Limits

Notation.

- $\circ~{\rm I\!R}$ is the set of all real numbers
- $\circ~\forall~is~read$ "for all"
- $\circ~\exists$ is read "there exists"
- ∈ is read "element of"
- ∘ \notin is read "not an element of"
- $\circ \{ A \mid B \}$ is read "the set of all A such that B"
- If S is a set and T is a subset of S, then $S \setminus T$ is $\{x \in S \mid x \notin T\}$, the set S with the elements of T removed. For example, $\mathbb{R} \setminus \{a\} = \{x \in \mathbb{R} \mid x \neq a\}$.
- If S and T are sets, then $f: S \to T$ means that f is a function which assigns to each element of S an element of T.

$$\circ \ [a,b] = \left\{ \begin{array}{l} x \in \mathbb{R} \ \big| \ a \le x \le b \end{array} \right\} \\ (a,b] = \left\{ \begin{array}{l} x \in \mathbb{R} \ \big| \ a < x \le b \end{array} \right\} \\ [a,b] = \left\{ \begin{array}{l} x \in \mathbb{R} \ \big| \ a \le x < b \end{array} \right\} \\ (a,b) = \left\{ \begin{array}{l} x \in \mathbb{R} \ \big| \ a \le x < b \end{array} \right\} \\ (a,b) = \left\{ \begin{array}{l} x \in \mathbb{R} \ \big| \ a < x < b \end{array} \right\} \end{array}$$

Roughly speaking, $\lim_{x \to a} f(x) = L$ means that f(x) approaches L as x approaches a. Here is the precise definition of limit.

Definition 1 (Limit) Let $a, L \in \mathbb{R}$ and $f : \mathbb{R} \setminus \{a\} \to \mathbb{R}$. Then $\lim_{x \to a} f(x) = L$ if $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $|f(x) - L| < \varepsilon$ whenever $0 < |x - a| < \delta$

Remark 2

(a) Here is what that definition of " $\lim_{x \to a} f(x) = L$ " says. Suppose you have a magic microscope whose magnification can be set as high as you like. Suppose that when the magnification is set to $\frac{1}{\varepsilon}$, you can only see those points whose distance from L is less than ε . The definition says that no matter how high you set the magnification, (i.e. no matter how small you set $\varepsilon > 0$), you will be able to see f(x) whenever x is close enough to a. (If the distance from x to a is less than δ , then you will certainly see f(x).)

(b) Definition 1, of $\lim_{x \to a} f(x)$, is set up so that the function f(x) is never evaluated at x = a. Indeed f(x) need not even be defined at x = a. This is exactly what happens in the definition of the derivative $h'(a) = \lim_{x \to a} \frac{h(x) - h(a)}{x - a}$. (In this case $f(x) = \frac{h(x) - h(a)}{x - a}$.)

1

Example 3 In Example 2 of the notes "A Little Logic" we saw that the statement

 $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{ such that } \; x^2 < \varepsilon \; \text{whenever } |x| < \delta$

is true. This statement implies that the statement

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{such that} \ |f(x) - L| < \varepsilon \text{ whenever } 0 < |x - a| < \delta$$
 (1)

is true when $f(x) = x^2$, L = 0 and a = 0. Of course (1) is exactly the definition of $\lim_{x \to a} f(x) = L$ in Definition 1, so

$$\lim_{x \to 0} x^2 = 0$$

Example 4 In this example, we consider $\lim_{x \to 0} \sin \frac{1}{x}$. From the graph

we would guess that $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist. So we fix any real number L and show that $\lim_{x\to 0} \sin \frac{1}{x}$ cannot be L. To do so, let U be the statement

 $\forall \varepsilon > 0 \;\; \exists \, \delta > 0 \;\; \text{such that} \;\; |\sin \frac{1}{x} - L| < \varepsilon \; \text{whenever} \; 0 < |x| < \delta$

We wish to show that U is false. To do so, we split it up into bite sized pieces, working from right to left, just as we did in the notes "A Little Logic". Precisely, we let (see (2) below)

 $\circ \ S(\delta,\varepsilon) \text{ be the statement "} |\sin \tfrac{1}{x} - L| < \varepsilon \text{ whenever } 0 < |x| < \delta ", \text{ and}$

• $T(\varepsilon)$ be the statement " $\exists \delta > 0$ such that $S(\delta, \varepsilon)$ " or

$$\exists \delta > 0$$
 such that $|\sin \frac{1}{x} - L| < \varepsilon$ whenever $0 < |x| < \delta$

• Then U is the statement " $\forall \varepsilon > 0 \ T(\varepsilon)$ ".

We analyze U using the same three steps as in Example 2 of "A Little Logic".

- Step 1: We find all δ 's and ε 's for which $S(\delta, \varepsilon)$ is true. Fix any $\varepsilon > 0$ and any $\delta > 0$. The statement $S(\delta, \varepsilon)$ is true if all values of $\sin \frac{1}{x}$, with $0 < |x| < \delta$, lie in the interval $(L \varepsilon, L + \varepsilon)$. As x runs over the interval $(0, \delta)$, (so that, in particular, $0 < |x| < \delta$) $\frac{1}{x}$ covers the set $(\frac{1}{\delta}, \infty)$. This contains many intervals of length 2π and hence many periods of sin. So, as x runs over the interval $(0, \delta)$, $\sin \frac{1}{x}$ covers all of [-1, 1]. So $S(\delta, \varepsilon)$ is true if and only if the interval [-1, 1] is contained in the interval $(L \varepsilon, L + \varepsilon)$. In particular, when $\varepsilon < 1$, the interval $(L \varepsilon, L + \varepsilon)$, which has length 2ε , is shorter than [-1, 1] and cannot contain it, so that $S(\delta, \varepsilon)$ is false.
- Step 2: Because $S(\delta, \varepsilon)$ is false for all $\delta > 0$ when $\varepsilon < 1$, $T(\varepsilon)$ is false for all $\varepsilon < 1$.
- Step 3: We conclude that U is false since, as we have just seen, $T(\varepsilon)$ is false for at least one $\varepsilon > 0$. For example $T(\frac{1}{2})$ is false.

In conclusion, $\sin \frac{1}{x}$ has no limit as $x \to 0$.

Example 5 Consider $\lim_{x\to 2} \frac{1}{x}$. We would of course expect that $\lim_{x\to 2} \frac{1}{x} = \frac{1}{2}$. In this example we verify directly, using Definition 1, that this is the case. In other words, we verify that the statement

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{ such that } \; \left| \frac{1}{x} - \frac{1}{2} \right| < \varepsilon \text{ whenever } 0 < |x - 2| < \delta$$

is true. To do so, it suffices for us to fix any $\varepsilon > 0$ and then find a $\delta > 0$ such that $\left|\frac{1}{x} - \frac{1}{2}\right| < \varepsilon$ for all $|x - 2| < \delta$ and that's what I'll do.

I shall pick a δ that is smaller than 1. Then, if $|x-2|<\delta,$ we have |x-2|<1 so that 1< x<3 and

$$\left|\frac{1}{x} - \frac{1}{2}\right| = \left|\frac{2-x}{2x}\right| = \frac{|2-x|}{2|x|} < \frac{|2-x|}{2\times 1}$$

since x > 1. As

 $\frac{|2-x|}{2\times 1} < \varepsilon \qquad \text{if} \qquad |2-x| < 2\varepsilon$

we have that

$$|2-x| < \min\{1, 2\varepsilon\} \quad \Rightarrow \quad \left|\frac{1}{x} - \frac{1}{2}\right| < \varepsilon$$

Hence $\delta = \min\{1, 2\varepsilon\}$ does the trick.

Example 6 Again consider $\lim_{x\to 2} \frac{1}{x}$. But this time suppose that someone claims that $\lim_{x\to 2} \frac{1}{x} = \frac{1}{3}$. We want to disprove the claim. That is, we wish to show that the statement

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{such that} \ \left| \frac{1}{x} - \frac{1}{3} \right| < \varepsilon \text{ whenever } 0 < |x - 2| < \delta$$
 (3)

is false. To do so, it suffices to find one "bad" ε for which the statement " $\left|\frac{1}{x} - \frac{1}{3}\right| < \varepsilon$ whenever $0 < |x - 2| < \delta$ " is false for all $\delta > 0$. To guess a "bad" ε observe that when x is very close to 2, we have $\left|\frac{1}{x} - \frac{1}{3}\right| \approx \left|\frac{1}{2} - \frac{1}{3}\right| = \frac{1}{6}$. So I pick $\varepsilon = \frac{1}{10}$ (any other $\varepsilon < \frac{1}{6}$ would work too) and I shall show that, for this ε there is no $\delta > 0$ such that $\left|\frac{1}{x} - \frac{1}{3}\right| < \frac{1}{10}$ for all $0 < |x - 2| < \delta$.

I'll now show that all x's "sufficiently close" to 2 obey $\left|\frac{1}{x} - \frac{1}{3}\right| > \frac{1}{10}$. For "sufficiently close", let's try "distance less than 0.01". (There's nothing magical about the number 0.01. If it doesn't work, we'll just try again with a smaller distance.) For all x obeying |x-2| < 0.01 we have 1.99 < x < 2.01 and hence

$$\left|\frac{1}{x} - \frac{1}{3}\right| = \left|\frac{3-x}{3x}\right| \ge \frac{3-2.01}{3\times 2.01} = \frac{0.99}{6.03} > \frac{1}{10} = \varepsilon$$

No matter what $\delta > 0$ we pick, there will be some x's obeying $|x - 2| < \delta$ that also obey |x - 2| < 0.01 and hence that also obey $\left|\frac{1}{x} - \frac{1}{3}\right| > \frac{1}{10} = \varepsilon$. So (3) is false.

Example 7 In this example, we fix any real number θ and show that

$$\lim_{h \to 0} \sin(\theta + h) = \sin \theta$$

by verifying directly that the statement

 $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{ such that } \; \left| \sin(\theta + h) - \sin \theta \right| < \varepsilon \text{ whenever } 0 < |h| < \delta$

is true. To do so, it suffices for us to fix any $\varepsilon > 0$ and then find a $\delta > 0$ such that $|\sin(\theta + h) - \sin\theta| < \varepsilon$ for all $|h| < \delta$ and that's what we'll do.

We shall use the fact that

$$|\sin h| \le |h| \tag{4}$$

for all h, provided the angle h is given in radians. First, we verify this fact. If $|h| \ge 1$, (4) is obvious because $|\sin h| \le 1 \le |h|$. For $0 \le h \le 1$, consider the figure

The arc from P to Q is part of a circle of radius one. Because the arc subtends the angle 2h, it is the fraction $\frac{2h}{2\pi}$ of the circle and so has length $\frac{2h}{2\pi} \times 2\pi = 2h$. The straight line from P to Q has length $2 \sin h$. Because the straight line from P to Q is shorter than the arc from P to Q, we have $2 \sin h \leq 2h$. For $-1 \leq h < 0$, $\sin h$ is negative so that

$$|\sin h| = -\sin h = \sin(-h)$$

But -h is between 0 and 1, so we already know that $sin(-h) \leq -h = |h|$. This completes the verification of (3).

Now back to the main problem. By the trig identities $\sin(a+b) = \sin a \cos b + \cos a \sin b$ and $\cos 2a = 1 - 2 \sin^2 a$,

$$\sin(\theta + h) - \sin\theta = \sin\theta\cos h + \cos\theta\sin h - \sin\theta$$
$$= (\cos h - 1)\sin\theta + \cos\theta\sin h$$
$$= -2\sin^2\frac{h}{2}\sin\theta + \cos\theta\sin h$$

Since $|\sin h| \le |h|$, $|\sin \frac{h}{2}| \le |\frac{h}{2}|$, $|\sin \theta| \le 1$ and $|\cos \theta| \le 1$

$$\left|\sin(\theta+h) - \sin\theta\right| \le 2\left|\frac{h}{2}\right|^2 \times 1 + 1 \times |h|$$
$$= |h| + \frac{1}{2}|h|^2$$

If we pick $\delta < 1$, then $|h| < \delta < 1$ implies $|h|^2 = |h| |h| < |h|$ and

$$\left|\sin(\theta+h) - \sin\theta\right| \le |h| + \frac{1}{2}|h| = \frac{3}{2}|h| < \varepsilon \text{ if } |h| < \frac{2}{3}\varepsilon$$

Hence $\delta = \min\left\{1, \frac{2}{3}\varepsilon\right\}$ does the trick.

Example 8 We saw, in Example 4, that $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist. Here are two more f(x)'s for which the limit $\lim_{x\to 0} f(x)$ does not exist.

$$f(x) = \frac{1}{x}$$

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

Definition 9 (Limit Variations)

(a) Let $a, L \in \mathbb{R}$, and $f : \mathbb{R} \setminus \{a\} \to \mathbb{R}$. Then $\lim_{x \to a+} f(x) = L \text{ if and only if}$

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{ such that } \; |f(x) - L| < \varepsilon \text{ whenever } a < x < a + \delta$$

 $\lim_{x \to a^{-}} f(x) = L \text{ if and only if}$

 $\forall \, \varepsilon > 0 \; \exists \, \delta > 0 \; \text{ such that } \quad \left| f(x) - L \right| < \varepsilon \text{ whenever } a - \delta < x < a$

 $\lim_{x \to a} f(x) = \infty \text{ if and only if}$

 $\forall Y > 0 \;\; \exists \, \delta > 0 \;\; \text{such that} \;\; f(x) > Y \; \text{whenever} \; 0 < |x - a| < \delta$

 $\lim_{x \to a} f(x) = -\infty$ if and only if

$$\forall Y > 0 \ \exists \delta > 0$$
 such that $f(x) < -Y$ whenever $0 < |x - a| < \delta$

 $\lim_{x\to\infty} f(x) = L$ if and only if

$$\forall \varepsilon > 0 \; \exists X > 0 \; \text{such that} \; |f(x) - L| < \varepsilon \; \text{whenever} \; x > X$$

$$\lim_{x \to -\infty} f(x) = L \text{ if and only if}$$

$$\forall \varepsilon > 0 \ \exists X > 0 \ \text{ such that } |f(x) - L| < \varepsilon \text{ whenever } x < -X$$

(b) Let $f : \mathbb{R} \to \mathbb{R}$. Then f is continuous at $a \in \mathbb{R}$ if $\lim_{x \to a} f(x) = f(a)$ and f is continuous on \mathbb{R} if it is continuous at every $a \in \mathbb{R}$.

Remark 10

(a) On a handwaving level, $\lim_{x \to a+} f(x) = L$ means that f(x) approaches L as x approaches a from the right and $\lim_{x \to a-} f(x) = L$ means that f(x) approaches L as x approaches a from the left. For example

Of course " $\lim_{x \to a} f(x) = L$ " is equivalent to " $\lim_{x \to a+} f(x) = L$ and $\lim_{x \to a-} f(x) = L$ ".

(b) On a handwaving level, $\lim_{x \to a} f(x) = \infty$ means that, as x approaches a, f(x) eventually gets (and remains) larger than any possible positive number. We say "f(x) tends to infinity". For example

(c) On a handwaving level, $\lim_{x\to\infty} f(x) = L$ means that, as x tends to infinity (i.e. gets and remains bigger than any possible positive number), f(x) tends to L and $\lim_{x\to-\infty} f(x) = L$

means that, as x tends to minus infinity (i.e. gets and remains more negative than any possible negative number), f(x) tends to L. For example

(By $\arctan x$, we mean the unique $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that obeys $\tan \theta = x$.)

As we have seen, evaluating limits by directly verifying Definition 1 gets ugly and hard very quickly. It is much more efficient to have a list of simple limits that we already know together with a toolbox that allows us to build complicated limits out of simple ones. As examples of known simple limits, it is trivial that, for any $a, b \in \mathbb{R}$,

$$\lim_{x \to a} b = b \qquad \lim_{x \to a} x = a$$

and we have already seen, in Example 7, that, for any $a \in \mathbb{R}$,

$$\lim_{x \to a} \sin x = \sin a$$

The following theorem provides a toolbox.

Theorem 11 Let $a, b \in \mathbb{R}$, $F, G, \Gamma \in \mathbb{R}$ and

$$f,g: {\rm I\!R} \setminus \{a\} \to {\rm I\!R} \qquad X: {\rm I\!R} \setminus \{b\} \to {\rm I\!R} \setminus \{a\} \qquad \gamma: {\rm I\!R} \to {\rm I\!R}$$

Assume that

$$\lim_{x \to a} f(x) = F \qquad \lim_{x \to a} g(x) = G \qquad \lim_{y \to b} X(y) = a \qquad \lim_{t \to F} \gamma(t) = \gamma(F) = \Gamma$$

Then

(a)
$$\lim_{x \to a} \left[f(x) + g(x) \right] = F + G$$

(b)
$$\lim_{x \to a} f(x)g(x) = FG$$

(c)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{F}{G} \qquad if \ G \neq 0$$

(d)
$$\lim_{y \to b} f(X(y)) = F$$

(e)
$$\lim_{x \to a} \gamma(f(x)) = \Gamma$$

Proof: Note that the ε and δ in " $\forall \varepsilon > 0 \exists \delta > 0$ such that $S(\delta, \varepsilon)$ " are dummy variables, just as x is a dummy variable in $\int_0^1 x \, dx$. You may replace ε and δ by whatever symbols you like. The hypotheses of this theorem say that

$$\forall \varepsilon_f > 0 \quad \exists \delta_f > 0 \quad \text{such that } |f(x) - F| < \varepsilon_f \text{ whenever } 0 < |x - a| < \delta_f \tag{5}$$

$$\forall \varepsilon_g > 0 \; \exists \delta_g > 0 \; \text{ such that } |g(x) - G| < \varepsilon_g \text{ whenever } 0 < |x - a| < \delta_g \tag{6}$$

$$\forall \varepsilon_X > 0 \; \exists \delta_X > 0 \; \text{ such that } |X(y) - a| < \varepsilon_X \; \text{whenever } 0 < |y - b| < \delta_X$$
 (7)

$$\forall \varepsilon_{\gamma} > 0 \; \exists \delta_{\gamma} > 0 \; \text{ such that } |\gamma(t) - \Gamma| < \varepsilon_{\gamma} \text{ whenever } 0 < |t - F| < \delta_{\gamma} \tag{8}$$

(a) We are to prove that

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{ such that } |f(x) + g(x) - F - G| < \varepsilon \text{ whenever } 0 < |x - a| < \delta$$

So pick any $\varepsilon > 0$. We must prove that there is a $\delta > 0$ such that

$$|f(x) + g(x) - F - G| < \varepsilon$$
 whenever $0 < |x - a| < \delta$

Observe that

$$|f(x) + g(x) - F - G| = \left| [f(x) - F] + [g(x) - G] \right| \le |f(x) - F| + |g(x) - G|$$

Set $\varepsilon_1 = \frac{\varepsilon}{2}$ and $\varepsilon_2 = \frac{\varepsilon}{2}$. By (5) with $\varepsilon_f = \varepsilon_1$ and (6) with $\varepsilon_g = \varepsilon_2$,

$$\exists \delta_1 > 0$$
 such that $|f(x) - F| < \varepsilon_1$ whenever $0 < |x - a| < \delta_1$
 $\exists \delta_2 > 0$ such that $|g(x) - G| < \varepsilon_2$ whenever $0 < |x - a| < \delta_2$

Choose $\delta = \min \{\delta_1, \delta_2\}$. Then whenever $0 < |x - a| < \delta$ we also have $0 < |x - a| < \delta_1$ and $0 < |x - a| < \delta_2$ so that

$$|f(x) + g(x) - F - G| \le |f(x) - F| + |g(x) - G| < \varepsilon_1 + \varepsilon_2 = \varepsilon$$

(b) We are to prove that

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{ such that } |f(x)g(x) - FG| < \varepsilon \text{ whenever } 0 < |x - a| < \delta$$

So pick any $\varepsilon > 0$. We must prove that there is a $\delta > 0$ such that

$$|f(x)g(x) - FG| < \varepsilon$$
 whenever $0 < |x - a| < \delta$

© Joel Feldman. 2012. All rights reserved.

Observe that

$$|f(x)g(x) - FG| = \left| \left[[f(x) - F]g(x) + F[g(x) - G] \right] \le |f(x) - F| |g(x)| + |F| |g(x) - G| \le |F| |g(x) - F| |g(x)| + |F| |g(x)| + |$$

Set $\varepsilon_1 = \frac{\varepsilon}{2(|G|+1)}$ and $\varepsilon_2 = \frac{\varepsilon}{2(|F|+1)}$. By hypothesis

$$\exists \delta_1 > 0 \text{ such that } |f(x) - F| < \varepsilon_1 \text{ whenever } 0 < |x - a| < \delta_1$$

$$\exists \delta_2 > 0 \text{ such that } |g(x) - G| < \varepsilon_2 \text{ whenever } 0 < |x - a| < \delta_2$$

$$\exists \delta_3 > 0 \text{ such that } |g(x) - G| < 1 \text{ whenever } 0 < |x - a| < \delta_3$$

Choose $\delta = \min \{\delta_1, \delta_2, \delta_3\}$. Then whenever $0 < |x - a| < \delta$ we also have $0 < |x - a| < \delta_1$ and $0 < |x - a| < \delta_2$ and $0 < |x - a| < \delta_3$ so that

$$\begin{split} |f(x)g(x) - FG| &\leq |f(x) - F| |g(x)| + |F| |g(x) - G| \\ &< \varepsilon_1 |g(x)| + [|F| + 1] \varepsilon_2 \\ &= \varepsilon_1 |g(x) - G + G| + [|F| + 1] \varepsilon_2 \\ &\leq \varepsilon_1 |g(x) - G| + \varepsilon_1 |G| + [|F| + 1] \varepsilon_2 \\ &\leq \varepsilon_1 [1 + |G|] + [|F| + 1] \varepsilon_2 \\ &= \frac{\varepsilon}{2(|G| + 1)} [1 + |G|] + [|F| + 1] \frac{\varepsilon}{2(|F| + 1)} \\ &= \varepsilon \end{split}$$

(c) We are to prove that

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{ such that } \left| \frac{f(x)}{g(x)} - \frac{F}{G} \right| < \varepsilon \text{ whenever } 0 < |x - a| < \delta$$

So pick any $\varepsilon > 0$. We must prove that there is a $\delta > 0$ such that

$$\left|\frac{f(x)}{g(x)} - \frac{F}{G}\right| < \varepsilon$$
 whenever $0 < |x - a| < \delta$

Set $\varepsilon_1 = \frac{1}{6} |G| \varepsilon$ and $\varepsilon_2 = \frac{G^2}{6(|F|+1)} \varepsilon$. By (5) with $\varepsilon_f = \varepsilon_1$, (6) with $\varepsilon_g = \varepsilon_2$ and (6) with $\varepsilon_g = \frac{1}{2} |G|$,

$$\exists \delta_1 > 0 \text{ such that } |f(x) - F| < \varepsilon_1 \text{ whenever } 0 < |x - a| < \delta_1$$

$$\exists \delta_2 > 0 \text{ such that } |g(x) - G| < \varepsilon_2 \text{ whenever } 0 < |x - a| < \delta_2$$

$$\exists \delta_3 > 0 \text{ such that } |g(x) - G| < \frac{1}{2}|G| \text{ whenever } 0 < |x - a| < \delta_3$$

Choose
$$\delta = \min \{\delta_1, \delta_2, \delta_3\}$$
. Then whenever $0 < |x - a| < \delta$ we also have $0 < |x - a| < \delta_1$
and $0 < |x - a| < \delta_2$ and $0 < |x - a| < \delta_3$ so that
 $\left|\frac{f(x)}{g(x)} - \frac{F}{G}\right| = \frac{|f(x)G - Fg(x)|}{|g(x)G|} = \frac{|\{f(x) - F\}G - F\{g(x) - G\}|}{|g(x)G|}$
 $\leq \frac{|f(x) - F| |G| + |F| |g(x) - G|}{|g(x)| |G|}$
 $\leq \frac{\varepsilon_1 |G| + |F| \varepsilon_2}{\frac{1}{2}|G| |G|}$ since $|g(x)| = |g(x) - G + G| \ge |G| - |g(x) - G| \ge \frac{1}{2}|G|$
 $= \frac{1}{6}|G|\varepsilon \frac{|G|}{G^2/2} + \frac{|F|}{G^2/2} \frac{G^2}{6(|F|+1)}\varepsilon = \frac{\varepsilon}{3} + \frac{1}{3} \frac{|F|}{|F|+1}\varepsilon$
 $< \varepsilon$

(d) We are to prove that

 $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{ such that } \left| f(X(y)) - F \right| < \varepsilon \text{ whenever } 0 < |y - b| < \delta$ So pick any $\varepsilon > 0$. We must prove that there is a $\delta > 0$ such that

 $\left| f(X(y)) - F \right| < \varepsilon$ whenever $0 < |y - b| < \delta$

By (5) with $\varepsilon_f = \varepsilon$

 $\exists \, \delta_f > 0 \; \text{ such that } |f(x) - F| < \varepsilon \text{ whenever } 0 < |x - a| < \delta_f$ and (7) with $\varepsilon_X = \delta_f$,

$$\exists \delta_X > 0$$
 such that $|X(y) - a| < \delta_f$ whenever $0 < |y - b| < \delta_X$

Choosing $\delta = \delta_X$, we have

$$0 < |y-b| < \delta = \delta_X \implies 0 < |X(y)-a| < \delta_f \implies |f(X(y)) - F| < \varepsilon$$

(e) has essentially the same proof as part (d). We are to prove that

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{such that } |\gamma(f(x)) - \Gamma| < \varepsilon \text{ whenever } 0 < |x - a| < \delta$ So pick any $\varepsilon > 0$. We must prove that there is a $\delta > 0$ such that

$$\gamma(f(x)) - \Gamma | < \varepsilon$$
 whenever $0 < |x - a| < \delta$

By (8) with $\varepsilon_{\gamma} = \varepsilon$ and the hypothesis that $\gamma(F) = \Gamma$

$$\exists \, \delta_{\gamma} > 0 \, \text{ such that } |\gamma(t) - \Gamma| < \varepsilon \text{ whenever } |t - F| < \delta_{\gamma}$$

By (5) with $\varepsilon_f = \delta_{\gamma}$

$$\exists \delta_f > 0$$
 such that $|f(x) - F| < \delta_{\gamma}$ whenever $0 < |x - a| < \delta_f$

Choosing $\delta = \delta_f$, we have

$$0 < |x - a| < \delta = \delta_f \implies |f(x) - F| < \delta_\gamma \implies |\gamma(f(x)) - \Gamma| < \varepsilon$$

Example 12 As a typical application of Theorem 11, we compute

$$\lim_{x \to 2} \frac{x + \sin \frac{\pi x}{8}}{x^4 + 1}$$

Here " $\stackrel{a}{=}$ " means that Theorem 11.a justifies that equality.

$$\lim_{x \to 2} \left(x + \sin \frac{\pi x}{8} \right) \stackrel{a}{=} \lim_{x \to 2} x + \lim_{x \to 2} \sin \frac{\pi x}{8}$$

$$\stackrel{e}{=} \lim_{x \to 2} x + \sin \left(\lim_{x \to 2} \frac{\pi x}{8} \right) \quad \text{(by Example 7)}$$

$$= 2 + \sin \frac{\pi}{4}$$

$$= 2 + \frac{1}{\sqrt{2}}$$

$$\lim_{x \to 2} \left(x^4 + 1 \right) \stackrel{a}{=} \lim_{x \to 2} x^4 + \lim_{x \to 2} 1$$

$$\stackrel{b}{=} \left(\lim_{x \to 2} x \right) + 1$$

$$= 2^4 + 1$$

$$\lim_{x \to 2} \frac{x + \sin \frac{\pi x}{8}}{x^4 + 1} \stackrel{c}{=} \frac{\lim_{x \to 2} (x + \sin \frac{\pi x}{8})}{\lim_{x \to 2} (x^4 + 1)}$$

$$= \frac{2 + \frac{1}{\sqrt{2}}}{17}$$