
Vectors and Planes

1. Points and Vectors

Each point in two dimensions may be labeled by two coordinates (a, b) which specify the

position of the point in some units with respect to some axes as in the figure on the left

below. If a > 0 then the point is to the right of the y axis and if a < 0 then the point is to

the left of the y–axis. The distance from (a, b) to the y–axis is |a| and |b| is the distance from
(a, b) to the x–axis. In particular, the equation of the y–axis is x = 0 and the equation of the

x–axis is y = 0. Similarly, each point in three dimensions may be labeled by three coordinates

(a, b, c). To get from the origin, (0, 0, 0), to (a, b, c) you walk along the x–axis a units (think

of the x–axis as pointing horizontally straight out of the page), then parallel to the y–axis b

units and then vertically parallel to the z–axis c units. The distance from (a, b, c) to the xy–

plane is |c| and the equation of the xy–plane is z = 0. The set of all points in two dimensions
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is denoted R
2 and the set of all points is three dimensions is denoted R

3. The distance from

the point (x, y, z) to the point (x′, y′, z′) is
√

(x− x′)2 + (y − y′)2 + (z − z′)2 so that the

equation of the sphere centered on (1, 2, 3) with radius 4 is (x−1)2+(y−2)2+(z−3)2 = 16.

A vector is a quantity which has both a direction and a magnitude, like a velocity. If you

are moving, the magnitude (length) of your velocity vector is your speed (distance travelled

per unit time) and the direction of your velocity vector is your direction of motion. To

specify a vector in three dimensions you have to give three components, just as for a point.

To draw the vector with components a, b, c you can draw an arrow from the point (0, 0, 0)

to the point (a, b, c). Similarly, to specify a vector in two dimensions you have to give two
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components and to draw the vector with components a, b you can draw an arrow from the

point (0, 0) to the point (a, b).

There are many situations in which it is preferable to draw a vector with its tail at some

point other than the origin. For example, it is natural to draw the velocity vector of a moving

particle with the tail of the velocity vector at the position of the particle, whether or not the

particle is at the origin. The sketch below shows a moving particle and its velocity vector at

two different times.
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To distinguish between the components of a vector and the coordinates of the point at

its head, when its tail is at some point other than the origin, we shall use angle brackets

rather than round brackets around the components of a vector. For example, here is the

two–dimensional vector 〈2, 1〉 drawn in three different positions. In each case, when the tail

is at the point (u, v) the head is at (2+u, 1+ v). We warn you that, out in the real world, no

one uses notation that distinguishes between components of a vector and the coordinates of

its head — usually round brackets are used for both. It is up to you to keep straight which

is being referred to.
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〈2, 1〉

2. Addition of Vectors and Multiplication of a Vector by a Number

These two operations have the obvious definitions

a = 〈a1, a2〉 , b = 〈b1, b2〉 =⇒ a+ b = 〈a1 + b1, a2 + b2〉
a = 〈a1, a2〉 , s a number =⇒ sa = 〈sa1, sa2〉

and similarly in three dimensions. Pictorially, you add b to a by drawing b with its tail at

the head of a and then drawing a vector from the tail of a to the head of b, as in the figure

on the left below. To draw sa, you just change a’s length by the (signed) factor s, as in the

other two figures below.
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These operations rarely cause any problems, because they inherit from the real numbers

the properties of addition and multiplication that you are used to. Using 0 to denote the vec-

tor all of whose components are zero and −a to denote the vector each of whose components

is the negative of the corresponding component of a (so that −〈a1, a2〉 = 〈−a1,−a2〉)

1. a+ b = b+ a 2. a+ (b+ c) = (a+ b) + c

3. a+ 0 = a 4. a+ (−a) = 0

5. s(a+ b) = sa+ sb 6. (s+ t)a = sa+ ta

7. (st)a = s(ta) 8. 1a = a

To subtract b from a pictorially, you may add −b (which is drawn by reversing the direction

of b) to a. Alternatively, if you draw a and b with their tails at a common point, then a−b

is the vector from the head of b to the head of a. That is, a− b is the vector you must add

to b in order to get a.
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a

b

−b
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Example 1

For example, if

a = 〈1, 2, 3〉 b = 〈3, 2, 1〉 c = 〈1, 0, 1〉
then

2a− b+ 3c = 2 〈1, 2, 3〉 − 〈3, 2, 1〉+ 3 〈1, 0, 1〉
= 〈2, 4, 6〉+ 〈−3,−2,−1〉+ 〈3, 0, 3〉
= 〈2− 3 + 3 , 4− 2 + 0 , 6− 1 + 3〉
= 〈2, 2, 8〉

Example 1
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There are some vectors that occur sufficiently commonly that they are given special

names. One is the vector 0. Some others are the “standard basis vectors in two dimensions”

i = 〈1, 0〉 j = 〈0, 1〉
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and the “standard basis vectors in three dimensions”

i = 〈1, 0, 0〉 j = 〈0, 1, 0〉 k = 〈0, 0, 1〉
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Some people rename i, j and k to e1, e2 and e3 respectively. Using the above properties we

have, for all vectors,

〈a1, a2〉 = a1 i + a2 j 〈a1, a2, a3〉 = a1 i + a2 j+ a3 k

A sum of numbers times vectors, like a1i + a2j is called a linear combination of the vectors.

Thus all vectors can be expressed as linear combinations of the standard basis vectors. The

standard basis vectors are unit vectors, meaning that they are of length one, where the length

of a vector is defined by

a = 〈a1, a2〉 =⇒ |a| =
√

a2
1
+ a2

2

a = 〈a1, a2, a3〉 =⇒ |a| =
√

a2
1
+ a2

2
+ a2

3

3. The Dot Product

There is more than one type of product used with vectors, One is multiplication by a scalar,

which we have already seen. A second is the dot product, which is defined by

a = 〈a1, a2〉 , b = 〈b1, b2〉 =⇒ a · b = a1b1 + a2b2

a = 〈a1, a2, a3〉 , b = 〈b1, b2, b3〉 =⇒ a · b = a1b1 + a2b2 + a3b3

in two and three dimensions respectively. The properties of the dot product are as follows:

0. a,b are vectors and a · b is a number

1. a · a = |a|2

2. a · b = b · a
3. a · (b+ c) = a · b+ a · c, (a+ b) · c = a · c+ b · c
4. (sa) · b = s(a · b)
5. 0 · a = 0

6. a · b = |a| |b| cos θ where θ is the angle between a and b

7. a · b = 0 ⇐⇒ a = 0 or b = 0 or a ⊥ b
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Proof. Properties 0 through 5 are almost immediate consequences of the definition. For

example, for property 3 in dimension 2,

a · (b+ c) = 〈a1, a2〉 · 〈b1 + c1, b2 + c2〉
= a1(b1 + c1) + a2(b2 + c2) = a1b1 + a1c1 + a2b2 + a2c2

a · b+ a · c = 〈a1, a2〉 · 〈b1, b2〉+ 〈a1, a2〉 · 〈c1, c2〉
= a1b1 + a2b2 + a1c1 + a2c2

Property 6 is sufficiently important that it is often used as the definition of dot product.

It is not at all an obvious consequence of the definition. To verify it, we just write |a− b|2
in two different ways. The first expresses |a− b|2 in terms of a · b. It is

|a− b|2 1
= (a− b ) · (a− b )

3
= a · a− a · b− b · a+ b · b
1,2
= |a|2 + |b|2 − 2a · b

Here,
1
=, for example, means that the equality is a consequence of property 1. The second

way we write |a − b|2 involves cos θ and follows from the cosine law. Just in case you

don’t remember the cosine law, we prove it along the way. To derive the cosine law, apply

Pythagoras to the shaded triangle in the right hand figure of

b

θ

a a− b

|b|
|a| cos θ

|a| sin θ
θ

|a| |a− b|

That triangle is a right triangle whose hypotenuse has length |a − b| and whose other two

sides have lengths
(

|b| − |a| cos θ
)

and |a| sin θ. So Pythagoras gives

|a− b|2 =
(

|b| − |a| cos θ
)2

+
(

|a| sin θ
)2

= |b|2 − 2|a| |b| cos θ + |a|2 cos2 θ + |a|2 sin2 θ

= |b|2 − 2|a| |b| cos θ + |a|2

(That’s the cosine law. Observe that, when θ = π
2
, this reduces to, (surpise!) Pythagoras’

theorem.) Setting the two expressions for |a− b|2 equal to each other,

|a− b|2 = |a|2 + |b|2 − 2a · b = |b|2 − 2|a| |b| cos θ + |a|2

cancelling the |a|2 and |b|2 common to both sides

−2a · b = −2|a| |b| cos θ
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and dividing by −2 gives

a · b = |a| |b| cos θ

which is property 6.

Property 7 follows directly from property 6: a · b = |a| |b| cos θ is zero if and only if at

least one of the three factors |a|, |b|, cos θ is zero. The first factor is zero if and only if

a = 0. The second factor is zero if and only if b = 0. The third factor is zero if and only if

θ = ±π
2
+ 2kπ, for some integer k, which in turn is true if and only if a and b are mutually

perpendicular.

Because of Property 7, the dot product can be used to test whether or not two vectors

are perpendicular to each other. That is, whether or not the angle between the two vectors

is 90◦. Another name for “perpendicular” is “orthogonal”. Testing for orthogonality is one

of the main uses of the dot product.

Example 2

Consider the three vectors

a = 〈1, 1, 0〉 b = 〈1, 0, 1〉 c = 〈1,−1,−1〉

The dot products

a · b = 〈1, 1, 0〉 · 〈1, 0, 1〉 = 1× 1 + 1× 0 + 0× 1 = 1

a · c = 〈1, 1, 0〉 · 〈1,−1,−1〉 = 1× 1 + 1× (−1) + 0× (−1) = 0

b · c = 〈1, 0, 1〉 · 〈1,−1,−1〉 = 1× 1 + 0× (−1) + 1× (−1) = 0

tell us that c is perpendicular to both a and b. Since both |a| = |b| =
√
12 + 12 + 02 =

√
2

the first dot product tells us that the angle, θ, between a and b obeys

cos θ =
a · b
|a| |b| =

1

2
=⇒ θ =

π

3

Example 2

4. Equations of Planes in Three Dimensions

A line in two or three dimensions can be specified by giving one point x0 on the line and

one vector d whose direction is parallel to the line. But specifying one point (x0, y0, z0) on a

x0

d
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plane and a vector d parallel to the plane does not uniquely determine the plane, because it

is free to rotate about d. On the other hand, giving one point on the plane and one vector

(x0, y0, z0)

d

(x0, y0, z0)

(x, y, z)n

n = 〈nx, ny, nz〉 whose direction is perpendicular to that of the plane does uniquely determine

the plane. If (x, y, z) is any point on the line then the vector 〈x− x0, y − y0, z − z0〉, whose
tail is at (x0, y0, z0) and whose head is at (x, y, z), lies entirely inside the plane and so must

be perpendicular to n. That is,

n · 〈x− x0, y − y0, z − z0〉 = 0

Writing out in components

nx(x− x0) + ny(y − y0) + nz(z − z0) = 0 or nxx+ nyy + nzz = nxx0 + nyy0 + nzz0

Note that the coefficients nx, ny, nz of x, y and z in the equation of the plane are the

components of a vector 〈nx, ny, nz〉 perpendicular to the plane. The vector n is often called

a normal vector for the plane.

Example 3

We have just seen that if we write the equation of a plane in the standard form ax+by+cz = d,

then it is easy to read off a normal vector for the plane. It is just 〈a, b, c〉. So for example

the planes

P : x+ 2y + 3z = 4 and P ′ : 3x+ 6y + 9z = 7

have normal vectors n = 〈1, 2, 3〉 and n′ = 〈3, 6, 9〉, respectively. Since n′ = 3n, the two

normal vectors n and n′ are parallel to each other. This tells us that the planes P and P ′

are parallel to each other.

When the normal vectors of two planes are perpendicular to each other, we say that the

planes are perpendicular to each other. For example the planes

P : x+ 2y + 3z = 4 and P ′′ : 2x− y = 7

have normal vectors n = 〈1, 2, 3〉 and n′′ = 〈2,−1, 0〉, respectively. Since

n · n′′ = 1× 2 + 2× (−1) + 3× 0 = 0

the normal vectors n and n′′ are mutually perpendicular, so the corresponding planes P and

P ′′ are perpendicular to each other.

Example 3
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Example 4

In this example, we’ll sketch the plane

P : 4x+ 3y + 2z = 12

A good way to prepare for sketching a plane is to find the intersection points of the plane

with the x–, y– and z–axes. For example, any point on the x axis must be of the form

(x, 0, 0). For (x, 0, 0) to also be on P we need x = 12/4 = 3. So P intersects the x–axis at

(3, 0, 0). Similarly, P intersects the y–axis at (0, 4, 0) and the z–axis at (0, 0, 6). Now plot

the points (3, 0, 0), (0, 4, 0) and (0, 0, 6). P is the plane through these three points. Often a

z

y

x

(3, 0, 0) (0, 4, 0)

(0, 0, 6)

visually effective way to sketch a surface in three dimensions is to

• only sketch the part of the surface in the first ocatant. That is, the part with x ≥ 0,

y ≥ 0 and z ≥ 0.

• To do so, sketch the curve of intersection of the surface with the part of the xy–plane

in the first octant and,

• similarly, sketch the curve of intersection of the surface with the part of the xz–plane

in the first octant and the curve of intersection of the surface with the part of the

yz–plane in the first octant.

That’s what we’ll do. The intersection of the plane P with the xy–plane is the straight line

through the two points (3, 0, 0) and (0, 4, 0). So the part of that intersection in the first

octant is the line segement from (3, 0, 0) to (0, 4, 0). Similarly the part of the intersection of

P with the xz–plane that is in the first octant is the line segment from (3, 0, 0) to (0, 0, 6)

and the part of the intersection of P with the yz–plane that is in the first octant is the line

segment from (0, 4, 0) to (0, 0, 6). So we just have to sketch the three line segments joining

three axis intercepts (3, 0, 0), (0, 4, 0) and (0, 0, 6). That’s it.

Example 4
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Example 5

In this example we’ll compute the distance between the planes

P : x+ 2y + 2z = 1 and P ′ : 2x+ 4y + 4z = 11

By the “distance between the planes P and P ′” we mean the shortest distance between any

pair of points x and x′ with x in P and x′ in P ′. First observe that the normal vectors

n = 〈1, 2, 2〉 and n′ = 〈2, 4, 4〉 = 2n

are parallel to each other. So the planes P and P ′ are parallel to each other. If they had not

been parallel, they would have intersected and the distance between them would have been

zero. Our strategy for finding the distance will be to

• first find a point x on P and then

• start walking away from P in the direction of the normal vector n and

• keep walking until we hit P ′. Call the point on P ′ that we hit x′. Then the desired

distance is the distance between x and x′. From the figure below it does indeed look

like distance between x and x′ is the shortest distance between any pair of points with

one point on P and one point on P ′. This is in fact true, though we won’t prove it.

P

P ′

x

x′

n

x + tn

Now let’s find a point on P . The plane P is given by a single equation, namely x+2y+2z = 1,

in the three unknowns, x, y, z. The easiest way to find one solution to this equation is to

assign two of the unknowns the value zero and then solve for the third unknown. For example,

if we set y = z = 0, then the equation reduces to x = 1. So we may take x = 〈1, 0, 0〉.
Now imagine that we start walking, and that we start at time t = 0 at x and walk in the

direction n. Then at time t we might be at

x + tn = 〈1, 0, 0〉+ t 〈1, 2, 2〉 = 〈1 + t, 2t, 2t〉

We hit the second plane P ′ at exactly the time t for which 〈1 + t, 2t, 2t〉 satsifies the equation
for P ′, which is 2x+ 4y + 4z = 11. So we are on P ′ at the unique time t obeying

2(1 + t) + 4(2t) + 4(2t) = 11 ⇐⇒ 18t = 9 ⇐⇒ t =
1

2
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So the point on P ′ which is closest to x is

x′ =
[

x + tn
]

t=1/2
= 〈1 + t, 2t, 2t〉

∣

∣

t=1/2
= 〈3/2, 1, 1〉

and the distance from P to P ′ is the distance from x to x′ which is

√

(1− 1/2)2 + (0− 1)2 + (0− 1)2 =
√

9/4 = 3/2

Example 5
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