Inequalities

Every real number a is designated as being either positive $(a>0)$ or zero $(a=0)$ or negative $(a<0)$. By definition $a>b$ if and only if $a-b>0$ and $a<b$ if and only if $a-b<0$. Hence, given any two real numbers a and b,

$$
\text { either } \quad a>b \quad \text { or } \quad a=b \quad \text { or } \quad a<b
$$

By definition $a \leq b$ if either $a=b$ or $a<b$, and $a \geq b$ if either $a=b$ or $a>b$.

Properties of Inequalities

Let a, b and c be real numbers.

1) If $a<b$, then $a+c<b+c$ and $a-c<b-c$.

2) If $a<b$ and $c>0$ then $a c<b c$. But if $a<b$ and $c<0$ then $a c>b c$. Note that mulitplication by a negative number flips the inequality.
Proof: If $a<b$ and $c>0$, then, by definition, $b-a>0$ and $c>0$. But the product of any two positive numbers is positive, so $b c-a c=c(b-a)>0$, which implies $a c<b c$. On the other hand, the product of a positive number and a negative number is a negative number. So if $a<b$ and $c<0$, we have $b-a>0$ and $c<0$ implying $b c-a c=c(b-a)<0$ so that $a c>b c$.
Example: Here is an example with $a=1$ and $b=2$.

- For $c=3, a c=(1)(3)=3<b c=(2)(3)=6$.
- For $c=-3, a c=(1)(-3)=-3>b c=(2)(-3)=-6$.
- For $c=0, a c=(1)(0)=0=b c=(2)(0)=0$.

3) If $a<b$ and $b<c$, then $a<c$.

4) If $a>0$, then $\frac{1}{a}>0$. If $0<a<b$, then $\frac{1}{b}<\frac{1}{a}$.
5) If $0 \leq a<b$, then $a^{2}<b^{2}$.

Proof: This is an easy consequence of Properties (2) and (3). By Property (2) with $c=a, a^{2} \leq a b$. By Property (2) with $c=b, a b<b^{2}$. By Property (3), $a^{2} \leq a b<b^{2}$.
6) Recall that the absolute value, $|a|$, of a real number a is defined by

$$
|a|= \begin{cases}a & \text { if } a \geq 0 \\ -a & \text { if } a \leq 0\end{cases}
$$

For example $|2|=|-2|=2$. We have $|a|<b$ if and only if $-b<a<b$. This is most easily seen by looking at the graph $y=|x|$, below. To determine which values of x obey, $|x|<b$, we have to determine which points on $y=|x|$ have $y<b$. That is, we have to determine which points on $y=|x|$ lie below the
line $y=b$. The point $(x,|x|)$ on the graph $y=|x|$ lies below the line $y=b$ if and only if x is between $-b$ and b.

Example 1 Find all real numbers x obeying $|\sqrt{x}-3|<10^{-6}$.

Solution.

$$
\begin{aligned}
|\sqrt{x}-3|<10^{-6} & \Longleftrightarrow-10^{-6}<\sqrt{x}-3<10^{-6} \\
& \text { by Property }(6) \\
& \Longleftrightarrow 3-10^{-6}<\sqrt{x}<3+10^{-6} \\
& \text { by Property }(1) \text { with } c=3 \\
& \Longleftrightarrow\left(3-10^{-6}\right)^{2}<x<\left(3+10^{-6}\right)^{2}
\end{aligned} \begin{array}{ll}
\text { by Property }(5)
\end{array}
$$

Example 2 Find all real numbers x obeying $\frac{2}{x-1} \geq 5$.

Solution. If $x-1<0$, then $\frac{2}{x-1}<0$ while $5>0$. So no x 's with $x-1<0$, that is $x<1$, are allowed. If $x-1=0$, that is $x=1$, then $\frac{2}{x-1}$ is not defined. In this case, we say the inequality $\frac{2}{x-1} \geq 5$ is not satisified.
If $x-1>0$, that is $x>1$,

$$
\begin{aligned}
\frac{2}{x-1} \geq 5 & \Longleftrightarrow 2 \geq 5(x-1) & & \text { by Property (2) with } c=x-1>0 \\
& \Longleftrightarrow \frac{2}{5} \geq x-1 & & \text { by Property (2) with } c=\frac{1}{5} \\
& \Longleftrightarrow \frac{7}{5} \geq x & & \text { by Property (1) with } c=1
\end{aligned}
$$

So the allowed x 's are $1<x \leq \frac{7}{5}$. We can also see this from the graph below.

The interval of all real numbers x that obey $1<x \leq \frac{7}{5}$ is denoted $\left(1, \frac{7}{5}\right]$. The round bracket in " $(1$ " signifies that 1 is not included in the interval while the square bracket in " $\frac{7}{5}$]" signifies that $\frac{7}{5}$ is included in the interval.

Example 3 Find all real numbers x obeying $-x^{2}+3 x+4>0$.

Solution. Factoring

$$
-x^{2}+3 x+4=-\left(x^{2}-3 x-4\right)=-(x-4)(x+1)
$$

If the two factors $(x-4)$ and $(x+1)$ have the same sign (either both positive or both negative) then $(x-4)(x+1)$ will be positive and $-x^{2}+3 x+4=-(x-4)(x+1)$ will be negative. Hence we need the two factors $(x-4)$ and $(x+1)$ to have opposite sign. That is, we need $-1<x<4$. This is consistent with the graph below.

