxn−1

Note that the n = 0 term has disappeared because, for n = 0

d

dx
xn =

d

dx
1 = 0

Our power series has radius of convergence 1. It converges if and only if −1 < x < 1, since

the series diverges for |x| ≥ 1, by the divergence test.

Example 39
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Example 40 (ln(1 + x))

Find a power series representation for ln(1 + x).

Solution. Recall that d
dx

ln(1 + x) = 1
1+x

so that ln(1 + t) is an antiderivative of 1
1+t

and

ln(1 + x) =

∫ x

0

dt

1 + t
=

∫ x

0

[ ∞∑

n=0

(−t)n
]

dt =
∞∑

n=0

∫ x

0

(−t)n dt

=
∞∑

n=0

(−1)n
xn+1

n + 1

= x− x2

2
+

x3

3
− x4

4
− · · ·

Theorem 37 guarantees that the radius of convergence is at least one (the radius of con-

vergence of the geometric series
∑∞

n=0(−t)n). When x = −1 our series reduces to minus
∑∞

n=0
1

n+1
, which is the harmonic series and so diverges. That’s no surprise — ln(1+(−1)) =

−∞. So the radius of convergence is exactly 1. It is possible to prove, though we won’t do so

here, that when x = 1, the series converges to ln 2. So the series converges when −1 < x ≤ 1.

Example 40

Example 41 (arctan x)

Find a power series representation for arctanx.

Solution. Recall that d
dx

arctan x = 1
1+x2 so that arctan t is an antiderivative of 1

1+t2
and

arctan x =

∫ x

0

dt

1 + t2
=

∫ x

0

[ ∞∑

n=0

(−t2)
n
]

dt =
∞∑

n=0

∫ x

0

(−1)nt2n dt

=
∞∑

n=0

(−1)n
x2n+1

2n+ 1

Theorem 37 guarantees that the radius of convergence is at least one (the radius of conver-

gence of the geometric series
∑∞

n=0 (−t2)
n
). When |x| > 1, the series diverges by the ratio

test or the divergence test. It is possible to prove, though once again we won’t do so here,

that when x = ±1, the series converges to arctan(±1) = ±π
2
. So the series converges when

−1 ≤ x ≤ 1.

Example 41

Taylor Series

Recall that Taylor polynomials provide a hierarchy of approximations to a given function

f(x) near a given point a.
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• The crudest approximation is the constant approximation f(x) ≈ f(a).

• Then comes the linear, or tangent line, approximation f(x) ≈ f(a) + f ′(a) (x− a).

• Then comes the quadratic approximation f(x) ≈ f(a)+ f ′(a) (x−a)+ 1
2
f ′′(a) (x−a)2.

• In general, the Taylor polynomial of degree n, for the function f(x) about the expansion

point a, is the polynomial, Tn(x), determined by the requirements that f (m)(a) =

T
(m)
n (a) for all 0 ≤ m ≤ n. That is, f and Tn have the same derivatives at a, up to

order n. Explicitly,

f(x) ≈ Tn(x) = f(a) + f ′(a) (x− a) +
1

2
f ′′(a) (x− a)2 + · · ·+ 1

n!
f (n)(a) (x− a)n

=
n∑

m=0

1

m!
f (m)(a) (x− a)n

These are of course approximations — often very good approximations near x = a — but

still just approximations. Can we get exact representations by taking the limit as n → ∞?

That’s the question we’ll consider now.

Fix a real number a and suppose that all derivatives of the function f(x) exist. Then, for

any natural number n,

f(x) = Tn(x) + En(x) (2)

where

Tn(x) = f(a) + f ′(a) (x− a) + · · ·+ 1
n!
f (n)(a) (x− a)n (2a)

is the Taylor polynomial of degree n for the function f(x) and expansion point a, and En(x) =

f(x)− Tn(x) is the error introduced when we approximate f(x) by the polynomial Tn(x). It

is true, though we won’t prove it, that

En(x) =
1

(n+1)!
f (n+1)(c) (x− a)n+1 (2b)

for some (usually unknown) c strictly between a and x.

If it happens that En(x) tends to zero as n → ∞, then we have the exact formula

f(x) = lim
n→∞

Pn(x)

for f(x). This is usually written

f(x) =
∞∑

n=0

1
n!
f (n)(a) (x− a)n (3)

and is called the Taylor series of f(x) with expansion point a. (When a = 0 it is also called

the Maclaurin series of f(x).) It is a power series representation for f(x).
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Example 42 (Exponential Series)

This happens with the exponential function f(x) = ex. We’ll first find f (m)(0) for all integers

m ≥ 0.

f(x) = ex ⇒ f ′(x) = ex ⇒ f ′′(x) = ex · · ·
f(0) = e0 = 1 ⇒ f ′(0) = e0 = 1 ⇒ f ′′(0) = e0 = 1 · · ·

Applying (2) with f(x) = ex and a = 0, and using that f (m)(a) = ex0 = e0 = 1 for all m,

ex = f(x) = 1 + x+
x2

2!
+ · · ·+ xn

n!
+

1

(n+ 1)!
ecxn+1 (4)

for some c between 0 and x. Now consider any fixed real number x. As c runs from 0 to x,

ec runs from e0 = 1 to ex. In particular, ec is always between 1 and ex and so is smaller than

1 + ex. Thus the error term

|En(x)| =
∣
∣
∣

ec

(n+ 1)!
xn+1

∣
∣
∣ ≤ [ex + 1]

|x|n+1

(n+ 1)!

Let’s call en(x) = |x|n+1

(n+1)!
. We claim that as n increases towards infinity, en(x) decreases

(quickly) towards zero. To see this, let’s compare en(x) and en+1(x).

en+1(x)

en(x)
=

|x|n+2

(n+2)!

|x|n+1

(n+1)!

=
|x|

n+ 2

So, when n is bigger than, for example 2|x|, we have en+1(x)
en(x)

< 1
2
. That is, increasing the

index on en(x) by one decreases the size of en(x) by a factor of at least two. As a result en(x)

must tend to zero as n → ∞. Consequently lim
n→∞

En(x) = 0 and

ex = lim
n→∞

[

1 + x+
1

2
x2 +

1

3!
x3 + · · ·+ 1

n!
xn

]

=
∞∑

n=0

1

n!
xn (5)

Example 42

Example 43 (Sine and Cosine Series)

The trigonometric functions sin x and cosx also have widely used Taylor series expansions

about a = 0. To find them, we first, compute all derivatives at general x.

f(x) = sin x f ′(x) = cosx f ′′(x) = − sin x f (3)(x) = − cosx f (4)(x) = sin x · · ·
g(x) = cosx g′(x) = − sin x g′′(x) = − cosx g(3)(x) = sin x g(4)(x) = cos x · · ·

(6)

The pattern starts over again with the fourth derivative being the same as the original

function. Now set x = a = 0.

f(x) = sin x f(0) = 0 f ′(0) = 1 f ′′(0) = 0 f (3)(0) = −1 f (4)(0) = 0 · · ·
g(x) = cos x g(0) = 1 g′(0) = 0 g′′(0) = −1 g(3)(0) = 0 g(4)(0) = 1 · · ·

(7)
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For sin x, all even numbered derivatives are zero. The odd numbered derivatives alternate

between 1 and −1. For cosx, all odd numbered derivatives are zero. The even numbered

derivatives alternate between 1 and −1. So, the Taylor polynomials that best approximate

sin x and cosx near x = a = 0 are

sin x ≈ x− 1
3!
x3 + 1

5!
x5 − · · ·

cosx ≈ 1− 1
2!
x2 + 1

4!
x4 − · · ·

Reviewing (6) we see that every derivative of sin x and cosx is one of ± sin x and ± cosx.

Consequently, when we apply (2b) we always have
∣
∣f (n+1)(c)

∣
∣ ≤ 1 and hence |En(x)| ≤ |x|n+1

(n+1)!
.

We have already seen in Example 42, that |x|n+1

(n+1)!
(which we called en(x) in Example 42)

converges to zero as n → ∞. Consequently, for both f(x) = sin x and f(x) = cosx, we have

lim
n→∞

En(x) = 0 and

f(x) = lim
n→∞

[

f(0) + f ′(0) x+ · · ·+ 1
n!
f (n)(0) xn

]

Reviewing (7), we conclude that

sin x = x− 1
3!
x3 + 1

5!
x5 − · · · =

∞∑

n=0

(−1)n 1
(2n+1)!

x2n+1

cosx = 1− 1
2!
x2 + 1

4!
x4 − · · · =

∞∑

n=0

(−1)n 1
(2n)!

x2n

(8)

Example 43

c© Joel Feldman. 2015. All rights reserved. 25 February 19, 2015


