
Approximating Functions Near a Specified Point

Suppose that you are interested in the values of some function f(x) for x near some fixed point x0. The

function is too complicated to work with directly. So you wish to work instead with some other function F (x)

that is both simple and a good approximation to f(x) for x near x0. We’ll consider a couple of examples of

this scenario later. First, we develop several different approximations.

First approximation

The simplest functions are those that are constants. The first approximation will be by a constant

function. That is, the approximating function will have the form F (x) = A. To ensure that F (x) is a good

approximation for x close to x0, we chose the constant A so that f(x) and F (x) take exactly the same value

when x = x0.

F (x) = A so F (x0) = A = f(x0) =⇒ A = f(x0)

Our first, and crudest, approximation rule is

f(x) ≈ f(x0) (1)

Here is a figure showing the graphs of a typical f(x) and approximating function F (x). At x = x0, f(x)

x0
x

y
y = f(x)

y = F (x) = f(x0)

and F (x) take the same value. For x very near x0, the values of f(x) and F (x) remain close together. But

the quality of the approximation deteriorates fairly quickly as x moves away from x0.

Second Approximation – the tangent line, or linear, approximation

We now develop a better approximation by allowing the approximating function to be a linear function

of x and not just a constant function. That is, we allow F (x) to be of the form A + Bx. To ensure that

F (x) is a good approximation for x close to x0, we chose the constants A and B so that f(x0) = F (x0) and

f ′(x0) = F ′(x0). Then f(x) and F (x) will have both the same value and the same slope at x = x0.

F (x) = A+Bx =⇒ F (x0) = A+Bx0 = f(x0)

F ′(x) = B =⇒ F ′(x0) = B = f ′(x0)

Subbing B = f ′(x0) into A+ Bx0 = f(x0) gives A = f(x0)− x0f
′(x0) and consequently F (x) = A+Bx =

f(x0)− x0f
′(x0) + xf ′(x0) = f(x0) + f ′(x0)(x − x0). So, our second approximation is

f(x) ≈ f(x0) + f ′(x0)(x− x0) (2)

Here is a figure showing the graphs of a typical f(x) and approximating function F (x). Observe that the
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x0
x

y
y = f(x)

y = F (x) = f(x0) + f ′(x0)(x − x0)

graph of f(x0) + f ′(x0)(x− x0) remains close to the graph of f(x) for a much larger range of x than did the

graph of f(x0).

Third approximation – the quadratic approximation

We finally develop a still better approximation by allowing the approximating function be to a quadratic

function of x. That is, we allow F (x) to be of the form A + Bx + Cx2. To ensure that F (x) is a good

approximation for x close to x0, we chose the constants A, B and C so that f(x0) = F (x0) and f ′(x0) =

F ′(x0) and f ′′(x0) = F ′′(x0).

F (x) = A+Bx + Cx2 =⇒ F (x0) = A+Bx0 + Cx2
0 = f(x0)

F ′(x) = B + 2Cx =⇒ F ′(x0) = B + 2Cx0 = f ′(x0)

F ′′(x) = 2C =⇒ F ′′(x0) = 2C = f ′′(x0)

Solve for C first, then B and finally A.

C = 1
2f

′′(x0) =⇒ B = f ′(x0)− 2Cx0 = f ′(x0)− x0f
′′(x0)

=⇒ A = f(x0)− x0B − Cx2
0 = f(x0)− x0[f

′(x0)− x0f
′′(x0)]− 1

2f
′′(x0)x

2
0

Then build up F (x).

F (x) = f(x0)− f ′(x0)x0 +
1
2f

′′(x0)x
2
0 (this line is A)

+ f ′(x0)x − f ′′(x0)x0x (this line is Bx)

+ 1
2f

′′(x0)x
2 (this line is Cx2)

= f(x0) + f ′(x0)(x− x0) +
1
2f

′′(x0)(x− x0)
2

Our third approximation is

f(x) ≈ f(x0) + f ′(x0)(x − x0) +
1
2f

′′(x0)(x − x0)
2 (3)

It is called the quadratic approximation. Here is a figure showing the graphs of a typical f(x) and approxi-

mating function F (x). The third approximation looks better than both the first and second.

x0
x

y
y = f(x)
y = F (x) = f(x0) + f ′(x0)(x − x0) +

1
2f

′′(x0)(x − x0)
2
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Still Better Approximations – Taylor Polynomials

We can use the same strategy to generate still better approximations by polynomials of any degree

we like. Let’s approximate by a polynomial of degree n. The algebra will be simpler if we make the

approximating polynomial F (x) of the form

a0 + a1(x− x0) + a2(x − x0)
2 + · · ·+ an(x− x0)

n

Because x0 is itself a constant, this is really just a rewriting of A0 +A1x+A2x
2 + · · ·+Anx

n. For example,

a0 + a1(x− x0) + a2(x− x0)
2 = a0 + a1x− a1x0 + a2x

2 − 2a2xx0 + a2x
2
0

= (a0 − a1x0 + a2x
2
0) + (a1 − 2a2x0)x+ a2x

2

= A0 +A1x+A2x
2

with A0 = a0−a1x0+a2x
2
0, A1 = a1−2a2x0 and A2 = a2. The advantage of the form a0+a1(x−x0)+ · · · is

that x−x0 is zero when x = x0, so lots of terms in the computation drop out. We determine the coefficients

ai by the requirements that f(x) and its approximator F (x) have the same value and the same first n

derivatives at x = x0.

F (x) = a0 + a1(x − x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n =⇒ F (x0) = a0 = f(x0)

F ′(x) = a1 + 2a2(x− x0) + 3a3(x− x0)
2 + · · ·+ nan(x − x0)

n−1 =⇒ F ′(x0) = a1 = f ′(x0)

F ′′(x) = 2a2 + 3× 2a3(x − x0) + · · ·+ n(n− 1)an(x− x0)
n−2 =⇒ F ′′(x0) = 2a2 = f ′′(x0)

F (3)(x) = 3× 2a3 + · · ·+ n(n− 1)(n− 2)an(x− x0)
n−3 =⇒ F (3)(x0) = 3× 2a3 = f (3)(x0)

...
...

F (n)(x) = n!an =⇒ F (n)(x0) = n!an = f (n)(x0)

Here n! = n(n− 1)(n− 2) · · · 1 is called n factorial. Hence

a0 = f(x0) a1 = f ′(x0) a2 = 1
2!f

′′(x0) a3 = 1
3!f

(3)(x0) · · · an = 1
n!f

(n)(x0)

and the approximator, which is called the Taylor polynomial of degree n for f(x) at x = x0, is

f(x) ≈ f(x0) + f ′(x0) (x−x0) +
1
2!f

′′(x0) (x−x0)
2 + 1

3!f
(3)(x0) (x−x0)

3 + · · ·+ 1
n!f

(n)(x0) (x−x0)
n (4)

or, in summation notation,

f(x) ≈
n
∑

ℓ=0

1
ℓ!f

(n)(x0) (x− x0)
ℓ (4)

where we are using the standard convention that 0! = 1.

Another Notation

Suppose that we have two variables x and y that are related by y = f(x), for some function f . For

example, x might be the number of cars manufactured per week in some factory and y the cost of manu-

facturing those x cars. Let x0 be some fixed value of x and let y0 = f(x0) be the corresponding value of y.

Now suppose that x changes by an amount ∆x, from x0 to x0 +∆x. As x undergoes this change, y changes

from y0 = f(x0) to f(x0 +∆x). The change in y that results from the change ∆x in x is

∆y = f(x0 +∆x) − f(x0)
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Substituting x = x0 +∆x into the linear approximation (2) yields the approximation

f(x0 +∆x) ≈ f(x0) + f ′(x0)(x0 +∆x− x0) = f(x0) + f ′(x0)∆x

for f(x0 +∆x) and consequently the approximation

∆y = f(x0 +∆x)− f(x0) ≈ f(x0) + f ′(x0)∆x − f(x0) =⇒ ∆y ≈ f ′(x0)∆x (5)

for ∆y. In the automobile manufacturing example, when the production level is x0 cars per week, increasing

the production level by ∆x will cost approximately f ′(x0)∆x. The additional cost per additional car, f ′(x0),

is called the “marginal cost” of a car.

If we use the quadratic approximation (3) in place of the linear approximation (2)

f(x0 +∆x) ≈ f(x0) + f ′(x0)∆x+ 1
2f

′′(x0)∆x2

we arrive at the quadratic approximation

∆y = f(x0 +∆x)− f(x0) ≈ f(x0) + f ′(x0)∆x+ 1
2f

′′(x0)∆x2 − f(x0) =⇒ ∆y ≈ f ′(x0)∆x+ 1
2f

′′(x0)∆x2

(6)

for ∆y.

Example 1

Suppose that you wish to compute, approximately, tan 46◦, but that you can’t just use your calculator.

This will be the case, for example, if the computation is an exercise to help prepare you for designing the

software to be used by the calculator.

In this example, we choose f(x) = tanx, x = 46 π
180 radians and x0 = 45 π

180 = π
4 radians. This is a

good choice for x0 because

• x0 = 45◦ is close to x = 46◦. Generally, the closer x is to x0, the better the quality of our various

approximations

• We know the values of all trig functions at 45◦.

The first step in applying our approximations is to compute f and its first two derivatives at x = x0.

f(x) = tanx =⇒ f(x0) = tan π
4 = 1

f ′(x) = (cos x)−2 =⇒ f ′(x0) =
1

cos2(π/4) = 2

45◦

√
2

1

1
f ′′(x) = −2− sin x

cos3 x =⇒ f ′′(x0) = 2 sin(π/4)
cos3(π/4) = 2 1/

√
2

(1/
√
2)3

= 2 1
1/2 = 4

As x− x0 = 46 π
180 − 45 π

180 = π
180 radians, the three approximations are

f(x) ≈ f(x0) = 1

f(x) ≈ f(x0) + f ′(x0)(x− x0) = 1 + 2 π
180 = 1.034907

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1
2f

′′(x0)(x− x0)
2 = 1 + 2 π

180 + 1
24

(

π
180

)2
= 1.035516

For comparison purposes, tan 46◦ really is 1.035530 to 6 decimal places.

Recall that all of our derivative formulae for trig functions, were developed under the assumption that

angles were measured in radians. As our approximation formulae used those derivatives, we were obliged to

express x− x0 in radians.

c© Joel Feldman. 2012. All rights reserved. October 16, 2012 Approximating Functions Near a Specified Point 4



Example 2

Let’s find all Taylor polyomial for sinx and cosx at x0 = 0. To do so we merely need compute all

derivatives of sinx and cosx at x0 = 0. First, compute all derivatives at general x.

f(x) = sinx f ′(x) = cosx f ′′(x) = − sinx f (3)(x) = − cosx f (4)(x) = sinx · · ·
g(x) = cosx g′(x) = − sinx g′′(x) = − cosx g(3)(x) = sinx g(4)(x) = cosx · · ·

The pattern starts over again with the fourth derivative being the same as the original function. Now set

x = x0 = 0.

f(x) = sinx f(0) = 0 f ′(0) = 1 f ′′(0) = 0 f (3)(0) = −1 f (4)(0) = 0 · · ·
g(x) = cosx g(0) = 1 g′(0) = 0 g′′(0) = −1 g(3)(0) = 0 g(4)(0) = 1 · · ·

For sinx, all even numbered derivatives are zero. The odd numbered derivatives alternate between 1 and

−1. For cosx, all odd numbered derivatives are zero. The even numbered derivatives alternate between 1

and −1. So, the Taylor polynomials that best approximate sinx and cosx near x = x0 = 0 are

sinx ≈ x− 1
3!x

3 + 1
5!x

5 − · · ·
cosx ≈ 1− 1

2!x
2 + 1

4!x
4 − · · ·

Here are graphs of sinx and its Taylor poynomials (about x0 = 0) up to degree seven.

sinx ≈ x sinx ≈ x− 1
3!x

3

sinx ≈ x− 1
3!x

3 + 1
5!x

5 sinx ≈ x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7

To get an idea of how good these Taylor polynomials are at approximating sin and cos, let’s concentrate

on sinx and consider x’s whose magnitude |x| ≤ 1. (If you’re writing software to evaluate sinx, you can

always use the trig identity sin(x) = sin(x− 2nπ), to easily restrict to |x| ≤ π, and then use the trig identity

sin(x) = − sin(x ± π) to reduce to |x| ≤ π
2 and then use the trig identity sin(x) = cos(π2 ± x)) to reduce to

c© Joel Feldman. 2012. All rights reserved. October 16, 2012 Approximating Functions Near a Specified Point 5



|x| ≤ π
4 .) If |x| ≤ 1 radians (recall that the derivative formulae that we used to derive the Taylor polynomials

are valid only when x is in radians), or equivalently if |x| is no larger than 180
π ≈ 57◦, then the magnitudes

of the successive terms in the Taylor polynomials for sinx are bounded by

|x| ≤ 1 1
3! |x|

3 ≤ 1
6

1
5! |x|

3 ≤ 1
120 ≈ 0.0083

1
7! |x|

7 ≤ 1
7! ≈ 0.0002 1

9! |x|
9 ≤ 1

9! ≈ 0.000003 1
11! |x|

11 ≤ 1
11! ≈ 0.000000025

From these inequalities, and the graphs on the previous page, it certainly looks like, for x not too large, even

relatively low degree Taylor polynomials give very good approximations. We’ll see later how to get rigorous

error bounds on our Taylor polynomial approximations.

Example 3

Suppose that you are ten meters from a vertical pole. You were contracted

to measure the height of the pole. You can’t take it down or climb it. So you

measure the angle subtended by the top of the pole. You measure θ = 30◦, which
θ

h

10

gives h = 10 tan30◦ = 10√
3
≈ 5.77m. But there’s a catch. Angles are hard to measure accurately. Your

contract specifies that the height must be measured to within an accuracy of 10 cm. How accurate did your

measurement of θ have to be?

For simplicity, we are going to assume that the pole is perfectly straight and perfectly vertical and that

your distance from the pole was exactly 10 m. Write h = h0 +∆h, where h is the exact height and h0 = 10√
3

is the computed height. Their difference, ∆h, is the error. Similarly, write θ = θ0 +∆θ where θ is the exact

angle, θ0 is the measured angle and ∆θ is the error. Then

h0 = 10 tan θ0 h0 +∆h = 10 tan(θ0 +∆θ)

We apply ∆y ≈ f ′(x0)∆x, with y replaced by h and x replaced by θ. That is, we apply ∆h ≈ f ′(θ0)∆θ.

Choosing f(θ) = 10 tan θ and θ0 = 30◦ and subbing in f ′(θ0) = 10 sec2 θ0 = 10 sec2 30◦ = 10
(

2√
3

)2
= 40

3 , we

see that the error in the computed value of h and the error in the measured value of θ are related by

∆h ≈ 40
3 ∆θ

To achieve |∆h| ≤ .1, we better have |∆θ| smaller than .1 3
40 radians or .1 3

40
180
π = .43◦.

Example 4

The radius of a sphere is measured with a percentage error of at most ε%. Find the approximate percentage

error in the surface area and volume of the sphere.

Solution. Suppose that the exact radius is r0 and that the measured radius is r0 +∆r. Then the absolute

error in the measurement is |∆r| and the percentage error is 100 |∆r|
r0

. We are told that 100 |∆r|
r0

≤ ε. The

surface area of a sphere of radius r is A(r) = 4πr2. The error in the surface area computed with the measured

radius is

∆A = A(r0 +∆r) −A(r0) ≈ A′(r0)∆r

The corresponding percentage error is

100 |∆A|
A(r0)

≈ 100 |A′(r0)∆r|
A(r0)

= 100 8πr0|∆r|
4πr2

0

= 2× 100 |∆r|
r0

≤ 2ε
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The volume of a sphere of radius r is V (r) = 4
3πr

3. The error in the volume computed with the measured

radius is

∆V = V (r0 +∆r) − V (r0) ≈ V ′(r0)∆r

The corresponding percentage error is

100 |∆V |
V (r0)

≈ 100 |V ′(r0)∆r|
V (r0)

= 100
4πr2

0
|∆r|

4πr3
0
/3

= 3× 100 |∆r|
r0

≤ 3ε

We have just computed an approximation to ∆V . In this problem, we can compute the exact error

V (r0 +∆r) − V (r0) =
4
3π(r0 +∆r)3 − 4

3πr
3
0

Applying (a+ b)3 = a3 + 3a2b+ 3ab2 + b3 with a = r0 and b = ∆r, gives

V (r0 +∆r) − V (r0) =
4
3π[r

3
0 + 3r20∆r + 3r0 ∆r2 +∆r3 − r30 ]

= 4
3π[3r

2
0∆r + 3r0 ∆r2 +∆r3]

The linear approximation, ∆V ≈ 4πr20 ×∆r, is recovered by retaining only the first of the three terms in

the square brackets. Thus the difference between the exact error and the linear approximation to the error

is obtained by retaining only the last two terms in the square brackets. This has magnitude

4
3π

∣

∣3r0 ∆r2 +∆r3
∣

∣ = 4
3π

∣

∣3r0 +∆r
∣

∣∆r2

or in percentage terms

100
1

4
3πr

3
0

4
3π

∣

∣3r0 ∆r2 +∆r3
∣

∣ = 100
∣

∣3∆r2

r2
0

+ ∆r3

r3
0

∣

∣ =
(

100 3∆r
r0

)(

∆r
r0

)∣

∣1 + ∆r
3r0

∣

∣ ≤ 3ε
(

ε
100

)(

1 + ε
300

)

Thus the difference between the exact error and the linear approximation is roughly a factor of ε
100 smaller

than the linear approximation 3ε.

Example 5

If an aircraft crosses the Atlantic ocean at a speed of u mph, the flight costs the company

C(u) = 100 + u
3 + 240,000

u

dollars per passenger. When there is no wind, the aircraft flies at an airspeed of 550mph. Find the approx-

imate savings, per passenger, when there is a 35 mph tail wind. Estimate the cost when there is a 50 mph

head wind.

Solution. Let u0 = 550. When the aircraft flies at speed u0, the cost per passenger is C(u0). By (5), a

change of ∆u in the airspeed results in an change of

∆C ≈ C′(u0)∆u =
[

1
3 − 240,000

u2

0

]

∆u =
[

1
3 − 240,000

5502

]

∆u ≈ −.460∆u

in the cost per passenger. With the tail wind ∆u = 35 and the resulting ∆C ≈ −.460×35 = −16.10, so there

is a savings of $16.10 . With the head wind ∆u = −50 and the resulting ∆C ≈ −.4601× (−50) = 23.01, so

there is an additional cost of $23.00 .
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Example 6

To compute the height h of a lamp post, the length s of the shadow of a two meter pole is measured. The

pole is 6 m from the lamp post. If the length of the shadow was measured to be 4 m, with an error of at

most one cm, find the height of the lamp post and estimate the relative error in the height.

h

s6

2

Solution. By similar triangles,

s

2
=

6 + s

h
=⇒ h = (6 + s)

2

s
=

12

s
+ 2

The length of the shadow was measured to be s0 = 4 m. The corresponding height of the lamp post is

h0 = 12
s0

+2 = 12
4 +2 = 5 m . If the error in the measurement of the length of the shadow was ∆s, then the

exact shadow length was s = s0+∆s and the exact lamp post height is h = f(s0+∆s), where f(s) = 12
s +2.

The error in the computed lamp post height is ∆h = h− h0 = f(s0 +∆s)− f(s0). By (5)

∆h ≈ f ′(s0)∆s = − 12
s2
0

∆s = − 12
42∆s

We are told that |∆s| ≤ 1
10 m. Consequently |∆h| ≤ 12

42
1
10 = 3

40 (approximately). The relative error is then

approximately
|∆h|
h0

≤ 3
40×5 = 0.015 or 1.5%

The Error in the Approximations

Any time you make an approximation, it is desirable to have some idea of the size of the error you

introduced. We will now develop a formula for the error introduced by the approximation f(x) ≈ f(x0).

This formula can be used to get an upper bound on the size of the error, even when you cannot determine

f(x) exactly.

By simple algebra

f(x) = f(x0) +
f(x)− f(x0)

x− x0
(x− x0) (7)

The coefficient f(x)−f(x0)
x−x0

of (x − x0) is the average slope of f(t) as t moves from t = x0 to t = x. In the

figure below, it is the slope of the secant joining the points (x0, f(x0)) and (x, f(x)). As t moves x0 to

t

y

x0

(x0, f(x0))

c

(x, f(x))

x

y = f(t)

x, the instantaneous slope f ′(t) keeps changing. Sometimes it is larger than the average slope f(x)−f(x0)
x−x0
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and sometimes it is smaller than the average slope. But, by the Mean–Value Theorem, there must be some

number c, strictly between x0 and x, for which f ′(c) = f(x)−f(x0)
x−x0

. Subbing this into formula (7)

f(x) = f(x0) + f ′(c)(x − x0) for some c strictly between x0 and x (8)

Thus the error in the approximation f(x) ≈ f(x0) is exactly f ′(c)(x − x0) for some c strictly between x0

and x. There are formulae similar to (8), that can be used to bound the error in our other approximations.

One is

f(x) = f(x0) + f ′(x0)(x − x0) +
1
2f

′′(c)(x − x0)
2 for some c strictly between x0 and x

It implies that the error in the approximation f(x) ≈ f(x0) + f ′(x0) (x− x0) is exactly
1
2f

′′(c) (x− x0)
2 for

some c strictly between x0 and x. In general

f(x) =f(x0) + f ′(x0) (x− x0) + · · ·+ 1
n!f

(n)(x0) (x− x0)
n

+ 1
(n+1)!f

(n+1)(c) (x − x0)
n+1 for some c strictly between x0 and x

That is, the error introduced when f(x) is approximated by its Taylor polynomial of degree n, is precisely

the last term of the Taylor polynomial of degree n + 1, but with the derivative evaluated at some point

between x0 and x, rather than exactly at x0. These error formulae are proven in a supplement (which you

are not responsible for) at the end of these notes.

Example 7

Suppose we wish to approximate sin 46◦ using Taylor polynomials about x0 = 45◦. Then, we would

define

f(x) = sinx x0 = 45◦ = 45 π
180 radians x = 46◦ = 46 π

180 radians x− x0 = π
180 radians

The first few derivatives of f at x0 are

f(x) = sinx f(x0) =
1√
2

f ′(x) = cosx f ′(x0) =
1√
2

f ′′(x) = − sinx f ′′(x0) = − 1√
2

f (3)(x) = − cosx

The constant, linear and quadratic approximations for sin 46◦

sin 46◦ ≈ f(x0) = 1√
2

= 0.70710678

sin 46◦ ≈ f(x0) + f ′(x0)(x − x0) = 1√
2
+ 1√

2

(

π
180

)

= 0.71944812

sin 46◦ ≈ f(x0) + f ′(x0)(x − x0) +
1
2f

′′(x0)(x − x0)
2 = 1√

2
+ 1√

2

(

π
180

)

− 1√
2

(

π
180

)2
= 0.71934042

The corresonding errors are

error in 0.70710678 = f ′(c)(x − x0) = cos c
(

π
180

)

error in 0.71944812 = 1
2f

′′(c)(x − x0)
2 = − 1

2 sin c
(

π
180

)2

error in 0.71923272 = 1
3!f

′(c)(x − x0)
3 = − 1

3! cos c
(

π
180

)3
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In each of these three cases c must lie somewhere between 45◦ and 46◦. No matter what c is, we know that

| sin c| ≤ 1 and cos c| ≤ 1. Hence
∣

∣error in 0.70710678
∣

∣ ≤
(

π
180

)

< 0.018
∣

∣error in 0.71944812
∣

∣ ≤ 1
2

(

π
180

)2
< 0.00015

∣

∣error in 0.71934042
∣

∣ ≤ 1
3!

(

π
180

)3
< 0.0000009

Example 2 Revisited

In the second example (measuring the height of the pole), we used the linear approximation

f(θ0 +∆θ) ≈ f(θ0) + f ′(θ0)∆θ (9)

with f(θ) = 10 tan θ and θ0 = 30 π
180 to get

∆h = f(θ0 +∆θ)− f(θ0) ≈ f ′(θ0)∆θ =⇒ ∆θ ≈ ∆h

f ′(θ0)

While this procedure is fairly reliable, it did involve an approximation. So that you could not 100% guarantee

to your client’s lawyer that an accuracy of 10 cm was achieved. If we use the exact formula (8), with the

replacements x → θ0 +∆θ, x0 → θ0, c → φ,

f(θ0 +∆θ) = f(θ0) + f ′(φ)∆θ for some φ between θ0 and θ0 +∆θ

in place of the approximate formula (2), this legality is taken care of.

∆h = f(θ0 +∆θ) − f(θ0) = f ′(φ)∆θ =⇒ ∆θ =
∆h

f ′(φ)
for some φ between θ0 and θ0 +∆θ

Of course we do not know exactly what φ is. But suppose that we know that the angle was somewhere between

25◦ and 35◦. In other words suppose that, even though we don’t know precisely what our measurement error

was, it was certainly no more than 5◦. Then f ′(φ) = 10 sec2(φ) must be smaller than 10 sec2 35◦ < 14.91,

which means that ∆h
f ′(φ) must be at least .1

14.91 radians or .1
14.91

180
π = .38◦. A measurement error of 0.38◦ is

certainly acceptable.

Supplement – Derivation of the Error Formulae

Define

En(x) = f(x)− f(x0)− f ′(x0)(x− x0)− · · · − 1
n!f

(n)(x0)(x − x0)
n

This is the error introduced when one approximates f(x) by f(x0)+f ′(x0)(x−x0)+· · ·+ 1
n!f

(n)(x0)(x−x0)
n.

We shall now prove that

En(x) =
1

(n+1)!f
(n+1)(c) (x− x0)

n+1 (10n)

for some c strictly between x0 and x. This proof is not part of the official course. In fact, we have

already used the Mean–Value Theorem to prove that E0(x) = f ′(c) (x− x0), for some c strictly between x0

and x. This was the content of (8). To deal with n ≥ 1, we need the following small generalization of the

Mean–Value Theorem.

Theorem (Generalized Mean–Value Theorem) Let the functions F (x) and G(x) both be defined and

continuous on a ≤ x ≤ b and both be differentiable on a < x < b. Furthermore, suppose that G′(x) 6= 0 for

all a < x < b. Then, there is a number c obeying a < c < b such that

F (b)−F (a)
G(b)−G(a) =

F ′(c)
G′(c)
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Proof: Define

h(x) =
[

F (b)− F (a)
][

G(x) −G(a)
]

−
[

F (x)− F (a)
][

G(b)−G(a)
]

Observe that h(a) = h(b) = 0. So, by the Mean–Value Theorem, there is a number c obeying a < c < b such

that

0 = h′(c) =
[

F (b)− F (a)
]

G′(c)− F ′(c)
[

G(b)−G(a)
]

As G(a) 6= G(b) (otherwise the Mean–Value Theorem would imply the existence of an a < x < b obeying

G′(x) = 0), we may divide by G′(c)
[

G(b)−G(a)
]

which gives the desired result.

Proof of (10n): To prove (101), that is (10n) for n = 1, simply apply the Generalized Mean–Value

Theorem with F (x) = E1(x) = f(x) − f(x0) − f ′(x0)(x − x0), G(x) = (x − x0)
2, a = x0 and b = x. Then

F (a) = G(a) = 0, so that

F (b)
G(b) =

F ′(c̃)
G′(c̃) =⇒ f(x)−f(x0)−f ′(x0)(x−x0)

(x−x0)2
= f ′(c̃)−f ′(x0)

2(c̃−x0)

for some c̃ strictly between x0 and x. By the Mean–Value Theorem (the standard one, but with f(x) replaced

by f ′(x)), f ′(c̃)−f ′(x0)
c̃−x0

= f ′′(c), for some c strictly between x0 and c̃ (which forces c to also be strictly between

x0 and x). Hence
f(x)−f(x0)−f ′(x0)(x−x0)

(x−x0)2
= 1

2f
′′(c)

which is exactly (101).

At this stage, we know that (10n) applies to all (sufficiently differentiable) functions for n = 0 and

n = 1. To prove it for general n, we proceed by induction. That is, we assume that we already know that

(10n) applies to n = k − 1 for some k (as is the case for k = 1, 2) and that we wish to prove that it also

applies to n = k. We apply the Generalized Mean–Value Theorem with F (x) = Ek(x), G(x) = (x− x0)
k+1,

a = x0 and b = x. Then F (a) = G(a) = 0, so that

F (b)

G(b)
=

F ′(c̃)

G′(c̃)
=⇒ Ek(x)

(x− x0)k+1
=

E′
k(c̃)

(k + 1)(c̃− x0)k
(11)

But

E′
k(c̃) =

d
dx

[

f(x)− f(x0)− f ′(x0) (x− x0)− · · · − 1
k!f

(k)(x0) (x− x0)
k
]

x=c̃

=
[

f ′(x)− f ′(x0)− · · · − 1
(k−1)!f

(k)(x0)(x− x0)
k−1

]

x=c̃

= f ′(c̃)− f ′(x0)− · · · − 1
(k−1)!f

(k)(x0)(c̃− x0)
k−1 (12)

The last expression is exactly the definition of Ek−1(c̃), but for the function f ′(x), instead of the function

f(x). But we already know that (10k−1) is true. So, substituting n → k − 1, f → f ′ and x → c̃ into (10n),

we already know that (12), i.e. E′
k(c̃), equals

1
(k−1+1)!

(

f ′)(k−1+1)
(c)(c̃− x0)

k−1+1 = 1
k!f

(k+1)(c) (c̃− x0)
k

for some c strictly between x0 and c̃. Subbing this into (11) gives

Ek(x)

(x− x0)k+1
=

E′
k(c̃)

(k + 1)(c̃− x0)k
=

f (k+1)(c) (c̃− x0)
k

(k + 1) k! (c̃− x0)k
=

1

(k + 1)!
f (k+1)(c)

which is exactly (10k).

So we now know that

◦ if, for some k, (10k−1) is true for all k times differentiable functions,

◦ then (10k) is true for all k + 1 times differentiable functions.

Repeatedly applying this for k = 2, 3, 4, · · · (and recalling that (101) is true) gives (10k) for all k.
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