A Delta-Epsilon Example.

Problem: Let $\varepsilon>0$. Find a $\delta>0$ such that $|\cos (2 \pi x-\sin (x-1))-1|<\varepsilon$ for all $|x-1|<\delta$.
Solution: Define $f(x)=\cos (2 \pi x-\sin (x-1))$. We are given some number $\varepsilon>0$. We have to find a $\delta>0$ such that $|f(x)-f(1)|<\varepsilon$ for all $|x-1|<\delta$. We wish, in the end, to write an argument of the form

$$
\begin{aligned}
& \text { Set } \delta=\cdots . \text { If }|x-1|<\delta \text { then } \\
& |f(x)-f(1)| \leq \cdots \\
& \vdots \\
& <\varepsilon
\end{aligned}
$$

However at this stage, we still do not know what δ to pick. So I like to start by writing out an argument of the above form, but leaving the choice of δ blank.

Set $\delta=$. If $|x-1|<\delta$ then

$$
\begin{array}{rlrl}
|f(x)-f(1)| & =\left|f^{\prime}(z)(x-1)\right| & & \text { for some } z \text { between } x \text { and } 1, \\
& =|-\sin (2 \pi z-\sin (z-1))\{2 \pi-\cos (x-1)\}(x-1)| \\
& \leq|\{2 \pi-\cos (x-1)\}(x-1)| & & \text { since }|\sin (2 \pi z-\sin (z-1))| \leq 1 \\
& =|2 \pi-\cos (x-1)||x-1| & & \\
& \leq(2 \pi+1)|x-1| & & \text { since }-1 \leq \cos (x-1) \leq 1
\end{array}
$$

We would now like to terminate the string of inequalities with $<\varepsilon$. But for that to be true we need $(2 \pi+1)|x-1|<\varepsilon$. That is, we need $|x-1|<\frac{\varepsilon}{2 \pi+1}$. This tells us to choose $\delta=\frac{\varepsilon}{2 \pi+1}$. We may now δ and give the full argument.

$$
\text { Set } \delta=\frac{\varepsilon}{2 \pi+1} \text {. If }|x-1|<\delta \text { then }
$$

$$
\begin{array}{rlr}
|f(x)-f(1)| & =\left|f^{\prime}(z)(x-1)\right| & \text { for some } z \text { between } x \text { and } 1, \\
& =|-\sin (2 \pi z-\sin (z-1))\{2 \pi-\cos (x-1)\}(x-1)| \\
& \leq|\{2 \pi-\cos (x-1)\}(x-1)| & \\
& \text { since }|\sin (2 \pi z-\sin (z-1))| \leq 1 \\
& =|2 \pi-\cos (x-1)||x-1| & \\
& \leq(2 \pi+1)|x-1| & \\
& <\varepsilon & \\
& \text { since }-1 \leq \cos (x-1) \leq 1 \\
& \text { since }|x-1|<\delta=\frac{\varepsilon}{2 \pi+1}
\end{array}
$$

