Properties of Exponentials

In the following, x and y are arbitrary real numbers, a and b are arbitrary constants that are strictly bigger than zero and e is 2.7182818284 , to ten decimal places.

1) $e^{0}=1, a^{0}=1$
2) $e^{x+y}=e^{x} e^{y}, \quad a^{x+y}=a^{x} a^{y}$
3) $e^{-x}=\frac{1}{e^{x}}, \quad a^{-x}=\frac{1}{a^{x}}$
4) $\left(e^{x}\right)^{y}=e^{x y},\left(a^{x}\right)^{y}=a^{x y}$
5) $\frac{d}{d x} e^{x}=e^{x}, \frac{d}{d x} e^{g(x)}=g^{\prime}(x) e^{g(x)}, \frac{d}{d x} a^{x}=(\ln a) a^{x}$
6) $\lim _{x \rightarrow \infty} e^{x}=\infty, \lim _{x \rightarrow-\infty} e^{x}=0$
$\lim _{x \rightarrow \infty} a^{x}=\infty, \lim _{x \rightarrow-\infty} a^{x}=0$ if $a>1$
$\lim _{x \rightarrow \infty} a^{x}=0, \lim _{x \rightarrow-\infty} a^{x}=\infty$ if $0<a<1$
7) The graph of 2^{x} is given below. The graph of a^{x}, for any $a>1$, is similar.

Properties of Logarithms

In the following, x and y are arbitrary real numbers that are strictly bigger than $0, a$ is an arbitrary constant that is strictly bigger than one and e is 2.7182818284 , to ten decimal places.

1) $e^{\ln x}=x, \quad a^{\log _{a} x}=x, \log _{e} x=\ln x, \quad \log _{a} x=\frac{\ln x}{\ln a}$
2) $\log _{a}\left(a^{x}\right)=x, \ln \left(e^{x}\right)=x$
$\ln 1=0, \quad \log _{a} 1=0$
$\ln e=1, \quad \log _{a} a=1$
3) $\ln (x y)=\ln x+\ln y, \log _{a}(x y)=\log _{a} x+\log _{a} y$
4) $\ln \left(\frac{x}{y}\right)=\ln x-\ln y, \log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
$\ln \left(\frac{1}{y}\right)=-\ln y, \quad \log _{a}\left(\frac{1}{y}\right)=-\log _{a} y$,
5) $\ln \left(x^{y}\right)=y \ln x, \log _{a}\left(x^{y}\right)=y \log _{a} x$
6) $\frac{d}{d x} \ln x=\frac{1}{x}, \frac{d}{d x} \ln (g(x))=\frac{g^{\prime}(x)}{g(x)}, \frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}$
7) $\lim _{x \rightarrow \infty} \ln x=\infty, \lim _{x \rightarrow 0} \ln x=-\infty$ $\lim _{x \rightarrow \infty} \log _{a} x=\infty, \lim _{x \rightarrow 0} \log _{a} x=-\infty$
8) The graph of $\ln x$ is given below. The graph of $\log _{a} x$, for any $a>1$, is similar.

