The Exponent Tower

Let > 0 and a > 0. In these notes, we consider the sequence

r1=x, wzy=2za"=2z", x3=2" =22, x4=2" =2z, - Tpp=2a"", ---
We determine for which choices of x the limit of this sequence, which we denote x*
exists and equals a. We shall show that

o if 0.066 ~ eie <z<ellen 1.44, then the limit a:xm' exists and

o if é < a < e, then there is exactly one z > 0 for which 2%* | exists and equals a and
that « = a'/* and .
oifz>e’orif0<z< eie, then the limit 2 does not exist and

oifa>eorif0<ac< %, then there is no = > 0 for which z** | exists and equals a.

Step 1. In this step we show that if the limit 2" exists and 2*° = a, then = = a'/°.

Proof: Fix any x > 0. We are assuming that the limit lim z,, exists and that lim z, =
n— oo n—0o0

a. So taking the limit, as n — oo, of z,,41 = &% gives

a= lim z,y; = lim z*" =z
n—oo n—oo

So 2% = a. Taking the a*® root of both sides gives z = a'/®. [ |

Step 2. In this step we fix any = > 0 and solve z = a/® for a > 0. We show that if

1/a and

o if & > e'/¢, then there is no a > 0 that obeys z = a
o if & = /¢, then there is exactly one a > 0 obeying z = a'/®, namely a = e, and
o if 1 < z < e'/¢, the there are exactly two a’s obeying z = a'/*, and

o if 0 < z < 1, then there is exactly one a > 0 obeying z = a'/®.

Proof: Observe that

d 1/a _ d _ilna
da @ = da®

1
1, .
a A =0 ifa=e

<0 ifa>e

1 _
—e lna:ealna[l Ina
a
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&|Q..
IS}

{>O f0<a<e

So the graph of y = a'/® against a is increasing for a < e and decreasing for a > e. Since

) . 1 _ ) ) 1
lim a'/% = lim ea™® — ¢~ = lim a!/% = lim ea™® = ¢% =1
a—0 a—0 a— 00 a— 00
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the graph looks like
Yy

1/e

e
/ y =a'/e
1

1 e a
(The graph of y = a'/® against a does tend asymptotically to the horizontal line y = 1
as a — o0o. It just does so very slowly.) So the horizontal line y = z crosses the curve
_ ,1/a
y=a
o exactly once if 0 <z <1lorzxz= el/e
o exactly twice if 1 < z < el/¢

o never if x > el/¢

Step 3. In this step we fix any x > 1 and show that
o the sequence z1, x2, x3, - - - is increasing. That is, x,,+1 > =, for all n € IN.
o If, in addition z = a'/%, then z,, < a for all n € IN

Proof: The proof that x,41 > =z, is by induction on n. Note that, for x > 1, x¥
is strictly increasing with y. So 2o = 2 > 2! = 2 = z; and if z, > z,_1, then
Tpy1 =T > 21 =x,,.

The proof that, if z = a'/¢ for some a > 1, then z,, < a for all n, is once again by
induction on n. Note again that z¥ is strictly increasing with y. First z; = a/® < o' = a.

Then, if x,, < a for some n € IN, we have

Tpy1 =" <2 = (a%) =a

Step 4. In this step we fix any x > 1 and finish this case off, showing that

oifl<z< el/e, then the limit lim =z, exists and takes a value 1 < a < e and
n—oo

o if & > /¢, then the limit lim z, does not exist.
n—oo
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Proof: If x = 1, then every x,, = 1 and it is obvious that lim =z, exists and equals 1.
n—oo

So assume that = > 1. Since the sequence x1, T2, T3, --- is increasing, it either converges
to some number a or it diverges to co.
If z > e'/¢ the sequence must diverge, since if it were to converge to some a, then z

1/a 1/e can be of the form al/@

would be a'/*. But we saw, in Step 2, that no number z > e
for any a > 0.

So fix any 1 < z < e'/¢. Then by Step 2, there is an ¢ > 0 with z = a'/®. In fact,
looking at the graph in Step 2, we may always choose 1 < a < e. Do so. (For 1 < z < e'/¢

1/a

there are two a’s obeying x = a'/®. We are choosing the smaller of the two.) By Step

3, the sequence x1, x3, x3, --- is both increasing and bounded above by a. So it must

1/a’

converge to some number @’ < a. By Step 1, we must have x = (a’) " . Since a is the

smallest number with this property, a’ must be a. [ |

Step 5. In this step, fix 0 < z < 1 and write z = '/ with 0 < @ < 1. (There is exactly
one such a.) We show that
o the sequence xs, x4, xg, - - - converges to some B > a and

o the sequence x1, x3, x5, - - - converges to some b < a
b B
ob=2a" and B ="

Q=
S—
S]
I
IS
Q=

Proof: Note that 2% = (a
x=a% < q! = q and

@ = a. Since z¥ is strictly decreasing with y, we have

e = X
and so on. From this we see that
rr<rz<zrsg<---<a Lo > Ty >Tg >0 >aQ

so the sequence {xgn_H }n cIN must converge to some b < a and that the sequence {xzn}n cIN
must converge to some B > a. Furthermore

n—oo
Topt1 = xr2" == b=ab
T2p—1  N—00 b
Tony1 = % = b=2z"
n—oo
Loy = x¥2nt = B =2zt

Ton—2 n—oo B
Top =% = DB=2"
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We now know, as a consequence of Step 5, when 0 < z < 1, there are only two

possibilities:
o either b = a = B, in which case the sequence z1, x2, 3, - - - converges to a or
o either b < a < B, in which case the sequence x1, x2, x3, --- diverges. This case is

only possible of the equation ¢ = 2% has at least three distinct solutions (namely a,
b and B).

Step 6. We next finish off the case = < z < 1, which corresponds to * < a < 1, by

ec e

showing that, in this case, the equation ¢ = 2*" has exactly one solution 0 < ¢ < 1.

Proof: Fix any 0 < = < 1 and define a by = = a'/®

. First observe that for any real
number ¢ we always have 2¢ > 0 and hence 0 < 2*° < 1. Hence any ¢ obeying ¢ = 2%
must also obey 0 < ¢ < 1. The equation ¢ = 2 has at least one solution, namely ¢ = a,
since £% = a so that %" = % = a. To test if it has other solutions we define the function
f(c) = ¢ — 2% and see what we can learn about it from its derivative. Recalling that

g—yazy = g—ye(ln 2)Y = (Inz) e®)Y = (Inx) 2¥, we have
fllo)=1-%a™ =1~ (Inz)a” L2 =1— (Ina)?z" 2°
Write y = z¢. Then

g—y(yajy) =z +y(lnz)zy =21+ ylnz) =2Y(1 — y|Inzx|)

So yx¥Y increases as y increases for y < ] and decreases as y increases for y > Mozl and
the maximum value of yx¥ is
y 1 1 1 In 1
— 1n — Ine| — =
yxr ‘y_l; - |lnx|x‘ el = |1n3c|el nel = el Inz|
. c .
So the maximum value of (Inxz)22z® x¢ is
c 1
(Inz)%z™ 2¢ = (Inxz)%xYy .= | If' = |Inz'/°|
z :\lnz\ y:\lnz\
Recall that
. . c . . c
limz€ =1 limz* == limz¢ ==z lim z* = a*
c—0 c—0 c—1 c—1

At this stage we know the following properties of f/(c):

o f'(0)=1—xz(Inz)? >0 (since z(lnz)?* <z(nz)?| _ , = (%)2 <1)
o f’(c) decreases as c increases until z¢ = |1r}m|

o f'(c) bottoms out at 1 — |Inz'/¢| when z¢ = |h}m|

o f’(c) then increases as ¢ increases until ¢ = 1

o f'(1)=1—z2*(Inz)? > 0 (since 2% < 1 and, as above, x(lnx)? < 1)
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So as long as |Inz'/¢| < 1, ie. z'/¢ > 1 ie. 2> 2L, wehave f/(c) >0 foral 0 <c<lL.
If [Inzt/¢| = 1, ie. 2 = L, then f'(c) > 0 except for a single value of ¢ where f'(c) = 0.
In both cases the function f(c) is strictly increasing and the equation ¢ = z*° has ¢ = a

as its only solution. [

Step 7. We finally finish off the case 0 < z < eie, showing that for such x’s, the sequence
1, T2, T3, - - - diverges.

Proof: If the sequence were to converge, the limit would have to be the a determined

1/a_So for large n, x,, would have to be very near a. So x, would have to be of

by x = a
the form a(1 + &,) with &, close to zero. In terms of these new &, variables, the recursion
rule z,,41 = 2" becomes

a(l+ Ens1) = Tpp1 = 2™ = av T8 = g6 = gt

or

bpyr =atn —1=¢esnma _q

Using the Taylor expansion e* =1+ z + %eczz, for some ¢ between 0 and z,

Ent1 = (Ina)é, + 2e[(Ina)é,)* = [1 + ef(lna)é,] (Ina)é,

Now recall that we are considering the case 0 < z < eie, which corresponds to 0 < a < %

or Ina < —1. If the sequence were to converge, &, would have to tend to zero as n — oo,
which would force 2e¢(Ina)g, to tend to zero too (since ¢ has to be between 0 and &, In a)
and [1+ Ze¢(Ina)é,] (Ina) to tend to Ina. In particular, |[1 4 Fe(Ina)é,] (Ina)| would
have to be bigger than 1 for all large enough n and we would have to have

|§n+1| > |§n|

for all large enough n. This prevents &, from tending to zero. (The above argument is
called a (linear) stability analysis.) |
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