A Delta–Epsilon Example.

Problem: Let $\varepsilon > 0$. Find a $\delta > 0$ such that $|\cos(2\pi x - \sin(x-1)) - 1| < \varepsilon$ for all $|x-1| < \delta$. **Solution:** Define $f(x) = \cos(2\pi x - \sin(x-1))$. We are given some number $\varepsilon > 0$. We have to find a $\delta > 0$ such that $|f(x) - f(1)| < \varepsilon$ for all $|x-1| < \delta$. We wish, in the end, to write an argument of the form

Set
$$\delta = \cdots$$
. If $|x - 1| < \delta$ then
 $|f(x) - f(1)| \le \cdots$
 \vdots
 $< \varepsilon$

However at this stage, we still do not know what δ to pick. So I like to start by writing out an argument of the above form, but leaving the choice of δ blank.

Set
$$\delta =$$
. If $|x - 1| < \delta$ then
 $|f(x) - f(1)| = |f'(z) (x - 1)|$ for some z between x and 1,
by the Mean–Value Theorem
 $= |-\sin (2\pi z - \sin(z - 1)) \{2\pi - \cos(x - 1)\} (x - 1)|$
 $\leq |\{2\pi - \cos(x - 1)\} (x - 1)|$ since $|\sin (2\pi z - \sin(z - 1))| \leq 1$
 $= |2\pi - \cos(x - 1)| |x - 1|$
 $\leq (2\pi + 1) |x - 1|$ since $-1 \leq \cos(x - 1) \leq 1$

We would now like to terminate the string of inequalities with $\langle \varepsilon$. But for that to be true we need $(2\pi + 1) |x - 1| < \varepsilon$. That is, we need $|x - 1| < \frac{\varepsilon}{2\pi + 1}$. This tells us to choose $\delta = \frac{\varepsilon}{2\pi + 1}$. We may now δ and give the full argument.

Set
$$\delta = \frac{\varepsilon}{2\pi + 1}$$
. If $|x - 1| < \delta$ then
 $|f(x) - f(1)| = |f'(z) (x - 1)|$ for some z between x and 1 ,
 $= |-\sin (2\pi z - \sin(z - 1)) \{2\pi - \cos(x - 1)\} (x - 1)|$
 $\leq |\{2\pi - \cos(x - 1)\} (x - 1)|$ since $|\sin (2\pi z - \sin(z - 1))| \leq 1$
 $= |2\pi - \cos(x - 1)| |x - 1|$
 $\leq (2\pi + 1) |x - 1|$ since $-1 \leq \cos(x - 1) \leq 1$
 $< \varepsilon$ since $|x - 1| < \delta = \frac{\varepsilon}{2\pi + 1}$