The Exponent Tower

Let $x>0$ and $a>0$. In these notes, we consider the sequence

$$
x_{1}=x, \quad x_{2}=x^{x}=x^{x_{1}}, \quad x_{3}=x^{x^{x}}=x^{x_{2}}, \quad x_{4}=x^{x^{x^{x}}}=x^{x_{3}}, \cdots, x_{n+1}=x^{x_{n}}, \cdots
$$

We determine for which choices of x the limit of this sequence, which we denote $x^{x^{x^{\cdots}}}$, exists and equals a. We shall show that

- if $0.066 \approx \frac{1}{e^{e}} \leq x \leq e^{1 / e} \approx 1.44$, then the limit $x^{x^{x^{\bullet \cdot}}}$ exists and
- if $\frac{1}{e} \leq a \leq e$, then there is exactly one $x>0$ for which $x^{x^{x^{\cdots}}}$, exists and equals a and that $x=a^{1 / a}$ and
- if $x>e^{1 / e}$ or if $0<x<\frac{1}{e^{e}}$, then the limit $x^{x^{x^{\cdots}}}$ does not exist and
- if $a>e$ or if $0<a<\frac{1}{e}$, then there is no $x>0$ for which $x^{x^{x}}$, exists and equals a.

Step 1. In this step we show that if the limit $x^{x^{x^{\bullet \cdot}}}$ exists and $x^{x^{x^{.} \cdot}}=a$, then $x=a^{1 / a}$.

Proof: Fix any $x>0$. We are assuming that the limit $\lim _{n \rightarrow \infty} x_{n}$ exists and that $\lim _{n \rightarrow \infty} x_{n}=$ a. So taking the limit, as $n \rightarrow \infty$, of $x_{n+1}=x^{x_{n}}$ gives

$$
a=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} x^{x_{n}}=x^{a}
$$

So $x^{a}=a$. Taking the $a^{\text {th }}$ root of both sides gives $x=a^{1 / a}$.

Step 2. In this step we fix any $x>0$ and solve $x=a^{1 / a}$ for $a>0$. We show that if - if $x>e^{1 / e}$, then there is no $a>0$ that obeys $x=a^{1 / a}$ and

- if $x=e^{1 / e}$, then there is exactly one $a>0$ obeying $x=a^{1 / a}$, namely $a=e$, and
- if $1<x<e^{1 / e}$, the there are exactly two a 's obeying $x=a^{1 / a}$, and
- if $0<x \leq 1$, then there is exactly one $a>0$ obeying $x=a^{1 / a}$.

Proof: Observe that

$$
\frac{d}{d a} a^{1 / a}=\frac{d}{d a} e^{\frac{1}{a} \ln a}=e^{\frac{1}{a} \ln a} \frac{d}{d a} \frac{\ln a}{a}=e^{\frac{1}{a} \ln a}\left[\frac{1-\ln a}{a^{2}}\right] \begin{cases}>0 & \text { if } 0<a<e \\ =0 & \text { if } a=e \\ <0 & \text { if } a>e\end{cases}
$$

So the graph of $y=a^{1 / a}$ against a is increasing for $a<e$ and decreasing for $a>e$. Since

$$
\lim _{a \rightarrow 0} a^{1 / a}=\lim _{a \rightarrow 0} e^{\frac{1}{a} \ln a}=e^{-\infty}=0 \quad \lim _{a \rightarrow \infty} a^{1 / a}=\lim _{a \rightarrow \infty} e^{\frac{1}{a} \ln a}=e^{0}=1
$$

the graph looks like

(The graph of $y=a^{1 / a}$ against a does tend asymptotically to the horizontal line $y=1$ as $a \rightarrow \infty$. It just does so very slowly.) So the horizontal line $y=x$ crosses the curve $y=a^{1 / a}$

- exactly once if $0<x \leq 1$ or $x=e^{1 / e}$
- exactly twice if $1<x<e^{1 / e}$
- never if $x>e^{1 / e}$

Step 3. In this step we fix any $x>1$ and show that

- the sequence $x_{1}, x_{2}, x_{3}, \cdots$ is increasing. That is, $x_{n+1}>x_{n}$ for all $n \in \mathbb{N}$.
- If, in addition $x=a^{1 / a}$, then $x_{n}<a$ for all $n \in \mathbb{N}$

Proof: The proof that $x_{n+1}>x_{n}$ is by induction on n. Note that, for $x>1, x^{y}$ is strictly increasing with y. So $x_{2}=x^{x}>x^{1}=x=x_{1}$ and if $x_{n}>x_{n-1}$, then $x_{n+1}=x^{x_{n}}>x^{x_{n-1}}=x_{n}$.

The proof that, if $x=a^{1 / a}$ for some $a>1$, then $x_{n}<a$ for all n, is once again by induction on n. Note again that x^{y} is strictly increasing with y. First $x_{1}=a^{1 / a}<a^{1}=a$. Then, if $x_{n}<a$ for some $n \in \mathbb{N}$, we have

$$
x_{n+1}=x^{x_{n}}<x^{a}=\left(a^{\frac{1}{a}}\right)^{a}=a^{\frac{1}{a} a}=a
$$

Step 4. In this step we fix any $x \geq 1$ and finish this case off, showing that - if $1 \leq x \leq e^{1 / e}$, then the limit $\lim _{n \rightarrow \infty} x_{n}$ exists and takes a value $1 \leq a \leq e$ and - if $x>e^{1 / e}$, then the limit $\lim _{n \rightarrow \infty} x_{n}$ does not exist.

Proof: If $x=1$, then every $x_{n}=1$ and it is obvious that $\lim _{n \rightarrow \infty} x_{n}$ exists and equals 1 . So assume that $x>1$. Since the sequence $x_{1}, x_{2}, x_{3}, \cdots$ is increasing, it either converges to some number a or it diverges to ∞.

If $x>e^{1 / e}$ the sequence must diverge, since if it were to converge to some a, then x would be $a^{1 / a}$. But we saw, in Step 2, that no number $x>e^{1 / e}$ can be of the form $a^{1 / a}$ for any $a>0$.

So fix any $1<x \leq e^{1 / e}$. Then by Step 2 , there is an $a>0$ with $x=a^{1 / a}$. In fact, looking at the graph in Step 2, we may always choose $1<a \leq e$. Do so. (For $1<x<e^{1 / e}$ there are two a 's obeying $x=a^{1 / a}$. We are choosing the smaller of the two.) By Step 3 , the sequence $x_{1}, x_{2}, x_{3}, \cdots$ is both increasing and bounded above by a. So it must converge to some number $a^{\prime} \leq a$. By Step 1 , we must have $x=\left(a^{\prime}\right)^{1 / a^{\prime}}$. Since a is the smallest number with this property, a^{\prime} must be a.

Step 5. In this step, fix $0<x<1$ and write $x=a^{1 / a}$ with $0<a<1$. (There is exactly one such a.) We show that

- the sequence $x_{2}, x_{4}, x_{6}, \cdots$ converges to some $B \geq a$ and
- the sequence $x_{1}, x_{3}, x_{5}, \cdots$ converges to some $b \leq a$
- $b=x^{x^{b}}$ and $B=x^{x^{B}}$

Proof: Note that $x^{a}=\left(a^{\frac{1}{a}}\right)^{a}=a^{\frac{1}{a} a}=a$. Since x^{y} is strictly decreasing with y, we have $x=a^{1 / a}<a^{1}=a$ and

$$
\begin{aligned}
& x_{1}=x \in(0, a) \\
& x_{2}=x^{x_{1}} \in\left(x^{a}, 1\right)=(a, 1) \\
& x_{3}=x^{x_{2}} \in\left(x, x^{a}\right)=\left(x_{1}, a\right) \\
& x_{4}=x^{x_{3}} \in\left(x^{a}, x^{x_{1}}\right)=\left(a, x_{2}\right) \\
& x_{5}=x^{x_{4}} \in\left(x^{x_{2}}, x^{a}\right)=\left(x_{3}, a\right) \\
& x_{6}=x^{x_{5}} \in\left(x^{a}, x^{x_{3}}\right)=\left(a, x_{4}\right)
\end{aligned}
$$

and so on. From this we see that

$$
x_{1}<x_{3}<x_{5}<\cdots<a \quad x_{2}>x_{4}>x_{6}>\cdots>a
$$

so the sequence $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}}$ must converge to some $b \leq a$ and that the sequence $\left\{x_{2 n}\right\}_{n \in \mathbb{N}}$ must converge to some $B \geq a$. Furthermore

$$
\begin{array}{rlrr}
x_{2 n+1} & =x^{x_{2 n}} & \stackrel{n \rightarrow \infty}{\Longrightarrow} & b=x^{B} \\
x_{2 n+1} & =x^{x^{x_{2 n-1}}} & \stackrel{n \rightarrow \infty}{\Longrightarrow} & b=x^{x^{b}} \\
x_{2 n} & =x^{x_{2 n-1}} & \stackrel{n \rightarrow \infty}{\Longrightarrow} & B=x^{b} \\
x_{2 n} & =x^{x^{x_{2 n-2}}} & \xlongequal[n \rightarrow \infty]{\Longrightarrow} & B=x^{x^{B}}
\end{array}
$$

We now know, as a consequence of Step 5, when $0<x<1$, there are only two possibilities:

- either $b=a=B$, in which case the sequence $x_{1}, x_{2}, x_{3}, \cdots$ converges to a or
- either $b<a<B$, in which case the sequence $x_{1}, x_{2}, x_{3}, \cdots$ diverges. This case is only possible of the equation $c=x^{x^{c}}$ has at least three distinct solutions (namely a, b and B).

Step 6. We next finish off the case $\frac{1}{e^{e}} \leq x<1$, which corresponds to $\frac{1}{e} \leq a<1$, by showing that, in this case, the equation $c=x^{x^{c}}$ has exactly one solution $0<c<1$.

Proof: Fix any $0<x<1$ and define a by $x=a^{1 / a}$. First observe that for any real number c we always have $x^{c}>0$ and hence $0<x^{x^{c}}<1$. Hence any c obeying $c=x^{x^{c}}$ must also obey $0<c<1$. The equation $c=x^{x^{c}}$ has at least one solution, namely $c=a$, since $x^{a}=a$ so that $x^{x^{a}}=x^{a}=a$. To test if it has other solutions we define the function $f(c)=c-x^{x^{c}}$ and see what we can learn about it from its derivative. Recalling that $\frac{d}{d y} x^{y}=\frac{d}{d y} e^{(\ln x) y}=(\ln x) e^{(\ln x) y}=(\ln x) x^{y}$, we have

$$
f^{\prime}(c)=1-\frac{d}{d c} x^{x^{c}}=1-(\ln x) x^{x^{c}} \frac{d}{d c} x^{c}=1-(\ln x)^{2} x^{x^{c}} x^{c}
$$

Write $y=x^{c}$. Then

$$
\frac{d}{d y}\left(y x^{y}\right)=x^{y}+y(\ln x) x^{y}=x^{y}(1+y \ln x)=x^{y}(1-y|\ln x|)
$$

So $y x^{y}$ increases as y increases for $y<\frac{1}{|\ln x|}$ and decreases as y increases for $y>\frac{1}{|\ln x|}$ and the maximum value of $y x^{y}$ is

$$
\left.y x^{y}\right|_{y=\frac{1}{|\ln x|}}=\frac{1}{|\ln x|} x^{\frac{1}{\ln x \mid}}=\frac{1}{|\ln x|} e^{\frac{\ln x}{\ln x \mid}}=\frac{1}{e|\ln x|}
$$

So the maximum value of $(\ln x)^{2} x^{x^{c}} x^{c}$ is

$$
\left.(\ln x)^{2} x^{x^{c}} x^{c}\right|_{x^{c}=\frac{1}{|\ln x|}}=\left.(\ln x)^{2} x^{y} y\right|_{y=\frac{1}{|\ln x|}}=\frac{|\ln x|}{e}=\left|\ln x^{1 / e}\right|
$$

Recall that

$$
\lim _{c \rightarrow 0} x^{c}=1 \quad \lim _{c \rightarrow 0} x^{x^{c}}=x \quad \lim _{c \rightarrow 1} x^{c}=x \quad \lim _{c \rightarrow 1} x^{x^{c}}=x^{x}
$$

At this stage we know the following properties of $f^{\prime}(c)$:

- $f^{\prime}(0)=1-x(\ln x)^{2}>0\left(\right.$ since $\left.x(\ln x)^{2} \leq\left. x(\ln x)^{2}\right|_{x=e^{-2}}=\left(\frac{2}{e}\right)^{2}<1\right)$
- $f^{\prime}(c)$ decreases as c increases until $x^{c}=\frac{1}{|\ln x|}$
- $f^{\prime}(c)$ bottoms out at $1-\left|\ln x^{1 / e}\right|$ when $x^{c}=\frac{1}{|\ln x|}$
- $f^{\prime}(c)$ then increases as c increases until $c=1$
- $f^{\prime}(1)=1-x x^{x}(\ln x)^{2}>0\left(\right.$ since $x^{x}<1$ and, as above, $\left.x(\ln x)^{2}<1\right)$

So as long as $\left|\ln x^{1 / e}\right|<1$, i.e. $x^{1 / e}>\frac{1}{e}$, i.e. $x>\frac{1}{e^{e}}$, we have $f^{\prime}(c)>0$ for all $0<c<1$. If $\left|\ln x^{1 / e}\right|=1$, i.e. $x=\frac{1}{e^{e}}$, then $f^{\prime}(c)>0$ except for a single value of c where $f^{\prime}(c)=0$. In both cases the function $f(c)$ is strictly increasing and the equation $c=x^{x^{c}}$ has $c=a$ as its only solution.

Step 7. We finally finish off the case $0<x<\frac{1}{e^{e}}$, showing that for such x 's, the sequence $x_{1}, x_{2}, x_{3}, \cdots$ diverges.

Proof: If the sequence were to converge, the limit would have to be the a determined by $x=a^{1 / a}$. So for large n, x_{n} would have to be very near a. So x_{n} would have to be of the form $a\left(1+\xi_{n}\right)$ with ξ_{n} close to zero. In terms of these new ξ_{n} variables, the recursion rule $x_{n+1}=x^{x_{n}}$ becomes

$$
a\left(1+\xi_{n+1}\right)=x_{n+1}=x^{x_{n}}=a^{\frac{1}{a} a\left(1+\xi_{n}\right)}=a^{1+\xi_{n}}=a a^{\xi_{n}}
$$

or

$$
\xi_{n+1}=a^{\xi_{n}}-1=e^{\xi_{n} \ln a}-1
$$

Using the Taylor expansion $e^{z}=1+z+\frac{1}{2} e^{c} z^{2}$, for some c between 0 and z,

$$
\xi_{n+1}=(\ln a) \xi_{n}+\frac{1}{2} e^{c}\left[(\ln a) \xi_{n}\right]^{2}=\left[1+\frac{1}{2} e^{c}(\ln a) \xi_{n}\right](\ln a) \xi_{n}
$$

Now recall that we are considering the case $0<x<\frac{1}{e^{e}}$, which corresponds to $0<a<\frac{1}{e}$ or $\ln a<-1$. If the sequence were to converge, ξ_{n} would have to tend to zero as $n \rightarrow \infty$, which would force $\frac{1}{2} e^{c}(\ln a) \xi_{n}$ to tend to zero too (since c has to be between 0 and $\xi_{n} \ln a$) and $\left[1+\frac{1}{2} e^{c}(\ln a) \xi_{n}\right](\ln a)$ to tend to $\ln a$. In particular, $\left|\left[1+\frac{1}{2} e^{c}(\ln a) \xi_{n}\right](\ln a)\right|$ would have to be bigger than 1 for all large enough n and we would have to have

$$
\left|\xi_{n+1}\right|>\left|\xi_{n}\right|
$$

for all large enough n. This prevents ξ_{n} from tending to zero. (The above argument is called a (linear) stability analysis.)

