
A Little Logic

“There Exists” and “For All”

The symbol ∃ is read “there exists” and the symbol ∀ is read “for all” (or “for each”

or “for every”, if it reads better). Let S(ε) be a statement that contains the parameter ε.

For example, S(ε) might be “ 5 < ε”. Then

◦ the statement “∃ ε > 0 such that S(ε)” is true if there exists at least one ε > 0

such that S(ε) is true and

◦ the statement “∀ ε > 0 S(ε)” is true if S(ε) is true whenever ε > 0.

On the other hand

◦ the statement “∃ ε > 0 such that S(ε)” is false when S(ε) is false for every ε > 0

and

◦ the statement “∀ ε > 0 S(ε)” is false when there exists at least one ε > 0 for

which S(ε) is false.

In symbols,

◦ the statement “∃ ε > 0 such that S(ε)” is false when “∀ε > 0 S(ε) is false”

and

◦ the statement “∀ ε > 0 S(ε)” is false when “∃ ε > 0 such that S(ε) is false”.

Example 1 Let S(ε) be the statement “ 5 < ε”. Then

◦ the statement “∃ ε > 0 such that S(ε)” is true since there does indeed exist an

ε > 0, for example ε = 6, such that S(ε) is true.

◦ On the other hand, the statement “∀ ε > 0 S(ε)” is false since there is at least

one ε > 0, for example ε = 4, such that S(ε) is is false.

Let S(δ, ε) be a statement that contains the two parameters δ and ε. For example,

S(δ, ε) might be “if |x| < δ then x2 < ε”. Define the statement U to be

∀ ε > 0 ∃ δ > 0 such that S(δ, ε)

To analyse U , define, for each ε > 0, the statement T (ε) to be “∃ δ > 0 such that S(δ, ε)”.

Then U is the statement “∀ ε > 0 T (ε)” and

◦ U is true if T (ε) is true for every ε > 0.

◦ Given any fixed ε0 > 0, T (ε0) is true if there exists at least one δ > 0 such that

S(δ, ε0) is true.

◦ So, all together, U is true if for each ε > 0, there exists at least one δ > 0 (which may

depend on ε) such that S(δ, ε) is true.
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On the other hand

◦ U is false if T (ε) is false for at least one ε > 0.

◦ Given any fixed ε0 > 0, T (ε0) is false if there does not exist at least one δ > 0 such

that S(δ, ε0) is true. That is, if S(δ, ε0) is false for all δ > 0.

◦ So, all together, U is false if there exists at least one ε > 0, such that S(δ, ε) is false

for all δ > 0. That is, U is false if the statement

∃ ε > 0 such that ∀ δ > 0 S(δ, ε) is false

is true.

Example 2 In this example, we will always assume that δ > 0 and ε > 0. Let U be the

statement

∀ ε > 0 ∃ δ > 0 such that if |x| < δ then x2 < ε

We wish to decide whether or not this statement is true. To do so, we split it up into bite

sized pieces, working from right to left. Precisely, we let (see (∗) below)
◦ S(δ, ε) be the statement “if |x| < δ then x2 < ε”, and

◦ T (ε) be the statement “∃ δ > 0 such that S(δ, ε)” or

∃ δ > 0 such that if |x| < δ then x2 < ε

◦ Then U is the statement “∀ ε > 0 T (ε)”.

U
︷ ︸︸ ︷

∀ ε > 0

T (ε)
︷ ︸︸ ︷

∃ δ > 0 such that

S(δ,ε)
︷ ︸︸ ︷

if |x| < δ then x2 < ε (∗)

We analyze U in three steps.

◦ Step 1: We find all δ’s and ε’s for which S(δ, ε) is true. For example, S(δ, ε) is true

when δ = 2 and ε = 22 = 4. That is S(2, 4) is true. On the other hand S(2, 3) is

false, because, for example x = 7
4
< 2 but x2 = 49

16
> 3. In general, as x runs over

the interval −δ < x < δ, x2 covers the set [0, δ2). So S(δ, ε) is true if and only if the

interval [0, δ2) is contained in the interval [0, ε), which is the case if and only if δ2 ≤ ε.

So, S(δ, ε) is true if and only if δ2 ≤ ε.

◦ Step 2: We find all ε’s for which T (ε) is true. For example, T (4) is true because when

ε = 4, we may choose δ = 2 and then S(δ = 2, ε = 4) is true. In fact, T (ε) is true for

every ε > 0, because we may choose δ =
√
ε and then S

(√
ε, ε

)
is true.

◦ Step 3: We just conclude that U is true since, as we have just seen, T (ε) is true for

all ε > 0.
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Example 3 In this example, we will again assume that δ > 0 and ε > 0. This time let

U be the statement

∀ ε > 0 ∃ δ > 0 such that if |x| < δ then 1 + x2 < ε

We wish to decide whether or not this statement is true. To do so, we again split it up

into bite sized pieces, working from right to left. Precisely, we let (see (∗∗) below)
◦ S(δ, ε) be the statement “if |x| < δ then 1 + x2 < ε”, and

◦ T (ε) be the statement “∃ δ > 0 such that S(δ, ε)” or

∃ δ > 0 such that if |x| < δ then 1 + x2 < ε

◦ Then U is the statement “∀ ε > 0 T (ε)”.

U
︷ ︸︸ ︷

∀ ε > 0

T (ε)
︷ ︸︸ ︷

∃ δ > 0 such that

S(δ,ε)
︷ ︸︸ ︷

if |x| < δ then 1 + x2 < ε (∗∗)

We analyze U using the same three steps as in Example 2.

◦ Step 1: We find all δ’s and ε’s for which S(δ, ε) is true. When x runs over the interval

−δ < x < δ, 1 + x2 covers the set [1, 1 + δ2). Hence S(δ, ε) is true if and only if the

interval [1, 1 + δ2) is contained in the interval [0, ε), and that is true if and only if

ε ≥ 1 + δ2.

◦ Step 2: We find all ε’s for which T (ε) is true. Because S(δ, ε) is true if and only if

ε ≥ 1 + δ2, the statement T (ε) is equivalent to “∃ δ > 0 such that ε ≥ 1 + δ2” which

is true if and only if ε > 1. (If ε > 1, we may choose δ =
√
ε− 1. If ε < 1, no δ works

since 1 + δ2 is always at least 1. If ε = 1, the only δ which could work is δ = 0, and

it does not satisfy the condition δ > 0.)

◦ Step 3: We just conclude that U is false since, as we have just seen, T (ε) is false for

at least one ε > 0. For example T
(
1
2

)
is false.
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Converse, Inverse, Contrapositive

Let S1 and S2 be statements. For example S1 might be “x is a rational number” and

S2 might be “x is a real number”. Define the statement T to be “If S1 is true then S2 is

true.”. Then

◦ the converse of T is the statement “If S2 is true then S1 is true.”,

◦ the inverse of T is the statement “If S1 is false then S2 is false.” and

◦ the contrapositive of T is the statement “If S2 is false then S1 is false.”

If the statement T is true, then

◦ the converse of T need not be true,

◦ the inverse of T need not be true and

◦ the contrapositive of T is necessarily true.

Example 4 Let S1 be the statement “x is a rational number” and S2 be the statement

“x is a real number”. Then

◦ T is the statement “If x is a rational number then x is a real number.” and is true,

◦ the converse of T is the statement “If x is a real number then x is a rational number.”

and is false,

◦ the inverse of T is the statement “If x is not a rational number then x is not a real

number.” and is false, and

◦ the contrapositive of T is the statement “If x is not a real number then x is not a

rational number.” and is true.
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