The Chain Rule

Question

You are walking. Your position at time t is $g(t)$. Your are walking in an environment in which the air temperature depends on position. The temperature at position x is $f(x)$. What instantaneous rate of change of temperature do you feel at time t ?

Because your position at time t is $x=g(t)$, the temperature you feel at time t is $F(t)=f(g(t))$. The instantaneous rate of change of temperature that you feel is $F^{\prime}(t)$. We have a complicated function $F(t)$, constructed from two simple functions, $g(t)$ and $f(x)$. We wish to compute the derivative, $F^{\prime}(t)$, of the complicated function in terms of the derivatives, $g^{\prime}(t)$ and $f^{\prime}(x)$, of the two simple functions. This is exactly what the chain rule does.

The Chain Rule

If $g(t)$ is differentiable at t_{0} and $f(x)$ is differentiable at $x_{0}=g\left(t_{0}\right)$ then $F(t)=f(g(t))$ is differentiable at t_{0} and

$$
F^{\prime}\left(t_{0}\right)=f^{\prime}\left(g\left(t_{0}\right)\right) g^{\prime}\left(t_{0}\right)
$$

Special Cases

a) If $f(x)=x^{n}$, then $f^{\prime}(x)=n x^{n-1}, F(t)=f(g(t))=g(t)^{n}$ and $f^{\prime}(g(t)) g^{\prime}(t)=$ $n g(t)^{n-1} g^{\prime}(t)$. So

$$
\frac{d}{d t} g(t)^{n}=n g(t)^{n-1} g^{\prime}(t)
$$

b) If $f(x)=\sin x$, then $f^{\prime}(x)=\cos x, F(t)=f(g(t))=\sin (g(t))$ and $f^{\prime}(g(t)) g^{\prime}(t)=$ $\cos (g(t)) g^{\prime}(t)$. So

$$
\frac{d}{d t} \sin (g(t))=\cos (g(t)) g^{\prime}(t)
$$

Similarly

$$
\frac{d}{d t} \cos (g(t))=-\sin (g(t)) g^{\prime}(t)
$$

Units

In the question posed above, t has units of seconds, $g(t)$ has units of meters, x has units of meters and $f(x)$ has units of degrees. Consequently, $F(t)=f(g(t))$ has units of degrees, $F^{\prime}(t)$ has units $\frac{\text { degrees }}{\text { second }}, f^{\prime}(x)$ has units $\frac{\text { degrees }}{\text { meter }}$ and $g^{\prime}(t)$ has units $\frac{\text { meters }}{\text { second }}$. Thus $f^{\prime}(g(t)) g^{\prime}(t)$ has units $\frac{\text { degrees }}{\text { meter }} \times \frac{\text { meters }}{\text { second }}=\frac{\text { degrees }}{\text { second }}$ which is the same as the units of $F^{\prime}(t)$. This of course does not prove that $F^{\prime}(t)$ and $f^{\prime}(g(t)) g^{\prime}(t)$ are the same. But it does provide a consistency check.

Derivation of the Chain Rule

Write $x_{0}=g\left(t_{0}\right)$. We are told that

$$
f^{\prime}\left(x_{0}\right)=\lim _{H \rightarrow 0} \frac{f\left(x_{0}+H\right)-f\left(x_{0}\right)}{H} \quad \text { and } \quad g^{\prime}\left(t_{0}\right)=\lim _{h \rightarrow 0} \frac{g\left(t_{0}+h\right)-g\left(t_{0}\right)}{h}
$$

In particular, if we define

$$
\varphi(H)=\frac{f\left(x_{0}+H\right)-f\left(x_{0}\right)}{H}
$$

then we know that

$$
f\left(x_{0}+H\right)=f\left(x_{0}\right)+H \varphi(H) \quad \text { and } \quad \lim _{H \rightarrow 0} \varphi(H)=f^{\prime}\left(x_{0}\right)
$$

Our goal is to evaluate

$$
F^{\prime}\left(t_{0}\right)=\lim _{h \rightarrow 0} \frac{F\left(t_{0}+h\right)-F\left(t_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{f\left(g\left(t_{0}+h\right)\right)-f\left(g\left(t_{0}\right)\right)}{h}
$$

Now $f\left(g\left(t_{0}\right)\right)=f\left(x_{0}\right)$ and we can turn $f\left(g\left(t_{0}+h\right)\right)$ into $f\left(x_{0}+H\right)$ by writing

$$
g\left(t_{0}+h\right)=g\left(t_{0}\right)+H(h) \quad \text { with } \quad H(h)=g\left(t_{0}+h\right)-g\left(t_{0}\right)
$$

So

$$
\begin{aligned}
F^{\prime}\left(t_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(g\left(t_{0}+h\right)\right)-f\left(g\left(t_{0}\right)\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+H(h)\right)-f\left(x_{0}\right)}{H(h)} \frac{H(h)}{h} \\
& =\lim _{h \rightarrow 0} \varphi(H(h)) \frac{g\left(t_{0}+h\right)-g\left(t_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \varphi(H(h)) \lim _{h \rightarrow 0} \frac{g\left(t_{0}+h\right)-g\left(t_{0}\right)}{h} \\
& =f^{\prime}\left(x_{0}\right) g^{\prime}\left(t_{0}\right)
\end{aligned}
$$

because $H(h)$ tends to 0 as h tends to 0 . This is the chain rule.

