
The Exponent Tower

Let x > 0 and a > 0. In these notes, we consider the sequence

x1 = x, x2 = xx = xx1 , x3 = xxx

= xx2 , x4 = xxx
x

= xx3 , · · · , xn+1 = xxn , · · ·

We determine for which choices of x the limit of this sequence, which we denote xxx
...

,

exists and equals a. We shall show that

◦ if 0.066 ≈ 1
ee ≤ x ≤ e1/e ≈ 1.44, then the limit xxx

...
exists and

◦ if 1
e ≤ a ≤ e, then there is exactly one x > 0 for which xxx

...
, exists and equals a and

that x = a1/a and

◦ if x > e1/e or if 0 < x < 1
ee , then the limit xxx

...
does not exist and

◦ if a > e or if 0 < a < 1
e , then there is no x > 0 for which xxx

...
, exists and equals a.

Step 1. In this step we show that if the limit xxx
...

exists and xxx
...

= a, then x = a1/a.

Proof: Fix any x > 0. We are assuming that the limit lim
n→∞

xn exists and that lim
n→∞

xn =

a. So taking the limit, as n → ∞, of xn+1 = xxn gives

a = lim
n→∞

xn+1 = lim
n→∞

xxn = xa

So xa = a. Taking the ath root of both sides gives x = a1/a.

Step 2. In this step we fix any x > 0 and solve x = a1/a for a > 0. We show that if

◦ if x > e1/e, then there is no a > 0 that obeys x = a1/a and

◦ if x = e1/e, then there is exactly one a > 0 obeying x = a1/a, namely a = e, and

◦ if 1 < x < e1/e, the there are exactly two a’s obeying x = a1/a, and

◦ if 0 < x ≤ 1, then there is exactly one a > 0 obeying x = a1/a.

Proof: Observe that

d
daa

1/a = d
dae

1

a
ln a = e

1

a
ln a d

da
ln a
a = e

1

a
ln a

[

1−ln a
a2

]

{

> 0 if 0 < a < e

= 0 if a = e

< 0 if a > e

So the graph of y = a1/a against a is increasing for a < e and decreasing for a > e. Since

lim
a→0

a1/a = lim
a→0

e
1

a
ln a = e−∞ = 0 lim

a→∞
a1/a = lim

a→∞
e

1

a
ln a = e0 = 1
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the graph looks like

y = a1/a

a

y

1 e

1

e1/e

(The graph of y = a1/a against a does tend asymptotically to the horizontal line y = 1

as a → ∞. It just does so very slowly.) So the horizontal line y = x crosses the curve

y = a1/a

◦ exactly once if 0 < x ≤ 1 or x = e1/e

◦ exactly twice if 1 < x < e1/e

◦ never if x > e1/e

Step 3. In this step we fix any x > 1 and show that

◦ the sequence x1, x2, x3, · · · is increasing. That is, xn+1 > xn for all n ∈ IN.

◦ If, in addition x = a1/a, then xn < a for all n ∈ IN

Proof: The proof that xn+1 > xn is by induction on n. Note that, for x > 1, xy

is strictly increasing with y. So x2 = xx > x1 = x = x1 and if xn > xn−1, then

xn+1 = xxn > xxn−1 = xn.

The proof that, if x = a1/a for some a > 1, then xn < a for all n, is once again by

induction on n. Note again that xy is strictly increasing with y. First x1 = a1/a < a1 = a.

Then, if xn < a for some n ∈ IN, we have

xn+1 = xxn < xa =
(

a
1

a

)a
= a

1

a
a = a

Step 4. In this step we fix any x ≥ 1 and finish this case off, showing that

◦ if 1 ≤ x ≤ e1/e, then the limit lim
n→∞

xn exists and takes a value 1 ≤ a ≤ e and

◦ if x > e1/e, then the limit lim
n→∞

xn does not exist.
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Proof: If x = 1, then every xn = 1 and it is obvious that lim
n→∞

xn exists and equals 1.

So assume that x > 1. Since the sequence x1, x2, x3, · · · is increasing, it either converges

to some number a or it diverges to ∞.

If x > e1/e the sequence must diverge, since if it were to converge to some a, then x

would be a1/a. But we saw, in Step 2, that no number x > e1/e can be of the form a1/a

for any a > 0.

So fix any 1 < x ≤ e1/e. Then by Step 2, there is an a > 0 with x = a1/a. In fact,

looking at the graph in Step 2, we may always choose 1 < a ≤ e. Do so. (For 1 < x < e1/e

there are two a’s obeying x = a1/a. We are choosing the smaller of the two.) By Step

3, the sequence x1, x2, x3, · · · is both increasing and bounded above by a. So it must

converge to some number a′ ≤ a. By Step 1, we must have x = (a′)
1/a′

. Since a is the

smallest number with this property, a′ must be a.

Step 5. In this step, fix 0 < x < 1 and write x = a1/a with 0 < a < 1. (There is exactly

one such a.) We show that

◦ the sequence x2, x4, x6, · · · converges to some B ≥ a and

◦ the sequence x1, x3, x5, · · · converges to some b ≤ a

◦ b = xxb

and B = xxB

Proof: Note that xa =
(

a
1

a

)a
= a

1

a
a = a. Since xy is strictly decreasing with y, we have

x = a1/a < a1 = a and
x1 = x ∈ (0, a)

x2 = xx1 ∈
(

xa, 1
)

=
(

a, 1
)

x3 = xx2 ∈
(

x, xa
)

=
(

x1, a
)

x4 = xx3 ∈
(

xa, xx1

)

=
(

a, x2

)

x5 = xx4 ∈
(

xx2 , xa
)

=
(

x3, a
)

x6 = xx5 ∈
(

xa, xx3

)

=
(

a, x4

)

and so on. From this we see that

x1 < x3 < x5 < · · · < a x2 > x4 > x6 > · · · > a

so the sequence
{

x2n+1

}

n∈IN
must converge to some b ≤ a and that the sequence

{

x2n

}

n∈IN

must converge to some B ≥ a. Furthermore

x2n+1 = xx2n
n→∞
=⇒ b = xB

x2n+1 = xxx2n−1 n→∞
=⇒ b = xxb

x2n = xx2n−1
n→∞
=⇒ B = xb

x2n = xxx2n−2 n→∞
=⇒ B = xxB
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We now know, as a consequence of Step 5, when 0 < x < 1, there are only two

possibilities:

◦ either b = a = B, in which case the sequence x1, x2, x3, · · · converges to a or

◦ either b < a < B, in which case the sequence x1, x2, x3, · · · diverges. This case is

only possible of the equation c = xxc

has at least three distinct solutions (namely a,

b and B).

Step 6. We next finish off the case 1
ee ≤ x < 1, which corresponds to 1

e ≤ a < 1, by

showing that, in this case, the equation c = xxc

has exactly one solution 0 < c < 1.

Proof: Fix any 0 < x < 1 and define a by x = a1/a. First observe that for any real

number c we always have xc > 0 and hence 0 < xxc

< 1. Hence any c obeying c = xxc

must also obey 0 < c < 1. The equation c = xxc

has at least one solution, namely c = a,

since xa = a so that xxa

= xa = a. To test if it has other solutions we define the function

f(c) = c − xxc

and see what we can learn about it from its derivative. Recalling that
d
dyx

y = d
dy e

(ln x)y = (lnx) e(lnx)y = (lnx) xy, we have

f ′(c) = 1− d
dcx

xc

= 1− (lnx)xxc d
dcx

c = 1− (lnx)2xxc

xc

Write y = xc. Then

d
dy (yx

y) = xy + y(lnx)xy = xy(1 + y lnx) = xy(1− y| lnx|)

So yxy increases as y increases for y < 1
| lnx| and decreases as y increases for y > 1

| lnx| and

the maximum value of yxy is

yxy
∣

∣

∣

y= 1

| ln x|

= 1
| lnx|x

1

| ln x| = 1
| lnx|e

ln x

| ln x| = 1
e| lnx|

So the maximum value of (lnx)2xxc

xc is

(lnx)2xxc

xc
∣

∣

∣

xc= 1

| ln x|

= (lnx)2xyy

∣

∣

∣

y= 1

| ln x|

= | lnx|
e

= | lnx1/e|

Recall that

lim
c→0

xc = 1 lim
c→0

xxc

= x lim
c→1

xc = x lim
c→1

xxc

= xx

At this stage we know the following properties of f ′(c):

◦ f ′(0) = 1− x(lnx)2 > 0 (since x(lnx)2 ≤ x(lnx)2
∣

∣

x=e−2
=

(

2
e

)2
< 1)

◦ f ′(c) decreases as c increases until xc = 1
| lnx|

◦ f ′(c) bottoms out at 1− | lnx1/e| when xc = 1
| ln x|

◦ f ′(c) then increases as c increases until c = 1

◦ f ′(1) = 1− xxx(lnx)2 > 0 (since xx < 1 and, as above, x(lnx)2 < 1)
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So as long as | lnx1/e| < 1, i.e. x1/e > 1
e , i.e. x > 1

ee , we have f ′(c) > 0 for all 0 < c < 1.

If | lnx1/e| = 1, i.e. x = 1
ee , then f ′(c) > 0 except for a single value of c where f ′(c) = 0.

In both cases the function f(c) is strictly increasing and the equation c = xxc

has c = a

as its only solution.

Step 7. We finally finish off the case 0 < x < 1
ee , showing that for such x’s, the sequence

x1, x2, x3, · · · diverges.

Proof: If the sequence were to converge, the limit would have to be the a determined

by x = a1/a. So for large n, xn would have to be very near a. So xn would have to be of

the form a(1 + ξn) with ξn close to zero. In terms of these new ξn variables, the recursion

rule xn+1 = xxn becomes

a(1 + ξn+1) = xn+1 = xxn = a
1

a
a(1+ξn) = a1+ξn = a aξn

or

ξn+1 = aξn − 1 = eξn ln a − 1

Using the Taylor expansion ez = 1 + z + 1
2e

cz2, for some c between 0 and z,

ξn+1 = (ln a)ξn + 1
2e

c[(lna)ξn]
2 =

[

1 + 1
2e

c(lna)ξn
]

(lna) ξn

Now recall that we are considering the case 0 < x < 1
ee , which corresponds to 0 < a < 1

e

or ln a < −1. If the sequence were to converge, ξn would have to tend to zero as n → ∞,

which would force 1
2e

c(ln a)ξn to tend to zero too (since c has to be between 0 and ξn ln a)

and
[

1 + 1
2
ec(lna)ξn

]

(lna) to tend to lna. In particular,
∣

∣

[

1 + 1
2
ec(lna)ξn

]

(lna)
∣

∣ would

have to be bigger than 1 for all large enough n and we would have to have

|ξn+1| > |ξn|

for all large enough n. This prevents ξn from tending to zero. (The above argument is

called a (linear) stability analysis.)
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