MATHEMATICS 120 Section 101

(Honours) DIFFERENTIAL CALCULUS

Math 120 is the honours version of Math 100, covering mostly the same topics, but in greater foundational depth and with more emphasis on harder and/or theoretical exercises.

Prerequisite: MATH 12. High-school calculus and one of (a) a score of 95% or higher in BC Principles of Mathematics 12 or Pre-calculus 12; or (b) a score of 95% or higher in the BC provincial examination for Principles of Mathematics 12 or Pre-calculus 12; or (c) BC Principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (c) BC principles of Mathematics 12 or Pre-calculus 12; or (d) pre-calculus 12; or

INSTRUCTOR:

- Joel Feldman
- $\circ~$ Math building room 221
- · 604-822-5660
- $\circ~$ feldman@math.ubc.ca
- http://www.math.ubc.ca/~feldman/

• office hours: Monday 1:30–2:30, Tuesday 11:00–12:00, Thursday 2:00–3:00

TEXT:

Robert A. Adams and Christopher Essex, Calculus: Single Variable, (or Calculus: A Complete Course) seventh edition or any earlier edition. (The earlier editions have Adams as the sole author.) I will post all handouts, problem sets, etc. on http://www.math.ubc.ca/~feldman/m120/

TOPICS:

10110		lecture
chapter		hours
	Preview and Review	3
	functions, absolute values, inequalities, preview of calculus	
1	Limits and Continuity	5
	limits of sequences and functions, limit laws, continuity,	
	Intermediate Value Theorem	
2	Differentiation	10
	tangents and differentiability, higher derivatives,	
	differentiation rules (including chain rule), implicit differentiation,	
	Mean Value Theorem and applications (monotonicity, concavity)	
3	Elementary Functions	7
	inverse functions and their derivatives,	
	exponential and logarithmic functions and their derivatives,	
	exponential growth and decay,	
	derivatives of trig and inverse trig functions	
4	Applications	8
	curve sketching, maximum and minimum problems, related rate problems,	
	l'Hôpital's Rule	
4	Approximation	7
	linearization (with error estimate), quadratic and higher approximations,	
	Taylor polynomials and Taylor's theorem with Lagrange remainder,	
	Taylor series for exp, sin, cos	

GRADING:

• There will be weekly problem sets. They will account for about 5% of the final mark.

• There will be two midterms (Tuesday, October 2 and Tuesday, November 6) with each accounting for about 20% of the final mark.

 $\circ~$ The final exam will account for about 55% of the final mark.

• Grades will probably be scaled.

Mon Tues Wed Fri Sept no class no class Problem Set 1 Problem Set 2 Problem Set 3 Oct ${\rm Midterm}~1$ no class Problem Set 5 $\,$ Problem Set 6 Problem Set 7 Problem Set 8 Nov ${\rm Midterm}~2$ Problem Set 10no class $% \left({{{\rm{b}}_{\rm{c}}}} \right)$ Problem Set 11

Schedule of Problem Sets, Quizzes and Midterms