Derivatives of Exponentials

Fix any $a>0$. The definition of the derivative of a^{x} is

$$
\frac{d}{d x} a^{x}=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h}=\lim _{h \rightarrow 0} \frac{a^{x} a^{h}-a^{x}}{h}=\lim _{h \rightarrow 0} a^{x} \frac{a^{h}-1}{h}=a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=C(a) a^{x}
$$

where we are using $C(a)$ to denote the coefficient $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}$ that appears in the derivative. This coefficient does not depend on x. So, at this stage, we know that $\frac{d}{d x} a^{x}$ is a^{x} times some fixed constant $C(a)$. We can learn more about $C(a)$ by just writing $a^{h}=\left(10^{\log _{10} a}\right)^{h}=10^{h \log _{10} a}$:

$$
\begin{aligned}
C(a) & =\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=\lim _{h \rightarrow 0} \frac{10^{h \log _{10} a}-1}{h} \stackrel{h^{\prime}=h \log _{10} a}{=} \lim _{h^{\prime} \rightarrow 0} \frac{10^{h^{\prime}}-1}{h^{\prime} / \log _{10} a}=\log _{10} a \lim _{h^{\prime} \rightarrow 0} \frac{10^{h^{\prime}}-1}{h^{\prime}} \\
& =C(10) \log _{10} a
\end{aligned}
$$

So we now know

$$
\frac{d}{d x} a^{x}=C(10)\left(\log _{10} a\right) a^{x}
$$

We will get a formula for $C(10)$ later in these notes. For now, we just try to get an idea of what $C(10)$ looks like by computing $\frac{10^{h}-1}{h}$ for various values of a and various small values of h. Here is a table of such values.

h	$\frac{10^{h}-1}{h}$
0.1	2.5893
0.01	2.3293
0.001	2.3052
0.0001	2.3028
0.00001	2.3026
0.000001	2.3026
0.0000001	2.3026

So it looks like $C(10)=2.3026$, to four decimal places. In any event, recall that

- $\left.\log _{10} a\right|_{a=1}=0$ so that $\left.C(a)\right|_{a=1}=0$ (This is to be expected - when $a=1, \frac{d}{d x} a^{x}=\frac{d}{d x} 1=0$.)
- $\log _{10} a$ increases as a increases, and hence $C(a)$ increases as a increases
- $\log _{10} a$ tends to $+\infty$ as $a \rightarrow \infty$, and hence $C(a)$ tends to $+\infty$ as $a \rightarrow \infty$

Consequently there is exactly one value of a for which $C(a)=1$. See the figure below. The value of a for which $C(a)=C(10) \log _{10} a=1$ is given the name e. That is, e is defined by the condition

$C(e)=C(10) \log _{10} e=1$, or equivalently, by the condition that $\frac{d}{d x} e^{x}=e^{x}$. From our previous numerical experiment, it looks like

$$
2.3026 \log _{10} e \approx 1 \Longrightarrow \log _{10} e \approx \frac{1}{2.3026} \Longrightarrow e \approx 10^{1 / 2.3026} \approx 2.7183
$$

We shall find a much better way to determine e, to any desired degree of accuracy, shortly.

The Taylor Expansion of e^{x}

Let $f(x)=e^{x}$. Then

$$
\begin{array}{llll}
f(x)=e^{x} & \Rightarrow & f^{\prime}(x)=e^{x} & \Rightarrow \\
f(0)=e^{0}=1 & \Rightarrow & f^{\prime \prime}(0)=e^{0}=1 & \Rightarrow \\
f^{\prime \prime}(0)=e^{0}=1 & \ldots
\end{array}
$$

Recall that, for any positive integer n,

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}+\frac{1}{(n+1)!} f^{(n+1)}(c)\left(x-x_{0}\right)^{n+1}
$$

for some c between x_{0} and x. Applying this with $f(x)=e^{x}$ and $x_{0}=0$, and using that $f^{(m)}\left(x_{0}\right)=$ $e^{x_{0}}=e^{0}=1$ for all m,

$$
e^{x}=f(x)=1+x+\cdots+\frac{x^{n}}{n!}+\frac{1}{(n+1)!} e^{c} x^{n+1}
$$

for some c between 0 and x.
I claim that, for any fixed x, the error term $\frac{1}{(n+1)!} e^{c} x^{n+1}$ alway goes to zero as n goes to infinity. To see this, first observe that e^{c} increases as c increases, so e^{c} is necessarily between e^{0} and e^{x}, for all n. So to show that the error term $\frac{1}{(n+1)!} e^{c} x^{n+1}$ alway goes to zero as n goes to infinity, I just have to show that $\varepsilon_{n}=\frac{|x|^{n+1}}{(n+1)!}$ alway goes to zero as n goes to infinity. Now note that

$$
\varepsilon_{n+1}=\frac{|x|^{n+2}}{(n+2)!}=\frac{|x|^{n+1}}{(n+1)!} \frac{|x|}{(n+2)}=\frac{|x|}{(n+2)} \varepsilon_{n}
$$

Once n gets bigger than, for example, 2|x|, we have $\varepsilon_{n+1}=\frac{|x|}{(n+2)} \varepsilon_{n}<\frac{1}{2} \varepsilon_{n}$. That is, increasing n by decreases ε_{n} by a factor of at least 2 . So ε_{n} must tend to zero as n tends to infinity.

Because, for any fixed x, the error term $\frac{1}{(n+1)!} e^{c} x^{n+1}$ alway goes to zero as n goes to infinity, we have, exactly,

$$
e^{x}=\lim _{n \rightarrow \infty}\left[1+x+\cdots+\frac{x^{n}}{n!}\right]
$$

This limit is generally written

$$
e^{x}=1+x+\cdots+\frac{x^{n}}{n!}+\cdots
$$

or

$$
e^{x}=\sum_{\ell=0}^{\infty} \frac{x^{\ell}}{\ell!}
$$

In fact one may take $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ as the definition of e^{x}. If we set $x=1$ we get

$$
\begin{aligned}
& e=\left.e^{x}\right|_{x=1}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\left.\cdots\right|_{x=1} \\
& =1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\frac{1}{8!}+\frac{1}{9!}+\cdots \\
& =1+1+0.5+0.1 \dot{6}+0.041 \dot{6}+0.008 \dot{3}+0.0013 \dot{8}+0.00019841+0.00002480+0.00000276+\cdots \\
& =2.71828182846
\end{aligned}
$$

and, since e was defined by $1=C(e)=C(10) \log _{10} e$,

$$
C(10)=\frac{1}{\log _{10} e}=\frac{\log _{10} 10}{\log _{10} e}=\ln 10=2.30258509299
$$

and $C(a)=C(10) \log _{10} a=\frac{\log _{10} a}{\log _{10} e}=\ln a$ and

$$
\frac{d}{d x} a^{x}=C(a) a^{x}=(\ln a) a^{x}
$$

I do not have this derivative memorised. Every time I need it, I use

$$
a^{x}=\left(e^{\ln a}\right)^{x}=e^{x \ln a} \Longrightarrow \frac{d}{d x} a^{x}=(\ln a) e^{x \ln a}=(\ln a) a^{x}
$$

by the chain rule.

