Limits

Notation.

- \mathbb{N} is the set $\{1,2,3, \cdots\}$ of all natural numbers
$\circ \mathbb{R}$ is the set of all real numbers
- \forall is read "for all"
- \exists is read "there exists"
$\circ \in$ is read "element of"
- \notin is read "not an element of"
- $\{A \mid B\}$ is read "the set of all A such that B "
- If S is a set and T is a subset of S, then $S \backslash T$ is $\{x \in S \mid x \notin T\}$, the set S with the elements of T removed. For example, $\mathbb{R} \backslash\{a\}=\{x \in \mathbb{R} \mid x \neq a\}$.
- If S and T are sets, then $f: S \rightarrow T$ means that f is a function which assigns to each element of S an element of T.
- $[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}$
$(a, b]=\{x \in \mathbb{R} \mid a<x \leq b\}$ $[a, b)=\{x \in \mathbb{R} \mid a \leq x<b\}$ $(a, b)=\{x \in \mathbb{R} \mid a<x<b\}$

Roughly speaking, $\lim _{x \rightarrow a} f(x)=L$ means that $f(x)$ approachs L as x approachs a. Here is the precise definition of limit.

Definition 1 (Limit) Let $a, L \in \mathbb{R}$ and $f: \mathbb{R} \backslash\{a\} \rightarrow \mathbb{R}$. Then $\lim _{x \rightarrow a} f(x)=L$ if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }|f(x)-L|<\varepsilon \text { whenever } 0<|x-a|<\delta
$$

Remark 2

(a) Here is what that definition of " $\lim _{x \rightarrow a} f(x)=L$ " says. Suppose you have a magic microscope whose magnification can be set as high as you like. Suppose that when the magnification is set to $\frac{1}{\varepsilon}$, you can only see those points whose distance from L is less than ε. The definition says that no matter how high you set the magnification, (i.e. no matter how small you set $\varepsilon>0$), you will be able to see $f(x)$ whenever x is close enough to a. (If the distance from x to a is less than δ, then you will certainly see $f(x)$.)
(b) Definition 1, of $\lim _{x \rightarrow a} f(x)$, is set up so that the function $f(x)$ is never evaluated at $x=a$. Indeed $f(x)$ need not even be defined at $x=a$. This is exactly what happens in the definition of the derivative $h^{\prime}(a)=\lim _{x \rightarrow a} \frac{h(x)-h(a)}{x-a}$. (In this case $f(x)=\frac{h(x)-h(a)}{x-a}$.)

Example 3 In Example 2 of the notes "A Little Logic" we saw that the statement

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that } x^{2}<\varepsilon \text { whenever }|x|<\delta
$$

is true. This statement implies that the statement

$$
\begin{equation*}
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that } \quad|f(x)-L|<\varepsilon \text { whenever } 0<|x-a|<\delta \tag{1}
\end{equation*}
$$

is true when $f(x)=x^{2}, L=0$ and $a=0$. Of course (1) is exactly the definition of $\lim _{x \rightarrow a} f(x)=L$ in Definition 1, so

$$
\lim _{x \rightarrow 0} x^{2}=0
$$

Example 4 In this example, we consider $\lim _{x \rightarrow 0} \sin \frac{1}{x}$. From the graph

we would guess that $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist. So we fix any real number L and show that $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ cannot be L. To do so, let U be the statement

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }\left|\sin \frac{1}{x}-L\right|<\varepsilon \text { whenever } 0<|x|<\delta
$$

We wish to show that U is false. To do so, we split it up into bite sized pieces, working from right to left, just as we did in the notes "A Little Logic". Precisely, we let (see (2) below)

- $S(\delta, \varepsilon)$ be the statement " $\left.\sin \frac{1}{x}-L \right\rvert\,<\varepsilon$ whenever $0<|x|<\delta$ ", and
- $T(\varepsilon)$ be the statement " $\exists \delta>0$ such that $S(\delta, \varepsilon)$ " or

$$
\exists \delta>0 \text { such that }\left|\sin \frac{1}{x}-L\right|<\varepsilon \text { whenever } 0<|x|<\delta
$$

- Then U is the statement $" \forall \varepsilon>0 T(\varepsilon)$ ".

We analyze U using the same three steps as in Example 2 of "A Little Logic".

- Step 1: We find all δ 's and ε 's for which $S(\delta, \varepsilon)$ is true. Fix any $\varepsilon>0$ and any $\delta>0$. The statement $S(\delta, \varepsilon)$ is true if all values of $\sin \frac{1}{x}$, with $0<|x|<\delta$, lie in the interval $(L-\varepsilon, L+\varepsilon$). As x runs over the interval $(0, \delta)$, (so that, in particular, $0<|x|<\delta) \frac{1}{x}$ covers the set $\left(\frac{1}{\delta}, \infty\right)$. This contains many intervals of length 2π and hence many periods of sin. So, as x runs over the interval $(0, \delta), \sin \frac{1}{x}$ covers all of $[-1,1]$. So $S(\delta, \varepsilon)$ is true if and only if the interval $[-1,1]$ is contained in the interval $(L-\varepsilon, L+\varepsilon)$. In particular, when $\varepsilon<1$, the interval $(L-\varepsilon, L+\varepsilon)$, which has length 2ε, is shorter than $[-1,1]$ and cannot contain it, so that $S(\delta, \varepsilon)$ is false.
- Step 2: Because $S(\delta, \varepsilon)$ is false for all $\delta>0$ when $\varepsilon<1, T(\varepsilon)$ is false for all $\varepsilon<1$.
- Step 3: We conclude that U is false since, as we have just seen, $T(\varepsilon)$ is false for at least one $\varepsilon>0$. For example $T\left(\frac{1}{2}\right)$ is false.
In conclusion, $\sin \frac{1}{x}$ has no limit as $x \rightarrow 0$.

Example 5 Consider $\lim _{x \rightarrow 2} \frac{1}{x}$. We would of course expect that $\lim _{x \rightarrow 2} \frac{1}{x}=\frac{1}{2}$. In this example we verify directly, using Definition 1, that this is the case. In other words, we verify that the statement

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that } \quad\left|\frac{1}{x}-\frac{1}{2}\right|<\varepsilon \text { whenever } 0<|x-2|<\delta
$$

is true. To do so, it suffices for us to fix any $\varepsilon>0$ and then find a $\delta>0$ such that $\left|\frac{1}{x}-\frac{1}{2}\right|<\varepsilon$ for all $|x-2|<\delta$ and that's what I'll do.

I shall pick a δ that is smaller than 1 . Then, if $|x-2|<\delta$, we have $|x-2|<1$ so that $1<x<3$ and

$$
\left|\frac{1}{x}-\frac{1}{2}\right|=\left|\frac{2-x}{2 x}\right|=\frac{|2-x|}{2|x|}<\frac{|2-x|}{2 \times 1}
$$

since $x>1$. As

$$
\frac{|2-x|}{2 \times 1}<\varepsilon \quad \text { if } \quad|2-x|<2 \varepsilon
$$

we have that

$$
|2-x|<\min \{1,2 \varepsilon\} \quad \Rightarrow \quad\left|\frac{1}{x}-\frac{1}{2}\right|<\varepsilon
$$

Hence $\delta=\min \{1,2 \varepsilon\}$ does the trick.

Example 6 Again consider $\lim _{x \rightarrow 2} \frac{1}{x}$. But this time suppose that someone claims that $\lim _{x \rightarrow 2} \frac{1}{x}=\frac{1}{3}$. We want to disprove the claim. That is, we wish to show that the statement

$$
\begin{equation*}
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that } \quad\left|\frac{1}{x}-\frac{1}{3}\right|<\varepsilon \text { whenever } 0<|x-2|<\delta \tag{3}
\end{equation*}
$$

is false. To do so, it suffices to find one "bad" ε for which the statement" $\left|\frac{1}{x}-\frac{1}{3}\right|<\varepsilon$ whenever $0<|x-2|<\delta$ " is false for all $\delta>0$. To guess a "bad" ε observe that when x is
very close to 2 , we have $\left|\frac{1}{x}-\frac{1}{3}\right| \approx\left|\frac{1}{2}-\frac{1}{3}\right|=\frac{1}{6}$. So I pick $\varepsilon=\frac{1}{10}$ (any other $\varepsilon<\frac{1}{6}$ would work too) and I shall show that, for this ε there is no $\delta>0$ such that $\left|\frac{1}{x}-\frac{1}{3}\right|<\frac{1}{10}$ for all $0<|x-2|<\delta$.

I'll now show that all x 's "sufficiently close" to 2 obey $\left|\frac{1}{x}-\frac{1}{3}\right|>\frac{1}{10}$. For "sufficiently close", let's try "distance less than 0.01". (There's nothing magical about the number 0.01. If it doesn't work, we'll just try again with a smaller distance.) For all x obeying $|x-2|<0.01$ we have $1.99<x<2.01$ and hence

$$
\left|\frac{1}{x}-\frac{1}{3}\right|=\left|\frac{3-x}{3 x}\right| \geq \frac{3-2.01}{3 \times 2.01}=\frac{0.99}{6.03}>\frac{1}{10}=\varepsilon
$$

No matter what $\delta>0$ we pick, there will be some x 's obeying $|x-2|<\delta$ that also obey $|x-2|<0.01$ and hence that also obey $\left|\frac{1}{x}-\frac{1}{3}\right|>\frac{1}{10}=\varepsilon$. So (3) is false.

Example 7 In this example, we fix any real number θ and show that

$$
\lim _{h \rightarrow 0} \sin (\theta+h)=\sin \theta
$$

by verifying directly that the statement

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that } \quad|\sin (\theta+h)-\sin \theta|<\varepsilon \text { whenever } 0<|h|<\delta
$$

is true. To do so, it suffices for us to fix any $\varepsilon>0$ and then find a $\delta>0$ such that $|\sin (\theta+h)-\sin \theta|<\varepsilon$ for all $|h|<\delta$ and that's what we'll do.

We shall use the fact that

$$
\begin{equation*}
|\sin h| \leq|h| \tag{4}
\end{equation*}
$$

for all h, provided the angle h is given in radians. First, we verify this fact. If $|h| \geq 1$, (4) is obvious because $|\sin h| \leq 1 \leq|h|$. For $0 \leq h \leq 1$, consider the figure

The arc from P to Q is part of a circle of radius one. Because the arc subtends the angle $2 h$, it is the fraction $\frac{2 h}{2 \pi}$ of the circle and so has length $\frac{2 h}{2 \pi} \times 2 \pi=2 h$. The straight line from P to Q has length $2 \sin h$. Because the straight line from P to Q is shorter than the arc from P to Q, we have $2 \sin h \leq 2 h$. For $-1 \leq h<0, \sin h$ is negative so that

$$
|\sin h|=-\sin h=\sin (-h)
$$

But $-h$ is between 0 and 1 , so we already know that $\sin (-h) \leq-h=|h|$. This completes the verification of (3).

Now back to the main problem. By the trig identities $\sin (a+b)=\sin a \cos b+\cos a \sin b$ and $\cos 2 a=1-2 \sin ^{2} a$,

$$
\begin{aligned}
\sin (\theta+h)-\sin \theta & =\sin \theta \cos h+\cos \theta \sin h-\sin \theta \\
& =(\cos h-1) \sin \theta+\cos \theta \sin h \\
& =-2 \sin ^{2} \frac{h}{2} \sin \theta+\cos \theta \sin h
\end{aligned}
$$

Since $|\sin h| \leq|h|,\left|\sin \frac{h}{2}\right| \leq\left|\frac{h}{2}\right|,|\sin \theta| \leq 1$ and $|\cos \theta| \leq 1$

$$
\begin{aligned}
|\sin (\theta+h)-\sin \theta| & \leq 2\left|\frac{h}{2}\right|^{2} \times 1+1 \times|h| \\
& =|h|+\frac{1}{2}|h|^{2}
\end{aligned}
$$

If we pick $\delta<1$, then $|h|<\delta<1$ implies $|h|^{2}=|h||h|<|h|$ and

$$
|\sin (\theta+h)-\sin \theta| \leq|h|+\frac{1}{2}|h|=\frac{3}{2}|h|<\varepsilon \text { if }|h|<\frac{2}{3} \varepsilon
$$

Hence $\delta=\min \left\{1, \frac{2}{3} \varepsilon\right\}$ does the trick.

Example 8 We saw, in Example 4, that $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist. Here are two more $f(x)$'s for which the limit $\lim _{x \rightarrow 0} f(x)$ does not exist.

$$
f(x)=\frac{1}{x}
$$

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ -1 & \text { if } x<0\end{cases}
$$

Definition 9 (Limit Variations)

(a) Let $a, L \in \mathbb{R}$, and $f: \mathbb{R} \backslash\{a\} \rightarrow \mathbb{R}$. Then
$\lim _{x \rightarrow a+} f(x)=L$ if and only if
$\forall \varepsilon>0 \quad \exists \delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $a<x<a+\delta$
$\lim _{x \rightarrow a-} f(x)=L$ if and only if
$\forall \varepsilon>0 \exists \delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $a-\delta<x<a$
$\lim _{x \rightarrow a} f(x)=\infty$ if and only if
$\forall Y>0 \quad \exists \delta>0$ such that $f(x)>Y$ whenever $0<|x-a|<\delta$
$\lim _{x \rightarrow a} f(x)=-\infty$ if and only if

$$
\forall Y>0 \quad \exists \delta>0 \text { such that } f(x)<-Y \text { whenever } 0<|x-a|<\delta
$$

$\lim _{x \rightarrow \infty} f(x)=L$ if and only if

$$
\forall \varepsilon>0 \quad \exists X>0 \text { such that }|f(x)-L|<\varepsilon \text { whenever } x>X
$$

$\lim _{x \rightarrow-\infty} f(x)=L$ if and only if

$$
\forall \varepsilon>0 \quad \exists X>0 \text { such that }|f(x)-L|<\varepsilon \text { whenever } x<-X
$$

(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Then f is continuous at $a \in \mathbb{R}$ if $\lim _{x \rightarrow a} f(x)=f(a)$ and f is continous on \mathbb{R} if it is continuous at every $a \in \mathbb{R}$.

Remark 10

(a) On a handwaving level, $\lim _{x \rightarrow a+} f(x)=L$ means that $f(x)$ approachs L as x approachs a from the right and $\lim _{x \rightarrow a-} f(x)=L$ means that $f(x)$ approachs L as x approachs a from the left. For example

$$
f(x)=\left\{\begin{array}{ll}
1 & \text { if } x>0 \\
\frac{1}{2} & \text { if } x=0 \\
0 & \text { if } x<0
\end{array}\right\} \quad \lim _{x \rightarrow 0+} f(x)=1 \quad \lim _{x \rightarrow 0-} f(x)=0
$$

Of course " $\lim _{x \rightarrow a} f(x)=L$ " is equivalent to " $\lim _{x \rightarrow a+} f(x)=L$ and $\lim _{x \rightarrow a-} f(x)=L$ ".
(b) On a handwaving level, $\lim _{x \rightarrow a} f(x)=\infty$ means that, as x approachs $a, f(x)$ eventually gets (and remains) larger than any possible positive number. We say " $f(x)$ tends to infinity". For example

$$
f(x)=\frac{1}{(x-1)^{2}} \quad \lim _{x \rightarrow 1} f(x)=\infty
$$

(c) On a handwaving level, $\lim _{x \rightarrow \infty} f(x)=L$ means that, as x tends to infinity (i.e. gets and remains bigger than any possible positive number), $f(x)$ tends to L and $\lim _{x \rightarrow-\infty} f(x)=L$
means that, as x tends to minus infinity (i.e. gets and remains more negative than any possible negative number), $f(x)$ tends to L. For example

$$
f(x)=\arctan x \quad \lim _{x \rightarrow \infty} f(x)=\frac{\pi}{2} \quad \lim _{x \rightarrow-\infty} f(x)=-\frac{\pi}{2}
$$

(By $\arctan x$, we mean the unique $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that obeys $\tan \theta=x$.)
As we have seen, evaluating limits by directly verifying Definition 1 gets ugly and hard very quickly. It is much more efficient to have a list of simple limits that we already know together with a toolbox that allows us to build complicated limits out of simple ones. As examples of known simple limits, it is trivial that, for any $a, b \in \mathbb{R}$,

$$
\lim _{x \rightarrow a} b=b \quad \lim _{x \rightarrow a} x=a
$$

and we have already seen, in Example 7, that, for any $a \in \mathbb{R}$,

$$
\lim _{x \rightarrow a} \sin x=\sin a
$$

The following theorem provides a toolbox.

Theorem 11 Let $a, b \in \mathbb{R}, F, G, \Gamma \in \mathbb{R}$ and

$$
f, g: \mathbb{R} \backslash\{a\} \rightarrow \mathbb{R} \quad X: \mathbb{R} \backslash\{b\} \rightarrow \mathbb{R} \backslash\{a\} \quad \gamma: \mathbb{R} \rightarrow \mathbb{R}
$$

Assume that

$$
\lim _{x \rightarrow a} f(x)=F \quad \lim _{x \rightarrow a} g(x)=G \quad \lim _{y \rightarrow b} X(y)=a \quad \lim _{t \rightarrow F} \gamma(t)=\gamma(F)=\Gamma
$$

Then
(a) $\quad \lim _{x \rightarrow a}[f(x)+g(x)]=F+G$
(b) $\quad \lim _{x \rightarrow a} f(x) g(x)=F G$
(c) $\quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{F}{G} \quad$ if $G \neq 0$
(d) $\quad \lim _{y \rightarrow b} f(X(y))=F$
(e) $\quad \lim _{x \rightarrow a} \gamma(f(x))=\Gamma$

Proof: Note that the ε and δ in " $\forall \varepsilon>0 \exists \delta>0$ such that $S(\delta, \varepsilon)$ " are dummy variables, just as x is a dummy variable in $\int_{0}^{1} x d x$. You may replace ε and δ by whatever symbols you like. The hypotheses of this theorem say that

$$
\begin{align*}
& \forall \varepsilon_{f}>0 \quad \exists \delta_{f}>0 \text { such that }|f(x)-F|<\varepsilon_{f} \text { whenever } 0<|x-a|<\delta_{f} \tag{5}\\
& \forall \varepsilon_{g}>0 \quad \exists \delta_{g}>0 \text { such that }|g(x)-G|<\varepsilon_{g} \text { whenever } 0<|x-a|<\delta_{g} \tag{6}\\
& \forall \varepsilon_{X}>0 \quad \exists \delta_{X}>0 \text { such that }|X(y)-a|<\varepsilon_{X} \text { whenever } 0<|y-b|<\delta_{X} \tag{7}\\
& \forall \varepsilon_{\gamma}>0 \quad \exists \delta_{\gamma}>0 \text { such that }|\gamma(t)-\Gamma|<\varepsilon_{\gamma} \text { whenever } 0<|t-F|<\delta_{\gamma} \tag{8}
\end{align*}
$$

(a) We are to prove that

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }|f(x)+g(x)-F-G|<\varepsilon \text { whenever } 0<|x-a|<\delta
$$

So pick any $\varepsilon>0$. We must prove that there is a $\delta>0$ such that

$$
|f(x)+g(x)-F-G|<\varepsilon \text { whenever } 0<|x-a|<\delta
$$

Observe that

$$
|f(x)+g(x)-F-G|=|[f(x)-F]+[g(x)-G]| \leq|f(x)-F|+|g(x)-G|
$$

Set $\varepsilon_{1}=\frac{\varepsilon}{2}$ and $\varepsilon_{2}=\frac{\varepsilon}{2}$. By (5) with $\varepsilon_{f}=\varepsilon_{1}$ and (6) with $\varepsilon_{g}=\varepsilon_{2}$,
$\exists \delta_{1}>0$ such that $|f(x)-F|<\varepsilon_{1}$ whenever $0<|x-a|<\delta_{1}$ $\exists \delta_{2}>0$ such that $|g(x)-G|<\varepsilon_{2}$ whenever $0<|x-a|<\delta_{2}$

Choose $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then whenever $0<|x-a|<\delta$ we also have $0<|x-a|<\delta_{1}$ and $0<|x-a|<\delta_{2}$ so that

$$
|f(x)+g(x)-F-G| \leq|f(x)-F|+|g(x)-G|<\varepsilon_{1}+\varepsilon_{2}=\varepsilon
$$

(b) We are to prove that

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }|f(x) g(x)-F G|<\varepsilon \text { whenever } 0<|x-a|<\delta
$$

So pick any $\varepsilon>0$. We must prove that there is a $\delta>0$ such that

$$
|f(x) g(x)-F G|<\varepsilon \text { whenever } 0<|x-a|<\delta
$$

Observe that

$$
|f(x) g(x)-F G|=\mid[[f(x)-F] g(x)+F[g(x)-G]|\leq|f(x)-F|| g(x)|+|F|| g(x)-G \mid
$$

Set $\varepsilon_{1}=\frac{\varepsilon}{2(|G|+1)}$ and $\varepsilon_{2}=\frac{\varepsilon}{2(|F|+1)}$. By hypothesis
$\exists \delta_{1}>0$ such that $|f(x)-F|<\varepsilon_{1}$ whenever $0<|x-a|<\delta_{1}$
$\exists \delta_{2}>0$ such that $|g(x)-G|<\varepsilon_{2}$ whenever $0<|x-a|<\delta_{2}$
$\exists \delta_{3}>0$ such that $|g(x)-G|<1$ whenever $0<|x-a|<\delta_{3}$
Choose $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. Then whenever $0<|x-a|<\delta$ we also have $0<|x-a|<\delta_{1}$ and $0<|x-a|<\delta_{2}$ and $0<|x-a|<\delta_{3}$ so that

$$
\begin{aligned}
|f(x) g(x)-F G| & \leq|f(x)-F||g(x)|+|F||g(x)-G| \\
& <\varepsilon_{1}|g(x)|+[|F|+1] \varepsilon_{2} \\
& =\varepsilon_{1}|g(x)-G+G|+[|F|+1] \varepsilon_{2} \\
& \leq \varepsilon_{1}|g(x)-G|+\varepsilon_{1}|G|+[|F|+1] \varepsilon_{2} \\
& \leq \varepsilon_{1}[1+|G|]+[|F|+1] \varepsilon_{2} \\
& =\frac{\varepsilon}{2(|G|+1)}[1+|G|]+[|F|+1] \frac{\varepsilon}{2(|F|+1)} \\
& =\varepsilon
\end{aligned}
$$

(c) We are to prove that

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }\left|\frac{f(x)}{g(x)}-\frac{F}{G}\right|<\varepsilon \text { whenever } 0<|x-a|<\delta
$$

So pick any $\varepsilon>0$. We must prove that there is a $\delta>0$ such that

$$
\left|\frac{f(x)}{g(x)}-\frac{F}{G}\right|<\varepsilon \text { whenever } 0<|x-a|<\delta
$$

Set $\varepsilon_{1}=\frac{1}{6}|G| \varepsilon$ and $\varepsilon_{2}=\frac{G^{2}}{6(|F|+1)} \varepsilon$. By (5) with $\varepsilon_{f}=\varepsilon_{1}$, (6) with $\varepsilon_{g}=\varepsilon_{2}$ and (6) with $\varepsilon_{g}=\frac{1}{2}|G|$,
$\exists \delta_{1}>0$ such that $|f(x)-F|<\varepsilon_{1}$ whenever $0<|x-a|<\delta_{1}$
$\exists \delta_{2}>0$ such that $|g(x)-G|<\varepsilon_{2}$ whenever $0<|x-a|<\delta_{2}$
$\exists \delta_{3}>0$ such that $|g(x)-G|<\frac{1}{2}|G|$ whenever $0<|x-a|<\delta_{3}$

Choose $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. Then whenever $0<|x-a|<\delta$ we also have $0<|x-a|<\delta_{1}$ and $0<|x-a|<\delta_{2}$ and $0<|x-a|<\delta_{3}$ so that

$$
\begin{aligned}
\left|\frac{f(x)}{g(x)}-\frac{F}{G \mid}\right| & =\frac{|f(x) G-F g(x)|}{|g(x) G|}=\frac{|\{f(x)-F\} G-F\{g(x)-G\}|}{|g(x) G|} \\
& \leq \frac{|f(x)-F||G|+|F||g(x)-G|}{|g(x)||G|} \\
& \leq \frac{\varepsilon_{1}|G|+|F| \varepsilon_{2}}{\frac{1}{2}|G||G|} \quad \text { since }|g(x)|=|g(x)-G+G| \geq|G|-|g(x)-G| \geq \frac{1}{2}|G| \\
& =\frac{1}{6}|G| \varepsilon \frac{|G|}{G^{2} / 2}+\frac{|F|}{G^{2} / 2} \frac{G^{2}}{6(|F|+1)} \varepsilon=\frac{\varepsilon}{3}+\frac{1}{3} \frac{|F|}{|F|+1} \varepsilon \\
& <\varepsilon
\end{aligned}
$$

(d) We are to prove that

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }|f(X(y))-F|<\varepsilon \text { whenever } 0<|y-b|<\delta
$$

So pick any $\varepsilon>0$. We must prove that there is a $\delta>0$ such that

$$
|f(X(y))-F|<\varepsilon \text { whenever } 0<|y-b|<\delta
$$

By (5) with $\varepsilon_{f}=\varepsilon$

$$
\exists \delta_{f}>0 \text { such that }|f(x)-F|<\varepsilon \text { whenever } 0<|x-a|<\delta_{f}
$$

and (7) with $\varepsilon_{X}=\delta_{f}$,

$$
\exists \delta_{X}>0 \text { such that }|X(y)-a|<\delta_{f} \text { whenever } 0<|y-b|<\delta_{X}
$$

Choosing $\delta=\delta_{X}$, we have

$$
0<|y-b|<\delta=\delta_{X} \Longrightarrow 0<|X(y)-a|<\delta_{f} \Longrightarrow|f(X(y))-F|<\varepsilon
$$

(e) has essentially the same proof as part (d). We are to prove that

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }|\gamma(f(x))-\Gamma|<\varepsilon \text { whenever } 0<|x-a|<\delta
$$

So pick any $\varepsilon>0$. We must prove that there is a $\delta>0$ such that

$$
|\gamma(f(x))-\Gamma|<\varepsilon \text { whenever } 0<|x-a|<\delta
$$

By (8) with $\varepsilon_{\gamma}=\varepsilon$ and the hypothesis that $\gamma(F)=\Gamma$

$$
\exists \delta_{\gamma}>0 \text { such that }|\gamma(t)-\Gamma|<\varepsilon \text { whenever }|t-F|<\delta_{\gamma}
$$

By (5) with $\varepsilon_{f}=\delta_{\gamma}$

$$
\exists \delta_{f}>0 \text { such that }|f(x)-F|<\delta_{\gamma} \text { whenever } 0<|x-a|<\delta_{f}
$$

Choosing $\delta=\delta_{f}$, we have

$$
0<|x-a|<\delta=\delta_{f} \Longrightarrow|f(x)-F|<\delta_{\gamma} \Longrightarrow|\gamma(f(x))-\Gamma|<\varepsilon
$$

Example 12 As a typical application of Theorem 11, we compute

$$
\lim _{x \rightarrow 2} \frac{x+\sin \frac{\pi x}{8}}{x^{4}+1}
$$

Here " $\stackrel{a}{=}$ " means that Theorem 11.a justifies that equality.

$$
\begin{aligned}
\lim _{x \rightarrow 2}\left(x+\sin \frac{\pi x}{8}\right) & \stackrel{a}{=} \lim _{x \rightarrow 2} x+\lim _{x \rightarrow 2} \sin \frac{\pi x}{8} \\
& \stackrel{e}{=} \lim _{x \rightarrow 2} x+\sin \left(\lim _{x \rightarrow 2} \frac{\pi x}{8}\right) \quad \text { (by Example 7) } \\
& =2+\sin \frac{\pi}{4} \\
& =2+\frac{1}{\sqrt{2}} \\
\lim _{x \rightarrow 2}\left(x^{4}+1\right) & \stackrel{a}{=} \lim _{x \rightarrow 2} x^{4}+\lim _{x \rightarrow 2} 1 \\
& \stackrel{b}{=}\left(\lim _{x \rightarrow 2} x\right)\left(\lim _{x \rightarrow 2} x\right)\left(\lim _{x \rightarrow 2} x\right)\left(\lim _{x \rightarrow 2} x\right)+1 \\
& =2^{4}+1 \\
\lim _{x \rightarrow 2} \frac{x+\sin \frac{\pi x}{8}}{x^{4}+1} & \stackrel{c}{=} \frac{\lim _{x \rightarrow 2}\left(x+\sin \frac{\pi x}{8}\right)}{\lim _{x \rightarrow 2}\left(x^{4}+1\right)} \\
& =\frac{2+\frac{1}{\sqrt{2}}}{17}
\end{aligned}
$$

