
Limits

Notation.

◦ IN is the set {1, 2, 3, · · ·} of all natural numbers

◦ IR is the set of all real numbers

◦ ∀ is read “for all”

◦ ∃ is read “there exists”

◦ ∈ is read “element of”

◦ /∈ is read “not an element of”

◦
{
A

∣
∣ B

}
is read “the set of all A such that B”

◦ If S is a set and T is a subset of S, then S \ T is
{
x ∈ S

∣
∣ x /∈ T

}
, the set S with

the elements of T removed. For example, IR \ {a} =
{
x ∈ IR

∣
∣ x 6= a

}
.

◦ If S and T are sets, then f : S → T means that f is a function which assigns to each

element of S an element of T .

◦ [a, b] =
{
x ∈ IR

∣
∣ a ≤ x ≤ b

}

(a, b] =
{
x ∈ IR

∣
∣ a < x ≤ b

}

[a, b) =
{
x ∈ IR

∣
∣ a ≤ x < b

}

(a, b) =
{
x ∈ IR

∣
∣ a < x < b

}

Roughly speaking, lim
x→a

f(x) = L means that f(x) approachs L as x approachs a. Here is

the precise definition of limit.

Definition 1 (Limit) Let a, L ∈ IR and f : IR \ {a} → IR. Then lim
x→a

f(x) = L if

∀ ε > 0 ∃ δ > 0 such that
∣
∣f(x)− L

∣
∣ < ε whenever 0 < |x− a| < δ

Remark 2

(a) Here is what that definition of “ lim
x→a

f(x) = L” says. Suppose you have a magic

microscope whose magnification can be set as high as you like. Suppose that when the

magnification is set to 1
ε , you can only see those points whose distance from L is less than

ε. The definition says that no matter how high you set the magnification, (i.e. no matter

how small you set ε > 0), you will be able to see f(x) whenever x is close enough to a. (If

the distance from x to a is less than δ, then you will certainly see f(x).)

(b) Definition 1, of lim
x→a

f(x), is set up so that the function f(x) is never evaluated at

x = a. Indeed f(x) need not even be defined at x = a. This is exactly what happens in

the definition of the derivative h′(a) = lim
x→a

h(x)−h(a)
x−a

. (In this case f(x) = h(x)−h(a)
x−a

.)
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Example 3 In Example 2 of the notes “A Little Logic” we saw that the statement

∀ ε > 0 ∃ δ > 0 such that x2 < ε whenever |x| < δ

is true. This statement implies that the statement

∀ ε > 0 ∃ δ > 0 such that
∣
∣f(x)− L

∣
∣ < ε whenever 0 < |x− a| < δ (1)

is true when f(x) = x2, L = 0 and a = 0. Of course (1) is exactly the definition of

lim
x→a

f(x) = L in Definition 1, so

lim
x→0

x2 = 0

Example 4 In this example, we consider lim
x→0

sin 1
x . From the graph

x

y

y = sin
(
1
x

)

we would guess that lim
x→0

sin 1
x does not exist. So we fix any real number L and show that

lim
x→0

sin 1
x cannot be L. To do so, let U be the statement

∀ ε > 0 ∃ δ > 0 such that | sin 1
x − L| < ε whenever 0 < |x| < δ

We wish to show that U is false. To do so, we split it up into bite sized pieces, working

from right to left, just as we did in the notes “A Little Logic”. Precisely, we let (see (2)

below)

◦ S(δ, ε) be the statement “| sin 1
x − L| < ε whenever 0 < |x| < δ”, and

◦ T (ε) be the statement “∃ δ > 0 such that S(δ, ε)” or

∃ δ > 0 such that | sin 1
x
− L| < ε whenever 0 < |x| < δ

◦ Then U is the statement “∀ ε > 0 T (ε)”.

U
︷ ︸︸ ︷

∀ ε > 0

T (ε)
︷ ︸︸ ︷

∃ δ > 0 such that

S(δ,ε)
︷ ︸︸ ︷

| sin 1
x − L| < ε whenever 0 < |x| < δ (2)
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We analyze U using the same three steps as in Example 2 of “A Little Logic”.

◦ Step 1: We find all δ’s and ε’s for which S(δ, ε) is true. Fix any ε > 0 and any

δ > 0. The statement S(δ, ε) is true if all values of sin 1
x , with 0 < |x| < δ, lie in

the interval (L − ε, L + ε). As x runs over the interval (0, δ), (so that, in particular,

0 < |x| < δ) 1
x
covers the set

(
1
δ
,∞

)
. This contains many intervals of length 2π and

hence many periods of sin. So, as x runs over the interval (0, δ), sin 1
x covers all of

[−1, 1]. So S(δ, ε) is true if and only if the interval [−1, 1] is contained in the interval

(L− ε, L+ ε). In particular, when ε < 1, the interval (L− ε, L+ ε), which has length

2ε, is shorter than [−1, 1] and cannot contain it, so that S(δ, ε) is false.

◦ Step 2: Because S(δ, ε)is false for all δ > 0 when ε < 1, T (ε) is false for all ε < 1.

◦ Step 3: We conclude that U is false since, as we have just seen, T (ε) is false for at

least one ε > 0. For example T
(
1
2

)
is false.

In conclusion, sin 1
x
has no limit as x → 0.

Example 5 Consider lim
x→2

1
x . We would of course expect that lim

x→2

1
x = 1

2 . In this example

we verify directly, using Definition 1, that this is the case. In other words, we verify that

the statement

∀ ε > 0 ∃ δ > 0 such that
∣
∣ 1
x − 1

2

∣
∣ < ε whenever 0 < |x− 2| < δ

is true. To do so, it suffices for us to fix any ε > 0 and then find a δ > 0 such that
∣
∣ 1
x − 1

2

∣
∣ < ε for all |x− 2| < δ and that’s what I’ll do.

I shall pick a δ that is smaller than 1. Then, if |x− 2| < δ, we have |x− 2| < 1 so that

1 < x < 3 and
∣
∣ 1
x − 1

2

∣
∣ =

∣
∣2−x

2x

∣
∣ = |2−x|

2|x| < |2−x|
2×1

since x > 1. As
|2−x|
2×1 < ε if |2− x| < 2ε

we have that

|2− x| < min{1, 2ε} ⇒
∣
∣ 1
x − 1

2

∣
∣ < ε

Hence δ = min{1, 2ε} does the trick.

Example 6 Again consider lim
x→2

1
x . But this time suppose that someone claims that

lim
x→2

1
x = 1

3 . We want to disprove the claim. That is, we wish to show that the statement

∀ ε > 0 ∃ δ > 0 such that
∣
∣ 1
x − 1

3

∣
∣ < ε whenever 0 < |x− 2| < δ (3)

is false. To do so, it suffices to find one “bad” ε for which the statement “
∣
∣ 1
x − 1

3

∣
∣ < ε

whenever 0 < |x− 2| < δ” is false for all δ > 0. To guess a “bad” ε observe that when x is
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very close to 2, we have
∣
∣ 1
x − 1

3

∣
∣ ≈

∣
∣1
2 − 1

3

∣
∣ = 1

6 . So I pick ε = 1
10 (any other ε < 1

6 would

work too) and I shall show that, for this ε there is no δ > 0 such that
∣
∣ 1
x − 1

3

∣
∣ < 1

10 for all

0 < |x− 2| < δ.

I’ll now show that all x’s “sufficiently close” to 2 obey
∣
∣ 1
x − 1

3

∣
∣ > 1

10 . For “sufficiently

close”, let’s try “distance less than 0.01”. (There’s nothing magical about the number

0.01. If it doesn’t work, we’ll just try again with a smaller distance.) For all x obeying

|x− 2| < 0.01 we have 1.99 < x < 2.01 and hence

∣
∣ 1
x − 1

3

∣
∣ =

∣
∣3−x

3x

∣
∣ ≥ 3−2.01

3×2.01 = 0.99
6.03 > 1

10 = ε

No matter what δ > 0 we pick, there will be some x’s obeying |x− 2| < δ that also obey

|x− 2| < 0.01 and hence that also obey
∣
∣ 1
x
− 1

3

∣
∣ > 1

10
= ε. So (3) is false.

Example 7 In this example, we fix any real number θ and show that

lim
h→0

sin(θ + h) = sin θ

by verifying directly that the statement

∀ ε > 0 ∃ δ > 0 such that
∣
∣ sin(θ + h)− sin θ

∣
∣ < ε whenever 0 < |h| < δ

is true. To do so, it suffices for us to fix any ε > 0 and then find a δ > 0 such that
∣
∣ sin(θ + h)− sin θ

∣
∣ < ε for all |h| < δ and that’s what we’ll do.

We shall use the fact that

| sinh| ≤ |h| (4)

for all h, provided the angle h is given in radians. First, we verify this fact. If |h| ≥ 1, (4)

is obvious because | sinh| ≤ 1 ≤ |h|. For 0 ≤ h ≤ 1, consider the figure

h
h

sinh

Q

P

1

The arc from P to Q is part of a circle of radius one. Because the arc subtends the angle

2h, it is the fraction 2h
2π of the circle and so has length 2h

2π × 2π = 2h. The straight line

from P to Q has length 2 sinh. Because the straight line from P to Q is shorter than the

arc from P to Q, we have 2 sinh ≤ 2h. For −1 ≤ h < 0, sinh is negative so that

| sinh| = − sinh = sin(−h)
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But −h is between 0 and 1, so we already know that sin(−h) ≤ −h = |h|. This completes

the verification of (3).

Now back to the main problem. By the trig identities sin(a+b) = sin a cos b+cos a sin b

and cos 2a = 1− 2 sin2 a,

sin(θ + h)− sin θ = sin θ cosh+ cos θ sinh− sin θ

=
(
cosh− 1) sin θ + cos θ sinh

= −2 sin2 h
2 sin θ + cos θ sinh

Since | sinh| ≤ |h|,
∣
∣ sin h

2

∣
∣ ≤

∣
∣h
2

∣
∣, | sin θ| ≤ 1 and | cos θ| ≤ 1

∣
∣ sin(θ + h) − sin θ

∣
∣ ≤ 2

∣
∣h
2

∣
∣
2
× 1 + 1× |h|

= |h|+ 1
2 |h|

2

If we pick δ < 1, then |h| < δ < 1 implies |h|2 = |h| |h| < |h| and

∣
∣ sin(θ + h)− sin θ

∣
∣ ≤ |h|+ 1

2 |h| =
3
2 |h| < ε if |h| < 2

3ε

Hence δ = min
{
1, 2

3
ε
}
does the trick.

Example 8 We saw, in Example 4, that lim
x→0

sin 1
x
does not exist. Here are two more

f(x)’s for which the limit lim
x→0

f(x) does not exist.

f(x) = 1
x x

y

y = f(x)

f(x) =
{
1 if x ≥ 0
−1 if x < 0

x

y y = f(x)

Definition 9 (Limit Variations)

(a) Let a, L ∈ IR, and f : IR \ {a} → IR. Then

lim
x→a+

f(x) = L if and only if

∀ ε > 0 ∃ δ > 0 such that
∣
∣f(x)− L

∣
∣ < ε whenever a < x < a+ δ

lim
x→a−

f(x) = L if and only if

∀ ε > 0 ∃ δ > 0 such that
∣
∣f(x)− L

∣
∣ < ε whenever a− δ < x < a
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lim
x→a

f(x) = ∞ if and only if

∀Y > 0 ∃ δ > 0 such that f(x) > Y whenever 0 < |x− a| < δ

lim
x→a

f(x) = −∞ if and only if

∀Y > 0 ∃ δ > 0 such that f(x) < −Y whenever 0 < |x− a| < δ

lim
x→∞

f(x) = L if and only if

∀ ε > 0 ∃X > 0 such that
∣
∣f(x)− L

∣
∣ < ε whenever x > X

lim
x→−∞

f(x) = L if and only if

∀ ε > 0 ∃X > 0 such that
∣
∣f(x)− L

∣
∣ < ε whenever x < −X

(b) Let f : IR → IR. Then f is continuous at a ∈ IR if lim
x→a

f(x) = f(a) and f is continous

on IR if it is continuous at every a ∈ IR.

Remark 10

(a) On a handwaving level, lim
x→a+

f(x) = L means that f(x) approachs L as x approachs

a from the right and lim
x→a−

f(x) = L means that f(x) approachs L as x approachs a from

the left. For example

f(x) =







1 if x > 0
1
2

if x = 0

0 if x < 0






lim

x→0+
f(x) = 1 lim

x→0−
f(x) = 0

x

y y = f(x)

Of course “ lim
x→a

f(x) = L” is equivalent to “ lim
x→a+

f(x) = L and lim
x→a−

f(x) = L”.

(b) On a handwaving level, lim
x→a

f(x) = ∞ means that, as x approachs a, f(x) eventually

gets (and remains) larger than any possible positive number. We say “f(x) tends to

infinity”. For example

f(x) = 1
(x−1)2 lim

x→1
f(x) = ∞

x

y

y = f(x)

(c) On a handwaving level, lim
x→∞

f(x) = L means that, as x tends to infinity (i.e. gets and

remains bigger than any possible positive number), f(x) tends to L and lim
x→−∞

f(x) = L
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means that, as x tends to minus infinity (i.e. gets and remains more negative than any

possible negative number), f(x) tends to L. For example

f(x) = arctanx lim
x→∞

f(x) = π
2 lim

x→−∞
f(x) = −π

2 x

y y = f(x)

(By arctanx, we mean the unique θ ∈
(
− π

2 ,
π
2

)
that obeys tan θ = x.)

As we have seen, evaluating limits by directly verifying Definition 1 gets ugly and hard

very quickly. It is much more efficient to have a list of simple limits that we already know

together with a toolbox that allows us to build complicated limits out of simple ones. As

examples of known simple limits, it is trivial that, for any a, b ∈ IR,

lim
x→a

b = b lim
x→a

x = a

and we have already seen, in Example 7, that, for any a ∈ IR,

lim
x→a

sinx = sin a

The following theorem provides a toolbox.

Theorem 11 Let a, b ∈ IR, F,G,Γ ∈ IR and

f, g : IR \ {a} → IR X : IR \ {b} → IR \ {a} γ : IR → IR

Assume that

lim
x→a

f(x) = F lim
x→a

g(x) = G lim
y→b

X(y) = a lim
t→F

γ(t) = γ(F ) = Γ

Then
(a) lim

x→a

[
f(x) + g(x)

]
= F +G

(b) lim
x→a

f(x)g(x) = FG

(c) lim
x→a

f(x)
g(x)

= F
G

if G 6= 0

(d) lim
y→b

f
(
X(y)

)
= F

(e) lim
x→a

γ
(
f(x)

)
= Γ
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Proof: Note that the ε and δ in “∀ ε > 0 ∃ δ > 0 such that S(δ, ε)” are dummy variables,

just as x is a dummy variable in
∫ 1

0
x dx. You may replace ε and δ by whatever symbols

you like. The hypotheses of this theorem say that

∀ εf > 0 ∃ δf > 0 such that |f(x)− F | < εf whenever 0 < |x− a| < δf (5)

∀ εg > 0 ∃ δg > 0 such that |g(x)−G| < εg whenever 0 < |x− a| < δg (6)

∀ εX > 0 ∃ δX > 0 such that |X(y)− a| < εX whenever 0 < |y − b| < δX (7)

∀ εγ > 0 ∃ δγ > 0 such that |γ(t)− Γ| < εγ whenever 0 < |t− F | < δγ (8)

(a) We are to prove that

∀ ε > 0 ∃ δ > 0 such that |f(x) + g(x)− F −G| < ε whenever 0 < |x− a| < δ

So pick any ε > 0. We must prove that there is a δ > 0 such that

|f(x) + g(x)− F −G| < ε whenever 0 < |x− a| < δ

Observe that

|f(x) + g(x)− F −G| =
∣
∣[f(x)− F ] + [g(x)−G]

∣
∣ ≤ |f(x)− F |+ |g(x)−G|

Set ε1 = ε
2
and ε2 = ε

2
. By (5) with εf = ε1 and (6) with εg = ε2,

∃ δ1 > 0 such that |f(x)− F | < ε1 whenever 0 < |x− a| < δ1

∃ δ2 > 0 such that |g(x)−G| < ε2 whenever 0 < |x− a| < δ2

Choose δ = min
{
δ1, δ2

}
. Then whenever 0 < |x − a| < δ we also have 0 < |x − a| < δ1

and 0 < |x− a| < δ2 so that

|f(x) + g(x)− F −G| ≤ |f(x)− F |+ |g(x)−G| < ε1 + ε2 = ε

(b) We are to prove that

∀ ε > 0 ∃ δ > 0 such that |f(x)g(x)− FG| < ε whenever 0 < |x− a| < δ

So pick any ε > 0. We must prove that there is a δ > 0 such that

|f(x)g(x)− FG| < ε whenever 0 < |x− a| < δ
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Observe that

|f(x)g(x)− FG| =
∣
∣[[f(x)− F ]g(x) + F [g(x)−G]

∣
∣ ≤ |f(x)− F | |g(x)|+ |F | |g(x)−G|

Set ε1 = ε
2(|G|+1) and ε2 = ε

2(|F |+1) . By hypothesis

∃ δ1 > 0 such that |f(x)− F | < ε1 whenever 0 < |x− a| < δ1

∃ δ2 > 0 such that |g(x)−G| < ε2 whenever 0 < |x− a| < δ2

∃ δ3 > 0 such that |g(x)−G| < 1 whenever 0 < |x− a| < δ3

Choose δ = min
{
δ1, δ2, δ3

}
. Then whenever 0 < |x− a| < δ we also have 0 < |x− a| < δ1

and 0 < |x− a| < δ2 and 0 < |x− a| < δ3 so that

|f(x)g(x)− FG| ≤ |f(x)− F | |g(x)|+ |F | |g(x)−G|

< ε1 |g(x)|+ [|F |+ 1] ε2

= ε1 |g(x)−G+G|+ [|F |+ 1] ε2

≤ ε1 |g(x)−G|+ ε1|G|+ [|F |+ 1] ε2

≤ ε1
[
1 + |G|

]
+ [|F |+ 1] ε2

= ε
2(|G|+1)

[
1 + |G|

]
+ [|F |+ 1] ε

2(|F |+1)

= ε

(c) We are to prove that

∀ ε > 0 ∃ δ > 0 such that
∣
∣ f(x)
g(x) −

F
G

∣
∣ < ε whenever 0 < |x− a| < δ

So pick any ε > 0. We must prove that there is a δ > 0 such that

∣
∣ f(x)
g(x)

− F
G

∣
∣ < ε whenever 0 < |x− a| < δ

Set ε1 = 1
6 |G|ε and ε2 = G2

6(|F |+1)ε. By (5) with εf = ε1, (6) with εg = ε2 and (6) with

εg = 1
2 |G|,

∃ δ1 > 0 such that |f(x)− F | < ε1 whenever 0 < |x− a| < δ1

∃ δ2 > 0 such that |g(x)−G| < ε2 whenever 0 < |x− a| < δ2

∃ δ3 > 0 such that |g(x)−G| < 1
2 |G| whenever 0 < |x− a| < δ3
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Choose δ = min
{
δ1, δ2, δ3

}
. Then whenever 0 < |x− a| < δ we also have 0 < |x− a| < δ1

and 0 < |x− a| < δ2 and 0 < |x− a| < δ3 so that
∣
∣
∣
∣

f(x)

g(x)
−

F

G

∣
∣
∣
∣
=

|f(x)G− Fg(x)|

|g(x)G|
=

|{f(x)− F}G− F{g(x)−G}|

|g(x)G|

≤
|f(x)− F | |G|+ |F | |g(x)−G|

|g(x)| |G|

≤
ε1 |G|+ |F | ε2

1
2
|G| |G|

since |g(x)| =
∣
∣g(x)−G+G

∣
∣ ≥ |G| − |g(x)−G| ≥ 1

2 |G|

= 1
6 |G|ε |G|

G2/2 + |F |
G2/2

G2

6(|F |+1)ε =
ε
3 + 1

3
|F |

|F |+1ε

< ε

(d) We are to prove that

∀ ε > 0 ∃ δ > 0 such that
∣
∣f
(
X(y)

)
− F

∣
∣ < ε whenever 0 < |y − b| < δ

So pick any ε > 0. We must prove that there is a δ > 0 such that
∣
∣f
(
X(y)

)
− F

∣
∣ < ε whenever 0 < |y − b| < δ

By (5) with εf = ε

∃ δf > 0 such that |f(x)− F | < ε whenever 0 < |x− a| < δf

and (7) with εX = δf ,

∃ δX > 0 such that |X(y)− a| < δf whenever 0 < |y − b| < δX

Choosing δ = δX , we have

0 < |y − b| < δ = δX =⇒ 0 < |X(y)− a| < δf =⇒
∣
∣f
(
X(y)

)
− F

∣
∣ < ε

(e) has essentially the same proof as part (d). We are to prove that

∀ ε > 0 ∃ δ > 0 such that
∣
∣γ
(
f(x)

)
− Γ

∣
∣ < ε whenever 0 < |x− a| < δ

So pick any ε > 0. We must prove that there is a δ > 0 such that
∣
∣γ
(
f(x)

)
− Γ

∣
∣ < ε whenever 0 < |x− a| < δ

By (8) with εγ = ε and the hypothesis that γ(F ) = Γ

∃ δγ > 0 such that |γ(t)− Γ| < ε whenever |t− F | < δγ

By (5) with εf = δγ

∃ δf > 0 such that |f(x)− F | < δγ whenever 0 < |x− a| < δf

Choosing δ = δf , we have

0 < |x− a| < δ = δf =⇒
∣
∣f(x)− F

∣
∣ < δγ =⇒

∣
∣γ
(
f(x)

)
− Γ

∣
∣ < ε
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Example 12 As a typical application of Theorem 11, we compute

lim
x→2

x+ sin πx
8

x4 + 1

Here “
a
= ” means that Theorem 11.a justifies that equality.

lim
x→2

(
x+ sin πx

8

) a
= lim

x→2
x+ lim

x→2
sin πx

8

e
= lim

x→2
x+ sin

(

lim
x→2

πx
8

)

(by Example 7)

= 2 + sin π
4

= 2 + 1√
2

lim
x→2

(
x4 + 1

) a
= lim

x→2
x4 + lim

x→2
1

b
=

(

lim
x→2

x
)(

lim
x→2

x
)(

lim
x→2

x
)(

lim
x→2

x
)

+ 1

= 24 + 1

lim
x→2

x+ sin πx
8

x4 + 1
c
=

limx→2(x+ sin πx
8 )

limx→2(x4 + 1)

=
2 + 1√

2

17
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